
Hierarchical Extension Operators plus Smoothingin Domain Decomposition PreconditionersG. Haase�Applied Numerical Mathematics:23(3), May 1997, pp.327-346AbstractThe paper presents a cheap technique for the approximation of the harmonic extensionfrom the boundary into the interior of a domain with respect to a given di�erential operator.The new extension operator is based on the hierarchical splitting of the given f.e. space to-gether with smoothing sweeps and an exact discrete harmonic extension on the lowest leveland will be used as a component in a domain decomposition (DD) preconditioner. In com-bination with an additional algorithmical improvement of this DD-preconditioner solutiontimes faster then the previously studied were achieved for the preconditioned parallelizedcg-method. The analysis of the new extension operator gives the result that in the 2D-caseO(ln(ln(h�1))) smoothing sweeps per level are su�cient to achieve an h-independent behaviorof the preconditioned system provided that there exists a spectrally equivalent preconditionerfor the modi�ed Schur complement with spectral equivalence constants independent of h.Keywords : Boundary value problems, Finite element method, Domain decomposition,Preconditioning, Parallel iterative solvers.1 IntroductionThis paper concerns with the use of hierarchical bases (see Yserentant [27], Xu [26], Os-wald [22]) in domain decomposition methods (see for reference Bramble/Pasciak/Schatz [3],Smith [24], Smith/Widlund [23]) together with iterative subdomain solvers (B�orgers [2],Haase/Langer/Meyer [10]) for solving second order partial di�erential equations. In contradic-tion to the work of Bramble/Pasciak/Xu [4] we use the idea of the hierarchical/multilevel basesjust locally.In Haase et al [9, 10, 11, 12] the parallelization and preconditioning of the Conjugate Gradient(cg) method on the basis of a non-overlapping Domain Decomposition (DD) approach was pro-posed. In Sections 2 and 3 we review some of the results of these papers. The DD preconditionerproposed contains three components which can be chosen in order to adapt the preconditionerto the problem under consideration as well as possible. One component is a (modi�ed) Schur-complement preconditioner that has been studied by the DD community very intensively [3, 6, 17].Another component is a preconditioner for the local homogeneous Dirichlet problems arising ineach subdomain. The most sensitive part is the basis transformation matrix transforming thenodal f.e. basis on the interfaces into the approximate discrete harmonic basis [10]. In order to�Johannes Kepler University Linz, Inst. of Math., Altenberger Str. 69, A{4040 Linz, Austria1



2 2 THE NON OVERLAPPING DD FEMconstruct the last component, we use local multigrid methods together with a nonzero initialguess. The initial guess obtained from a hierarchical extension technique [12] which will be de-scribed brie
y in Section 4. It follows from the estimates given therein thatO(ln(lnh�1)) multigriditerations are necessary to achieve an h-independent behavior of the condition number �(C�1K)of the preconditioned system.In Section 5 of this paper, we combine the ideas of the hierarchical extension with the multigrididea of an exact solver on the coarsest grid and additional smoothing sweeps at the remaininglevels. In this case no additional multigrid iterations are needed and an h-independent conditionnumber �(C�1K) will be obtained when q = ln(lnh�1) smoothing sweeps are performed on eachlevel. The estimate for the condition number includes the preconditioner proposed in [12] andthe use of the exact harmonic extension for de�ning the basis transformation [16]. Because of thesmoothing components therein the new extension technique works also in the case of changingcoe�cients in the interior of the domain and now represents the pde-harmonic extension, i.e. theharmonic extension with respect to the given di�erential operator.In Section 6 the special structure of the hierarchical extension operator plus smoothing leadsdirectly to an algorithmical improvement of the well known ASM(Additive Schwarz Method)-DD-preconditioner [10] in which the inner preconditioner (a multigrid V-cycle) will be de�nedby means of the new extension operator, i.e., more precisely, that the necessary transposed ofthe new extension procedure may be used as the backslash part of the corresponding multigridV-cycle. So half of the algorithmical operations necessary for performing a multigrid V-cycle asan inner preconditioner can be saved. The numerical results in Section 7 show that the new DD-precondioner is faster then the ones proposed earlier and works for a wider range of operators.2 The Non overlapping DD FEMWe consider the symmetric, V0{elliptic and V0{bounded variational problem�nd u 2 V0 = �H 1(
) : Z
 �(x)rTu(x)rv(x) dx = Z
 f(x) v(x) dx 8v 2 V0 ; (2.1)arising from the weak formulation of a scalar second{order, symmetric and uniformly boundedelliptic boundary value problem (b.v.p.) given in a plane bounded domain 
 � R2 with apiecewise smooth boundary � = @
 . The technique described in Section 4 and [12] requires�(x) = �i = const > 0 8x 2 
i . The more general coe�cients �(x) � �0 > 0 8x 2 
 arefeasible for the technique described in Section 5. However all the results carry over to systemsof symmetric elliptic 2.nd order pdes resulting in symmetric V0 -elliptic and V0 -bounded bilinearforms.As in the �nite element substructuring technique, we decompose 
 into p non-overlappingsubdomains 
i (i = 1; 2; : : : ; p) such that 
 = pSi=1
i , and each subdomain 
i into Courant'slinear triangular �nite elements �r such that this discretization process results in a conformtriangulation of 
 . In the following, the indices "C" and "I" correspond to the nodes belongingto the coupling boundaries (interfaces) �C = pSi=1 @
i n �D and to the interior 
I = pSi=1
i of thesubdomains, respectively, where �D is that part of @
 where Dirichlet{type boundary conditionsare given. Boundaries with Neumann boundary conditions will be handled as coupling boundaries.De�ne the usual f.e. nodal basis� = [�C ;�I ] = � 1 ; � � � ;  NC ;  NC+1 ; � � � ;  NC+NI;1 ; � � � ;  N=NC+NI � ; (2.2)



3where the �rst NC basis functions belong to �C , the next NI;1 to 
1, the next NI;2 to 
2 and soon such that NI = NI;1 +NI;2 + : : :+NI;p . The f.e. subspaceV = Vh = span(�) = span(�V ) = VC + VI � V0 (2.3)can be represented as direct sum of the subspaces VC = span(�VC) and VI = span(�VI) withV = (VC VI) = I = �IC OO II�N�N ; VC = �ICO�N�NC and VI = �OII�N�NI :The f.e. isomorphism between the f.e. function u 2 V and the corresponding vectoru = (uTC ; uTI )T 2 RN of the nodal parameters is given byV 3 u = �V u = �u � ! u 2 RN : (2.4)Once the basis � is chosen, the f.e. approximation leads to a large{scale sparse systemK u = f (2.5)of �nite element equations with the symmetric and positive de�nite sti�ness matrix K. Becauseof the arrangement of the basis functions made above, the system (2.5) can be rewritten in theblock form �KC KCIKIC KI � �uCuI� = �fCf I� ; (2.6)where KI = blockdiag (KI;i)i=1;2;::: ;p is block diagonal.3 The ASM-DD PreconditionerNow we use the Parallel Preconditioned Conjugate Gradient method for solving (2.5){(2.6) onparallel computers. The data distribution and the parallelization of the cg{method is describedin [10]. The crucial point is the preconditioning equationC w = r (3.1)which must �t into the DD parallelization concept proposed earlier in [9, 10].In [9, 10], the ASM{DD preconditionerC = �IC KCIB�TIO II ��CC OO CI�� IC OB�1I KIC II� (3.2)was derived on a purely algebraic basis. This preconditioner contains the three components CC ,CI = diag (CI;i)i=1;2;::: ;p and BI = diag (BI;i)i=1;2;::: ;p , which can be freely chosen in order to adaptthe preconditioner to the specialties of the problem under consideration, see also [10]. As Schurcomplement preconditioner CC the BPS [3] and the S(chur)-BPX [25] are used. In [9, 10] the innerpreconditioners CI;i = KI;i (II;i �MI;i)�1 and the basis transformations BI;i = KI;i �II;i �M I;i��1were de�ned via some cheap multigrid iteration operators MI;i and M I;i.The upper and lower bounds for the condition number �(C�1K) of the preconditioned systemgiven in Haase et al [10] were improved by Cheng [5]. The following theorem reproduces Cheng`sresult in the notation used by the author in previous papers.



4 3 THE ASM-DD PRECONDITIONERTHEOREM 3.1. Denote the Schur complement by SC = KC �KCIK�1I KIC , its perturbationby TC = KCI(K�1I � B�TI )KI(K�1I � B�1I )KIC and let the symmetric and positive de�nite blockpreconditioners CC and CI satisfy the spectral equivalence inequalities
C CC � SC � 
C CC and 
I CI � KI � 
I CI (3.3)with some positive constants 
C , 
C , 
I and 
I. Further denote the spectral radius of S�1C TCby � = �(S�1C TC) . Then the condition number �(C�1K) of the preconditioned system using theASM-DD preconditioner (3.2) is bounded from above�(C�1K) � 14
C
I � h(1 + �)
C + 
I +q((1 + �)
C + 
I)2 � 4
C
I i (3.4)� h(1 + �)
C + 
I +p((1 + �)
C + 
I)2 � 4
C
I iand below�(C�1K) � 14(1 + �)
C
I � h(1 + �)(
C + 
I) +q(1 + �)2(
C + 
I)2 � 4(1 + �)
C
I i (3.5)� h(1 + �)
C + 
I +p((1 + �)
C + 
I)2 � 4
C
I i :The non singular matrix BI , which is not supposed to be neither symmetric nor positivede�nite, can be interpreted as a part of the basis transformation matrixeV = �eV C eV I� = � IC O�B�1I KIC II� (3.6)transforming the nodal basis � in the approximate discrete harmonic basis e� = �eV and � canbe de�ned by the angle between eVC = span(�eVC) and eVI = VI = span(�eV I) , [9, 10]. Moreprecisely, r �1 + � = cos <) �eVC ; eVI� : (3.7)The remaining paper follows the alternative interpretation that the function �� uC�B�1I KICuC � isan extension of the function uC = �VCuC on �C into the interior.Nepomnyaschikh proved in [20] that one can construct a norm{preserving extension �� uCEICuC �of uC such that the inequality



�� uCEICuC�



H1(
) � cE k uC kH 12 (�C) (3.8)holds for all uC = �VCuC and uC 2 RNC , where EIC : RNC ! RNI denotes the correspondingextension operator and cE is an h{independent positive constant. Replacing �B�1I KICuC byEICuC , we obtain an h{independent bound 1 + � = ecE2 , where ecE is de�ned by cE and by thenorm equivalence constants between the H 1(
){ and the K{energy norm on the one hand and theH 12 (�C) and the SC{energy norm on the other hand. In [16], the splitting V = eVC + eVI , witheVC = span(�eVC) , eVI = VI = span(�eV I) , andeV C = � ICEIC� ; (3.9)



5was used in order to derive asymptotically optimal ASM{Preconditioners.Let us return to some algorithmical aspects for solving the preconditioning equation (3.1)and to some modi�cations of the basic preconditioning algorithm (Algorithm 1) given by theASM{DD preconditioner (3.2). The basic preconditioning Algorithm 1 can be rewritten in theform w = C�1r as Algorithm 1 : The ASM-DD Preconditioner [9, 10]wC = C�1C pPi=1 ATC;i �rC;i �KCI;iB�TI;i rI;i�wI;i = C�1I;i rI;i �B�1I;iKIC;iwC;i ; i = 1; 2; : : : ; pDetermined by the user : CC =?, CI =?, BI =?where Ai = � AC;i ACI;iAIC;i AI;i � denotes the subdomain connectivity matrix which is used for a con-venient notation only. The subdomain f.e. assembling process which is connected with nearestneighbour communication stands behind this notation [18, 9, 10].Other DD-preconditioners and modi�cations of Algorithm 1 can be found in [11, 8]. Thesymmetric MSM(Multiplicative Schwarz Method)-DD preconditioner can be rewritten as an ASM-DD preconditioner (3.2) with a very special structure of the components BI , CI (see [8]). Thereforethis symmetric MSM-DD preconditioner can be parallelized in the same way as the ASM one. Theuse of that symmetric MSM-DD preconditioner together with an extension procedure proposedin [12] is out of scope of this work.4 The Hierarchical Extension OperatorThis section follows closely the joint work of HLMN [12] describing some basic statements for thefollowing section.Let us now construct a very simple and easily implementable, almost norm preserving extensionprocedure EIC : RNC ! RNI on the basis of the hierarchical transformation technique proposedby Yserentant in [27] for preconditioning �nite element equations. It is obviously su�cient toconstruct the extension for each subdomain 
i separately. So, we omit the subindex i and describethe extension E
� of a piecewise linear function given on the boundary � (= �C;i) of 
 to somepiecewise linear function on 
 (= 
i). Emphasize that throughout this section 
 and � play therule of the subdomain 
i and of the subdomain boundary �i = @
i, respectively. For simplicity,we suppose that 
 is a polygonal plane domain and, of course, bounded.Now, starting with a coarse grid triangulation 
h0 we are forced to introduce explicitly asequence of �ner and �ner triangulation
hk = [Mki=1� (k)i ; k = 0; 1; : : : ; `;where the triangles � (k+1)i are generated by subdividing triangles � (k)i into four congruent sub-triangles connecting the midpoints of the edges (red subdivision) [1]. In the following, the indices"`" and "0" correspond to �ne and coarse level quantities, respectively. Denote by x(k)i , i=1;2;::: ;Lkthe nodes of the triangulation 
hk.



6 4 EXTENSIONIntroduce now the spaces W k and Vk of �nite element functions. The space W k consists ofreal-valued functions which are continuous on 
 and linear on the triangles in 
hk . The space Vkis the space of traces on � of functions from W k :Vk = f'h : 'h = uhj�; withuh 2 W kg:We will consider the usual norms of the Sobolev spaces H 1(
) and H 12 (�), respectively, in the�nite element subspaces W ` and V` , too.Our goal is the construction of some norm-preserving explicit extension operator E
� from V`into W ` : E
� : V` ! W ` :As was mentioned above, the basis of our construction is the hierarchical decomposition of thespace V` which was suggested by Yserentant [27, 28]:'h = I0'h + lXk=1(Ik � Ik�1)'h 8'h 2 V` ;where Ik'h 2 Vk denotes the �nite element interpolant. Introduce the notation'h0 = I0'h;'hk = (Ik � Ik�1)'h; k = 1; : : : ; `;and de�ne the extension uhk 2 W k n W k�1 of the function 'hk in the following way:uh0(x(0)i ) = ('h0(x(0)i ) ; x(0)i 2 �;' ; x(0)i 62 �; (4.1a)uhk(x(k)i ) = ('hk(x(k)i ) ; x(k)i 2 �;0 ; x(k)i 62 �: k=1;` (4.1b)Here ' is, for instance, the mean value of the function 'h0 on �:' = 1N0 N0Xi=1 'h0(x(0)i ); (4.2)where N0 denotes the number of nodes x(0)i on �. We assume that the nodes x(k)i are enumeratedat �rst on � (in the natural order) and then inside 
. SetE
�'h = uh � uh0 + uh1 + � � �+ uh̀: (4.3)and supposing that W is a piecewise-linear �nite element space on 
h the estimatekE
�'hkH1(
) � c � ` � k'hkH 12 (�) ; (4.4)holds with some positive constant c, independent of h, which was proved for the extension operator(4.3) in [12].Changing into the hierarchical basis b� = � bV the basis transformation bV = � QC 0QIC QI � willbe used, where QC ; QI and QIC are the matrix representations of the hierarchical interpolationfrom the coarsest to the �nest grid. So we can write the hierarchical extension operator EIC;` onthe �nest grid as EIC;` := [QI BIC;0 + QIC ] Q�1C ; (4.5)where the harmonic extension on the coarsest grid BIC;0 has to be chosen with respect to (4.2).



75 The Hierarchical Extension Operator plus smoothingUsing the same hierarchical basis as in Section 4 we will construct a norm preserving extensionprocedure bEIC : RNC ! RNI again via a norm-preserving explicit extension operator bE
� fromV` into W ` : bE
� : V` ! W ` ;including additional linear smoothing operators Sk : W k ! W k , realized via the discretesmoothing operator (= iteration operator of the a�ne linear smoothing iteration [14])SI;k : RNI;k ! RNI;k , k=1;` ful�llingk SI;k vh kKI � %k k vh kKI 8�Ivh 2 W k n W k�1 high frequencies() k SI;khigh kKI � %k < 1k SI;k vh kKI � k vh kKI 8�Ivh 2 W k�1 ; W k low frequencies() k SI;klow kKI � 1 ; (5.1)where the number of smoothing sweeps is denoted by �k. Additionally we require smoothingfactors %k independent of h and `. Please note the operators Sk are de�ned via the discreterepresentation SI;k in the interior of the domain which is extended to 0 on the boundary.From the mesh theorem for mesh functions [19] there exists the exact harmonic extensionwhk 2 W k so that for any Ik'h 2 Vkwhk j� = Ik'h;kwhkkH1(
) � c1kIk'hkH 12 (�) k=0;` (5.2)is valid with some h-independent positive constant c1.The exact harmonic extension whk 2 W k (k=1;`) can be split into the direct sum of theexact harmonic extension on the next coarser grid whk�1 2 W k�1 and the high frequency partewhk 2 W k n W k�1 whk = whk�1 � ewhk : (5.3)Lemma 5.1. Let uhk the simple extension of 'hk de�ned in (4.1a) and ewhk the high frequency partof the exact harmonic extension of 'hk, see (5.3). Then there exists an h-independent constant c2so that the following estimate is valid.k uhk � ewhk k2H1(
) � c2 k ' k2H1=2(�) (5.4)Proof. First, we have to show the relationk uhk k2H1(
) � 2k C3 k 'hk k2L2(�) : (5.5)In the following we omit the superscript h and denotethe bilinear basis function  from (2.2) belonging to thegrid node x(k)i by  ki . The traces of  ki (i=i1;i2) on anedge 
j = fxjx := x(k)i1 + �(x(k)i2 � x(k)i1 ) ; � 2 [0; hk = 2�k]g ofthe boundary are  ki1j
j = �hk and  ki2j
j = hk��hk . Let us de-note the �nite elements near the boundary � by ��, the nodesindices belonging to a linear triangular element �� by !� and themaximal number of elements a node belongs to by nmax. Due tothe fact that uk is only nonzero in the nodes x(k)i belonging tothe boundary we estimate the left side of the inequality above :
�

�������
����000 uk = 0uk = 'k(x(k)i )uk = 0� - coarser grid nodes� - �ne grid nodessupp  ki (x)Figure 1: Region near x(k)i



8 5 EXTENSION PLUS SMOOTHINGk uk k2H1(
) = Z
 �jukj2 + jrukj2� ds = X�� Z�� �jukj2 + jrukj2� ds= X�� Z��  ���Xi2!� uk(x(k)i ) �  ki ���2 + ���Xi2!� uk(x(k)i ) � r ki ���2! ds� X�� Xi2!� juk(x(k)i )j2 �Xi2!� k  ki kH1(��)| {z }�c � cX�� Xi2!� ; x(k)i 2��'k(x(k)i )�2� nmax c Xx(k)i 2� �'k(x(k)i )�2 :Compared with the lower bound of the right hand side in (5.5)k 'k k2L2(�) = Z� ('k)2ds = X
j Z
j �'k(x(k)i1 ) �  ki1j
j + 'k(x(k)i2 ) �  ki2j
j �2 d�= X
j hkZ0 �'k(x(k)i1 ) �hk + 'k(x(k)i2 )hk��hk �2 d�= hk3 X
j �'2k(x(k)i1 ) + 'k(x(k)i1 )'k(x(k)i2 ) + '2k(x(k)i2 )�� hk3 X
j 12 �'2k(x(k)i1 ) + '2k(x(k)i2 )� = 13hk Xx(k)i 2� �'k(x(k)i )�2 :the h-independent constant C3 will be achieved. In case of an equidistant triangular mesh we getthe bounded constant C3 = 3 � 3 � (2 + 712h2k) � 934 .According to Nepomnyaschikh [19] there exists a positive constant C2 so that2k k 'hk k2L2(�) � C2 k 'h k2H1=2(�)holds. Together with (5.5) the above inequality leads directly to the statementk uhk k2H1(
) � C2C3 k 'h k2H1=2(�) : (5.6)Using inequality (5.6) and the obvious relation k ewhk kH1(
) � k uhk kH1(
) for the exact harmonicextension ewhk the remaining proof is trivialk uhk � ewhk k2H1(
) � �k uhk kH1(
) + k ewhk kH1(
)�2 � 4 k uhk k2H1(
) � 4C2C3 k ' k2H1=2(�) : (5.7)Now we are in the position to de�ne the extension buhk 2 W k of the function Ik'h in the followingrecursive way: buh0 = wh0 (5.8a)buhk = S�kk �uhk + buhk�1� + (I � S�kk )whk k=1;` ; (5.8b)



9where uhk (k�1) represents the extension de�ned in (4.1b). Equation (5.8a) requires a coarse gridsolver for obtaining the discrete harmonic extension on the lowest level. So we achieve at thehierarchical extension operator plus smoothingbE
�'h = buh̀ (5.9)Please note that in contradiction to (4.3) the new extension is de�ned recursively and no longeras a sum.
THEOREM 5.2. Applying on each level k (k=1;`) �k times the smoothing operator Sk de�nedin (5.1) then there exists a positive constant c, independent of h, such that

k bE
�'h kH1(
) � c 0@ 1 + p` �vuutX̀k=1 %2�kk 1A k 'h kH 12 (�)holds, where the hierarchical extension operator plus smoothing bE
� was de�ned in (5.9).
Proof. We have to estimatek buh̀ kH1(
) = k buh̀ � wh̀ + wh̀ kH1(
) � k buh̀ � wh̀ kH1(
) + k wh̀ kH1(
)(5.8b)� k S�`` �uh̀ + buh̀�1 � wh̀� kH1(
) + k wh̀ kH1(
)(5.3)= k S�``high �uh̀ � ewh̀� + S�``low �buh̀�1 � wh̀�1� kH1(
) + k wh̀ kH1(
)...(5.3)= 




X̀k=1 Ỳj=k S�jj � �uhk � ewhk�+ Ỳk=1S�kk � �buh0 � wh0�




H1(
)+ k wh̀ kH1(
)� 




X̀k=1 Ỳj=k S�jj � �uhk � ewhk�




H1(
)+ 




Ỳk=1S�kk � �buh0 � wh0�




H1(
)+ k wh̀ kH1(
)
First term :Using the Cauchy-inequality, and the obvious relation 2ab � a2 + b2 we are able to estimate for



10 5 EXTENSION PLUS SMOOTHINGan arbitrary function vh (de�ned in the same way as uh)k vh � vh0 k2H1(
) = k vh1 + : : :+ vh̀ k2H1(
) =  X̀k=1 vhk ; X̀k=1 vhk!L2(
) +  X̀k=1rvhk ; X̀k=1rvhk!L2(
)= X̀k=1 h�rvhk ; rvhk�L2(
) + �vhk ; vhk�L2(
)i+2 `�1Xk=1 X̀j=k+1 h�rvhk ; rvhj �L2(
) + �vhk ; vhj �L2(
)i� X̀k=1 k vhk k2H1(
) +2 `�1Xk=1 X̀j=k+1 k vhk kH1(
)k vhj kH1(
)| {z }� 1=2�kvhk k2H1(
)+ kvhj k2H1(
)�� X̀k=1 k vhk k2H1(
) + `�1Xk=1 X̀j=k+1 k vhk k2H1(
) + `�1Xk=1 X̀j=k+1 k vhj k2H1(
)= X̀k=1 k vhk k2H1(
) + `�1Xk=1(`� k)� k vhk k2H1(
) + X̀j=2(j � 1)� k vhj k2H1(
)= ` X̀k=1 k vhk k2H1(
)Now, substituting vhk = Qj̀=k S�jj �uhk � ewhk� , taking into account the norm equivalencec2 k �vh k2H1(
) � k v k2K = a (�v;�v) � c2 k �vh k2H1(
) 8v 2 RN (5.10)and using Lemma 5.1 we are in the position to estimate




X̀k=1 Ỳj=k S�jj (uhk � ewhk)




2H1(
) � `X̀k=1 




Ỳj=k S�jj (uhk � ewhk)




2H1(
) � `=c2X̀k=1 




Ỳj=k S�jI;j(uhk � ewhk)




2KI(5.1)� `=c2X̀k=1 %2�kk � k uhk � ewhk) k2KI � `c2c2 X̀k=1 %2�kk � k uhk � ewhk k2H1(
)(5.4)� `c2 c2c2 k 'h k2H1=2(�) X̀k=1 %2�kk :Second term : This term vanishes because of (5.8a).Third term : The relation (5.2) with k = ` and I`'h � 'h is used.Combining the estimates for the three terms results ink buh̀ kH1(
) � 0@ c1 + pc2 cc p` �vuutX̀k=1 %2�kk 1A k 'h kH 12 (�)



11REMARK 5.3. The estimate for the hierarchical extension plus smoothing in Theorem 5.2 in-cludes the following special cases :1. No smoothing, i.e. %k � 1 8k � 1 : (see estimate (4.4))k bE
�'h kH1(
) � c (`+ 1) � k 'h kH 12 (�)2. On each level the exact harmonic extension, i.e. %k � 0 8k � 1 : (see estimate (3.8))k bE
�'h kH1(
) � c1 k 'h kH 12 (�)REMARK 5.4 (slash-cycle). Assuming %k � % < 1 and �k = � (k=1;`) the estimate ofTheorem 5.2 changes intok bE
�'h kH1(
) � c [ 1 + ` � %� ] k 'h kH 12 (�) ; (5.11)i.e., it is su�cient to perform O(ln `) = O(ln(lnh)) smoothing sweeps of SI;k on each level toachieve an h- and `-independent bound for bE
�.REMARK 5.5 (generalized slash-cycle). Assuming %k � % < 1 and �k�1 := 2 � �k(k=1;`), �` := � the estimate of Theorem 5.2 changes intok bE
�'h kH1(
) � c " 1 + p` � %� �s1� %2�`1� %2� # k 'h kH 12 (�) : (5.12)The rather rough estimate p(1� %2�`)=(1� %2�) < p1=(1� %2�) leads to the conclusion that itis su�cient to start with O(lnp`) smoothing sweeps of SI;` on the �nest level to achieve an h-and `-independent bound for bE
�, i.e., at most half of the smoothing sweeps of the slash-cycle onthe �nest grid are needed.REMARK 5.6 (sharper estimate). Sharpen the requirements for the low frequencies of thesmoother SI;k in de�nition (5.1) into k SI;klow kKI � �k � 1 the estimate in Theorem 5.2changes into k bE
�'h kH1(
) � c 0@ 1 + p` �vuutX̀k=1 %2�kk Ỳj=k+1�2�jj 1A k 'h kH 12 (�)Performing just on the �nest grid ` the iteration operator SI;k, i.e. �k = 0 8k = 1; `� 1 and�` = �, the term under the square root changes to (` � 1 + %2�)�2�. Let maxf%; �g � � � 1 weachieve the same estimate as in [12] for using the hierarchical extension (4.3) as an initial guessfor the following iteration procedure MI � SI;k with kMI kKI� �k bE
�'h kH1(
) � c ( 1 + ` � ��) k 'h kH 12 (�) :Now we change into the hierarchical basis b� = � bV and use the basis transforma-tion bV = � QC 0QIC QI �, with QC = QC;`QC;`�1 � � � QC;1 , QIC = QIC;`QIC;`�1 � � � QIC;1 and



12 5 EXTENSION PLUS SMOOTHINGQI = QI;`QI;`�1 � � � QI;1 where QC;k; QIC;k; QI;k are the matrix representations of the hierar-chical interpolation from the level k � 1 to the level k (k=1;`). According to (5.8a) and (5.8b) wede�ne the hierarchical extension operator bEIC;` recursively asbEIC;1 = S�1I;1 �QI;1K�1I;0 (�KIC;0) + QIC;1 � Q�1C;1 ;bEIC;k = S�kI;k hQI;k bEIC;k�1 + QIC;k i Q�1C;k 8k = 2; ` ; (5.13)where on the coarsest grid the exact discrete harmonic extension ( �K�1I;0 KIC;0 ) was chosen.COROLLARY 5.7 (Fixed number of smoothing sweeps). Assume that we use precondi-tioners CC and CI so that the spectral equivalence inequalities (3.3) are ful�lled with h-independent constants 
C , 
C, 
I and 
I (e.g. perform a symmetric local multigrid cycle to de�neCI = KI(II �MI)�1 with kMI kKI� � < 1 , � 6= �(h)). The basis transformation (3.6) is de-�ned via the hierarchical extension procedure bEIC : RNC �! RNI described in (5.13). If thereexists an h-independent constant % 6= %(h) bounding the constants %k in (5.1) then for a �xed num-ber of smoothing sweeps with the operators SI;k (5.1) the condition number of the preconditionedsystem �(C�1K) behaves likeO(`2) � �(C�1K) � O(`4) = O(ln4(h�1)) : (5.14)Proof. The norm equivalence inequalities (5.10) andcC k �CvhC kH1=2(�C) � k vC kSC � cC k �CvhC kH1=2(�C) 8vC 2 RNCtogether with the estimate (5.11) lead directly to



� vCEICvC�



K � c c�1C c (1 + `%�)| {z }bcE :=bcE(`;%;�) k vC kSC) :Another simple calculation results in the following equation of the spectral radius � = %(S�1C TC)� = maxvC2RNC nf;g k bEICvC +K�1I KICvC k2KIk vC k2SC = maxvC2RNC nf;g 



� vCbEICvC�� � vC�K�1I KICvC�



2KIk vC k2SC= maxvC2RNC nf;g 



� vCbEICvC�



2KI � 2 k vC k2SC + k vC k2SCk vC k2SC = bc2E � 1 :Both deductions applied to the upper (3.4) and lower (3.5) bound of the condition num-ber �(C�1K) results in the statement of the corollary.THEOREM 5.8 (Final Result). Under the assumptions of Corollary 5.7 it is su�cient toperform � = O(ln(lnh�1)) = O(ln `) smoothing sweeps with the iteration operators SI;k on eachlevel k=1;` to achieve an h-independent � = %(S�1C TC) and hence the condition number of thepreconditioned system behaves like �(C�1K) = O(1) .Proof. Follows directly from the proof of Corollary 5.7 .



136 An algorithmical improvement of the ASM-DD-preconditionerSubstituting in Algorithm 1 the basis transformation operator �B�1I;iKIC;i by the new hierarchicalextension operator bEIC;`;i (5.13) the algorithm can be rewritten intoAlgorithm 1b : The algorithmical improved ASM-DD PreconditionerwC = C�1C pPi=1 ATC;i �rC;i + bETCI;`;i rI;i�wI;i = C�1I;i rI;i + bECI;`;iwC;i ; i = 1; 2; : : : ; pNeglecting the new de�nition of the basis transformation operator BI this algorithm seams similarto the old one. Normally we use for the de�nition of CI a multigrid method, see [10, 12]. ButbEIC;` is de�ned in the same recursive way as the V-cycle multigrid operator [13] and possesses thesame components (coarse grid solver, smoother, interpolation, restriction). Observing that in thealgorithm above the operators bETCI;` and CI are applied to the same vector rI the two operations
@@@R� @@@R� @@@R� ��������������

� �nest gridcoarsest� = (STI;k)�k
QTI Q�TCvC = bETIC rI @@@R� @@@R� @@@R� �����������

�
� = (SI;k)�k

QTI QIvI = C�1I rI

may use the same restriction, presmoothing and coarse grid solver for the inner nodes. Thus, bothoperators can be combined in the implementation.@@@R� @@@R� @@@R� �������������
��QTI QIQ�TC

The resulting V-cycle multigrid operatorCI will be de�ned by the choice of the components (mostlythe smoothing) of the new extension operator EIC;` and is positive de�nite and symmetric. Sothis premise of Theorem 3.1 is ful�lled automatically.In comparison to a non sophisticated implementation presmoothing, restriction and coarse gridsolver for the multigrid cycle are saved. This leads to the very good behavior of Algorithm 1bwith respect to the CPU-time for solving equation (2.5).



14 7 NUMERICAL RESULTS7 Numerical resultsIn this section we arrange the following abbreviations :EIC hierarchical extension operator (4.5).bEIC(s) hierarchical extension operator (5.13) with s Gauss-Seidel-smoothing sweeps oneach level.bEIC(s)gen: hierarchical extension operator (5.13) with s smoothing sweeps on the highest leveland doubling of the Gauss-Seidel-smoothing sweeps on each lower level.V sk / Wsk multigrid V/W-cycle with s (lexicographically forward) pre- and k (lexicographi-cally backward) post-Gauss-Seidel-smoothing sweeps.bV ss multigrid-V-cycle de�ned by means of the extension operator bEIC(s).All calculations were done on a 16 processor Parsytec Power-Xplorer with 32 MByte memoryper node. The sometimes appearing Algorithm 4 denotes the MSM-DD-preconditioner, see [12]for reference, and is just included for the sake of comparing the new algorithm with the fastest ofthe older ones. All examples were solved with the preconditioned parallelized cg using algorithm 1or algorithm 1b as preconditiong step until an accuracy of 10�6 was achieved.Test example : To check the theoretical results given in Section 5 we consider the problem�div(�(x)r u(x)) = f(x) in
 = (0; 1)� (0; 0:5)u = 0 on� = @
 ;with the given solution u(x1; x2) = (sin(i�x1) + sin(j�x1)) � (sin(i�x2) + sin(j�x2)) , the coe�-cient function �(x1; x2) = 4:1 + (sin(i�x1) + sin(j�x1)) � (sin(i�x2) + sin(j�x2)) and the properright hand side f(x1; x2). In the numerical experiments i = 2 and j = 56 were chosen.The domain 
 was subdivided into two squares each mapped onto one processor. Algorithm 1was used as DD-preconditioner with the Dryja preconditioner [6] as Schur complement precondi-tioner CC and an exact solver for CI . The accuracy was measured in the K-energy norm of theerror k u � uiter kK so that the condition number of the preconditioned system �(C�1K) couldbe estimated. The initial grid (` = 0) with the discretization parameter h0 = 14 produced by anautomatic mesh generator di�ers from the often used triangular mesh based on an equidistantrectangular grid.level 0 1 2 3 4 5 6BIC � iter � iter � iter � iter � iter � iter � iterbEIC(0) 1.00 1 1.90 7 3.29 13 5.64 16 8.70 20 13.17 25 22.17 33bEIC(1) 1.00 1 1.42 5 1.89 7 2.47 9 3.10 11 4.10 13 5.49 15bEIC(2) 1.00 1 1.29 5 1.64 7 1.98 8 2.30 9 2.71 10 3.69 12bEIC(3) 1.00 1 1.25 5 1.38 5 1.74 7 1.91 7 2.30 9 2.95 10bEIC(4) 1.00 1 1.20 4 1.35 5 1.60 6 1.75 7 2.03 8 2.58 9bEIC(4) 1.00 1 1.20 4 1.35 5 1.60 6 1.75 7 2.03 8 2.58 93W33 �KIC 1.00 1 1.00 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00 2Table 1: �(C�1K) and # cg-iterations for the test example using 2 processors, Algorithm 1The last row in Table 1 indicates that all spectral equivalence constants 
C ; 
C ; 
I ; 
I in (3.3)are equal 1. So, the estimates (3.4) and (3.5) simplify and we obtain bounds for � = %(S�1C TC)depending on the condition number � :p�+ 1p� � � � � + 1� :



15Following the proof of Corollary 5.7 and taking into account the observation that �(C�1K) = 1for ` = 0 the estimatesqp�+ 1p� � 1 � bcE = 1 + bc ` %� � q� + 1� � 1 (7.1)are valid with a constant bc > 0, bc 6= bc(`; %).
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Figure 2: Lower and upper bounds of bcE (7.1) deduced from Table 1We see from the pictures in Figure 1 that there exists a bc so that for a constant � the linearexpression for bcE realizes the estimates (7.1) for all levels observed. The behavior of bcE for theremaining rows in Table 1 is similar. Please note that % in (7.1) is an upper bound for thesmoothing factors %k of the smoothing procedure on the levels k = 1; ` so that the measuredbehavior of the condition number � might be better then the predicted one for certain levels.Additionally, the asymptotic behavior of the bounds for bcE(�) in (7.1) just can be seen for � > 20.Using our good hierarchical extension plus smoothing we never reach that range.All the theoretical results are valid under the assumption that the smoothing factor % is constantfor all smoothing sweeps. But in practice the �rst smoothing sweeps result in a better factor %then the remaining ones. So, the condition numbers for the extension with one or two smoothingsweeps achieved from the experiment are better then the one predicted from the theory.



16 7 NUMERICAL RESULTSLooking at the iteration numbers in Table 1 it seems to be su�cient to perform at most O(`)smoothing sweeps per level to achieve constant iteration numbers. Together with the discussionabove this validates the theoretical results in the Theorems 5.2 and 5.8.Electrical machine : As a more challenging example we calculated the magnetic potential in anelectrical machine with a rather complex geometry (see also [15]).

Figure 3: Material adapted decomposition and mesh on level 0 of the electrical machineThe pde is similar to (2.1) with coe�cients a(x) constant in the material domains but with largejumps between the materials. The material adapted decomposition of the domain into 16 subdo-mains was done by the code ADDPre (see [7]). The mesh of level 4 includes 93 377 unknowns andthe mesh of level 5 solves the problem on 374 129 unknowns. In the DD-preconditioner S-BPX [25]was used as Schur complement preconditioner CC . The inner preconditioner CI was chosen freely(Algorithms 1 and 4) or was de�ned implicitly (Algorithm 1b). The accuracy was measured inthe KC�1K-energy norm of the error.Alg. BIC CI grid 4 grid 5# iter. sec. # iter. sec.1 EIC V11 > 200 > 2001 bEIC(1) V11 58 18.0 65 711 bEIC(2) V22 39 16.7 41 661b bEIC(1) bV 11 58 14.4 65 52.61b bEIC(2) bV 22 39 13.7 41 49.11 V 11 bEIC(1) V11 51 25.0 53 991 bEIC(1)gen. V11 53 17.4 54 63.21b bEIC(1)gen. bV 11gen. 43 13.4 42 46.04 bEIC(0) V01 55 15.9 57 57.1Table 2: Electrical machine, 16 processorsWe see from Table 2 that the new extension technique together with the new Algorithm 1b is even



17faster then the best older preconditioner in Algorithm 4 (symmetric MSM [12]). The rows 2-5 in-dicate that in comparison with Algorithm 1 the Algorithm 1b saves up to 25 % of the arithmeticalwork. Additionally there is no need to perform an additional multigrid step after the extensionbEIC (rows 4 and 6). The good behavior of the extension with generalized smoothing sweeps inrow 8 validates Remark 5.4.In general the iteration numbers for the electrical machine are higher then for the test example.One reason is the use of rather cheap multigrid cycles de�ning the inner preconditioner CI. On theother hand our Schur complement preconditioner CC has no longer spectral equivalence constants
C ; 
C near 1.8 ConclusionsThe presented extension technique is a cheap method for approximating the pde-harmonic ex-tension, i.e. a harmonic extension appropriate to the pde, in a 2-dimensional domain accurately.Due to the smoothing sweeps and the exact discrete harmonic extension on the coarsest grid thetechnique described works also on rather general symmetric elliptic operators, e.g.�div(�(x)ru(x)) + b(x)u(x) = 0 8x 2 
iu(x) = g(x) 8x 2 @
iwith �(x) � �0 > 0 and b(x) � 0 8x 2 
i and on the linear elasticity equation.Using the same hierarchical splitting of the f.e. space V in the 3D-case results in � =%(S�1C TC) = O(h�1). In [21], Nepomnyaschikh constructed a norm-preserving extension oper-ator using a BPX-like splitting of the f.e. space V so that even in the 3D-case �(C�1K) = O(1)can be achieved. The combination of his approach together with smoothing sweeps and the exactdiscrete harmonic extension on the coarsest grid will improve the constant in the estimate givenin [21]. Implementing a similar improvement as in Section 6 should again result in a very fastASM-DD-preconditioner for 3D case.References[1] R. E. Bank, T. F. Dupont, and H. Yserentant. The Hierarchical Basis Multigrid Method.Numerische Mathematik, 52:427{458, 1988.[2] M. B�orgers. The Neumann{Dirichlet domain decomposition method with inexact solvers onthe subdomains. Numerische Mathematik, 55(2):123{136, 1989.[3] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners forelliptic problems by substructuring I { IV. Mathematics of Computation, 1986, 1987, 1988,1989. 47, 103{134, 49, 1{16, 51, 415{430, 53, 1{24.[4] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Mathematics ofComputation, 55(191):1 { 22, 1990.[5] H. Cheng. Iterative Solution of Elliptic Finite Element Problems on Partially Re�ned Meshesand the E�ect of Using Inexact Solvers. PhD thesis, Courant Institute of MathematicalScience, New York University, 1993.
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