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Abstract

The paper presents a cheap technique for the approximation of the harmonic extension
from the boundary into the interior of a domain with respect to a given differential operator.
The new extension operator is based on the hierarchical splitting of the given f.e. space to-
gether with smoothing sweeps and an exact discrete harmonic extension on the lowest level
and will be used as a component in a domain decomposition (DD) preconditioner. In com-
bination with an additional algorithmical improvement of this DD-preconditioner solution
times faster then the previously studied were achieved for the preconditioned parallelized
cg-method. The analysis of the new extension operator gives the result that in the 2D-case
O(In(In(h~1))) smoothing sweeps per level are sufficient to achieve an h-independent behavior
of the preconditioned system provided that there exists a spectrally equivalent preconditioner
for the modified Schur complement with spectral equivalence constants independent of h.

Keywords : Boundary value problems, Finite element method, Domain decomposition,
Preconditioning, Parallel iterative solvers.

1 Introduction

This paper concerns with the use of hierarchical bases (see Yserentant [27], Xu [26], Os-
wald [22]) in domain decomposition methods (see for reference Bramble/Pasciak/Schatz [3],
Smith [24], Smith/Widlund [23]) together with iterative subdomain solvers (Borgers [2],
Haase/Langer/Meyer [10]) for solving second order partial differential equations. In contradic-
tion to the work of Bramble/Pasciak/Xu [4] we use the idea of the hierarchical/multilevel bases
just locally.

In Haase et al [9, 10, 11, 12] the parallelization and preconditioning of the Conjugate Gradient
(cg) method on the basis of a non-overlapping Domain Decomposition (DD) approach was pro-
posed. In Sections 2 and 3 we review some of the results of these papers. The DD preconditioner
proposed contains three components which can be chosen in order to adapt the preconditioner
to the problem under consideration as well as possible. One component is a (modified) Schur-
complement preconditioner that has been studied by the DD community very intensively [3, 6, 17].
Another component is a preconditioner for the local homogeneous Dirichlet problems arising in
each subdomain. The most sensitive part is the basis transformation matrix transforming the
nodal f.e. basis on the interfaces into the approximate discrete harmonic basis [10]. In order to
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2 2 THE NON OVERLAPPING DD FEM

construct the last component, we use local multigrid methods together with a nonzero initial
guess. The initial guess obtained from a hierarchical extension technique [12] which will be de-
scribed briefly in Section 4. It follows from the estimates given therein that O(In(In A~')) multigrid
iterations are necessary to achieve an h-independent behavior of the condition number x(C~'K)
of the preconditioned system.

In Section 5 of this paper, we combine the ideas of the hierarchical extension with the multigrid
idea of an exact solver on the coarsest grid and additional smoothing sweeps at the remaining
levels. In this case no additional multigrid iterations are needed and an h-independent condition
number k(C~'K) will be obtained when ¢ = In(In~~") smoothing sweeps are performed on each
level. The estimate for the condition number includes the preconditioner proposed in [12] and
the use of the exact harmonic extension for defining the basis transformation [16]. Because of the
smoothing components therein the new extension technique works also in the case of changing
coefficients in the interior of the domain and now represents the pde-harmonic extension, i.e. the
harmonic extension with respect to the given differential operator.

In Section 6 the special structure of the hierarchical extension operator plus smoothing leads
directly to an algorithmical improvement of the well known ASM(Additive Schwarz Method)-
DD-preconditioner [10] in which the inner preconditioner (a multigrid V-cycle) will be defined
by means of the new extension operator, i.e., more precisely, that the necessary transposed of
the new extension procedure may be used as the backslash part of the corresponding multigrid
V-cycle. So half of the algorithmical operations necessary for performing a multigrid V-cycle as
an inner preconditioner can be saved. The numerical results in Section 7 show that the new DD-
precondioner is faster then the ones proposed earlier and works for a wider range of operators.

2 The Non overlapping DD FEM

We consider the symmetric, Vy—elliptic and Vy—bounded variational problem

find ueVy, = H(Q) : /

i M) VIu(z) Vo(z) de = /Q f(z)v(z)dx Vo eV, (2.1)

arising from the weak formulation of a scalar second—order, symmetric and uniformly bounded
elliptic boundary value problem (b.v.p.) given in a plane bounded domain Q C R?> with a
piecewise smooth boundary T'= 0. The technique described in Section 4 and [12] requires
Mz) = \; = const > 0 Va € ;. The more general coefficients A\(z) > Ao > 0 Vo € Q are
feasible for the technique described in Section 5. However all the results carry over to systems
of symmetric elliptic 2.nd order pdes resulting in symmetric Vy-elliptic and Vy-bounded bilinear
forms.

As in the finite element substructuring technique, we decompose 2 into p non-overlapping
subdomains €; (i = 1,2,...,p) such that Q = LpJ Q, , and each subdomain €; into Courant’s
linear triangular finite elements o, such that ’ghils discretization process results in a conform

triangulation of €2 . In the following, the indices ”C” and ”I” correspond to the nodes belonging
p

p
to the coupling boundaries (interfaces) I'c = |J 0Q; \ I'p and to the interior Q; = [J ©; of the
1=1 i=1
subdomains, respectively, where I'p is that part of 02 where Dirichlet—type boundary conditions
are given. Boundaries with Neumann boundary conditions will be handled as coupling boundaries.

Define the usual f.e. nodal basis

¢ = [(I)C; (I)I] = W“ te 7wNO;wNC+17 T ;¢NC+NM; e ;¢N=NC+NI] 3 (22)



where the first N¢ basis functions belong to I'c, the next Ny ; to €, the next N o to 2, and so
on such that Ny = Nyi+ Nro+ ...+ Ny, . The f.e. subspace

V =V, = span(®) = span(®V) = Vo +V; CV, (2.3)

can be represented as direct sum of the subspaces Vo = span(®V) and V; = span(®V;) with

I O Ic O
V:(chl):[:< ) ,VC:< ) andV1:< ) .
O I NxN 0 NxNg Iy Nx Ny

The f.e. isomorphism between the f.e. function u € V and the corresponding vector
u=(ul,ul)" € RV of the nodal parameters is given by

Vou=0dVu=>u <« uecRY . (2.4)
Once the basis @ is chosen, the f.e. approximation leads to a large—scale sparse system

Ku = f (2.5)

of finite element equations with the symmetric and positive definite stiffness matrix K. Because
of the arrangement of the basis functions made above, the system (2.5) can be rewritten in the

block form
Ke Ker\ (ue\ _ (]
e 5 ()= () 20

where K; = blockdiag (K ;) is block diagonal.

i:1a27""p

3 The ASM-DD Preconditioner

Now we use the Parallel Preconditioned Conjugate Gradient method for solving (2.5)—(2.6) on
parallel computers. The data distribution and the parallelization of the cg—method is described
in [10]. The crucial point is the preconditioning equation

Cw=r (3.1)

which must fit into the DD parallelization concept proposed earlier in [9, 10].
In [9, 10], the ASM-DD preconditioner

o <IC KCIBIT> (CC O) < _{c O) (3.2)
O I; O C;) \B; Kic I;

was derived on a purely algebraic basis. This preconditioner contains the three components C¢,
Cr = diag(Cri),—,, ., and By = diag(Br;),_, ., » Which can be freely chosen in order to adapt
the preconditioner to the specialties of the problem under consideration, see also [10]. As Schur
complement preconditioner C the BPS [3] and the S(chur)-BPX [25] are used. In [9, 10] the inner
preconditioners Cr,; = Ky ; (Iy; — MI,i)_l and the basis transformations Br; = K ; (]1,1' — Wl’i)_l

were defined via some cheap multigrid iteration operators M;; and Mu.
The upper and lower bounds for the condition number x(C~'K) of the preconditioned system

given in Haase et al [10] were improved by Cheng [5]. The following theorem reproduces Cheng's
result in the notation used by the author in previous papers.
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THEOREM 3.1. Denote the Schur complement by S¢ = K¢ — KCIK;IKIC, its perturbation
by To = Ker(K;' — By ") K (K" — By Y)Kc and let the symmetric and positive definite block
preconditioners Co and Cr satisfy the spectral equivalence inequalities

Yo Cc < Se < 7cCc and v, C;p < Kp < 7,C (3.3)

with some positive constants Yer Vs Y and ;. Further denote the spectral radius of SngC

by p=p(Sg'Tc) . Then the condition number k(C~'K) of the preconditioned system using the
ASM-DD preconditioner (3.2) is bounded from above

k(CT'K) < . [(1 + )yt t \/((1 + )y, + ) - 41011} (3.4)
|+ e + 70+ VT we + 717 = Fe |
and below
WOTK) 2 e [ i+ ) + 0+ P+, P = 40y, | (39)

N+ 100+ + U+ we + 717 = Femr | -

The non singular matrix Bj, which is not supposed to be neither symmetric nor positive
definite, can be interpreted as a part of the basis transformation matrix

= e oy Ie O
V= (Vc V,) - (—BIIKIC h) (3.6)

transforming the nodal basis ® in the approximate discrete harmonic basis CAE: ®V and /4 can
be defined by the angle between V¢ =span(®Vy) and V; =V, =span(®Vy), [9, 10]. More
precisely,

——— = cos Ve, Vi) . 3.7
1+,U # c, VI ( )
The remaining paper follows the alternative interpretation that the function <I>( 73;%;’10%) is

an extension of the function ue = ®Veu, on I'c into the interior.
Nepomnyaschikh proved in [20] that one can construct a norm—preserving extension @ ( EIECCHO )
of ue such that the inequality

U
P =2C
H (Elc@)

holds for all uc = ®Vou, and u, € RN | where Ejc: RV¢ — RN denotes the corresponding
extension operator and cg is an h—independent positive constant. Replacing —Bl_lKIch by
Ercue , we obtain an h-independent bound 14 p = EEQ , where ¢g is defined by cg and by the
norm equivalence constants between the H' (Q)- and the K-energy norm on the one hand and the
H?(T'¢) and the Sc—energy norm on the other hand. In [16], the splitting V = V¢ + V, | with
@C = span(@@c) , @1 =V; = span(fbvl) , and

Ve = (éICC> , (3.9)

< cr [luc | (3-8)

1
H?2

H1(Q) (Fe)



was used in order to derive asymptotically optimal ASM-Preconditioners.

Let us return to some algorithmical aspects for solving the preconditioning equation (3.1)
and to some modifications of the basic preconditioning algorithm (Algorithm 1) given by the
ASM-DD preconditioner (3.2). The basic preconditioning Algorithm 1 can be rewritten in the
form w=C"r as

Algorithm 1 : The ASM-DD Preconditioner [9, 10]

p
wo = 0g' 3 A6 (ro; — KeriBjry,)
1=

_ -1 -1 o
Wri = Cl,i Tri— B,’Z. Kfc,zﬂc,i 1 =1,2,...,p

Determined by the user : Ce=I,C;=I, By =I

where A; = (floo’fi AA(;IZ) denotes the subdomain connectivity matrix which is used for a con-
venient notation only. The subdomain f.e. assembling process which is connected with nearest
neighbour communication stands behind this notation [18, 9, 10].

Other DD-preconditioners and modifications of Algorithm 1 can be found in [11, 8]. The
symmetric MSM (Multiplicative Schwarz Method)-DD preconditioner can be rewritten as an ASM-
DD preconditioner (3.2) with a very special structure of the components By, C7 (see [8]). Therefore
this symmetric MSM-DD preconditioner can be parallelized in the same way as the ASM one. The
use of that symmetric MSM-DD preconditioner together with an extension procedure proposed
in [12] is out of scope of this work.

4 The Hierarchical Extension Operator

This section follows closely the joint work of HLMN [12] describing some basic statements for the
following section.

Let us now construct a very simple and easily implementable, almost norm preserving extension
procedure Ejc: RY¥¢ — RM on the basis of the hierarchical transformation technique proposed
by Yserentant in [27] for preconditioning finite element equations. It is obviously sufficient to
construct the extension for each subdomain €); separately. So, we omit the subindex i and describe
the extension Egp of a piecewise linear function given on the boundary I' (= I'¢;) of © to some
piecewise linear function on Q (= ;). Emphasize that throughout this section Q and T play the
rule of the subdomain €2; and of the subdomain boundary I'; = 0€;, respectively. For simplicity,
we suppose that €2 is a polygonal plane domain and, of course, bounded.

Now, starting with a coarse grid triangulation Q! we are forced to introduce explicitly a
sequence of finer and finer triangulation

Qr=u7", k=01,....¢
(k+1) (k)

where the triangles 7; are generated by subdividing triangles 7,/ into four congruent sub-

triangles connecting the midpoints of the edges (red subdivision) [1]. In the following, the indices

"¢” and ”0” correspond to fine and coarse level quantities, respectively. Denote by :rl(k), i=1,2,.0., L,

the nodes of the triangulation QF.
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Introduce now the spaces W, and V, of finite element functions. The space W, consists of
real-valued functions which are continuous on  and linear on the triangles in Q7. The space V
is the space of traces on I' of functions from W;:

Vi = {¢": " =u"|p, withu" € W 1.

We will consider the usual norms of the Sobolev spaces H' (€2) and ]I-]Ilf(l“), respectively, in the
finite element subspaces W, and V,, too.

Our goal is the construction of some norm-preserving explicit extension operator Eqg from V,
into W,:

EﬁF : Vg — Wg.
As was mentioned above, the basis of our construction is the hierarchical decomposition of the

space V; which was suggested by Yserentant [27, 28]:
I

" = Ip" + Z(]k — Iy )" Yo' eV,
k=1

where I;,¢" € V,, denotes the finite element interpolant. Introduce the notation
N (1
of = (Iy—TLi)e", k=1,...,4,

and define the extension u! € Wy, \ W;_; of the function ¢} in the following way:

h(,.(0) (0)
0 eolz; ") ,x €T,
ug(xg )) = {_0 (0) (4.1a)
(10 ) xi g Fa
h( (k) *)
uZ(xEk)) — {7k (z;7) ’ﬁék) €L k=1, (4.1b)
0 x; ¢ T.
Here @ is, for instance, the mean value of the function ? on T':
No
_ 0
7 = %> weha), (4.2)
i=1

where N; denotes the number of nodes :1:50) on I'. We assume that the nodes x

at first on I (in the natural order) and then inside 2. Set

(%)

i

are enumerated

Bgre" =u" = ul +ul + -+ ul. (4.3)
and supposing that W is a piecewise-linear finite element space on €2, the estimate
h h
B e < ¢ €€ |3, - (1.4)
holds with some positive constant ¢, independent of h, which was proved for the extension operator
(4.3) in [12].
Changing into the hierarchical basis ® = ® V' the basis transformation V = (gfc QOI) will
be used, where QQ¢, @) and Q;c are the matrix representations of the hierarchical interpolation

from the coarsest to the finest grid. So we can write the hierarchical extension operator Ej;c, on
the finest grid as

Erce = [QrBrco + Qrc] Q7' (4.5)

where the harmonic extension on the coarsest grid Byco has to be chosen with respect to (4.2).



5 The Hierarchical Extension Operator plus smoothing

Using the same hierarchical basis as in Section 4 we will construct a norm preserving extension
procedure Ejc: RV — RN again via a norm-preserving explicit extension operator Eq, from
Vg into Wg:

A~

Eﬁl“ -V —)Wg,

including additional linear smoothing operators Sy : W, — Wy , realized via the discrete
smoothing operator (= iteration operator of the affine linear smoothing iteration [14])
Srr : RNtk — RNtk =77 fulfilling

I Srrv" e, < Ol 2" Il,,, V" € Wi \ Wy " EZ 1S ., < 8 < 1

ow frequencies (51)
|| SI,th ||KI < || Qh ||KI V(I)th € Wiy, Wy l f=q> || Slyklow ||KI <1,

where the number of smoothing sweeps is denoted by v,. Additionally we require smoothing
factors 9, independent of h and /. Please note the operators Sy are defined via the discrete
representation Sy in the interior of the domain which is extended to 0 on the boundary.

From the mesh theorem for mesh functions [19] there exists the exact harmonic extension
w,’j € W, so that for any I ¢" € V,

il = L (5:2)

|willm@) < C1||]k80h||H%(F) k=0,

is valid with some h-independent positive constant c;.
The exact harmonic extension wf € W; (k=7¢) can be split into the direct sum of the
exact harmonic extension on the next coarser grid w! , € W;_; and the high frequency part

@Z e W, \Wk—l

wy = wp_, & wy . (5.3)
Lemma 5.1. Let ul! the simple extension of o defined in (4.1a) and W} the high frequency part
of the exact harmonic extension of o, see (5.3). Then there exists an h-independent constant cy
so that the following estimate is valid.

| =@ 2, < ellelr, (54)
Proof. First, we have to show the relation
lup 12, < 2 leb 2, (5.5)

In the following we omit the superscript h and denote
the bilinear basis function ¢ from (2.2) belonging to the r

grid node P by ¥ The traces of ¥ (i=i1i2) on an o up =0

edge v, = {z]z = :1:5’16) + 5(:055) — xff)) ;€ [0,hy=27F]} of

(k))
the boundary are ¢} |, = £ and Yy, = h&  Let us de-

U = Pk (%

: Ry i ol —Ju, =0
note the finite elements near the boundary I' by dér, the nodes .
indices belonging to a linear triangular element dr by ws and the = supp ¢y (x)

e - fine grid nodes
O - coarser grid nodes

(k)

i

maximal number of elements a node belongs to by n,,4,. Due to
the fact that uy is only nonzero in the nodes xz(k) belonging to
the boundary we estimate the left side of the inequality above :  Figure 1: Region near x
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luel?,, = /(|uk| V) Z/ fu? + [ Vuel?) ds

or or

:z/(gw oyt St ot ) o

< S ey | o, Y Y ()
or iCws icws or jews,a™er
e
S Nipag € Z ( ©) )
Mer

Compared with the lower bound of the right hand side in (5.5)

2
Lol = [tras = X [ (o) b, +anteld) - vkl ) ae

T 73 vj

k k k k
() + eref)on o) + 3 (2 )

D +a2@8)) = e > (a=))

i xgk)el"

2

(V4

w|§_‘"
N [—=
N
AS)

DN
—
8

o~
it

the h-independent constant C'3 will be achieved. In case of an equidistant triangular mesh we get
the bounded constant C3 = 3-3- (24 LThi) < £,
According to Nepomnyaschikh [19] there exists a positive constant C5 so that

el e < Colle" I

H1/2(1)

holds. Together with (5.5) the above inequality leads directly to the statement

e 12 CoCs | " |2 (5.6)

HL(Q) — Hl/2(r

Using inequality (5.6) and the obvious relation || w} ||H1(Q) < || ul ||H1(Q) for the exact harmonic

extension w} the remaining proof is trivial

. (5.7)

|
Now we are in the position to define the extension @' € Wy of the function I;¢" in the following
recursive way:

2
lak =12 0 < (1 Ny + 18 ) < ANl 2, < 4C2Cs |l P

H/2(m)

ur = w (5.8a)
o= SpE (up + ) + (I=SF) wy  k=TE (5.8b)



where ul' (k>1) represents the extension defined in (4.1b). Equation (5.8a) requires a coarse grid

solver for obtaining the discrete harmonic extension on the lowest level. So we achieve at the
hierarchical extension operator plus smoothing

EﬁFSOh = ﬁ? (5-9)

Please note that in contradiction to (4.3) the new extension is defined recursively and no longer
as a sum.

THEOREM 5.2. Applying on each level k (k=) vy times the smoothing operator Sy defined
in (5.1) then there exists a positive constant ¢, independent of h, such that

| B [l < ¢ | 1+ VE- Z—M T

1
H2(T)

holds, where the hierarchical extension operator plus smoothing Eﬁr was defined in (5.9).

Proof. We have to estimate

(5.8b) .

S || SZ[ (ug + ug—l - w?) ||H1(Q) + || w? ||H1(Q)

(5.3) ~

D sy (=@l 4 S @ = ol ) e

‘ 4 14

(5.3) A
k=1 j=k a1
4 14 14

< ISy (i—ap)|  +|1Tse- @ —wt)|  + 1wl
k=1 j=k ai MR i)

First term :
Using the Cauchy-inequality, and the obvious relation 2ab < a? + b% we are able to estimate for
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an arbitrary function v (defined in the same way as u")

¢ ‘ ‘
(K ”Hl(m = llot+...+v Hl(m <Z Uk ZUI};) ! <Z Voi vag)
k=1 k=1 k=1

Lo () Lo ()

k=1

-1
h h h ., h
+2 Z Z {(Vvk , VU])LQ(Q + (vr, v])L2(Q)]

k=1 j=k+1

‘ -1 4

< S 2D S et gl e
k=1 k=1 j=k+1 ~~

2 hi2
<172 (k12 + 10 \\Hl(m)

l {—1 l {—1
h |2
< Z I v HHl(Q) + Z I o ||H1(Q + Z H Hl(n)
— k=1 j—k+1 k=1 j=k+1
{—1 l
2
. Zn B SR, G-,
k=1 j=2
l
— IR,
k=1

Now, substituting v} = Hﬁ:k Sy’ (up — wy) , taking into account the norm equivalence

e 7, <llulf=a(@d) <" 2 =~ VoeR" (5.10)

and using Lemma 5.1 we are in the position to estimate

, 2 ) ¢ 2 Y4 l
STIsiei-ab| < o IIspet-ab) < g |T]snk - ab)
k=1 j=k k=1 |lj=k k=1 |lj=k
Hl(Q HL1(Q) Ky
(5.1) 2 d
) —2
< e Zg;k luf = @) 12, < 65 b —ay 2,
- k=1
_ l
(5.4) c 9 _9
5022_2 || (;0 ||H1/2(1") gk'/k .

Second term : This term vanishes because of (5.8a).
Third term : The relation (5.2) with k = ¢ and ;0" = " is used.
Combining the estimates for the three terms results in

18 o < | @+ VaS Ve Z—M Zam

H2(T)
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REMARK 5.3. The estimate for the hierarchical extension plus smoothing in Theorem 5.2 in-
cludes the following special cases :

1. No smoothing, i.e. op =1 Vk>1: (see estimate (4.4))

| Eare" i < c@+1)- [l ¢" ||

1
2

H2(T)

2. On each level the exact harmonic extension, i.e. o =0 Vk > 1 : (see estimate (3.8))

"l

A h
| Bare oy < e N1,

%]

REMARK 5.4 (slash-cycle). Assummg or < 0 <1 and Vv, = UV (k:ﬂ) the estimate of
Theorem 5.2 changes into

| Eqrd" i < c[1+C2 1 16", (5.11)
H2(I)

%]

e., it is sufficient to perform O(Inf) = O(In(Inh)) smoothing sweeps of Sty on each level to
achieve an h- and (-independent bound for Eqp.

REMARK 5.5 (generalized slash-cycle). Assuming o < 0 <1 and vy g = 2 14
(k=T), vy = v the estimate of Theorem 5.2 changes into

| B 0 < © (5.12)

1
2

. 1_@21%
14+ Ve-o°- 7] ||<,0h||H

1 —2o% ()

The rather rough estimate \/(1 —22%)/(1 —2%) < /1/(1 —2%) leads to the conclusion that it
is sufficient to start with O(In \/Z) smoothing sweeps of Spe on the finest level to achieve an h-

and (-independent bound for Eqr, i.e., at most half of the smoothing sweeps of the slash-cycle on
the finest grid are needed.

REMARK 5.6 (sharper estimate). Sharpen the requirements for the low frequencies of the
smoother Sy in definition (5.1) into || Srg,, < o < 1 the estimate in Theorem 5.2
changes into

e,

‘ ‘
| Bard" sy < | 1+ VE Do T o™ | eIl
k=1 j=k+1
Performing just on the finest grid € the iteration operator Siy, i.e. vy =0 Vk =1,0—1 and
v = v, the term under the square root changes to ({ — 1+ 0*)o*. Let max{o,0} < n < 1 we
achieve the same estimate as in [12] for using the hierarchical extension (4.3) as an initial guess
for the following iteration procedure My = Sty with || Mr ||, <n

I Eqre” |

H1(Q) < c (1 + 677”) || Sph ||H1

Now we change into the hierarchical basis ® = &V and use the basis transforma-
tion ¥V = (¢ 3.): with Qe = Qe Qcy-1 -+ Qeys Qre = QreeQree-1 -+ Qe and



12 5 EXTENSION PLUS SMOOTHING

Qr = QreQry—1 -+ Q1 where Qcyg, Qrok, Qrr are the matrix representations of the hierar-
chical interpolation from the level £ — 1 to the level & (k=1,¢). According to (5.8a) and (5.8b) we

define the hierarchical extension operator E;¢ recursively as

Ercy = S [Qra Ky (=Kicp) + Qren ] Qc

v - (513)
Erce = Sik {Ql,k Ercp1 + Q[C,k] Qa,lk Vk=2,0

where on the coarsest grid the exact discrete harmonic extension ( —Kjy K¢ ) was chosen.

COROLLARY 5.7 (Fixed number of smoothing sweeps). Assume that we use precondi-
tioners Cc and C; so that the spectral equivalence inequalities (3.3) are fulfilled with h-
independent constants Yer Tes and 7y (e.g. perform a symmetric local multigrid cycle to define
Cr = Ki(Ir = Mp)~™" with || My ||, <n <1, n#n(h)). The basis transformation (3.6) is de-

fined via the hierarchical extension procedure Erc : RNe — RN described in (5.18). If there
exists an h-independent constant © # o(h) bounding the constants oy in (5.1) then for a fived num-
ber of smoothing sweeps with the operators Spy (5.1) the condition number of the preconditioned
system k(C~'K) behaves like

O*) < k(C'K) < oY = o*(h™) . (5.14)
Proof. The norm equivalence inequalities (5.10) and

co |l ®cve |, < Mo s, < ol Prt |l Vo € RYC

Te)

together with the estimate (5.11) lead directly to

Ve _ .,
<
H <EICQC> HK > e © (1 + (0 )J || Yo ||50)

-~

Another simple calculation results in the following equation of the spectral radius u = Q(Sng(;)

2

(2) (ot
| Ercve + KI_lKICQC HE{ Ercve —K;'Kicve K
[ = max 5 L = max - ;

o €RVE\ (0} oo 12, bo CRNO\ (0) B

2
Ve . 9 )
H <EICU0> 2 H Yo HSC + H Ve ||SO
 peRNen 2 = cp—1
v €RNO\ {0} || Ve ||S(;

Both deductions applied to the upper (3.4) and lower (3.5) bound of the condition num-
ber k(C~'K) results in the statement of the corollary. n

THEOREM 5.8 (Final Result). Under the assumptions of Corollary 5.7 it is sufficient to
perform v = O(In(Inh™ 1)) = O(Inl) smoothing sweeps with the iteration operators Sty on each
level k=17 to achieve an h-independent 1 = o(S;'To) and hence the condition number of the
preconditioned system behaves like k(C~'K) = O(1) .

Proof. Follows directly from the proof of Corollary 5.7 . ]
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6 An algorithmical improvement of the ASM-DD-
preconditioner

Substituting in Algorithm 1 the basis transformation operator —B;}ch,i by the new hierarchical

extension operator EIC,é,i (5.13) the algorithm can be rewritten into

Algorithm 1b : The algorithmical improved ASM-DD Preconditioner

14 ~
_ -l T T
we = Cg Y Ac, (EC,z’ +Ecrai EI,z')
i=1
-1 o Lo
Wi = Cl,i rrit EorgiWe, pe=1,2,...,p

Neglecting the new definition of the basis transformation operator B; this algorithm seams similar

to the old one. Normally we use for the definition of C; a multigrid method, see [10, 12]. But

E]C’g is defined in the same recursive way as the V-cycle multigrid operator [13] and possesses the

same components (coarse grid solver, smoother, interpolation, restriction). Observing that in the

algorithm above the operators Egu and C] are applied to the same vector r; the two operations
ve = Efor; v = 'y

Q\ QT Qa" /° finest \ Q QID/D
N SN
A \/D/

o = (S O = (Sr)™

may use the same restriction, presmoothing and coarse grid solver for the inner nodes. Thus, both
operators can be combined in the implementation.

The resulting V-cycle multigrid operator C; will be defined by the choice of the components (mostly
the smoothing) of the new extension operator Ejc, and is positive definite and symmetric. So
this premise of Theorem 3.1 is fulfilled automatically.

In comparison to a non sophisticated implementation presmoothing, restriction and coarse grid
solver for the multigrid cycle are saved. This leads to the very good behavior of Algorithm 1b
with respect to the CPU-time for solving equation (2.5).
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7 Numerical results

In this section we arrange the following abbreviations :

Erc hierarchical extension operator (4.5).

Erc(s) hierarchical extension operator (5.13) with s Gauss-Seidel-smoothing sweeps on
each level.

Erc(s)gen.  hierarchical extension operator (5.13) with s smoothing sweeps on the highest level
and doubling of the Gauss-Seidel-smoothing sweeps on each lower level.

Vsk /| Wsk multigrid V/W-cycle with s (lexicographically forward) pre- and % (lexicographi-
cally backward) post-Gauss-Seidel-smoothing sweeps.

Vss multigrid-V-cycle defined by means of the extension operator E;C(s).

All calculations were done on a 16 processor Parsytec POWER-XPLORER with 32 MByte memory
per node. The sometimes appearing Algorithm 4 denotes the MSM-DD-preconditioner, see [12]
for reference, and is just included for the sake of comparing the new algorithm with the fastest of
the older ones. All examples were solved with the preconditioned parallelized cg using algorithm 1
or algorithm 1b as preconditiong step until an accuracy of 1075 was achieved.

Test example : To check the theoretical results given in Section 5 we consider the problem

—div(A(z) Vu(z)) = f(z)
u = 0

inQ = (0,1) x (0,0.5)
onl'=0Q |,

with the given solution wu(zy,5) = (sin(imzy) + sin(jmzy)) - (sin(imzy) + sin(jmzs)) , the coeffi-
cient function A(xy,z9) = 4.1 + (sin(iwzy) + sin(jrzy)) - (sin(irzy) + sin(jmzy)) and the proper
right hand side f(x,z2). In the numerical experiments 7 = 2 and j = 56 were chosen.

The domain ) was subdivided into two squares each mapped onto one processor. Algorithm 1
was used as DD-preconditioner with the Dryja preconditioner [6] as Schur complement precondi-
tioner Cc and an exact solver for C;. The accuracy was measured in the K-energy norm of the
error || u — u" ||, so that the condition number of the preconditioned system x(C 1K) could
be estimated. The initial grid (¢ = 0) with the discretization parameter hy i produced by an
automatic mesh generator differs from the often used triangular mesh based on an equidistant
rectangular grid.

level 0 1 2 3 4 5 6
Bie k iter | k iter || kK iter || K iter || K iter || K iter || K iter
Ec(0) 1.00 | 1| 1.90 | 7| 3.29 |13 || 5.64 | 16 | 870 | 20 || 13.17 | 25 || 22.17 | 33
Erc(1) 1.00 | 1 || 142 | 5| 1.89| 7| 247 | 9| 3.10 | 11 | 4.10 | 13 || 549 | 15
Erc(2) 1.00 0 1| 1.29 | 5] 164 | 7198 8230 9| 2.71 | 10| 3.69 | 12
Erc(3) 1.00 | 1| 1.25 | 5 || 1.38 ] & ||1.74| 7| 191| 7] 2.30 91 295 | 10
Erc(4) 1.00 | 1120|4135 5||160| 6| 1.75| 7] 2.03 8 || 2.58 9
Erc(4) 1.00 0 1| 1.20 1 4] 135 5| 1.60| 6| 1.7 7| 2.03 81 2.58 9
| 3W33- Ky 100 1100 2] 100] 2100 2[1.00] 2] 100 | 2] 1.00 | 2]

Table 1: x(C~'K) and # cg-iterations for the test example using 2 processors, Algorithm 1

The last row in Table 1 indicates that all spectral equivalence constants Yo Yes Vs V1 in (3.3)

are equal 1. So, the estimates (3.4) and (3.5) simplify and we obtain bounds for u = o(S;'T¢)
depending on the condition number « :

VE+ = < p < kA

L
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Following the proof of Corollary 5.7 and taking into account the observation that x(C 1K) =1
for £ = 0 the estimates

JVE+Z=—1 < Gp=1+00 < \Jr+i-1 (7.1)

are valid with a constant ¢ > 0, ¢ # ¢(¢, 9).

¢r(f), 0 smoothing sweeps
5 T T T T

4.5 - lower bound { - &
' upper bound

¢i(0), 4 smoothing sweeps
1.45 | | | |

1.4 | lower bound 46— o

135 1 upper bound +—/|

. 1.25

Figure 2: Lower and upper bounds of ¢g (7.1) deduced from Table 1

We see from the pictures in Figure 1 that there exists a ¢ so that for a constant v the linear
expression for ¢ realizes the estimates (7.1) for all levels observed. The behavior of ¢z for the
remaining rows in Table 1 is similar. Please note that 7 in (7.1) is an upper bound for the
smoothing factors g of the smoothing procedure on the levels £ = 1,/ so that the measured
behavior of the condition number x might be better then the predicted one for certain levels.
Additionally, the asymptotic behavior of the bounds for ¢z (k) in (7.1) just can be seen for x > 20.
Using our good hierarchical extension plus smoothing we never reach that range.

All the theoretical results are valid under the assumption that the smoothing factor 9 is constant
for all smoothing sweeps. But in practice the first smoothing sweeps result in a better factor o
then the remaining ones. So, the condition numbers for the extension with one or two smoothing
sweeps achieved from the experiment are better then the one predicted from the theory.
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Looking at the iteration numbers in Table 1 it seems to be sufficient to perform at most O(¢)
smoothing sweeps per level to achieve constant iteration numbers. Together with the discussion
above this validates the theoretical results in the Theorems 5.2 and 5.8.

Electrical machine : As a more challenging example we calculated the magnetic potential in an
electrical machine with a rather complex geometry (see also [15]).
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Figure 3: Material adapted decomposition and mesh on level 0 of the electrical machine

The pde is similar to (2.1) with coefficients a(z) constant in the material domains but with large
jumps between the materials. The material adapted decomposition of the domain into 16 subdo-
mains was done by the code ADDPre (see [7]). The mesh of level 4 includes 93 377 unknowns and
the mesh of level 5 solves the problem on 374 129 unknowns. In the DD-preconditioner S-BPX [25]
was used as Schur complement preconditioner C¢. The inner preconditioner C; was chosen freely
(Algorithms 1 and 4) or was defined implicitly (Algorithm 1b). The accuracy was measured in
the KC~!K-energy norm of the error.

Alg. | Bie Cr grid 4 grid 5

# iter. | sec. || # iter. | sec.
1] | Ewe Vil > 200 > 200
1] | Ee(1) Vi1 58 | 18.0 | 65 71
1] | Ee(2) V22 39 | 167 41 66
1b| | Erc(1) V11 58 | 14.4 65 | 52.6
1b| | E1c(2) V22 39 [13.7] 41 491
1] | V11 Ee(1) | Vi1 51 |25.0] 53 99
1] | Ejo()gen. | V11 53 | 17.4 54 | 63.2
1b| | Ejc(1)gen. | V1lgen. | 43 [134| 42 |[46.0

| | Ec(0)  [vor | 55 [159] 57 [57.1]

Table 2: Electrical machine, 16 processors

We see from Table 2 that the new extension technique together with the new Algorithm 1b is even
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faster then the best older preconditioner in Algorithm 4 (symmetric MSM [12]). The rows 2-5 in-
dicate that in comparison with Algorithm 1 the Algorithm 1b saves up to 25 % of the arithmetical
work. Additionally there is no need to perform an additional multigrid step after the extension
Erc (rows 4 and 6). The good behavior of the extension with generalized smoothing sweeps in
row 8 validates Remark 5.4.

In general the iteration numbers for the electrical machine are higher then for the test example.
One reason is the use of rather cheap multigrid cycles defining the inner preconditioner C;. On the
other hand our Schur complement preconditioner Cx has no longer spectral equivalence constants

Yo Yo near 1.

8 Conclusions

The presented extension technique is a cheap method for approximating the pde-harmonic ex-
tension, i.e. a harmonic extension appropriate to the pde, in a 2-dimensional domain accurately.
Due to the smoothing sweeps and the exact discrete harmonic extension on the coarsest grid the
technique described works also on rather general symmetric elliptic operators, e.g.

—div(A(x)Vu(z)) + b(z)u(z) = 0  VxeQ,
u(z) = g(xr) Ve 0Q;

with A(z) > Ay > Oand b(z) > 0Vz € Q; and on the linear elasticity equation.

Using the same hierarchical splitting of the f.e. space V in the 3D-case results in y =
o(S;'Te) = O(h™Y). In [21], Nepomnyaschikh constructed a norm-preserving extension oper-
ator using a BPX-like splitting of the f.e. space V so that even in the 3D-case x(C~'K) = O(1)
can be achieved. The combination of his approach together with smoothing sweeps and the exact
discrete harmonic extension on the coarsest grid will improve the constant in the estimate given

in [21]. Implementing a similar improvement as in Section 6 should again result in a very fast
ASM-DD-preconditioner for 3D case.
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