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Abstract

Computer-aided design is nowadays the basis of successful product planning and production
control. In almost all sectors of industry faster and faster changing and adapting product
specifications demand shorter and shorter production times for competative products. In
order to cope with this situation and to realize short development times, enterprises rely on
computer simulations. During the last two decades a new field of applied mathematics has
reached a state of maturity to enter the world of computer-aided engineering, namely the
topology optimization techniques.

This work deals with mathematical methods for topology optimization problems. In par-
ticular, we focus on two specific design - constraint combinations, namely the maximization of
material stiffness at given mass and the minimization of mass while keeping a certain stiffness.
Both problems show different properties and will also be treated with different approaches
in this work. One characteristics of topology optimization problems is that the set of fea-
sible designs is constrained by a partial differential equation. Moreover, these optimization
problems are not well-posed, so regularization techniques have to be applied.

The first combination, also known as the minimal compliance problem, is treated in the
framework of an adaptive multi-level approach. Well-posedness of the problem is achieved
by applying filter methods to the problem. Such a filter method is used for adaptive mesh
refinement along the interface between void and material, i.e. along the boundary of the
structure. The resulting optimization problems on each level are solved by the method of
moving asymptotes, a well-known optimization technique in the field of topology optimization.
In order to ensure an efficient solution of the linear systems, raising from the finite element
discretization of the partial differential equations, a multigrid method is applied.

The treatment of the second combination is by far less understood as the minimal com-
pliance problem. The main source of difficulties is a lack of constraint qualifications for the
set of feasible designs, defined by local stress constraints. To overcome these difficulties the
set of constraints is reformulated, involving only linear and 0–1 constraints. These are fi-
nally relaxed by a Phase–Field approach, which also regularizes the problem. This relaxation
scheme results in large-scale optimization problems, which finally solved by an interior-point
optimization method.

Most of the computing time of these optimization routines is actually spent in solving lin-
ear saddle point problems. In order to speed up computations an efficient solver with optimal
complexity for these system is of high importance. Multigrid methods certainly belong to the
most efficient methods for solving large-scale systems, e.g., arising from discretized partial
differential equations. One of the most important ingredients of an efficient multigrid method
is a proper smoother. In this work a multiplicative Schwarz-type smoother is considered, that
consists of the solution of several small local saddle point problems, and that leads to an
KKT-solver with linear complexity.

iii



iv ABSTRACT



Zusammenfassung

In der heutigen Zeit bildet die computerunterstützte Simulation das Fundament für erfolg-
reiche Produktplanungen und effiziente Produktionsvorgänge. Dies trifft auf verschiedenste
Bereiche der Industrie und Wirtschaft zu. Die sich immer schneller ändernde Nachfrage und
härtere Marktsituation verlangt kurze Entwicklungszeiten und konkurenzfähige Produkte.
Um diese kostengünstig und in kurzer Zeit herstellen zu können, wird nicht nur mit rech-
nergestützten Entwicklungszyklen gearbeitet, sondern auch die Produktoptimierung schon in
den frühen Plangungsphasen eingesetzt. Viele Entscheidungen in diesen Vorgängen beruhen
auf langjährigen Erfahrungswerten, die durch computerunterstützte Simulationen bestätigt
und erweitert werden. In den letzten Jahren wuchs das akademische und wirtschaftliche In-
teresse für das Gebiet der Topologieoptimierung enorm. Hier werden durch mathematische
Methoden gute Ausgangsmodelle für den Designprozess in unterschiedlichen Produktions-
vorgängen geschaffen. So wird zum Beispiel mittels Materialeinsparung das Gewicht eines
Bauteiles oder einer Maschine reduziert, ohne dass sich dadurch Funktionsfähigkeit und Lei-
stung verringern, hingegen eventuell sogar verstärken. Da diese Optimierungsvorgänge auf
dem Computer simuliert werden, anstatt durch aufwendige Versuche mit Prototypen, helfen
sie teure Entwicklungszeiten und Entwicklungskosten zu sparen.

Diese Arbeit beschäftigt sich mit mathematischen Methoden der Topologieoptimierung.
Hier wird die Frage nach der Optimalität eines Ausgangsentwurfes durch ein mathematisches
Optimierungsproblem modelliert. Diese Optimierungsprobleme bestehen aus einer Kosten-
funktion, die jedem Design einen gewissen Wert zuordnet, und einem Zulaessigkeitsbereich,
der die Menge der akzeptierbaren Entwürfe beschreibt. Dieser Zulässigkeitsbereich wird un-
ter anderem auch durch partielle Differentialgleichungen beschrieben. Daher ist für das effi-
ziente Lösen solch komplexer Optimierungsprobleme eine erfolgreiche Kombination mehrerer
mathematischer Bereiche notwendig. Diese umfassen neben der numerischen Optimierung
auch die Analyse und Numerik partieller Differentialgleichungen, effiziente Lösungverfahren
für Gleichungsysteme und das Modellieren physikalischer Vorgänge, zum Beispiel der Fest-
körpermechanik.

Nach einer kurzen Einführung in die oben genannten mathematischen Disziplinen werden
zwei typische Topologieoptimierungsprobleme betrachtet. Beim ersten Modellbeispiel wird ein
möglichst steifes Bauteil mit beschränktem Volumen bezüglich angreifenden Kräften gesucht.
Das zweite Problem befasst sich mit der Fragestellung einer möglichst leichten Konstruktion
eines Bauteiles, sodass keine Materialschäden, wie Risse oder Brüche, unter Belastung auf-
treten. Beide Probleme unterscheiden sich nicht nur in ihrer Fragestellung, sondern auch in
ihrer effizienten mathematischen Behandlung und dem Fortschritt ihrer theoretischen Unter-
suchungen. Es existieren zwei grundsätzliche Ansätze, um Optimierungsprobleme mit partiel-
len Differentialgleichungen als Nebenbedingungen zu behandeln. Dazu wird die Menge der zu
bestimmenden Parameter in zwei Gruppen unterteilt. Die Zustandsparameter repräsentieren
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den Zustand der Differentialgleichung und die Designparameter beschreiben das Design. Ne-
ben dem Ansatz beide Gruppen von Unbekannten gleichzeitig im Optimierungsproblem zu
behandeln, gibt es auch die Methode, die Zustandsparameter aus dem Optimierungsproblem
zu eliminieren. Beide Verfahren werden vorgestellt und ihre Eigenschaften diskutiert.

Für das Problem der maximalen Steifigkeit wird ein adaptives Multilevel-Verfahren vor-
gestellt, das die Elimination der Zustandsparameter benützt. Das Problem wird auf einer
feiner werdenden Hirarchie von Diskretisierungen gelöst, wobei die zugrundeliegenden Netze
entlang des Randes der Struktur verfeinert werden. Um eine effiziente Behandlung der Proble-
me auf den jeweiligen Netzen zu ermöglichen, wird die ’Method of Moving Asymptotes’ zum
Lösen der Optimierungsproblem benutzt. Weiters wird ein Mehrgitterverfahren zur Lösung
der linearen Gleichungssysteme, resultierend aus der Finiten Elemente Diskretisierung der
partiellen Differentialgleichung, herangezogen.

Das Problem der minimalen Masse wird anders behandelt. Hier liefert die Beibehaltung
beider Variablengruppen die Möglichkeit das Optimierungsproblem umzuschreiben. Durch
diese Umformulierung können ernsthafte Probleme umgangen werden, die bei der ursprüng-
lichen Schreibweise des Problems auftreten. Diese beinhalten unter anderem nicht konvexe
Zulaessigkeitsbereiche, die gewisse Regularitätsbedingungen nicht erfüllen. Neben der Umfor-
mulierung wird eine Phase–Field Relaxierung angewandt, die schließlich die Lösung des Pro-
blems mit gängigen Optimierungsmethoden ermöglicht. Durch die große Anzahl von Span-
nungsnebenbedingungen und durch die Einführung zusätzlicher Variablen im Rahmen der
Umformulierung resultiert dieser Ansatz in großdimensionerten Optimierungsproblemen.

Die Optimalitätsbedingungen für Lösungen von restingierten Optimierungsproblemen
führen auf groß-dimensionierte lineare indefinite Gleichungssysteme, sogenannte Sattelpunkt-
probleme, insbesondere wenn die Anzahl der Unbekannten hoch ist. Ein effizientes Behandeln
dieser Gleichungssysteme kann das Bestimmen von Lösungen solcher Optimierungsprobleme
enorm beschleunigen. Eines der effektivsten Lösungsverfahren für linear Gleichungssysteme
ist das Mehrgitterverfahren, dessen erfolgreiche Anwendung mehrere Zutaten erfordert. Ein
wichtiger Bestandteil ist eine passende Glättungsmethode. Um die oben genannten Sattel-
punktprobleme effizient zu lösen, wird ein lokaler Patch-Glätter nach der multiplikativen
Schwarz Technik angewandt.



Acknowledgement

First of all I am very grateful to my supervisor Professor U. Langer for employing me as
a doctorate student at the SFB F013, for guiding my work, for his enthusiasm in times of
success and for all his support over the years. At the same time I am greatly indebted to
Professor M. Bendsøe for co-refereeing this thesis.

Moreover, I want to thank all my colleagues of the Special Research Program SFB F013
’Numerical and Symbolic Scientific Computing’ for the nice working climate, the warm social
surrounding and for all the time of joy and laughter. Special thanks go to W. Mühlhuber for
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Notation and Symbols

R,Rd – Set of real numbers and set of vectors x = (xi)
T
i=1,...,d, xi ∈ R,

i = 1, . . . , d.
x, x – Scalar x ∈ R and vector x ∈ R

d.
Ω,Γ – Bounded domain (open and connected subset of R

d, d = 1, 2, 3)
with sufficiently smooth boundary Γ = ∂Ω.

u,u – Scalar valued function u, vector valued function u.

x < y – Binary symbols like =, <, ≤, etc. in combination with vectors are
always ment by components.

→֒ – Compact embedding.
∗
⇀ – weak∗ convergence.
χA – Characteristic function of the set A.
supp f – supp f = {x ∈ Ω | f(x) 6= 0}.
〈·, ·〉 – Duality or inner product in an Hilbert space.

∇ – Gradient operator, ∇u(x) =

(
∂u(x)

∂x1
, . . . ,

∂u(x)

∂xd

)T

for x ∈ R
d.

△ – Laplace operator, △u(x) =

d∑

i=1

∂2u(x)

∂x2
i

for x ∈ R
d.

div – Divergence operator, divu(x) =

d∑

i=1

∂ui(x)

∂xi
for a vector valued

function u(x) =
(
u1(x), . . . , ud(x)

)T
and for x ∈ R

d.

C(Ω;Rd) – C(Ω; Rd) =
{
u : Ω → R

d
∣∣ u is continuous

}
.

If d = 1 C(Ω) will be used instead of C(Ω;R).

Ck(Ω) – C(Ω) =
{
u : Ω → R

d
∣∣ u is k-times continuous differentiable

}
.

C∞(Ω) – C∞(Ω) =
{
u : Ω → R

d
∣∣ u is infinitely differentiable

}
.

Ck
0 (Ω), C∞

0 (Ω) – Ck
0 (Ω), C∞

0 (Ω), etc., denote these functions in Ck(Ω), C∞(Ω), etc.,
with compact support.

Lp(Ω) – Lp(Ω) =
{
u : Ω → R

∣∣ u is Lebesgue measurable, ‖u‖Lp(Ω) <∞
}
.
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‖u‖Lp(Ω) – ‖u‖Lp(Ω) =

(∫

Ω
|u(x)|p dx

) 1
p

, (1 ≤ p <∞).

L2(Ω) – Space of scalar square-integrable functions on Ω.

L2,0(Ω) – L2,0(Ω) =
{
u ∈ L2(Ω)

∣∣ ∫
Ω u(x) dx = 0

}
.

‖u‖L2(Ω), ‖u‖0 – ‖u‖L2(Ω) = ‖u‖0 = (u, u)
1
2

L2(Ω).

(u, v)L2(Ω), (u, v)0 – (u, v)L2(Ω) = (u, v)0 =

∫

Ω
u(x)v(x) dx.

L∞(Ω) – L∞(Ω) =
=
{
u : Ω → R

∣∣ u is Lebesgue measurable, ‖u‖L∞(Ω) <∞
}
.

‖u‖L∞(Ω) – ‖u‖L∞(Ω) = ess supΩ|u|.
W k

p (Ω) – W k
p (Ω) =

{
u ∈ Lp(Ω)

∣∣ There exists a weak derivative ∂αu ∈
Lp(Ω), ∀ 0 ≤ |α| ≤ k

}
, (1 ≤ p <∞).

W k
∞(Ω) – W k

∞(Ω) =
{
u ∈ L∞(Ω)

∣∣ There exists a weak derivative ∂αu ∈
L∞(Ω), ∀ 0 ≤ |α| ≤ k

}
.

H1(Ω) – H1(Ω) =
{
u ∈ L2(Ω)

∣∣ ∇u ∈ L2(Ω; Rd)
}
.

‖u‖H1(Ω), ‖u‖1 – ‖u‖H1(Ω) = ‖u‖1 = (u, u)
1
2

H1(Ω)
.

(u, v)H1(Ω), (u, v)1 – (u, v)H1(Ω) = (u, v)1 =

∫

Ω
u(x)v(x) dx+

∫

Ω
∇u(x)T∇v(x) dx.

H1
Γu

(Ω) – H1
Γu

(Ω) =
{
u ∈ H1(Ω)

∣∣ u = 0 on Γu

}

BV (Ω; {0, 1}) – BV (Ω; {0, 1}) =
{
u ∈ L1(Ω; {0, 1})

∣∣ |u|BV <∞
}
.

|u|BV – |u|BV =

= sup

{∫
Ω divφ(x) u(x) dx

∣∣ φ ∈ C∞
0 (Ω; Rd), ‖φ‖∞ ≤ 1

}
.

a.e. – Almost everywhere.
BVP – Boundary value problem.
CAD – Computer aided design.
CG – Conjugate gradients.
FEM – Finite element method.
KKT – Karush-Kuhn-Tucker.
MMA – Method of moving asymptotes.
MG – Mulitgrid.
PCG – Proconditioned conjugate gradients.
PDE – Partial differential equation.
SCP – Sequential convex programming.
SLP – Sequential linear programming.
SQP – Sequential quadratic programming.
spd – Symmetric and positive definite.
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Chapter 1

Introduction

1.1 State of the Art in Topology Optimization

Nowadays in almost all areas and sectors of industry and business faster and faster chang-
ing and adapting product specifications demand shorter and shorter production times. On
the other hand, more and more competitive selling conditions call urgently for high quality
products. In order to cope with this situation and to realize short development times, en-
terprises and business companies rely on computer simulations. These simulations reduce
time consuming and costly experiments with prototypes. In this way they speed up precious
development time and significantly help to reduce development expenses. The development
loop, consisting of simulations and modifications of the model with respect to the results
of the simulations, is normally repeated more than once. If the feedback of the simulations
indicates only changes in the detailed design, these loops are rather cheap in comparison to
the situation if changes in the basic layout of the design are enforced. Then it could happen
that the whole development process is relocated to its conceptual stage, which endangers to
delay the whole schedule. In a broad sense computer-aided engineering can be seen as the use
of computer software and technology to assist the engineers in their design and development
tasks. It is long since computer-aided design and finite element analysis became a basis of
computer-aided engineering, which can’t be imagined without nowadays. To avoid the situ-
ation described above, where the basic design has to be modified, already this initial design
should be almost optimal in some sense.

During the last decade another field of applied mathematics reached a state of maturity to
enter the world of computer-aided engineering, namely the structural optimization techniques.
Structural optimization is a discipline dealing mostly with optimal designs of load-carrying
structures, but also with other problems, like electro-magnetical tasks. For instance, consider
the construction of new bridges, cars, airplanes and even satellites, or just parts of them.
These are all examples where structural optimization can support engineers in their task to
construct an initial design that fulfills some given requirements. Of course engineers don’t
start from scratch. They start the design process with already known designs and use their
experience and knowledge to adapt recent layouts, where several, up to hundreds of man-years
of labour and experience are hidden, to meet given requirements. We find typical settings
for instance in the automotive and aerospace industry. Consider the body of a car. On the
one hand it should show sufficient structural strength to guarantee safety in crash situations,
which would indicate a strong and stiff frame. But on the other hand, it should have as little

1



2 CHAPTER 1. INTRODUCTION

weight as possible in order to lower fuel consumption. So it should be as light as possible
but as stiff as necessary. The same situation occurs in the aircraft construction, where the
overall weight of the plane is to be minimized without violating safety regulations. When
constructing a satellite its support structure should not use more than a certain amount of
material, but should be stiff enough to carry all its devices.

In all these examples we see the importance of the optimization of the geometry and the
lay-out of structures. Structural optimization in general can be divided into four main areas:
Sizing optimization, shape optimization, material optimization, and topology optimization. In
all of them a physical quantity is optimized while equilibrium of forces and other constraints
on the design are satisfied.

Figure 1.1: An optimal sizing problem of an industrial frame. Top Left: The original ground structure
with an uniform thickness distribution, Top Mid: The optimal thickness distribution amongst others
w.r.t. a global von Mises stress constraint, and Top Right: The optimal von Mises stress distribution.
Below Left: A 3D meshed CAD model based on the result of the optimization. Below Right: The
actual von Mises stress distribution in the 3D model. By courtesy of Engel Austria Gmbh.
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Figure 1.2: Sizing optimization of a truss structure. Left: Ground structure with supports and load
case, Right: Optimal design.

Sizing optimization problems can be seen as the simplest structural optimization problems,
where the geometry of the design is fixed throughout of the optimization process. Optimal
sizing is a 21

2 -dimensional optimization where the design parameter is the thickness over a
constant cross section, e.g., the thickness distribution over a elastic body or the volume of
bars in a truss structure. Truss topology design problems are a subfield of optimal sizing
problems. See Figure 1.1 for an example of an industrial optimal sizing problem and Figure
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1.2 for an example of a typical truss optimization problem. For truss optimization with local
stability considerations we refer e.g. to Achtziger [1, 2].

In shape optimization the design parameter is some kind of parameterization of (a part
of) the boundary of the design, but the basic topology of the design is still pre-described. For
instance shape optimization can be used as a post-processing tool after topology optimization
in order to smooth a rough boundary, to remove stress concentrations along the boundary
or to reduce e.g. the drag of a wing of an airplane. But it is a huge area on its own with
lots of successful applications to real life problems, see e.g. Figure 1.3 for an application in
magnetostatics. The measurements of the behavior of the electromagnet with the optimized
pole-heads showed an increased performance by a factor of 4.5, see Lukáš et al. [88].

Figure 1.3: An optimal shape design of the pole-heads of an electromagnet. Left: The Maltese Cross
with the original pole-heads, manufactured by the Institute of Physics, VŠB-Technical University of
Ostrava. Right: The 3D optimized design of the pole-heads (from Lukáš [87]).

Material optimization is concerned with the design of materials with improved properties.
The philosophy behind it can be described as: “Any material is a structure if you look at it
through a sufficiently strong microscope.” (taken from Bendsøe and Sigmund [22]). If we
look through a microscope at any material, it will show a certain microstructure, e.g. like a
honeycomb, where two phases, material and void, are arranged in a periodic way. In material
optimization methods of topology optimization are now applied to those microstructures to
create new materials with extreme or counterintuitive properties. See e.g. Sigmund [121]
for a material with negative Poisson’s ratio, i.e. a material consisting of microstructures that
elongates transversely to an applied tensile load. A corresponding structure has also been
manufactured in micro-scale, see Larson, Sigmund, and Bouwstra [84].
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Figure 1.4: The Messerschmidt-Bölkow-Blohm (MBB) beam in topology optimization. Left: Ground
structure with supports and load case, Right: A solution with a volume fraction of 50%.

In topology optimization no a-priori assumption on the topology of the structure is made.
It is the most general area of structural optimization where in an ideal setting for every
point in space it is determined, whether there should be material or not. The only problem
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specifications are, e.g. for mechanical problems, the load cases, potential supports, possible
restriction on the used volume or appearing stresses and so on. Topology optimization can
be seen as a generalization of the areas above, since it determines the shape of the boundary
of the structure, the number and shape of holes in the structure and even, if not prescribed,
the optimal layout of the microstructures of the used material. Topology optimization has
become an important tool in computer-aided engineering, because it helps designers to gain
insight into alternative topological possibilities. In Figure 1.4 we see a typical example of a
topology optimization problem. The MBB-beam has the function of carrying the floor in the
fuselage of an Airbus passenger carrier.

So it turned out that for the past two decades the field of topology optimization, despite
being relatively new, has been rapidly expanding with an enormous development in terms
of theory, computational methods and applications including commercial applications (e.g.
Optistruct by Altair). One can regard the work of Michell [93] as the first systematic con-
tribution to the field, although the basic principles of topology optimization have been known
for centuries. In 1904 Michell developed a theory for designs with very low volume fractions,
resulting in thin-bar trusses that are optimal with regard to weight. Topology optimization
for higher volume fractions started with the homogenization theory for the computation of
effective properties for materials with periodic microstructures. These microstructures are
constructed from a unit cell that consists, at a macroscopic level, of laminations of two or
more materials. The composite material is then made up of an infinite number of such cells,
now infinitely small and repeated periodically. Cheng and Olhoff [55] showed 1981 with
optimal thickness distribution for elastic plates that composite materials appear naturally in
structural optimization problems. Based on the homogenization theory the kickoff of finite el-
ement based topology optimization was caused by Bendsøe and Kikuchi [20] in 1988. Their
homogenization approach to topology optimization yields a mathematically well-founded the-
ory, where they simulate holes by allowing the stiffness of the composite tend to zero. Only
one year later Bendsøe [16] offered in 1989 a different approach using the SIMP method
(Solid Isotropic Material with Penalization). The naming refers to the limiting case of mi-
crostructures that are entirely occupied by one material, cf. Rozvany and Zhou [110]. So
in comparison to the homogenization approach to topology optimization, the SIMP method
usually models isotropic materials. These pioneering publications caused a vast development
in the field of topology optimization using the microstructure and the SIMP approach. Since
a detailed history of the evolution of topology optimization would go beyond the scope of
this introductive chapter we refer to the monographs of Bendsøe [17] and Bendsøe and

Sigmund [22] that describe the state of the art of topology optimization in the years 1995
and 2003. Moreover we would like to refer to survey papers, like, e.g. Eschenauer and

Olhoff [62] and Rozvany [108]. Moreover, e.g. the recent monograph Allaire [5] covers
the subject of homogenization in detail.

In the following we will continue with short introductions to significant issues of topology
optimization. Besides the literature mentioned below, Bendsøe and Sigmund [22] always
serves as a valuable reference. In this spirit we define the most common topology optimization
problem, the minimal compliance problem, in an abstract way:

J(ρ) → min
ρ

subject to

∫

Ω
ρ(x) dx ≤ V,

ρ(x) ∈ {0, 1}, a.e. in Ω,

(1.1)
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where the aim is to find the stiffest design with limited volume V . So the objective J(ρ)
describes the compliance of the structure and the density function ρ(x) specifies the structure
as ρ(x) = 1 if x ∈ Ω is occupied with material and ρ(x) = 0 otherwise. A well known example
of the minimal compliance problem is shown in Figure 1.4. We will present a more detailed
discussion of the minimal compliance problem in Chapter 4. Moreover the problem (1.1) is
written in its nested version, see Chapter 3 for a comparison between the nested and the
simultaneous approach.

1.1.1 Regularization

The basic motivation for the development of the homogenization theory and microstructures
was to ensure well-posed optimization problems. It is well established that the problem (1.1)
lacks existence of solutions in its general continuum setting. A discretized version of the
problem trivially has a solution, since the design space is finite dimensional. A physical
explanation of the ill-posedness is, that given a structure with a certain volume one can
improve the stiffness by introducing a lot of small holes without changing the actual volume,
which will lead to an indefinite perforation of the structure. Mathematically speaking the
reason for this effect is the non-closedness of the feasible design set. The indefinite perforation
leads to microstructures that are typically anisotropic. Therefore they cannot be modelled
with the isotropic formulation of (1.1). Hence, the set of admissible designs lacks closure. For
a well-founded review about this subject we refer to Sigmund and Petersson [129].

So there is need for regularization to transform the ill-posed problem to a well-posed prob-
lem, because this non-existence of solutions is indeed a problem for the numerical solutions of
topology optimization problems. The effect that a larger number of holes in the structure ap-
pears and that more and more fine-scaled parts yield a more detailed structure, when solving
the same problem on finer and finer grids, is called mesh-dependence. An illustration of the
mesh-dependence effect can be seen in Figure 1.5. Ideally refining the mesh should result in
the same optimal design, but with a better and smoother description of the boundary. Basi-
cally there are two different ways to circumvent the ill-posedness, namely relaxation methods
and restriction methods.

Relaxation methods in principle enlarge the feasible set of designs so that a closure is
formed. Without going into detail, we say that the relaxed problem is well-posed and the
optimal designs of the relaxed problem are limits of sequences of optimal designs of the
original problem. One relaxation method is the homogenization approach to topology op-
timization, described in detail in e.g. Bendsøe and Sigmund [22]. Due to Allaire and

Kohn [9] and Allaire et al. [6] we know that well-posedness can be achieved by using
so-called ranked layered microstructures. But complete theoretical knowledge is presently
only known for problems involving compliance and fundamental frequency optimization. The
second relaxation method is the free material approach to topology optimization, see Bendsøe

et al. [19] and Bendsøe et al. [18]. Here the distribution of any material with a sym-
metric and positive semi-definite stiffness tensor achieves well-posedness for a broad range of
problems. Using relaxation methods usually results in optimal designs with large areas with
perforated microstructures and composite materials. Because of this high complexity of the
optimal designs, the structures will probably be expensive and complicated to manufacture.
Nevertheless, design with composite material is an important area on its own, e.g. for material
optimization, see also Subsection 1.1.3.

From another viewpoint it is attractive to generate 0-1 solutions on a macroscopic level.
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Figure 1.5: Mesh refinement without regularization. Solutions on a mesh with 449, 1839, 7319, and
29443 elements, respectively.

This can be achieved by doing quite the opposite to enlarging the design space, namely to
restrict it. Restriction methods reduce the original feasible design set to a sufficiently compact
subset by adding some local or global restriction on the variation of density. Basically there
exist three kinds of restriction methods. Perimeter and gradient control can be added as a
constraint to the problem or added as a penalty term to the objective. The third method is
mesh-independent filtering. They all have in common that they rule out the possibility for
fine scale structures to appear. Of course this reduces the cost and the complexity of the
manufacturing process. But, unfortunately, there also drawbacks, like the uncertainty how to
choose the corresponding penalty or constraint parameters. Also, since we restrict the design
space, we might end up with solutions that are a trade-off due to the restrictions. The most
serious drawback, however, is the fact that the optimization problem becomes non-convex.
An overview and comparison of restriction methods is given e.g. in Borrvall [27]. Perime-
ter controlled restriction regularizes the problem in the sense, that the perimeter describes,
vaguely speaking, the sum of the lengths or areas of all boundaries of the structure. So, limit-
ing the perimeter obviously restricts the number of holes in the structure. Existence of solution
to the perimeter constrained topology optimization problem was proved by Ambrosio and

Buttazzo [10] and some convergence results can be found in Petersson [104]. When using
e.g. the SIMP method and the density function is smooth enough one can simulate a bound to
the perimeter as a bound on the total variation of the density function ρ. The total variation is
then described by a L1-bound on the gradient of ρ, like

∫
Ω |∇ρ(x)| dx ≤ c. Another possibility

to restrict the gradient is to impose a global gradient constraint like the H1-norm of the design(∫
Ω ρ(x)2 + |∇ρ(x)|2 dx

) 1
2 ≤ c. A proof of existence of solutions when using this bound (also

the H1-seminorm
(∫

Ω |∇ρ(x)|2 dx
) 1

2 ≤ c ). is given in Bendsøe [17]. For the consideration of
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general Lp-constraints,
(∫

Ω |ρ(x)|p dx
) 1

p ≤ c, we refer to Borrvall [27]. One can also impose
local gradient constraints to the optimization problem. For constraining the density variation
locally, Petersson and Sigmund [102] showed existence of solutions and convergence of the
finite element scheme. Instead of adding extra constraints or additional penalty terms to the
objective functional one can achieve existence of solutions by filter methods. Given a point x,
filtering the density means that the stiffness at that point depends on the density function in
a neighborhood of that point. Mathematically well founded filtered techniques for the density
are e.g. proposed in Bourdin [30] and Borrvall and Petersson [28]. Another way is to
filter the sensitivities in a similar fashion, like proposed in Sigmund [121]. More information
about regularization using filter techniques will be given in Section 4.2. In a comparison of the
mentioned restriction methods we mention that they divide into two categories, global and
local methods. Perimeter and global gradient restriction are global constraints and they allow
thin bars to form. Just one extra constraint to the problem is added, but to determine the
bound of the global constraints for new design problems is a serious problem. If this bound
is too large, the constraint remains inactive, i.e. it has no regularizing effect. On the other
hand, if it is to small, there might exist no optimal design. Especially for three-dimensional
problem this task is tricky (cf. Fernandes, Guedes and Rodrigues [63]) and has to be
solved by mostly costly experiments. Local methods like local gradient constraints or filter
methods add a high number of extra constraints (in order of the number of finite elements
after discretization) or an extra filter operator to the problem. But they will generally remove
thin bars and, moreover, they put us in a position to control the minimum length scale of the
optimal design. Which is an important issue for manufacturing considerations.

All the mentioned restriction methods eliminate not only mesh-dependence, but also the
checkerboard effect, see Figure 1.6 for an example. The alternating arrangement of elements

Figure 1.6: The checkerboard effect in the MBB beam example.

filled with material and void gave the effect its name. Due to bad numerical modelling these
patterns are given an artificial high stiffness when analyzed in the discretized formulation.
The reason for this is that the finite element discretization of the design problem constrains
designs for which the finite element discretized set of admissible displacement fields is too
small to give a sufficient information of the state of equilibrium. But this numerical anomaly
does not only appear in topology optimization, but also e.g. in the finite element analysis
of Stokes’ flows. As the Stokes’ flow problem, the topology optimization problem of finding
an optimal design by distributing material is a two field problem. In Stokes problem (see
also Subsection 2.2.2) we solve for the velocity field and the pressure and in an optimal
design problem we seek, e.g. for the optimal material distribution and the corresponding
displacement field. For saddle point problems like the Stokes’ problem criteria have been
developed to guarantee a stable finite element discretization, namely Brezzi’s theory (see
Brezzi and Fortin [40]) and the LBB-condition (2.17). Unfortunately the saddle point
formulations arising from topology optimization, Chapter 3, don’t fit into that framework.
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Only under special assumptions Petersson [103] showed that it is possible to adopt Brezzi’s
theory of mixed finite element methods to the variable thickness sheet problem. Nevertheless
theory tells us that certain combinations of finite elements for the design and the displacement
field yield stable discretizations and some do not. So one suggestion to avoid checkerboard
problems is to use higher order finite elements for the displacement field. This is of special
interest when one does not want to use restriction methods, e.g. when analyzing the behavior
of optimal structures with a very fine scale. For a summary of alternative methods to avoid
the checkerboard effect we again refer to Sigmund and Petersson [129] and Bendsøe and

Sigmund [22].

1.1.2 Material Interpolation

Let us reconsider the topology optimization problem (1.1). For each point x ∈ Ω we have
to decide whether to occupy it with material or not. So in the ideal case we treat a discrete
valued design problem, or a 0-1 problem. In order to avoid (usually slow and low-scale)
integer programming techniques, the constraint ρ(x) ∈ {0, 1} is relaxed to 0 ≤ ρ(x) ≤ 1 with
a continuous variable ρ(x) for x ∈ Ω. Nevertheless, it has been shown lately, that a broad
class of topology optimization can be reformulated as linear or convex quadratic mixed 0–1
programs, which can be solved to global optimality using branch and bound techniques, see
Stolpe and Svanberg [140] and Stolpe [136].

But commonly it is useful to consider a reformulation of (1.1) with a continuous design
variable, having the application of gradient based mathematical programming algorithms in
mind. Especially when the number of design variables after discretization is high (≫ 1000),
which is usually the case. However, the design variable is then allowed to attain values between
0 and 1. Hence some kind of penalization of the intermediate density values is introduced
to obtain again a more or less 0–1 design. In practical computations 0 is replaced by some
small positive bound ρmin to ensure ellipticity of the equilibrium equation, but we will omit
this in this introductory section. If no penalization of the non-integer values is performed,
the equilibrium equation depends linearly on the design and we call this problem the variable
thickness sheet problem. It was first studied in Russow and Taylor [107] and acts as a
basis for computational topology design. The linear dependence of the stiffness and volume
on the density ρ yields existence of solutions for the minimal compliance problem. It can also
be regarded as a sizing optimization problem.

The probably most popular penalization method is the already mentioned SIMP method,
also called the power-law approach to topology optimization. Here a non-linear interpolation
model of the form ρ(x)p, with p ≥ 1 is used. That means that material properties of interme-
diate densities are given by the properties of solid material times the element density raised
to the power p. Combined with a volume constraint this approach penalizes intermediate
values, since intermediate values give very little stiffness in comparison to the amount of used
material. In other words, by choosing a higher value than 1 for the power p, it is inefficient
for the algorithm to choose intermediate density values. When minimizing compliance the
volume constraint is usually active in the optimal design and computations showed that in
this case the optimal layout turns out to be an almost black and white design, if the value
of p is high enough, usually p ≥ 3 is needed. Additionally, if one wants to interpret areas
with intermediate density values (’grey’ areas) in the final design as a composite of materials,
also p ≥ 3 is required. This justification of the SIMP method with respect to intermedi-
ate values is given in Bendsøe and Sigmund [21], where also several other interpolation
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schemes, e.g. based on the Hashin-Shtrikman bounds for two-phase materials, are discussed.
Like the power-law approach there exist several other interpolation models with isotropic
materials , e.g. an approach with rational function as in Stolpe and Svanberg [137]. This
proposed scheme has been given the acronym RAMP for Rational Approximation of Material
Properties. Further discussions related to SIMP and RAMP will be presented in Subsection
4.1.2.

A totally different approach to penalize intermediate density values is to choose a linear
material interpolation and add an additional constraint to the optimization problem to en-
courage 0–1 optimal design. Such a penalty constraint could e.g. look like

∫
Ω ρ(1−ρ) dx. But

again, similar to the case of global regularizing constraints of the previous subsection, it is
unclear how to choose a suitable bound for the constraint or a proper weighting factor when
added to the objective.

1.1.3 Other objectives

Besides the classical minimal compliance problem lots of other applications in the field of
topology design arose in the past. Of course we can only give a very short abstract of
alternative applications; for an overview and an extensive list of references we refer again to
Bendsøe and Sigmund [22], especially for the topics where we don’t list any references.

First of all we would like to mention problems where the underlying equilibrium equa-
tions are not the elasticity equations (see Section 2.4) like in classical structural optimization
problems. For topology optimization of fluids in Stokes flow we refer e.g. to Borrvall and

Petersson [29] and Gersborg-Hansen, Sigmund and Haber [69]. As a representative of
topology optimization with the Maxwell’s equations we mention e.g. Hoppe, Petrova and

Schulz [77] and Yoo and Hong [152]. By means of the Navier equation and the Helmholtz
equation one can design structures and materials subject to wave propagation and band gaps.
A band gap material does not allow wave propagation for certain frequency ranges, see e.g.
Sigmund and Jensen [127]. Moreover, one can maximize the transmission through photonic
crystal devices, like in Sigmund and Jensen [128].

However, one of the first topology optimization problems that appeared beside the min-
imal compliance problem have been topology designs for vibration problems and for stability
problems. These problems in dynamics are of interest if one wants to create a certain gap be-
tween the eigenfrequencies of a structure and of an e.g. attached engine. In an optimal design
with respect to maximal stiffness locally high stresses under loading can appear. Since this
high stresses cause material failure, imposing stress constraints on structural optimization
problems is an extremely important topic. For more informations about topology optimiza-
tion with local stress constraints we refer to Chapter 5. A second topic that shows a weak
point of the classical density based approach are design dependent loads, like pressure loads.
Without additional parameterization the boundary between solid and void, where the pres-
sure loads are attacking, is not well defined throughout the optimization process. Ways to
resolve the problem can be found e.g. in Bourdin and Chambolle [31], using a phase–field
approach (see also the Subsections 1.1.4 and 5.1.2) and in Sigmund and Clausen [126],
where a mixed formulation is used (cf. Subsection 2.2.2).

Another subject in the field of topology optimization is mechanisms design. Here we
distinguish between compliant mechanisms and articulated mechanisms. In contrast to artic-
ulated mechanisms with hinges, compliant mechanisms attain their mobility from the flexibil-
ities of their components. A basic compliant mechanism design problem is the displacement
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inverter. This and examples of crunching and gripping mechanisms can e.g. be found in
Sigmund [122]. Micro-Electro-Mechanical Systems (MEMS) are an important application of
compliant mechanisms. Because of their microscale size (≪ 1 mm) one cannot use e.g. hinges
in the production process. In Sigmund [124, 125] we find various examples of MEMS design,
like thermal, two-material thermal, and electro-thermo-mechanical actuators. We would like
to mention that some of the actuators have actually been built and tested at microscale, see
e.g. Jonsmann, Sigmund and Bouwstra [78]. For the design of articulated mechanisms
trusses connected with hinges are used. Due to possible large displacement and high external
loads geometrical non-linearity and buckling must be considered. Again we find typical tasks
like to control the ratio between input and output displacements, like to maximize the output
displacement or that the output point of the mechanisms has to follow a pre-described path.
As an example of topology design of articulated mechanisms we refer to Kawamoto [81].

As a last application example of topology design we would like to mention material de-
sign. Besides the facts we already noted in Section 1.1 we want to state that the effective
material properties are found by microstructure homogenization. But since we seek a mi-
crostructure with pre-described properties this material design method is called the inverse
homogenization method. Objectives for material design are extremal elastic (see e.g. Lip-

ton [85]) or extremal multi physics properties like optimized thermoelastic design (see c.f.
Sigmund and Torquato [130] and Turteltaub [145]), coupled piezoelectric-elastic de-
sign (see e.g. Sigmund, Torquato and Aksay [131]) and combined elastic and conduction
design (see Sigmund [123] for an investigation of bone microstructure).

1.1.4 Non-classical methods

Besides the classical approach to topology optimization consisting of optimal material distri-
bution using material interpolation, several other alternative approaches have been evolving.
Here we do not want to discuss the evolutionary methods, where usually no sensitivity analysis
is applied, but rather mention approaches like the level set method, the phase–field method
and applications of the topological derivative.

The level set method was developed by Osher and Sethian [99] as a method for com-
puting and analyzing the motion of an interface Γ. This interface describes a possible multiply
connected set Ω. The method consists now of analyzing the motion of the interface under a
velocity field, which can depend on various parameters like the position, time and geometry
of Γ as well as on external physics. The interface is described by the zero level set of a
sufficiently smooth function φ(x, t) as Γ(t) = {x | φ(x, t) = 0}. The interior of the set Ω is
then defined as the set where φ(x, t) is negative. For a more detailed discussion of the level
set method we refer to Osher and Fedkiw [98] and to Burger and Osher [47] for an
up-to-date review. In e.g. Sethian and Wiegmann [120] the level set method was extended
to capture the free boundary of a structure on a fixed mesh and to use for example the stresses
to modify the design towards optimizing chosen properties. A framework for incorporating
the level set method, based on the classical shape derivative, into shape optimization is given
in Burger [43], especially for adjusting the velocity field for the evolution of the interface.
For examples of topology optimization using the level set method we refer e.g. to Allaire,

Jouve and Toader [8] and to Wang, Wang and Guo [148].

As an alternative approach the topological derivative is a tool that allows to quantify the
sensitivity of a given objective functional with respect to the introduction of an infinitesimally
small hole in the design domain. The idea is to test the optimality of a structure to topology
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variations by creating a small hole. With a suitable criterion one can predict the most effective
position for inserting a hole with appropriate boundary conditions. The topological derivative,
based on the same idea as the bubble method (cf. Eschenauer and Schuhmacher [61]) was
rigorously analyzed in Sokolowski and Zochowski [132]. The level set method can easily
remove holes but can hardly create new ones in the middle of the design. This drawback is
inconvenient mostly in two dimensions, since in three dimensions new holes can be created
by pinching two boundaries. A remedy for two dimensional computations is to couple the
level set method with the topological derivative as proposed e.g. in Burger, Hackl and

Ring [44]. This approach was successfully tested in the field of structural optimization by
e.g. Allaire Et Al [7].

The last non-classical method we will mention is the so called phase–field method in
optimal design. Since this method is discussed in more detail in Subsection 5.1.2 we just give
a brief introduction. The phase–field method consists in using a linear material interpolation
and an additional Cahn-Hilliard (cf. Cahn and Hilliard [51]) type penalization functional,
which is added to the objective functional. This parameter-dependent penalization functional
is used to approximate the perimeter of the structure and to ensure that the material density
converges pointwise to 0 or 1 as the parameter tends to 0. The phase–field method, which
is closely related to level set methods, was, to the knowledge of the author, first introduced
by Bourdin and Chambolle [31] to the field of topology optimization for a problem with
design dependent loads, as also mentioned in the previous subsection.

1.2 Overview

The emphasis of this thesis is to present advanced multilevel methods for topology optimiza-
tion problems. In particular we focus on two special design - constraint combinations, namely
minimizing the compliance of a structure with respect to limited mass and the minimization
of mass while keeping a certain stiffness. Both problems differ in various aspects and are also
treated in different ways. Structural optimization problems are located on the interface to
nonlinear numerical optimization, to the analysis and numerical treatment of partial differen-
tial equations, to solution techniques of systems of linear equations, and to modelling physical
processes, e.g. in solid mechanics. Thus, as a starting point we give a brief introduction into
those fields of scientific computing. The remainder of the thesis is then organized as follows.

There exist basically two approaches for solving optimization problems governed by partial
differential equations. Therefor, we split the unknowns into to groups of parameters, the state
parameters and the design parameters. The state parameters represent the state of the PDE
and the design parameters describe the design. Beside the method to eliminate the state
parameters, hence to reduce the total number on unknowns, also the approach to treat both
groups of unknowns simultaneously in the optimization problem, gains more importance in
topology optimization. A short introduction and a brief discussion of the two approaches, the
nested approach and the simultaneous approach, is given in Chapter 3.

In Chapter 4 we discuss an adaptive multilevel approach to the minimal compliance prob-
lem in its nested formulation. It is well known that topology optimization problems are not
well-posed, so regularization is needed. We discuss to filter techniques by Sigmund [121] and
Borrvall and Peterson [28] that are used for regularization. Moreover, we use one of the
methods also for mesh-refinement along the interface of material and void, i.e., the boundary
of the structure. The resulting optimization problems on each level in the hierarchy of nested
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meshes are solved by the method of moving asymptotes. The systems of linear equations, that
arise from the finite element discretization from the PDEs are solved by a multigrid method.
Stainko [133] acts as a framework for this chapter.

A new approach to the minimal mass problem with respect to local stress constraints is
presented in Chapter 5. Here a main source of difficulties is a lack of constraint qualifications
for the set of feasible designs, defined by the local stress constraints. As one cornerstone
of the approach serves a reformulation of the set of constraints in the continuous setting,
due to Stolpe and Svanberg [140] in a discrete framework. This reformulation is possible
because of the used simultaneous formulation of the problem. The reformulation results in
linear and 0–1 constraints only. These are finally relaxed by a phase–field method, the second
cornerstone of the approach. I.e., the 0-1 constraints are approximated by a Cahn-Hillard
type penalty in the objective functional, which yields convergence of minimizers to 0-1 designs
as the related penalty parameter tends to zero. A major advantage of this kind of relaxation
opposed to standard approaches is a uniform constraint qualification that is satisfied for any
positive value of the penalization parameter. We solve the finite-dimensional programming
problems, resulting from finite element discretization, by an interior-point method. A shorter
version of this chapter is given in the paper Burger and Stainko [48].

The optimality conditions of restricted optimization problems lead to indefinite systems
of linear equations, in fact saddle point problems. Most of the computing time of interior-
point methods is actually spent to the solution of such saddle point problems. In Chapter
6 we derive an efficient solver with optimal complexity for these systems. Multigrid methods
certainly belong to the most efficient methods for solving large-scale systems, e.g., arising from
discretized partial differential equations. One of the most important ingredient of an multigrid
method is an appropriate smoother. In this chapter we consider a multiplicative Schwarz-type
smoother, that consists of the solution of several small local saddle point problems.

Finally, in Chapter 7 we present some conclusions and an outlook on possible related
future work.



Chapter 2

Basics

2.1 Numerical Optimization

2.1.1 Basics of Constrained Optimization

In this section we list conditions for local solutions (minima) for general constrained opti-
mization problems. For sake of simplicity we shall restrict ourselves to a finite dimensional
setting. We refer the reader e.g. to the following literature Fletcher [64], Nocedal and

Wright [96], and Geiger and Kanzow [68]. Lets turn our attention to the minimization
of a differentiable objective function J(x) where the variables are subjected to constraints:

J(x) → min
x∈Rn

subject to ci(x) = 0, i ∈ E ,
ci(x) ≤ 0, i ∈ I.

(2.1)

E and I are the disjoint sets of the indices of equality and inequality constraints. Throughout
this section we will assume that J ∈ C2 and ci ∈ C1 map R

n into R. We call a point x feasible
if it satisfies the constraints in (2.1). In contrast to unconstrained optimization, where we
can specify conditions for local solutions only using the objective J , we state conditions for
constrained optimization using the Lagrange function or Lagrangian for (2.1)

L(x,λ) = J(x) +
∑

i∈E∪I

λici(x).

The Lagrange multiplier vector λ is defined with the components λi with i ∈ E ∪ I. At any
feasible point x we define the active set

A(x) = {i ∈ E ∪ I | ci(x) = 0} .

Before we state the first-order necessary conditions we have to take a closer look at the
properties of the constraints and make sure that they don’t show any degenerate behavior.
We do this by assuming that so-called constraint qualifications hold at a suspected minimum
x. Such constraint qualification are like the following:

Definition 2.1 (LICQ). The linear independence constraint qualification (LICQ) holds at
the point x if the set of gradients of the active constraints {∇ci(x) | i ∈ A(x)} is linear
independent.

13
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Definition 2.2 (MFCQ). The Mangasarian–Fromovitz constraint qualification holds at the
point x if the set of gradients of the equality constraints {∇ci(x) | i ∈ E} is linear independent
and if there exists a vector d ∈ R

n, so that

∇ci(x)T d < 0, ∀ i ∈ A(x) ∩ I and ∇hi(x)T d = 0, ∀ i ∈ E .

Definition 2.3 (SCQ). The Slater constraint qualification holds if the constraints ci, for
i ∈ E, are affine linear and ci, for i ∈ I, are convex and there exists a feasible point x so that

ci(x) < 0, ∀ i ∈ I.

Now we formulate the first-order necessary optimality conditions, or commonly called the
Karush–Kuhn–Tucker (KKT) conditions for a solution of (2.1).

Theorem 2.1 (First-Order Necessary Conditions). Suppose that x is a local solution of
(2.1) and that the LICQ holds at x. Then there exists a Lagrange multiplier λ, such that the
following conditions are satisfied:

∇xL
(
x,λ

)
= 0, (2.2a)

ci(x) = 0, ∀ i ∈ E , (2.2b)

λi ≥ 0 and ci(x) ≤ 0, ∀ i ∈ I, (2.2c)

λici(x) = 0, ∀ i ∈ E ∪ I. (2.2d)

Proof. See e.g. Nocedal and Wright [96].

Any point x that satisfies (2.2) under the above assumptions is said to be a first-order
critical or a KKT point for the problem (2.1). The conditions (2.2d) is called the complemen-
tarity condition, while (2.2a) requires that the gradient of the Lagrangian vanishes at a KKT
point:

∇xL
(
x,λ

)
= ∇J(x) +

∑

i∈A(x)

λi∇ci(x).

Here we write i ∈ A(x) instead of i ∈ E ∪ I because the complementarity condition implies
that the Lagrange multipliers corresponding to the inactive inequality constraints (i /∈ A(x))
are zero.

As theorem 2.1 states only necessary conditions we need more information if x is a local
minimum or not. With the following definition we state the necessary and sufficient conditions:

Definition 2.4 (Cone of Critical Directions). Given a point x and the active constraint set
A(x), the cone C(x,λ) is defined by

C
(
x,λ

)
=





∇ci(x)T s = 0 ∀ i ∈ E ,
s ∈ R

n ∇ci(x)T s = 0 ∀ i ∈ A(x) ∩ I with λi > 0,

∇ci(x)T s ≤ 0 ∀ i ∈ A(x) ∩ I with λi = 0.





Theorem 2.2 (Second-Order Necessary Conditions). Suppose that x is a local solution of
(2.1) and that the LICQ holds at x. Let λ be a corresponding Lagrange multiplier such that
(x,λ) satisfy the KKT conditions (2.2), and let C(x,λ) be defined as above. Then

sT∇2
xL
(
x,λ

)
s ≥ 0, ∀ s ∈ C

(
x,λ

)
.
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Proof. See e.g. Nocedal and Wright [96].

Any point x that satisfies these conditions is said to be a strong second-order critical point
for the problem (2.1). In the case of unconstrained optimization J(x) → minx∈Rn Theorem 2.2
simplifies to the condition that the Hessian of the objective is positive semidefinite (C(λ) =
R

n), the well known second-order necessary condition for unconstrained optimization.

Next we state the second-order sufficient conditions for the problem (2.1):

Theorem 2.3 (Second-Order Sufficient Conditions). Suppose that for some feasible point x

there exists a corresponding Lagrange multiplier such that (x,λ) satisfy the KKT conditions
(2.2). Suppose also that

sT∇2
xL
(
x,λ

)
s > 0, ∀ s ∈ C

(
x,λ

)
, s 6= 0.

Then x is a strict local minimum for (2.1).

Proof. See e.g. Nocedal and Wright [96].

In the case of unconstrained optimization Theorem 2.3 states the usual second-order
sufficient condition for unconstrained optimization, the positive definiteness of the Hessian of
the objective.

Notes and remarks for subsection 2.1.1

• If we consider the complementary condition (2.2d) there are 3 cases that can occur for
i ∈ I:

a) ci(x) = 0 ∧ λi > 0: The constraint ci at the point x is said to be strongly active.

b) ci(x) = 0 ∧ λi = 0: The constraint ci at the point x is said to be weakly active.

c) ci(x) < 0: The constraint ci at the point x is said to be inactive.

• Lagrange multipliers are often known as dual variables.

2.1.2 The Method of Moving Asymptotes

Typically a large number of design variables appears in topology optimization problems,
since for a good representation of the design we have to work with rather fine finite element
meshes. So on the other hand we have for each element at least one design variable, but on the
other hand we have usually a rather small number of constraints. It is a common approach
of mathematical programming methods for non-linear optimization problems to formulate a
local model at an iteration point. This local model approximates the original one at the given
iteration point, but is easier to solve. For an overview of non-linear programming methods see
e.g. Nocedal and Wright [96]. Classical methods like Sequential Quadratic Programming
(SQP) (see e.g. Boggs and Tolle [26] for a survey) use such local models. But with respect
to the large number of design variables the use of SQP methods and solving the local models
is very costly if not even impossible, due to the fact that gathering second order information
for the approximation of the Hessian could be an insuperable task.

One method that turned out to be very efficient for topology optimization problems,
in academical and industrial environment, is the Method of Moving Asymptotes (MMA) by
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Svanberg [141] (1987). As its mother method CONLIN, see Fleury and Braibant [65]
(1986), the MMA works with a sequence of simpler approximating subproblems (similar to
Sequential Linear Programming (SLP) and SQP), but their approximation is based on terms
of direct and reciprocal design variables. A major advantage of the MMA is that these local
models are convex and separable and only require one function and gradient evaluation at
the iteration point. This is an important fact since evaluations of the original problem can
be very time consuming, especially if the original problem is formulated in a nested way (see
Chapter 3) and the evaluation includes a finite element analysis. Separability means that
the necessary optimality conditions of the subproblem do not couple the design variables.
This yields that instead of one n-dimensional problem we have to solve n one-dimensional
problems. Convexity means that that dual or primal-dual methods can be used to attack
the subproblems. These valuable properties allow to reduce computational costs for solving
the subproblems significantly. A solution of a subproblem is then used as the next iteration
point.

Let us now consider a structural optimization problem of the following form:

J(x) → min
x∈Rn

subject to ci(x) ≤ ĉi, i ∈ {1, . . . ,m},
x ≤ x ≤ x,

where the bound constraints are understood by components. Given an iteration point x(k)

an approximation of a given function f will look like the following: Firstly two parameters
L(k) and U(k) are chosen, such that L(k) < x(k) < U(k). Based on these parameters the
approximation f̃ (k) of the given function f is defined as

f̃ (k)(x) = r(k) +
n∑

i=1

(
p
(k)
i

U
(k)
i − xi

+
q
(k)
i

xi − L
(k)
i

)
, (2.3)

where r(k) and the coefficients p(k), q(k) are chosen as

p
(k)
i =





(
U

(k)
i − x

(k)
i

)2
∂f
∂xi

(
x(k)

)
, if ∂f

∂xi

(
x(k)

)
> 0,

0, if ∂f
∂xi

(
x(k)

)
≤ 0,

q
(k)
i =





0, if ∂f
∂xi

(
x(k)

)
≥ 0

−
(
x

(k)
i − L

(k)
i

)2
∂f
∂xi

(
x(k)

)
, if ∂f

∂xi

(
x(k)

)
< 0,

r(k) = f
(
x(k)

)
−

n∑

i=1

(
p
(k)
i

U
(k)
i − x

(k)
i

+
q
(k)
i

x
(k)
i − L

(k)
i

)
.

It is worth noting that f̃ (k) is a convex function and a first order approximation of f . The
parameters L(k) and U(k) act like asymptotes in (2.3) and control, loosely speaking, the range
for which f̃ (k) approximates f reasonably. The tighter we choose L(k) and U(k) around x(k)

the more curvature is given to the approximating function, the more conservative becomes
the approximation of the original problem. In fact we can state the following (see Svan-

berg [141]):

Remark 2.1 (Properties of The Asymptotes).
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a) Assume that f̃ (k) and
˜̃
f (k) are two approximating functions corresponding to L̃(k) ≤

˜̃
L(k) < x(k) ≤ ˜̃

U(k) ≤ Ũ(k). Than for ˜̃
L(k) < x ≤ ˜̃

U(k) it holds that f̃ (k)(x) ≤ ˜̃f (k)(x).

b) Assume that L(k) and U(k) are chosen far away from x(k), then the approximation
becomes close to linear. Let ′L(k) = −∞′ and ′U(k) = ∞′ then we have that f̃ (k)(x) =

f(x) +
∑

j
∂f
∂xj

(x)(xj − x
(k)
j ).

More details on how to choose the asymptotes and how to generate strictly conserva-
tive approximations can be found in Svanberg [141, 143] and in Bruyneel, Duysinx,

and Fleury [41]. Since these update schemes for the asymptotes rely on information from
previous iterations, the approximating subproblems are also based on some iteration history.

The resulting subproblem at iteration point x(k) looks now like the following:

J̃ (k)(x) → min
x∈Rn

subject to c̃
(k)
i (x) ≤ ĉi, i ∈ {1, . . . ,m},

max
{
x,α(k)

}
≤ x ≤ min

{
x,β(k)

}
,

with L(k) < α(k) ≤ β(k) < U(k). J̃ (k) and c̃
(k)
i for i ∈ {1, . . . ,m} are the approximating

functions of J and ci respectively, constructed as in (2.3). These subproblems can be solved
now using a dual methods or primal-dual methods, like an interior point approach, see e.g.
Zillober [154].

Notes and remarks for subsection 2.1.2

• Although the original MMA is considered to be a reliable and fast method, it is not
globally convergent. It is possible to construct problems on which it does not converge.
Globally convergent versions of the MMA can be found in Zillober [155], by adding
a line-search procedure, and in Svanberg [143], relying on strictly convex conservative
approximations.

• In Svanberg [143] a new class of optimization methods is presented and called conser-
vative separable approximation (CCSA) methods, where the MMA is one special case.
Due to the conservative approximation schemes of these methods the iteration points
are always feasible with respect to the original problem. Which is e.g. not the case for
the linearized constraints in the QP subproblems of SQP methods.
For more families of the MMA-like approximations we refer to Bruyneel, Duysinx,

and Fleury [41], where various versions are presented, utilizing the gradient and func-
tion values at two successive design points to improve the quality of the approximation.

• Moreover, a software tool for structural optimization problems named SCPIP is de-
scribed in Zillober [156]. Here SCPIP stands for sequential convex programming
combined with a primal-dual interior point approach for the resulting the MMA-like
subproblems combined with a line-search for global convergence.

2.1.3 Interior–Point Methods

In the last two decades interior–point algorithms have evolved to efficient methods for large
scale nonlinear programming since their revival in 1984. For a survey see e.g. the related
chapters in Nocedal and Wright [96] and Wright [151] and the references cited therein.
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The rediscovery of interior–point methods is rooted in the desire to find algorithms with
a better complexity than the simplex method for linear programming by Dantzig in 1947.
Since then, the simplex method dominated the field of linear programming, although its
worst-case complexity is exponential in the size of the problem dimension. After Karmakar’s
announcement in 1984 of the projective algorithm, a polynomial-time method for linear pro-
grams, interior–point methods have been the subject of intense research. In principle there
are two ways to motivate these methods nowadays, namely minimizing a barrier function or
perturbing the optimality conditions.

For a short introduction we consider again the following general optimization problem (as
(2.1)):

J(x) → min
x∈Rn

subject to ci(x) = 0, i ∈ E ,
ci(x) ≤ 0, i ∈ I.

(2.4)

where all appearing functions should be sufficiently differentiable. For the sake of simplified
notation we will denote cI(x) as (ci(x))i∈I and cE (x) as (ci(x))i∈E . This problem is then
modified such that the restricting inequality constraints are treated implicitly by adding
them to the objective functional using some barrier term. Appropriate barrier functions are
characterized by the following properties:

Remark 2.2 (Properties of barrier functions). Let Bµ(x) denote a barrier function, then:

a) Bµ(x) depends only on inequality constraints cI(x) and is infinite outside the interior
of the feasible region (of (2.4)).

b) Bµ(x) is smooth inside the feasible region and preserves the continuity properties of
cI(x).

c) The value of Bµ(x) tends to ∞ as x approaches the boundary of the feasible region.

The predominant barrier function is the logarithmic barrier function and so the new barrier
objective Jµ(x) := J(x)+Bµ(x) is now the sum of the original one and a logarithmic interior
part:

J(x) − µ
∑

i∈I

ln
(
− ci(x)

)
→ min

x∈Rn

subject to cE (x) = 0,

(2.5)

where µ > 0 is called the barrier parameter. A major characteristic of these methods is that all
inequality constraints are (have to be) satisfied strictly, which leads to the labelling interior-
point methods. Minimization of (2.5) for a decreasing sequence of the barrier parameter
µ→ 0 will result (under appropriate assumptions) in a sequence of minimizers xµ → x0 = x

converging to the minimizer x of the original problem (2.4). The sequence xµ also defines a
path to x, which is either called the central path or the barrier trajectory. The central path is
a path of strictly feasible points that satisfy the perturbed complementarity conditions, see
below. It is the essential idea of most interior–point methods to follow this path numerically
more or less exactly. Path following methods are related to homotopy methods for general
nonlinear equations, which define a path to the solution as well.
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Using the following notation we state the first order necessary optimality conditions for
(2.5): CI(x) = diag(ci(x), i ∈ I), λE the vector of Lagrange multipliers for the equality
constraints and e a vector of ones in the appropriate dimension:

∇J(x) + µ∇cI(x)T CI(x)−1e + ∇cE (x)TλE = 0,

cE (x) = 0.
(2.6)

Usually Newton’s method is used to solve (2.6) and to find minimizers x. Unfortunately, the
scaling of the objective Jµ(x) becomes poorer and poorer as µ→ 0. The extreme behavior of
the barrier function close to the boundary of the feasible set translates to ill-conditioning in
the barrier Hessian ∇2

xBµ(x). As a consequence the quadratic Taylor series approximation,
on which Newton-like methods are based, does not reflect the behavior of the original function
except in a small neighbourhood of x. This fact was one of the major motivations for the
downfall of barrier methods before 1984, since it e.g. causes poor numerical performance of
unconstrained optimization methods (E = ∅). Fortunately Newton’s method (in a carefully
implemented algorithm, see Forsgren, Gill, and Wright [66]) is insensitive to this poor
scaling.

The true reason for the inefficiency of classical barrier methods is another one. Unfortu-
nately, it is often not possible to take a full Newton step, because this step would move the
current iterate out of the feasible region, especially when the current iterate is very close to a
minimizer of Bµ(x) with a fixed µ. Suppose the current iterate is the minimizer xµ of (2.5)
with a fixed µ and the barrier parameter µ is now reduced to µ̂ with µ > µ̂. If the ratio
µ/µ̂ exceeds a certain factor and the next Newton step is computed with respect to the new
barrier parameter µ̂, a full Newton step will move the iterate to a significant infeasible point.

There are several remedies to overcome these poor steps that occur after a reduction of
the barrier parameter, but the best one is to use primal-dual interior methods. In primal-dual
methods we treat the primal variables and the dual variables (the Lagrangian multipliers
of the problem) independently. In this spirit we now create an independent variable λI of
multipliers for the inequality constraints from the relation λI = −µCI(x)−1e. Furthermore,
if we consider λ = (λI ,λE ) and c(x) = (cI(x), cE (x)), we can rewrite (2.6) as a system in
the primal variables x and the dual variables λ:

∇J(x) + ∇c(x)Tλ = 0, (2.7a)

CI(x)λI + µe = 0, (2.7b)

cE (x) = 0. (2.7c)

The second equation (2.7b) can be interpreted as the perturbed complementarity condition
for the inequality constraints in the KKT conditions for (2.4). The success of primal–dual
methods is now partly due to their effectiveness at following the central path, especially in
steps where the barrier parameter is reduced.

The left-hand-side of (2.7) defines a function Fµ(x,λ). Instead of minimizing (2.5) for
µ→ 0, we look for solutions of Fµ(x,λ) = 0 for µ→ 0. For a fixed µ (2.7) can be solved, e.g.,
using a modified Newton-type method such that x and λI fulfill the inequality constraints
cI(x) ≤ 0 and λI ≥ 0 strictly. The Newton direction (△x,△λ) of such a method is defined
as the solution of ∇Fµ(x,λ)(△x,△λ) = −Fµ(x,λ):




∇2H −∇cT
I ∇cT

E

ΛI∇cI CI 0

∇cE 0 0






△x

△λI

△λE


 = −




∇J + ∇cTλ

CIλI + µe
cE


 , (2.8)
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where ΛI = diag(λi, i ∈ I), H(x,λ) denotes the Hessian of the Lagrangian of (2.4) and all
arguments in (2.8) are omitted.

Notes and remarks for subsection 2.1.3

• The computational costs of primal–dual interior–point methods are dominated by the
cost of solving the linear system (2.8). So an efficient solver with efficient preconditioning
to (2.8) is desirable. We refer to Chapter 6 for an example of the construction of an
optimal solver. For a comprehensive review over numerical solutions of saddle point
problems we refer to Benzi, Golub and Liesen [23].

• For more information and details of implementations of primal–dual interior methods
we refer to Byrd, Hribar and Nocedal [49] and Wächter and Biegler [147].
Where the algorithm Ipopt, described in the latter paper, is actually used in this work
(see Section 5.6).

2.2 The Finite Element Method

Topology optimization problems usually contain partial differential equations, describing the
state equation of some physical equilibrium. In optimization problems related to structural
mechanics these equations are the (linear) elasticity equations, see Section 2.4. In case of
electromagnetics the state is described by the Maxwell equations. There are several methods
to compute approximations to the solutions of the partial differential equations, where each
of them has its specific area of application. The most used methods are the following:

• The Boundary Element Method, see, e.g. Chen and Zhou [52], Steinbach [134],
Sauter and Schwab [114], or Schatz, Thomée and Wendland [115].

• The Finite Difference Method, see, e.g. Grossmann and Roos [70] or Thomas [144].

• The Finite Element Method, see, e.g. Braess [32], Brenner and Scott [38], Ciar-

let [57], Jung and Langer [80] or Zienkiewics [153].

• The Finite Volume Method, see, e.g. Grossmann and Roos [70] or Heinrich [75]

In this work only the method of finite elements is used, as it is standard in the field of
computational solid mechanics. So in the following we will focus on the finite element method
and introduce it with use of the two probably most common examples in the literature: the
Poisson equation and the Stokes’ problem.

But first of all we have to introduce some function spaces. In the following, Lp denotes the
Lp spaces (1 ≤ p ≤ ∞) equipped with the norm ‖ · ‖Lp , and Hk (0 ≤ k) denotes the Sobolev
spaces equipped with the norm ‖ · ‖Hk . For instance the space H1(Ω), Ω ⊂ R

d is defined as

H1(Ω) =
{
u ∈ L2(Ω)

∣∣ ∇u ∈ L2(Ω; Rd)
}

and the space H1
0 (Ω) is defined as

H1
0 (Ω) =

{
u ∈ H1(Ω)

∣∣ u = 0 on ∂Ω
}
.

For a more details about Sobolov spaces we refer to Adams [3].
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2.2.1 A Model Elliptic Boundary Value Problem

We start with the most elementary partial differential equation, the Poisson equation with
homogeneous Dirichlet boundary conditions, as a first model problem:

−△u(x) = b(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(2.9)

where Ω ⊂ R
2 is a bounded domain with a sufficiently smooth boundary. Let us further

assume that all appearing functions are sufficiently smooth. The starting point of the finite
element method is the weak or variational form of the equations (2.9). After multiplying the
PDE with a test-function v and using Gauss theorem we are looking for a solution u ∈ V =
H1

0 (Ω) that fulfills the variational problem
∫

Ω
∇u(x)T∇v(x) dx =

∫

Ω
b(x)v(x) dx ∀ v ∈ V. (2.10)

The relationship (2.10) is called variational because the function v is allowed to vary arbitrarily
in V . For a more abstract form we use the abbreviations a(u, v) for the left-hand side and
f(v) for the right-hand side of (2.10), respectively: Find u ∈ V such that

a(u, v) = f(v), ∀ v ∈ V, (2.11)

where the f(v) is an element of V ∗, the dual space of V. By means of the Theorem of Lax-
Milgram there exists a unique solution u ∈ V for the variational problem (2.11). A function
u is called a weak solution to the problem (2.9) if it satisfies the corresponding variational
problem (2.11).

Theorem 2.4 (Lax-Milgram). Given a Hilbert space V , a continuous linear functional f(·) ∈
V ∗ and a continuous (bounded) and elliptic (coercive) bilinear form a(·, ·) : V × V → R, i.e.
that there exist constants c1, c2 > 0 such that

|a(u, v)| ≤ c1‖u‖V ‖v‖V , ∀ u, v ∈ V,

and
a(v, v) ≥ c2‖v‖2

V , ∀ v ∈ V.

Then there exists a unique u ∈ V such that

a(u, v) = f(v), ∀ v ∈ V.

Proof. See e.g. Brenner and Scott [38] or Braess [32].

Notes and remarks for subsection 2.2.1

For a symmetric and elliptic bilinearform a(·, ·) the variational problem (2.11) is equivalent
to the related minimum problem:

J(u) :=
1

2
a(u, u) − f(u) → min

u∈V
.

The sufficient and necessary optimality condition for the above quadratic functional J(u) is
the equation (2.11).
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2.2.2 A Model Mixed Boundary Value Problem

Saddle point problems appear in optimization problems (e.g. like in Section 3.1) and in the
context of mixed variational problems, which have more than one approximation space. Al-
though the Poisson problem can also be written in a mixed way (cf. Braess [32]), we will
demonstrate this formulation by means of the Stokes’ problem: Find the velocity u and the
pressure p such that

−ν△u(x) − ∇p(x) = b(x), x ∈ Ω,

divu(x) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(2.12)

The scalar parameter ν describes the viscosity. As for the Poisson problem in the previous
section we define appropriate function spaces for the weak formulation of (2.12). Note, that
the pressure p in (2.12) is only defined up to a additive constant. With the Hilbert spaces
V = H1

0 (Ω)2 and Q = L2,0 we search for u ∈ V and p ∈ Q such that

ν (∇u,∇v)0 + (divv, p)0 = (b,v)0 , ∀ v ∈ V,

(divu, q)0 = 0, ∀ q ∈ Q.
(2.13)

Again we define bilinear forms a(·, ·) : V × V → R and b(·, ·) : V ×Q→ R based on the weak
form (2.13):

a(u,v) = ν

∫

Ω
∇u · ∇v dx = (∇u,∇v)0 ,

b(u, q) =

∫

Ω
divu q dx = (divu, q)0 .

Together with the linear form f(·) : V → R

f(v) =

∫

Ω
b · v dx = (b,v)0 ,

we write the mixed variational problem in the following way: Find u ∈ V and p ∈ Q such
that

a(u,v) + b(v, p) = f(v), ∀ v ∈ V,

b(u, q) = 0, ∀ q ∈ Q.
(2.14)

Similar to the conditions in the Lax-Milgram Theorem 2.4 we assume that the bilinear
forms a(·, ·) and b(·, ·) are continuous:

|a(u,v)| ≤ ca‖u‖V ‖v‖V , ∀ u,v ∈ V,

|b(u, q)| ≤ cb‖u‖V ‖q‖Q, ∀ u ∈ V, q ∈ Q,
(2.15)

with constants ca, cb > 0. The discussion of coercivity is a bit more sophisticated. For this
purpose we first define the kernel V0 of the bilinearform b(·, ·) by

V0 = {v ∈ V | b(v, q) = 0, ∀ q ∈ Q} .

Now, due to Brezzi’s theory (see Brezzi [39] and Brezzi and Fortin [40]), we can list two
conditions on a(·, ·) and b(·, ·) to obtain stability for (2.14). Firstly, the so called V0-ellipticity
or kernel ellipticity of a(·, ·):

a(u,u) ≥ α‖u‖2
V , ∀ u ∈ V0, (2.16)
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and, secondly, the inf-sub or the LBB condition:

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ β, (2.17)

with constants α, β > 0. Finally we state the following theorem:

Theorem 2.5. Suppose that the conditions (2.15), (2.16) and (2.17) are fulfilled. Then there
exists a unique solution (u, p) ∈ V ×Q to the variational problem (2.14).

Proof. See e.g. Brezzi and Fortin [40] or Brenner and Scott [38].

Notes and remarks for subsection 2.2.2

• The first component of a solution (u, p) ∈ V × Q to (2.14) is also a solution to the
related minimum problem:

J(u) =
1

2
a(u,u) − f(u) → min

u∈V

subject to b(u, q) = 0, ∀ q ∈ Q.

If we consider the Lagrange functional L(u, q) := J(u) + b(u, q) we see that every
solution (u, p) to (2.14) fulfills the saddle point property:

L(u, q) ≤ L(u, p) ≤ L(v, q), ∀ (v, q) ∈ V ×Q.

• For a rigorous analysis of the theory and construction of mixed finite element methods
we refer to Brezzi and Fortin [40].

2.2.3 Finite Element Discretization

The finite element method is a technique to compute an discrete approximation to the solution
of variational forms like (2.11) or (2.14). It is a special Galerkin projection method that
provides a natural procedure to compute numerical solutions to these problems. We replace
the infinite dimensional space V by some finite dimensional subspace V h. Here h denotes the
actual discretization parameter, indicating that there should be convergence to the continuous
problem for h → 0. Now we do not search for a solution u ∈ V , but a approximate solution
ũ ∈ V h. The corresponding finite dimensional problem is the reduction of the variational
ones: Find ũ ∈ V h such that

a(ũ, ṽ) = f(ṽ), ∀ ṽ ∈ V h. (2.18)

In order to construct the finite dimensional spaces Vh we partition the domain Ω into geometri-
cal primitives, Ω =

⋃n
i=1 τ i, like triangles and quadrilaterals in 2D, tetrahedrons, hexahedron,

and prisms in 3D. For a detailed description of a regular triangulation Th = {τi | i = 1, . . . , n}
we refer to Ciarlet [57]. Using a regular triangulation we introduce the finite elements by
defining shape functions (usually polynomials) with local support over the geometrical ele-
ments. Thus, the spaces Vh contain usually piecewise linear, bilinear or quadratic functions.
But in the last two decades it became more and more popular to use polynomials with higher
degree, the so called hp- or p-version, see e.g. Schwab [119]. This increasing interest in high
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order finite element methods is due to the higher convergence rates and their robustness with
respect to locking effects and element distortion.

The discretization parameter h is usually related to the mesh size of a given triangulation
of Ω into n finite elements. We have n = O(h−d). Further we assume that whenever mesh
refinement is performed, it is done in such a way that V h ⊃ V H if h < H.

To prepare the FEM for computing we choose a basis
Φ := (φ1, . . . , φN )T for the finite element space V h, with N = dim V h. Then we can write
(2.18) equivalently as

a(ũ, φi) = f(φi), i = 1, . . . ,N.

Using the basis Φ we can write

ũ = uhT
Φ =

N∑

i=1

uh
i
T
φi

with a coefficient vector uh ∈ R
N . This representation leads to the following system of

equations:
N∑

j=1

a(φj , φi)uj = f(φi), i = 1, . . . ,N,

which we can write in matrix-vector notation as

Kuh = fh. (2.19)

The stiffness matrix K is defined as Kij = a(φi, φj) and the load vector fh as fh
i = f(φi) for

i = 1, . . . , N .

Notes and remarks for subsection 2.2.3

• The names stiffness matrix and load vector have their origin in the evolutionary history
of the finite element method in computational mechanics.

• The finite element discretization of mixed problems, like in Subsection 2.2.2, needs two
finite elements spaces, namely V h ⊂ V and Qh ⊂ Q. But different to elliptic problems,
like in Subsection 2.2.1, additional conditions have to be fulfilled. Those are the discrete
counterparts to the kernel ellipticity (2.16) and to the LBB condition (2.17). Again we
refer the reader to Brezzi and Fortin [40].

2.3 Iterative Solvers for Linear Systems

In this section we give a introduction and a brief discussion of efficient solution methods
for the linear systems, like (2.19), arising from finite element discretizations. We will restrict
ourselves to the case of elliptic problems. Linear systems resulting from saddle point problems
lead to indefinite systems (cf. Benzi, Golub, and Liesen [23]) and for sake of space we
will omit a description of related solution techniques. Some information about solving saddle
point problems will be given in Section 3.2 and in Section 6.2.

The method of finite elements with a small mesh size h leads to very large systems (n ≥
106). But the system matrices show some structure. Due to the local support of the shape
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functions there are only a few non-zero entries per row in K, i.e. the system matrix is sparse.
Since the stiffness matrix K is defined on the basis of the bilinear form a(·, ·), properties
like coercivity and symmetry are transferred from the bilinear form to the system matrix
K. In the previous subsections we did not assume the symmetry of the bilinear form a(·, ·).
Nevertheless, let us assume that K is symmetric, since in many applications this fact holds for
the bilinearform. Furthermore, the coercivity of a(·, ·) yields that K is positive definite. This
means that the smallest eigenvalues stays positive, but still the spectral condition number

κ(K) =
λmax(K)

λmin(K)

becomes very large as h → 0. In fact, the condition number usually behaves like O(h−2m),
as h→ 0, where 2m denotes the order of an elliptic BVP. So we have to deal with large scale
linear systems, with a symmetric, positive definite, and sparse system matrix, that has a large
condition number.

Despite the sparsity pattern of K, direct methods are inappropriate due to their large
memory consumption, especially for 3D problems. When performing a Gauss elimination the
number of non-zero entries (the fill-in) is increasing very fast, which results in an increasing
complexity. Hence, iterative methods are usually the methods of choice for large problems.
They are able to exploit the sparsity structure to a high extent and the needed matrix-vector
applications of the system matrix can be accomplished with a complexity that is proportional
to the number of unknowns. But still, for 2D problems with moderate size direct methods
are an alternative to iterative methods. Direct methods for sparse linear systems carry out a
Gauss or Cholesky factorization of the system matrix. To realize this factorization efficiently,
a renumbering of rows and columns is performed in order to minimize the fill-in.

For a detailed discussion of iterative methods we refer to e.g. Axelsson [12], Hack-

busch [71], and Meurant [91].

2.3.1 The Richardson Iteration and Preconditioning

We will now present the basic procedure of an iterative method by means of one of the simplest
methods, the Richardson iteration. A nice motivation for solving the equation Ku = f , K

spd, iteratively is that the solution of the equation describes the minimum of the quadratic
function

q(u) =
1

2
uTKu− fTu, (2.20)

since K is assumed to be symmetric and positive definite. The simplest method is the steepest
descent method with a fixed steplength, also known as the Richardson iteration:

uk+1 = uk + τ
(
f − Kuk

)
, (2.21)

with a positive damping parameter τ . Let us consider the spectral equivalence inequalities

γ1〈v,v〉 ≤ 〈Kv,v〉 ≤ γ2〈v,v〉, ∀ v ∈ R
n

with the spectral equivalence constants γ1, γ2 > 0. For the optimal choice τ = 2/(γ1 + γ2)
we get the best possible convergence rate (γ2 − γ1)/(γ2 + γ1). The convergence speed of
the iteration method (2.21) depends on the condition number κ(K) = O(h−2). Hence the
number of iterations is proportional to the condition number and is therefore growing too
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quickly. An idea to reduce the condition number, and hence the number of iterations, is to
use a symmetric and positive definite preconditioner C. Furthermore, let us assume that
the preconditioner C is spectral equivalent to the system matrix K, where we use the same
notation γ1, γ2 for simplicity:

γ1〈Cv,v〉 ≤ 〈Kv,v〉 ≤ γ2〈Cv,v〉, ∀ v ∈ R
n. (2.22)

A preconditioned version of the Richardson method (2.21) is presented in Algorithm 2.1. In
case of the preconditioned Richardson method the convergence factor is bounded by

κ(C−1K) − 1

κ(C−1K) + 1
. (2.23)

There are two requirements that we demand on a preconditioner:

Algorithm 2.1 Preconditioned Richardson iteration

Choose a damping parameter τ , 0 < τ < 2
γ2

.
Choose a relative error bound ε > 0.
Initialize start value u0.
k = 0;

while not converged do

uk+1 = uk + τC−1(f − Kuk);
k = k + 1;

end while

Remark 2.3 (Properties of a preconditioner).

a) The preconditioning operation C−1r or the preconditioning system

Cw = r (2.24)

should be efficiently evaluable, since it is applied at each iteration. The arithmetic costs
of applying C−1 should be about the same as applying K. Also the memory requirement
for the preconditioner should be about the same as the system matrix.

b) The preconditioner should be constructed such that the quotient γ2

γ1
is close to 1, where γ1

and γ2 are the spectral equivalence constants from (2.22). In other words the condition
number of κ(C−1K) should be as close to 1 as possible, but at least independent of the
mesh parameter h, i.e., κ(C−1K) = O(1) as h→ 0.

For C = I, where I denotes the identity matrix, we perfectly fulfill the first requirement,
but not the second one. On the other hand, for C = K we satisfy the condition κ(C−1K) = 1
and would finish only after 1 iteration, but requirement a) is not fulfilled at all. So usually a
good tradeoff between the two qualifications is needed for an optimal preconditioner.
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Notes and remarks for Subsection 2.3.1

The disadvantages of the Richardson iteration are that we need the constants γ1 and γ2

close to λmin(C
−1K) and λmax(C

−1K) and that the number of iterations is proportional to
κ(C−1K). A slightly improved method is the gradient method where we don’t need γ1 and
γ2. Here the optimal damping parameter τ is deduced from the sufficient and necessary
optimality condition for the quadratic function (2.20)

dq
(
uk + τwk

)

dτ
= 0,

where wk is the preconditioned residuum of the k-th iteration wk = C−1rk. We list the
method in Algorithm 2.2.

Algorithm 2.2 Preconditioned gradient method

Choose a relative error bound ε > 0.
Initialize start value u0.
k = 0;

while not converged do

rk = f − Kuk;
wk = C−1rk;

τk = 〈rk,wk〉

〈wk,Kwk〉
;

uk+1 = uk + τkwk;
k = k + 1;

end while

2.3.2 The Conjugate Gradient Method

The conjugate gradient (CG) method was developed by Hestenes and Stiefel in 1952. The
breakthrough was accomplished in 1971, when first simple preconditioning techniques became
available. Since then the CG method has belonged to the most efficient methods for solving
sparse symmetric positive definite linear systems. The CG method was developed by adapt-
ing the gradient method. Firstly, we keep the advantage that we don’t need the spectral
equivalence constants γ1 and γ2. Secondly, we use orthogonal search directions sk instead
of the preconditioned residuum wk, which leads to a significant speed up. A preconditioned
version can be found in Algorithm 2.3.

The method of conjugate gradients yields for exact computation a solution to (2.19) in at
most n iterations. But this fact should not be overestimated. Since we usually treat large scale
problems with a high number of unknowns and because of the influence of numerical rounding
errors, we use the CG method until we get a sufficiently good approximation of the solution.
It is much more important that we get good approximations after a number of iterations that
is much smaller than n. The error in the kth iteration step of the preconditioned CG method
in the K-energy norm is bounded by

‖uk − u∗‖K ≤ ηk‖u0 − u∗‖K
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Algorithm 2.3 Preconditioned conjugate gradient iteration

Choose a relative error bound ε > 0.
Initialize start value u0;
r0 = f − Ku0;
w0 = C−1r0;
s0 = w0;
k = 0;

while not converged do

γk = 〈sk, rk〉;
αk = γk

〈Kwk,wk〉
;

uk+1 = uk + αkwk;
rk+1 = rk − αkKwk;
sk+1 = C−1rk+1;

βk = γk

〈sk+1,rk〉
;

wk+1 = sk+1 + βkwk;
k = k + 1;

end while

with

ηk =
2ck

1 + c2k
and c =

√
κ(C−1K) − 1√
κ(C−1K) + 1

(see e.g. Jung and Langer [80]). Here let u∗ denote the exact solution of (2.19). In
comparison to the convergence factor of the Richardson iteration (2.23) an acceleration by
the square root is given.

Notes and remarks for subsection 2.3.2

• In fact, the CG method belongs to the class of Krylov subspace projection methods. A
Krylov subspace method is a method where we minimize the residuum in the Krylov
subspace of the kth iteration

Kk

(
K, r0

)
= span

{
r0,Kr0,Kkr0, . . . ,Kk−1r0

}
,

where r0 = f − Ku0. From an approximation theory point of view we see that the
approximations obtained are of the form

K−1f ≈ uk = u0 + pk−1(K)r0,

in which pk−1 is a certain polynomial of degree k − 1. In other words, K−1f is approx-
imated by pk−1(K)f , if we assume u0 = 0. In case of the preconditioned CG method
the generating matrix is C−1/2KC−1/2. For more information about Krylov subspace
methods we refer to e.g. Saad [111].

• In comparison to the Richardson method, the CG method as well as the gradient method
is a non-linear iteration scheme.
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2.3.3 The Multigrid Method

The multigrid method provides an optimal order algorithm for solving linear systems arising
from finite element discretizations, as well as other discretization techniques. The number of
iterations of the previously mentioned iteration methods are increasing as h→ 0 if no proper
preconditioning is applied. When using multigrid methods we get numbers of iterations that
are independent from the mesh parameter h. In other words the convergence speed does
not deteriorate when the discretization is refined, whereas classical iterative methods slow
down for decreasing mesh size. A fundamental attribute of the multigrid method is that it
is working on a hierarchy of meshes and related discretizations of a boundary value problem.
We recommend e.g. the books Bramble [35] and Hackbusch [73] for detailed reading.

The multigrid method has two main features: smoothing on a fine grid and error correction
on a coarser grid. The starting point for this idea is the observation that classical iteration
methods have smoothing properties, i.e. they remove the high oscillating parts of the error
very fast. The smooth part of the error can already be represented and corrected on coarser
grids. Hence, combining these two approaches makes the multigrid method to the most
efficient solvers. For a short introduction let us consider a hierarchy of l meshes (e.g. like in

Figure 2.1: A hierarchy of 3 meshes: T0 ⊂ T1 ⊂ T2.

Figure 2.1)

T0 ⊂ T1 ⊂ . . . ⊂ Tl,

with corresponding finite element spaces V0 ⊂ . . . ⊂ Vl, mesh sizes h0 ≥ . . . ≥ hl, and number
of unknowns n0 ≤ . . . ≤ nl. One of the ingredients of a successful multigrid method are the
intergrid transfer operators:

Definition 2.5 (Intergrid Operators). The coarse-to-fine operator

I l
l−1 : Vl−1 → Vl

is called the (prolongation) operator and the the fine-to-coarse operator

I l−1
l : Vl → Vl−1

is called the (restriction) operator.

Remark 2.4. If we have a sequence V0 ⊂ . . . ⊂ Vl of spaces, the prolongation operator I l
l−1

can be taken to be the natural injection. In other words, I l
l−1v = v, ∀ v ∈ Vl−1. Then the

restriction operator is defined to be the adjoint of I l
l−1 with respect to (·, ·)l−1 and (·, ·)l inner

products. In other words, (I l−1
l w, v)l−1 = (w,I l

l−1v)l = (w, v)l, ∀v ∈ Vl−1, w ∈ Vl.
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Algorithm 2.4 Two grid method

Choose a relative error bound ε > 0.
Choose a number ν1 of pre-smoothing and a number ν2 of post-smoothing steps.

Initialize start value u
(0,0)
h .

k = 0;

while not converged do

/* Pre-smoothing: */

u
(k,1)
h = Sν1u

(k,0)
h ;

/* Coarse grid correction: */
/* Defect calculation: */

dk
h = fh − Khu

(k,1)
h ;

/* Restriction onto coarse grid: */
dk

H = IH
h dk

h;
/* Solve coarse grid system: */
KHwk

H = dk
H ;

/* Prolongation onto the fine grid: */
wk

h = Ih
Hwk

H ;
/* Add coarse grid correction: */

u
(k,2)
h = u

(k,1)
h + wk

h;
/* Post-smoothing: */

u
(k+1,0)
h = Sν2u

(k,2)
h ;

k = k + 1;
end while

A proper choice of the intergrid operators influences the convergence speed considerably,
and may even be necessary for convergence.

In addition to the intergrid operators we need an iteration method (smoother) for the
smoothing iterations on the fine grids. For instance we choose the smoothing operator S to
realize the Jacobi-relaxation with a damping parameter τ > 0 (cf. Algorithm 6.1):

u 7−→ Su = u− τ(Ku − f).

Since it reduces the high frequency error components the smoothing operator S is an essential
part in multigrid methods. Typically, a proper smoother for a problem takes the special
structure of the system matrix into account. Beside the point Jacobi smoother also the point
Gauß-Seidel (cf. Algorithm 6.2), the block Jacobi and block Gauß-Seidel smoother are suitable
for a large class of finite element discretized problems. E.g. in Section 6.2 we will discuss a
local patch smoother. Beside the smoothing operation we also need a coarse grid correction.
Let us assume that we have the corresponding system matrices K0, . . . ,Kl and load vectors
f0, . . . , fl for each level at hand. These can either be generated by assembling on each level or
can be constructed by Galerkin’s method, i.e.

Kl−1 = Il−1
l KlI

l
l−1.

After these preliminaries we are ready to state a two level method, as in Algorithm 2.4, where
we assume that l = 1 and we use the following notation h0 = 2h1 = H, I1

0 = Ih
H , and I0

1 = IH
h
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for better readability. The parameters ν1 and ν2 control the number of smoothing iterations.
For benign problems like the Poisson equation (2.9) it usually does not pay off to use more
than two smoothing steps. In the case of more complex problems, e.g. saddle point problems
like (2.12), it can be necessary to use more smoothing iterations.

The restricted system onto the coarse grid is by far easier to solve than the one on the finer
grid. When switching to a mesh from mesh size h to 2h by uniform refinement, the number
of unknowns decreases about to a quarter. But still, the complexity of solving the coarse grid
system may be regarded to high. The idea to advance from a two grid method to a multigrid
method is now to repeat this procedure recursively. That is to coarsen the grid until the
coarsest grid yields a sufficiently small system, that is easy to solve. The linear system on
the coarsest grid is usually solved directly, e.g. by some Cholesky factorization. So, instead
of solving the coarse grid system, one or two multigrid steps are called, resulting in a V-cycle
or a W-cycle. The patterns in Fig. 2.2 will explain the naming, where ◦ denotes smoothing,
• marks the solution of the system on the coarsest grid, ց and ր stand for restriction and
interpolation between the grids, respectively. In the early days the common choice was a

2

3

1

0

Figure 2.2: V-cycle and W-cycle on a hierarchy of 4 grids.

W-cycle to ensure that the error is not increasing too much when cycling between several
grids. But most of the problems are so benign, that a V-cycle is more efficient. The following
Algorithm 2.5 sketches the operations of the kth multigrid iteration on level i with 1 ≤ i ≤ l.
For sake of readability we drop the iteration index k.

Notes and remarks for subsection 2.3.3

• The multigrid method also defines optimal preconditioners for the preconditioned CG
method. As an a-priori preconditioner we choose the system matrix K and solve the
preconditioning system (2.24) in each iteration of the CG method approximately by m
iterations of the multigrid method. In this way a preconditioner is implicitly defined
that fulfills the requirements of Remark 2.3. For more details we refer e.g. to Jung and

Langer [79].

• The above coarsening idea can be used if we have a nested sequence of finite element
spaces. This kind of multigrid approach is called geometric multigrid. But there are
cases when geometric multigrid cannot be applied. For instance if there is no hierarchy
of finite element spaces or if the system of the coarsest grid is still too large to be solved
efficiently. Then algebraic multigrid methods are of special interest. They construct
the matrix hierarchy and intergrid operators only by using the system matrix K. An
overview of algebraic multigrid methods can be found in, e.g., Reitzinger [105] and in
the references therein.
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Algorithm 2.5 One multigrid method iteration MGM(Ki,ui, fi, i)

Let µ describe the number of MGM calls per level i.
Let ν1 and ν2 denote the number of pre- and post-smoothing steps.
Initialize start value u0

i = ui;

if i == 0 then

Solve the coarsest grid system, i.e. u0 = K−1
0 f0;

return;
else

/* Pre-smoothing: */
u1

i = Sν1u0
i ;

/* Coarse grid correction: */
/* Defect calculation: */
di = fi − Kiu

1
i ;

/* Restriction onto coarse grid: */
di−1 = Ii−1

i di;
/* Recursively call MGM for coarse grid approximation: */
wi−1 = 0;
for j = 1, . . . , µ do

MGM(Ki−1,wi−1,di−1, i− 1);
end for

/* Prolongation onto the fine grid: */
wi = Ii

i−1wi−1;
/* Add coarse grid correction: */
u2

i = u1
i + wi;

/* Post-smoothing: */
u3

i = Sν2u2
i ;

end if

• If all steps of the two grid method are assembled, Algorithm 2.4 can be written as

uk+1
h = Mhu

k
h + mh, for k = 1, 2, . . .

with
Mh = Sν1

(
I − Ih

HK−1
H IH

h Kh

)
Sν2 (2.25)

and mh = (I − Mh)K−1
h fh ∈ R

nh .

2.4 Linear Elasticity

The topology optimization problems in this work treat problems from the field of solid mechan-
ics. This means that the underlying partial differential equations describing the equilibrium
of forces are the equations of linear elasticity. In this section we will give a short introduction
to linear elasticity.

The deformation of elastic bodies under loading as well as the appearing stresses are usu-
ally determined using the method of finite elements. Most of the characteristical properties
already show up using linear elasticity, i.e. under the assumption of small deformations. Also
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the problems in this work are solved under the assumption of the linear theory. For problems
with non-linear elasticity see e.g. Buhl, Pederson and Sigmund [42] and Bendsoe and

Sigmund [22] and the references cited therein. Many materials allow only very small de-
formations (nearly incompressible materials). To avoid the appearing locking effect we need
suitable variational mixed formulations. A rigorous analysis can be found in Ciarlet [56]
and in Han and Reddy [74].

2.4.1 A short insight to the theory of linear elasticity

In the theory of elasticity we consider the state of a body under loading. Of special interest are
the displacements u(x), the strains ε(x), and the stresses σ(x) at a point x of the deformed
body. We start with the assumption that the body without deformations and in stress free
state occupies a domain Ω ⊂ R

3. The actual position of the body under loading is now
described using a mapping y : Ω → R

3, which indicates the new position of the point x ∈ Ω.
Moreover we write

y(x) = x + u(x)

with the displacement field u. Let us now consider rigid body motions, in which the body
is moved to a new position without any deformation. The displacement field alone does not
provide enough information to see whether a body was deformed or not. To measure the
deformation of a body we introduce a strain tensor η as

η(u) =
1

2

(
∇u + (∇u)T + (∇u)T (∇u)

)
. (2.26)

In the theory of linear elasticity we assume now that the deformations are sufficiently small,
and so is ∇u, and therefore the quadratical term in (2.26) is neglected. So the above strain
tensor simplifies to the infinitesimal strain tensor ε, defined as:

ε(u) =
1

2

(
∇u + (∇u)T

)
,

or written in components as

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

It is assumed that the force-interaction can be entirely traced back to two kind of forces.
The body force b : Ω → R

3 represents the force bdV per unit reference volume dV , e.g. the
gravitational acceleration. The second kind of force acting on the body is the surface traction
t : Ω × S2 → R

3, where S2 denotes the unit sphere in R
3. Let dA be a regular unit surface

element of Ω with a given unit normal n. Then t(x,n)dA, x ∈ dA is the force by the surface
element dA exerted by the portion of the body Ω on the side of dA towards which n points,
on the portion of dA that lies on the other side. The vector t(x,n) is called Cauchy stress
vector. Now we can state the laws of balance of linear and angular static momentum:

Postulate 2.1 (Static equilibrium). Let the body Ω be in state of equilibrium with respect
to the body forces b. Then there exists a vector field t on Ω × S2 such that for every subset
V ⊂ Ω the following holds:

∫

V
b(x) dx +

∫

∂V
t(x,n) ds = 0, (2.27a)

∫

V
x× b(x) dx +

∫

∂V
x × t(x,n) ds = 0. (2.27b)
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The equilibrium (2.27a) is called balance of linear momentum and (2.27b) is known as the
balance of angular momentum. Now that we know the existence of the Cauchy stress vectors
t we can state the following fundamental theorem:

Theorem 2.6 (Cauchy’s theorem). Let t(·,n) ∈ C1(Ω,R3), t(x, ·) ∈ C0(S2,R3) and b ∈
C(Ω,R3) in equilibrium (2.27). Then there exists a symmetric tensor field σ ∈ C1(Ω,S3)
with the following properties:

t(x,n) = σ(x)n, x ∈ Ω, n ∈ S2, (2.28a)

− divσ(x) = b(x), x ∈ Ω, (2.28b)

σ(x) = σT (x), x ∈ Ω. (2.28c)

The tensor σ is called the Cauchy stress tensor.

Here S3 denotes the set of all symmetric 3 × 3 matrices. From the relation (2.27a) and a
variant of the Green-Gauss theorem we obtain

∫

V
b(x) dx +

∫

∂V
σ(x)n ds =

∫

V
b(x) + divσ(x) dx = 0,

what from (2.28b) follows immediately. Moreover, the equilibrium (2.27b) yields the sym-
metry (2.28c). For a proof of the existence of the stress tensor (2.28a) we refer e.g. to
Ciarlet [56].

An important question is now how to determine the stresses caused by some given external
forces. The equilibrium equation (2.28b) only results in 3 equations, hence 6 components of the
symmetric stress tensor are undefined. We gain the missing information from the particular
material behavior. To start with, we call a body linear elastic if the stress depends linearly
on the infinitesimal strain

σ = Cε, (2.29)

where C is called the elasticity tensor. We call the body Ω homogeneous if its density and the
elasticity tensor C do not depend on the position x ∈ Ω. The mapping C can be represented
as a fourth-order tensor in the following way

σij = ei

(
C(ek × el)

)
ej = Cijklεkl,

where ei denotes the vector of all zeros with an 1 at position i. Furthermore, the elastic
tensor is symmetric, i.e. Cijkl = Cjikl = Cijlk = Cklij and positive definite, that is ε : Cε > 0
for all nonzero symmetric second-order tensors ε. Another material property is isotropy,
which means that the material does not possess any preferred directions or symmetries. In
other words, the response of the material with respect to external forces does not depend
on its orientation. Isotropy does not for hold for layered materials and e.g. wood. The
most important mathematical effect of isotropy is that it reduces the number of independent
components to 2. For an isotropic linearly elastic material the components of the stress tensor
are then given by

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

with δij the Kronecker delta. The constants λ and µ are called the Lamé-constants. We can
write the stress-strain relation (2.29) as

σ = λ(trε)I + 2µε, (2.30)
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which is also known as Hooke’s law. The constant µ is also known as the shear modulus and
the material coefficient K = λ + 2

3µ is called the bulk modulus. So an alternative pair of
elastic material coefficients to the Lamé-constants is {µ,K}. To an other important pair of
material coefficients, namely the Young’s modulus E and the Poisson’s ratio ν, the following
relation holds:

ν =
λ

2(λ+ µ)
and E =

µ(3λ+ 2µ)

λ+ µ
. (2.31)

Due to physical reasons we conclude that λ > 0, µ > 0 and E > 0, 0 < ν < 1
2 respectively.

For many materials it holds that ν ≈ 1
3 and for nearly incompressible materials (λ ≫ µ) ν is

close to 1
2 .

Using the material coefficients {E, ν} we can rewrite Hooke’s law (2.30) as

σ =
Eν

(1 + ν)(1 − 2ν)
(trε)I +

E

1 + ν
ε

and can rewrite (2.29) in components as:




σ11

σ22

σ33

σ12

σ13

σ23




=
E

(1 + ν)(1 − 2ν)




1 − ν ν ν
ν 1 − ν ν 0
ν ν 1 − ν

1 − 2ν
0 1 − 2ν

1 − 2ν







ε11
ε22
ε33
ε12
ε13
ε23



,

where we write, due to symmetry, σ and ε as vectors with 6 components.

Notes and remarks for Subsection 2.4.1

In many problems the extension of one spatial dimension is very small in comparison to the
others. In these cases it is advisable to solve a simplified two dimensional problem rather
than the full three dimensional problem. An example is a plate which is very thin in the x3-
direction in comparison to the other spatial directions or a dam. Here we distinguish between
two cases:

• State of plane stress: Let us assume that only forces depending on x1 and x2 with
zero x3-component act on the plate. Under the further assumption that deformation in
x3-direction is possible we obtain the state of plane stress:

σij(x) = σij(x1, x2), i, j = 1, 2,

σi3 = σ3i = 0, i = 1, 2, 3,

ε33 = − ν

1 − ν
(ε11 + ε22).

The condition on ε33 results from σ33 = 0. It follows that εi3 = ε3i = 0 for i = 1, 2.
After eliminating the strain ε33 we end up with the following stress-strain relationship:




σ11

σ22

σ12


 =

E

1 − ν2




1 ν 0
ν 1 0
0 0 1 − ν






ε11
ε22
ε12


 .
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• State of plane strain: If we otherwise assume that, e.g. because of boundary condi-
tions, that there are no deformations in the x3-direction (e.g. like for a dam) we obtain
the the state of plane strain:

ui(x) = ui(x1, x2), i = 1, 2,

εij(x) = εij(x1, x2), i, j = 1, 2,

εi3 = ε3i = 0, i = 1, 2, 3.

Further we have that u3 = 0 and σi3 = σ3i = 0 for i = 1, 2. From Hooke’s law (2.30)
and (2.31) we obtain σ33 = ν(σ11 +σ22). σ33 can be eliminated and we get the resulting
stress-strain relationship:




σ11

σ22

σ12


 =

E

(1 + ν)(1 − 2ν)




1 − ν ν 0
ν 1 − ν 0
0 0 1 − 2ν






ε11
ε22
ε12


 .

2.4.2 Variational formulations for linear elasticity boundary value prob-

lems

As a starting point let us reconsider the problem of the deformation of a linearly elastic body.
Let the body be denoted by an open, bounded and connected domain Ω ⊂ R

3 with a Lipschitz
boundary Γ. We assume that the boundary is divided into two complementary parts Γu and
Γt such that Γu ∩ Γt = ∅, Γ = Γu ∪ Γt, and |Γu| > 0. On these parts of the boundary we
define the boundary conditions as the following:

u = 0, on Γu,

σ · n = t, on Γt.
(2.32)

The governing equations for the static behavior of the body under the above boundary con-
ditions are stated as follows:

− divσ = b, in Ω, (2.33a)

σ = Cε(u), in Ω, (2.33b)

ε(u) =
1

2

(
∇u +

(
∇u
)T)

, in Ω, (2.33c)

where (2.33a) is the equilibrium equation, (2.33b) is the constitutive law, and (2.33c) denotes
the strain-displacement equation. Obviously (2.33) leads to a mixed formulation in u, ε and
σ. But it is possible to eliminate one or two unknown quantities. In the following we will list
now two common variational formulations of (2.33).

Standard elliptic formulation

In this approach the strains ε and the stresses σ are eliminated and the problem is stated in
the displacement field u only. At first we eliminate σ from (2.33b) to obtain

− div
(
Cε
(
u
))

= b, in Ω, (2.34)

as the equation of equilibrium. As the next step towards the weak formulation we introduce
the space V = H1

Γu
(Ω) of admissible displacements. Then multiplication of (2.34) with an
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arbitrary v ∈ V and integration by parts using the boundary conditions (2.32) yields the
following variational equations:

a(u,v) = f(v), ∀ v ∈ V, (2.35)

with the abbreviations

a(u,v) =

∫

Ω
ε(u) : Cε(v) dx (2.36)

and

f(v) =

∫

Ω
b · v dx +

∫

Γt

t · v ds. (2.37)

As in Subsection 2.2.1 the Theorem 2.4 of Lax and Milgram answers the question of well-
posedness of the problem (2.35). For the proof of the ellipticity of the bilinearform (2.36) we
need Korn’s inequality.

Lemma 2.1 (Korn’s inequality). Let Ω ⊂ R
3 be an open and bounded set with a piecewise

smooth boundary Γ. Furthermore, let Γu ⊂ Γ with |Γu| > 0, u ∈ H1
Γu

(Ω) and let the linearized
strain tensor be defined as in (2.33c). Then there exists a constant c > 0 depending on Ω,
such that

‖u‖2
1 ≤ c

∫

Ω

∣∣ε(u)
∣∣2 dx, ∀ u ∈ H1

Γu
(Ω).

Proof. See e.g. Duvant and Lions [58].

With these preliminaries we can state now the following existence result (cf. Han and

Reddy [74]):

Theorem 2.7. Under the stated assumptions the problem (2.35) has a unique solution u ∈
H1

Γu
(Ω). Furthermore, there exists a constant c > 0 such that

‖u‖1 ≤ c
(
‖b‖0 + ‖t‖L2(Γu)3

)
.

The Hellinger and Reissner principle

In this method, named after Hellinger and Reissner, only the strains ε are eliminated. Thus
the original problem (2.33) is stated as

σ − Cε(u) = 0, in Ω, (2.38a)

divσ = −b, in Ω, (2.38b)

with the boundary conditions (2.32). With the spaces V = H1
Γu

(Ω) and Q = L2(Ω,S3) we
define now the variational equations for (2.38) as:

(
C−1σ,q

)
0

−
(
q, ε(u)

)
0

= 0, ∀ q ∈ Q,

−
(
σ, ε(v)

)
0

= − (b,v)0 +

∫

Γt

t · v dx, ∀ v ∈ V,
(2.39)

with the bilinear forms a(σ,q) = (C−1σ,q)0 and b(q,u) = (q, ε(u))0 (compare to Subsection
2.2.2). To ensure the existence of a solution (σ,u) ∈ V ×Q the assumptions of Theorem 2.5
have to be fulfilled. The bilinarform a(·, ·) is Q-elliptic, since ν < 1/2 and C positive definite.
The LBB-condition follows from the following theorem.
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Theorem 2.8. Let Ω ⊂ R
3 be an open and bounded set with a piecewise smooth boundary Γ.

Furthermore, let Γu ⊂ Γ with |Γu| > 0 and u ∈ H1
Γu

(Ω). Then there exists a constant c > 0
depending on Γu and Ω, such that

sup
q∈L2(Ω,S3)

b(q,v)

‖q‖0
≥ c‖v‖1, ∀ v ∈ H1

Γu
(Ω).

Proof. See e.g. Braess [32].

The approach to create the variational equations (2.39) from (2.38) was a weak formulation
of (2.38a) and a weak formulation of (2.38b) using partial integration. If we proceed the
other way around, namely a weak formulation of (2.38a) using partial integration and a weak
formulation of (2.38b), we obtain a different mixed formulation:

(
C−1σ,q

)
0

+ (divq,u)0 = 0, ∀ q ∈ Q0,

(divσ,v)0 = − (b,v)0 − (divσt,v)0 , ∀ v ∈ V,
(2.40)

where we homogenized the boundary condition σn = t with the approach σ = σ0 + σt

to σ0 · n = 0 and σt · n = t on Γt. For sake of simplicity we have used σ instead of
σ0 in (2.40), where we look for a solution (σ,u) ∈ Q0 × V with the spaces Q0 = {q ∈
H(div,Ω)3×3 | q(x) · n(x) = 0 for x ∈ Γt} and V = L2(Ω,S3).

Which version of the Hellinger and Reissner principle is more reasonable depends amongst
others on the stated boundary conditions.

Notes and remarks for Subsection 2.4.2

• In literature exists a third variational formulation for the elasticity problem, namely the
Hu-Washizu principle:

(Cε,q)0 − (q,σ)0 = 0, ∀ q ∈ L2

(
Ω,S3

)
,

(
ε(v),σ

)
0

= (b,v)0 +

∫

Γu

t · v ds, ∀ v ∈ H1
Γu

(Ω),

−(ε, r)0 +
(
ε(u), r

)
0

= 0, ∀ r ∈ L2

(
Ω,S3

)
.

Here we seek a solution (ε,u,σ) ∈ L2(Ω,S3)×H1
Γu

(Ω)×L2(Ω,S3). With a(ε,u;q,v) =
(Cε,q)0, b(q,v;σ) = −(q,σ)0+(ε(v),σ)0, and f(q,v) = (b,v)0+

∫
Γu

t · v ds the above
formulation fits in the framework of mixed formulations of Subsection 2.2.2.

• As the Hu-Washizu principle is hardly used in practice, the Hellinger-Reissner principle
plays an important role if the stresses σ have to be computed directly and not as a
post-processing step, like in the pure displacement based formulation.

• A quite natural way to avoid numerical problems in the case of nearly incompressible
materials and locking effects is to use mixed formulations with a penalty term (cf.
Braess [32]).



Chapter 3

Two Approaches - Nested and

Simultaneous Formulation

Structural optimization problems and many other optimization problems, like optimal control
problems, are governed by a partial differential equations or by a system of PDEs. If we
consider optimal design problems, the variables can be partitioned into the state and design
variable, denoted by u and ρ, respectively. Of course, the properties of the objective depend
strongly on the treated problems, and additionally, other constraints on the design ρ, the
state u, or on both variables my be present. But in general we try to solve an optimization
problem like

J (ρ, u) → min
ρ∈Q,u∈U

(3.1a)

subject to e(ρ, u) = 0, (3.1b)

where the equality constraint (3.1b) denotes the constraining PDE, also called the state
equation. As mentioned above, the objective functional (3.1a) can be of various kinds. For
the topology optimization problems presented in this work it is linear, once with respect to the
state (the minimal compliance problem, see Chapter 4), and once with respect to the design
(the minimal mass problem, see Chapter 5). For other structural optimization problems,
e.g. shape optimization problems, the objective can be quite general. For optimal control
and inverse problems it is usually of a quadratically least-square type with an additional
regularization term. But also the state equation varies. In this work we will only treat the
system of linear elasticity equations as constraining state equations. Beside elliptic equations,
nonlinear and time-dependent state equations are of particular interest in many applications.
The state may even consist of various state variables, related to different physical quantities,
like e.g. a mechanical displacement field and an electromagnetical field. This is e.g. the case
for problems from multidisciplinary structural optimization and multi-physics problems (cf.
MEMS in Subsection 1.1.3).

There are basically two approaches for problems like (3.1). Under proper conditions (see
the subsection below) the state equation can be solved for each design ρ to obtain a state u(ρ)
that depends uniquely on the design ρ. Thus, equation (3.1b) can be eliminated and formally
hidden in the objective functional. Then we end up with the unconstrained optimization
problem

J
(
ρ, u(ρ)

)
→ min

ρ∈Q
,

39
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the so called nested approach or black-box approach. Alternatively, if no variables are elim-
inated and the state equation is treated as a constraint, see (3.1), the approach is called
the non-nested approach or simultaneous analysis and design (SAND). In relevant literature
there are also different names like, simultaneous optimization, all-at-once approach or one-shot
methods.

In the following two sections of this chapter, we will briefly discuss the advantages and
disadvantages of both approaches.

3.1 Nested Formulation

In this section we will list some properties and facts about the nested formulation of the
problem (3.1):

J̃ (ρ) = J
(
ρ, u(ρ)

)
→ min

ρ∈Q
. (3.2)

As a starting point we state conditions (cf. Arian, Battermann und Sachs [11]), that
admit a unique solution of the state equation (3.1b) with respect to the state.

Remark 3.1. Let e : Q× U → Z be twice continuously Fréchet differentiable, where U , Q,
and Z are proper Hilbert spaces. Furthermore, let the partial Fréchet derivative eu of e with
respect to the state u be bijective and continuous, and let the partial Fréchet derivative eρ of
e with respect to the design ρ be continuous.

Then, the state equation, respectively its linearization, admits a unique solution with re-
spect to the state:

e−1
u : Z → U exists and is a continuous linear operator for all (u, ρ) ∈ U ×Q. (3.3)

Under the assumption (3.3) and using the implicit function theorem, we can define a
solution operator S for the state equation.

Lemma 3.1 (Solution Operator). Let the assumptions in Remark 3.1 hold. Moreover, let Q
be an open neighbourhood of ρ ∈ Q with (ρ, u) ∈ Q × U and e(ρ, u) = 0. Then, there exists
a unique solution operator S : Q → U that is twice continuously Fréchet differentiable in Q
and that satisfies the identity

e
(
ρ, S(ρ)

)
= 0, ∀ ρ ∈ Q.

Furthermore, the derivative of S with respect to ρ is given by

S′(ρ) = −e−1
u

(
ρ, S(ρ)

)
eρ
(
ρ, S(ρ)

)
, ∀ ρ ∈ Q.

In structural design it is quite common to use the nested problem formulation (3.2). Let
us now list some general facts about the nested approach:

• The reduction of the problem from the product space U × Q to the design space Q
reduces the problem’s dimension. This has an advantageous effect if the dimension of
the design space is small, in particular, if it is much smaller than the dimension of the
state space U .
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• Because of the introduction of the solution operator S, the state constraint is fulfilled
(up to a discretization error) at every iteration step of the optimization routine. Thus,
the nested approach can be regarded as a feasible path method. Even if the optimization
algorithm is interrupted ahead of termination, the actual design has a physical meaning,
since e(ρ(k), u(k)) = 0 for all iteration numbers k.

• But on the other hand, due to the introduction of the solution operator S, it is necessary
to solve the state equation (3.1b) for each evaluation of the objective functional and
of it’s gradient, respectively. Additionally, for each gradient evaluation, the adjoint
problem to the state equation has to be solved. This can be rather time consuming,
even when solution methods of optimal order are applied, like a multigrid method or a
multigrid preconditioned conjugate gradient algorithm, especially if the state equation
is nonlinear.

• Moreover, the reduction of variables will change the original properties of the objective
functional. Even if J (ρ, u) is linear or convex, J̃ (ρ) may become severely nonlinear
and nonconvex. For the minimal compliance problem (see next Chapter 4) we e.g. have

that J (ρh,uh) = fhT
uh, but J̃ (ρh) = fhT

K−1(ρh)fh due to S(ρh) = K−1(ρh)fh.

• In topology optimization the nested approach is usually used together with the method
of moving asymptotes, see Subsection 2.1.2. If the design space is small, also SQP-type
methods are possible.

3.2 Simultaneous Optimization

Let us take now a closer look at the simultaneous approach. As a reminder, let us state the
original model problem again:

J (ρ, u) → min
ρ∈Q,u∈U

(3.4a)

subject to e(ρ, u) = 0. (3.4b)

In comparison to the nested approach, no solution operator is required. The state equation
is not eliminated, but treated as an equality constraint. Thus, optimization is carried out in
the product space Q× U . In this spirit let us formulate the first-order necessary conditions
(Theorem 2.1) for problem (3.4). The Lagrangian functional for problem (3.4) is given by

L(ρ, u, λ) = J (ρ, u) +
〈
λ, e(ρ, u)

〉
, (3.5)

where λ ∈ Z∗ denotes the Lagrangian multiplier of the state constraint. Then the first-order
necessary conditions are given by the following equations:

∇ρL = Jρ + 〈λ, eρ〉 = 0, (3.6a)

∇uL = Ju + 〈λ, eu〉 = 0, (3.6b)

∇λL = e(ρ, u) = 0. (3.6c)

Here, (3.6a) is the design equation, (3.6b) is usually called the adjoint or costate equation, and
(3.6c) is the state equation. The equations (3.6) can be combined to a (nonlinear) mapping
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F (ρ, u, λ) = 0, that can be solved using Newton’s method. Thus, we end up with the following
linear system, which has to be solved at each Newton iteration:




Lρρ Lρu e∗ρ
Luρ Luu e∗u
eρ eu 0






△ρ
△u
△λ


 = −




Jρ + 〈λ, eρ〉
Ju + 〈λ, eu〉
e(ρ, u)


 . (3.7)

Note, that assumption (3.3) implies that eu is a regular operator, which must not hold for
eq. The fact that this saddle point system arises from the KKT-conditions, gave it the name
KKT-system. After a suitable discretization, e.g. using the finite element method, we can
rewrite the system (3.7) as a discrete linear system




A11 A12 BT
1

A21 A22 BT
2

B1 B2 0






△ρh

△uh

△λh


 =




fh
1

fh
2

gh


 (3.8)

In the sequel we will also use the following abbreviation of the KKT-system (3.8):

(
A BT

B 0

)(
x

y

)
=

(
f

g

)
.

We use the abbreviation A for the discrete analogon of the Hessian of the Lagrangian, thus
A is symmetric. Let us shortly list some properties in comparison to the nested problem
formulation:

• Potential comfortable properties of the problem are not destroyed, e.g. like linearity of
the objective or sparsity of the KKT system.

• The simultaneous approach does not follow the feasible path by the state equation.
The state equation has only to be fulfilled by the final state u, u(k) → u, and the final
optimal design ρ, ρ(k) → ρ. Hence, a significant speedup can be expected. See, e.g.
Burger and Mühlhuber [45, 46], for an application of the simultaneous approach to
inverse problems (parameter identification problems).

• The simultaneous approach contains a solution to the sparse, symmetric, but indefinite
linear system (3.8), at each Newton step.

• Up to now the simultaneous analysis and design method is hardly used in continuous
topology optimization. As examples we refer to Maar and Schulz [89] and Hoppe

and Petrova [76]. In both cases, interior-point methods (cf. Subsection 2.1.3) are
used to solve the arising optimization problem.

• It has been shown that various examples of nonlinear mixed 0-1 topology optimization
problems can be modelled in an equivalent way as linear mixed 0-1 problems (cf. Stolpe

and Svanberg [140] and Stolpe [136]). The simultaneous approach is the cornerstone
of these reformulations, that allow to solve these problems to global optimality.

The keystone to a simultaneous approach is now an efficient solution technique for the KKT-
system (3.8). Since the actual properties of the system matrix in (3.8), and in particular
of the block matrices, change from each problem to the other, it is not possible to advise a
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general solution approach. There exist several ways how to apply iterative solution methods
and how to construct efficient preconditioners.

Reduced approaches consist of an a-priori elimination of the equality constraint B1△ρh +
B2△uh = gh, which results in an elimination of the state uh and Lagrangian multiplier λh.
After some calculations this yields the reduced system

Kr△ρh = fh
r ,

with the Schur complement

Kr = A11 − A12B
−1
2 + BT

1 B−T
2 (A21 −A22B

−1
2 B1)

and the corresponding right-hand side

fh
r = fh

1 − A22B
−1
2 gh − BT

1 B−T
2 (fh

2 − A22B
−1
2 gh).

Note, that due to assumption (3.3), B2 is regular and the above computations are possible.
The reduced approach is of particular interest if the size of the design space is much smaller
than the size of the state space. Nevertheless, the application of Kr is likely to be more ex-
pensive than an application of the KKT-matrix, since it involves two solutions of systems with
the matrix B2. This drawback is usually overcome by using Broyden-type update schemes for
the reduced system matrix. This strategy is frequently used in inverse problems and optimal
control. For applications we refer e.g. to Sachs [113] and to Schulz and Bock [118].

An alternative to reduced approaches, namely the simultaneous solution of the KKT-
system has been recently investigated, especially in connection with optimal control prob-
lems, see e.g. Battermann and Heinkenschloss [14], Biros and Ghattas [24], and
Battermann and Sachs [15]. A reason for this is, that the assembling and application
of the reduced system matrix is more expensive then the assembling and application of the
KKT-matrix, even if it is larger and indefinite. In the following we will discuss briefly some
iterative methods to solve the KKT-system (3.8) and address the question of precondition-
ing. A survey on solution methods for saddle point problems is given by Benzi, Golub, and

Liesen [23].
Since (3.8) is a linear indefinite system, it seems quite natural to use variants of the con-

jugate gradient algorithm that are applicable to indefinite systems. Those methods belong
the class of Krylov subspace methods (cf. Saad [111] and Subsection 2.3.2). Suitable methods
would be GMRES (cf. Saad and Schultz [112]), QMR (cf. Freund and Nachtigal [67]),
and MINRES (cf. Paige and Saunders [100]). Thus, appropriate preconditioning is essen-
tial. Another possibility is a positive definite reformulation of the saddle point system and
applying a CG method with a proper inner product (cf. Bramble and Pasciak [36]).

Another class of iterative methods for indefinite linear systems are inexact UZAWA algo-
rithms. Convergence properties have been investigated, e.g. by Langer and Queck [82, 83]
and more recently by Bramble, Pasciak and Vassilev [37] and Zulehner [158]. Inexact
Uzawa methods have been developed for the iterative solution of the Stokes’ problem (cf.
Subsection 2.2.2) and similar mixed problems. Due to this original motivation, these meth-
ods rely on the positive semi-definiteness of the upper left block matrix A. Unfortunately,
this property cannot be fulfilled by most topology optimization problems. An inexact Uzawa
method for the system (3.8) writes as

Â
(
x(k+1) − x(k)

)
= f − Ax(k) − BTy(k),

Ĉ
(
y(k+1) − y(k)

)
= Bx(k+1) − g,
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where Â and Ĉ are symmetric positive definite preconditioners for A and for the (negative)
Schur complement C = BA−1BT . In order to construct a efficient solver in this way, good
preconditioners Â and Ĉ to A and C respectively, are of high importance.

As a third class of iterative solution methods for the KKT system we mention multigrid
methods with proper smoothers. Two classes of smoothers are of special interest, namely local
patch smoothers, e.g. see Schöberl and Zulehner [116], and global block smoothers, e.g.
see Braess and Sarazin [33] and Zulehner [157]. In Schöberl and Zulehner [116] a
Schwarz-type iteration method as smoothers in a multigrid method for saddle point problems
is considered and rigorously analyzed. A multigrid convergence proof is given for the additive
case, numerical examples are presented for both, the additive and the multiplicative Schwarz-
type smoother. For more information we refer to Chapter 6, where an optimality system
arising from an interior-point formulation is solved by the use of a multigrid method with a
multiplicative patch smoother. Another class of smoothers is analyzed in Zulehner [157],
where a symmetric positive definite preconditioner Â for A and a symmetric positive definite
preconditioner Ŝ for the (negative) inexact Schur complement BÂ−1BT are needed. Again,
both classes of smoothers depend on the semi-positive definiteness of A. A class of smoothers
that do not rely on this property, are the so-called transforming smoothers (cf. Wittum [150]).
They are used in Maar and Schulz [89] for their simultaneous optimization approach to
the minimal compliance problem. However no regularization is applied and no convergence
analysis is given.



Chapter 4

An Adaptive Multilevel Approach

to the Minimal Compliance

Problem

In this chapter we present an adaptive multilevel approach to the minimal compliance prob-
lem. Here we search for an optimal material distribution with respect to maximal stiffness
under a given loading and restriction of the total volume used. This problem contains the
system of linear elasticity partial differential equations as constraints, resulting in a large
scaled optimization problem after the finite element discretization. Due to the repeated solu-
tion of the direct field problem given by the PDE constraints, efficient solution techniques are
required. Next to adaptive mesh-refinement we use a multigrid approach for the direct prob-
lem. Minimizing compliance turned out to be a standard problem in topology optimization.
However, it already contains the most basic, but non-trivial difficulties like mesh-dependent
solutions, local minima and checkerboard phenomena. Due to this ill-posedness we need regu-
larization. In our algorithm we combine two filter methods, such that their disadvantages are
eliminated and only their positive properties remain. Numerical examples are performed with
several benchmark problems, where our adaptive multilevel approach turns out to be quite
efficient. For solving the optimization problem arising in each iteration step, the method of
moving asymptotes is used.

We start with an introduction to the minimal compliance problem and briefly discuss
material interpolation methods. In the next section we treat the aspect of regularization
using filter methods, which is a cornerstone of our adaptive multilevel approach. Afterwards,
the approach itself is discussed and finally successful numerical examples are presented in the
last section.

4.1 Preliminaries

4.1.1 The Minimal Compliance Problem

This section is devoted to the problem of minimizing the compliance of a structure subject
to a weight constraint. For this let us consider Figure 4.1. Let Ω ⊂ R

d (d = 2, 3) be an open,
bounded connected domain with a Lipschitz boundary Γ, the so called ground structure.
Moreover, let Γu ⊂ Γ, |Γu| > 0 be the part of the boundary where the displacements are

45
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Ω
Γt

Γu

b

Figure 4.1: The reference domain and applied forces in a minimal compliance problem.

fixed, and Γt = Γ \ Γu the part where boundary tractions are prescribed (cf. (2.32)). Later
on, the optimal design is generated referring to this ground structure. Our aim is now to
distribute in Ω a certain amount of material, so that the resulting structure is as stiff as
possible under loading. For sake of simplicity we will restrict ourselves to the case of isotropic
material and to the case where no body forces are applied (b = 0). A first ideal formulation
of the minimal compliance problem looks now like the following:

ℓ(u) =

∫

Γt

t · u ds → min
ρ,u

(4.1a)

subject to a(ρ;u,v) = ℓ(v), ∀ v ∈ V0, (4.1b)∫

Ω
ρ(x) dx ≤ m0, (4.1c)

ρ(x) ∈ {0, 1}, a.e. in Ω. (4.1d)

The compliance is given by the objective functional (4.1a), which is also the right hand side of
the equilibrium constraints (4.1b). These equilibrium constraints contain the linear elasticity
equations (cf. Subsection 2.4.1) in a weak formulation, where V0 = H1

Γu
(Ω; Rd) denotes the set

of kinematically admissible displacement fields. Constraint (4.1d) tells that each point x ∈ Ω
should be occupied with material (ρ(x) = 1) or void (ρ(x) = 0). Let C0 describe an elasticity
tensor of fourth order, satisfying the usual symmetry, ellipticity and boundedness assumption.
Then, the material tensor related to ρ(x) = 1 is C(1) = C0 and the one that corresponds to
ρ(x) = 0, is C(0) = 0. Moreover, constraint (4.1c) limits the amount of available material.

In order to use gradient based optimization methods and to avoid e.g. branch and bound
techniques to solve the 0-1 problem, the constraint (4.1d) is relaxed. So the discrete valued
constraint is replaced by a continuous version ρ(x) ∈ [0, 1] with ρ ∈ L∞(Ω). For methods to
still obtain a 0-1 solution, we refer to Subsection 1.1.2 and to the two following subsections.
Below we replace the lower bound 0 by a small value ρmin, 0 < ρmin ≪ 1, to still ensure the
ellipticity of the bilinearform a(ρ;u,v). Furthermore, let

η : [ρmin, 1] → (0, 1]

be a continuous, monotonously increasing function. This material interpolation function η
describes how the actual density ρ(x) influences the elasticity tensor C (e.g. to enforce 0-1
designs) at a given point x ∈ Ω. Then the actually used elasticity tensor is variable over the
ground structure and is defined as

C
(
ρ(x)

)
= η

(
ρ(x)

)
C0, a.e. in Ω. (4.2)
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The energy bilinearform on V0 × V0 is then given by

a(ρ;u,v) =

∫

Ω
ε
(
u(x)

)
: C
(
ρ(x)

)
ε
(
v(x)

)
dx.

Summarizing all this steps we end up at the following formulation of the minimal compliance
problem:

ℓ(u) → min
ρ∈L∞(Ω),u∈V0

(4.3a)

subject to a(ρ;u,v) = ℓ(v), ∀ v ∈ V0, (4.3b)∫

Ω
ρ(x) dx ≤ m0, (4.3c)

ρmin ≤ ρ(x) ≤ 1, a.e. in Ω. (4.3d)

In the above formulation (4.3) the problem is stated in a simultaneous formulation. But
usually, and also in this chapter, the state variable u is eliminated through the state equation,
resulting in a nested formulation. For a given admissible ρ the solution of (4.3b) is ensured
and denoted by u(ρ), arriving at the nested formulation of the minimal compliance problem:

ℓ
(
u(ρ)

)
→ min

ρ∈L∞(Ω)
(4.4a)

subject to

∫

Ω
ρ(x) dx ≤ m0, (4.4b)

ρmin ≤ ρ(x) ≤ 1, a.e. in Ω, (4.4c)

Now the state constraint (4.3b) is hidden in the objective (4.4a), which means that for every
evaluation of the objective functional, or of it’s gradient, the state equation (4.3b) has to be
solved.

Notes and remarks for Subsection 4.1.1

There are several extensions to the minimal compliance problem, which are all omitted in
this section for sake of simplicity.

• Include multiple load cases to the problem. This is done rather easily, since the opti-
mization with respect to multiple load conditions is formulated as an optimization of a
weighted average of the compliances for each of the load cases.

• Include the self-weight of the structure in the optimization process. From a modeling
viewpoint this means that body forces have to be considered (b 6= 0) and the load vector
ℓ(ρ,v) becomes design dependent.

• Consider areas in the ground structure Ω that have to be filled with material or that
have to be free of material in the optimal design.
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4.1.2 Material Interpolation

In the previous Subsection we replaced the integer valued constraint (4.1d) by the continuous
relaxation (4.4c). But in order to obtain 0-1 optimal designs the intermediate density values
have to be be penalized.

One way to penalize intermediate values is to use a proper non-linear material interpola-
tion function that penalizes intermediate values indirectly. This is done, e.g. if intermediate
densities give little stiffness in comparison to the amount of used material. The most known
penalization method is the SIMP (Solid Isotropic Material with Penalization) approach (cf.
Subsection 1.1.2). Here a non-linear interpolation model of the form η(ρ(x)) = ρ(x)p with
p ≥ 1 is used. Then the relation (4.2) between the density and the material tensor in the
state equation is given by

Cp

(
ρ(x)

)
= ρ(x)pC0, ∀ x ∈ Ω. (4.5)

Figure 4.2: Left: SIMP-Interpolation scheme with various values for p. Right: RAMP-Interpolation
with various values for q.

An alternative approach to the SIMP method is the following interpolation model:

Cq

(
ρ(x)

)
=

ρ(x)

1 + q
(
1 − ρ(x)

)C0, (4.6)

which is called RAMP (Rational Approximation of Material Properties) and was mentioned in
Rietz [106] and treated thoroughly in Stolpe and Svanberg [137]. The two interpolation
models satisfy that

Cp

(
ρmin

)
= ρp

minC
0,

Cp(1) = C0,
and

Cq

(
ρmin

)
=

ρmin

1 + q
(
1 − ρmin

)C0,

Cq(1) = C0,

with 0 < ρp
min ≪ 1 and 0 < ρmin

1+q(1−ρmin) ≪ 1 for 0 < ρmin ≪ 1, p ≥ 1, and q ≥ 0. So

Cp(ρmin) and Cq(ρmin) can be regarded as two compliant materials (in comparison to C0),
pretending to be void. Above the lower bound ρmin > 0 was introduced to guarantee the
ellipticity of the bilinearform a(ρ;u,v), which resulted in a very compliant material for the
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regions of Ω occupied with void. Following this idea we could see the used material over the
ground structure as a composite of two materials, whereas one of them is interpreted as void.
Consider C0 and C1 as two material tensors with the same Poisson’s ratios ν0 and ν1 but
with different Young moduli, e.g. 0 < E0 ≪ E1. The material tensor of the composite is then
given by

C
(
ρ(x)

)
= C0 + η

(
ρ(x)

)
△C, a.e. in Ω,

with △C = C1 − C0. Now it is possible to set ρmin = 0 and, because of E0 > 0, to still
ensure the V0-ellipticity of the bilinearform. One of the advantages of the RAMP model with
respect to the SIMP model is the behavior of the derivative of the material model at ρ(x) = 0.
Comparing the derivatives yields the following:

C′
p(0) =

{
C0 if p = 1,
0 if p > 1,

vs. C′
q(0) =

1

1 + q
C0,

where it is worth noticing that C′
p(0) is discontinuous in the parameter p, while C′

q(0) is
continuous in the parameter q ≥ 0. The fact that C′

p(0) = 0 for p > 1 makes it hard to move
material, which is not the case when using the RAMP model. But the primary motivation
for the RAMP model is the reason that problems with penalization of intermediate values
become in general non-convex. Without any penalization (η(ρ) = ρ) compliance is a convex
functional (cf. Svanberg [142]). So a common suggestion is to use a continuation on the
penalization parameter to shift the objective cautiously from convexity to non-convexity,
hopefully concavity, when the penalization parameter is high enough. This increases the
possibility to obtain a global optimal minimum to the 0-1 problem (4.1). For a sufficiently
high value of q, the compliance turns into a concave functional for the RAMP scheme, which
needs not to happen when increasing p in the SIMP model (cf. Stolpe and Svanberg [137]).

A totally different approach to penalize intermediate density values is use the material
interpolation function η(ρ(x)) = ρ(x) and to add an additional constraint to the optimization
problem to encourage 0-1 optimal designs. Such a penalty constraint could e.g. look like the
following:

P
(
ρ(x)

)
=

∫

Ω

(
1 − ρ(x)

)(
ρ(x) − ρmin

)
dx ≤ εP . (4.7)

Of course such a penalty function can also be added as a penalty term to the objective as
J (ρ,u) + wPP (ρ), with a weighting factor wP > 0. But in both cases it is a tricky task to
choose proper values for εP or wP .

Notes and remarks for Subsection 4.1.2

• An other disadvantage of SIMP versus RAMP is that the mass depends linearly on the
density ρ and the stiffness depends on a power of ρ, which results in a non finite ratio
of mass to stiffness when ρ attends zero.

• Since problems with a penalizing material interpolation function are in general non-
convex, continuation methods have been proposed, see above. But it is shown in Stolpe

and Svanberg [138] that the trajectory, defined as the path followed by the solutions
to the penalized problems, as the penalization is intensified, may be discontinuous, no
matter how gently the penalization parameter is increased.
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4.2 Regularization using Filter Methods

A naive formulation of topology optimization tasks like the minimal compliance problem will
lead to difficulties in the sense that there are no optimal solutions (cf. Subsection 1.1.1). In
this section we will discuss two filter methods to obtain a well-posed version of the problem
(4.4).

An optimization problem is said to be well-posed when the two following conditions are
valid: The objective functional has to be lower semi-continuous and the feasible set has to
be compact, and both properties have to be fulfilled with respect to the same topology. We
begin with the definition of lower semi-continuity.

Definition 4.1 (Lower Semi-continuity). Suppose X is a topological space, x ∈ X and f :
X → R is a real-valued mapping. The mapping f is called lower semi-continuous at x if for
every ε > 0 there exists a neighborhood N ε of x such that f(x) > f(x) − ε for all x ∈ N ε.
Equivalently, this can be expressed as

lim inf
x→x

f(x) ≥ f(x).

The mapping f is called lower semi-continuous if it is lower semi-continuous for all x ∈ X.
Then {x ∈ X | f(x) > a} is an open set for every a ∈ R. The mapping f is called upper
semi-continuous if (−f) is lower semi-continuous.

Note, that the combination of lower and upper semi-continuity yields continuity.
Let us now investigate the existence of solutions to the minimal compliance problem for

the variable thickness sheet, i.e. problem (4.4) with η(ρ) = ρ.

Lemma 4.1. Let F denote the set of all feasible designs of the minimal compliance prob-
lem (4.4), i.e. F =

{
ρ ∈ L∞(Ω)

∣∣ ∫
Ω ρ(x) dx ≤ m0, ρmin ≤ ρ(x) ≤ 1 a.e. in Ω

}
. Then F is

weakly∗ closed in L∞(Ω).

Proof. Let {ρ(k)} ⊂ F be a sequence such that ρ(k) ∗
⇀ ρ in L∞(Ω). Since Ω is bounded, the

weak∗ convergence yields that
∫

Ω
ρ(x) dx = lim

k→∞

∫

Ω
ρ(k)(x) dx ≤ m0.

Moreover, choose an arbitrary measurable subset ω ⊂ Ω and ε > 0 arbitrary but fixed. Then
there exists an integer K, such that

∫

ω
1 − ρ(x) dx =

∫

ω
1 − ρ(k)(x) dx +

∫

ω
ρ(k)(x) − ρ(x) dx ≥ 0 − ε = −ε,

and
∫

ω
ρ(x) − ρmin dx =

∫

ω
ρ(x) − ρ(k)(x) dx +

∫

ω
ρ(k)(x) − ρmin dx ≥ −ε+ 0 = −ε,

holds for all k > K. Now, since ω and ε were arbitrarily and ρ satisfies the constraints (4.4b)
and (4.4c), the feasible set F is weakly∗ closed in L∞(Ω).

Lemma 4.2 (Lower Semi-continuity of Compliance). Let ℓ(u(·)) denote compliance like in
(4.4a) with η(ρ) = ρ. Then ℓ(u(·)) is lower semi-continuous in the weak∗ topology of L∞(Ω).
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Proof. See e.g. Bendsoe [17].

Theorem 4.1. Let the objective functional ℓ(u(·)) be lower semi-continuous with η(ρ) = ρ
and the feasible design set F weakly∗ closed in L∞(Ω). Moreover, let F be non-empty. Then
there exists a solution ρ to the minimal compliance problem (4.4).

Proof. For admissible designs ρ ∈ F the objective functional is bounded below by ℓ(u(ρmin)).
Hence, we can find a minimizing sequence {ρ(k)} ⊂ F for problem (4.4). Due to the bound-
edness of {ρ(k)} in L∞(Ω) we can extract a subsequence (again denoted by the superscript k)

so that ρ(k) ∗
⇀ ρ for a ρ ∈ L∞(Ω). Lemma 4.1 yields now ρ ∈ F .

By reason of Lemma 4.2, ℓ(u(·)) is lower semi-continuous and thus it holds for arbitrary ρ ∈ F
that

ℓ
(
u(ρ)

)
≤ lim inf

k→∞
ℓ
(
u(ρ(k))

)
≤ ℓ
(
u(ρ)

)
.

We know now that for the minimal compliance problem (4.4) the feasible set F is weakly∗

compact in L∞(Ω). However, in contrast to the choice η(ρ) = ρ, the objective functional
ℓ(u(·)) is not weakly∗ lower semi-continuous anymore when the material interpolation function
is chosen according to the SIMP or RAMP scheme. A possible remedy would be to use
η(ρ) = ρ and to penalize intermediate density values with an additional constraint like (4.7).
But, (4.7) only defines a set that is closed in a strong sense, which is in fact weaker than
weakly∗ closed, and then the feasible set F is not weakly∗ closed anymore (cf. Borrvall

and Petersson [28]).

Below we will present two different regularizing filter methods to restrict the design space.
The first method one is called Regularized Intermediate Density Control (RIDC) and is dis-
cussed in detail in Borrvall and Petersson [28]. Here the penalization constraint (4.7)
is modified to become weakly∗ closed.

Theorem 4.2. Let ℓ(u(·)) with η(ρ) = η be lower semi-continuous in the weak∗ topology
of L∞(Ω), and let PS = P ◦ S where P : Lp(Ω) → R is strongly semi-continuous and
S : Lp(Ω) → Lp(Ω), 1 < p < ∞, is compact and linear. Then there exists at least one
solution to the minimal compliance problem (4.4) with the additional constraint PS(ρ) ≤ εP .

Proof. See Borrvall and Petersson [28].

The motivation of the operator S is to convert weakly∗ convergent sequences into strongly
convergent ones. An example of such a compact and linear operator is an integral operator.

Theorem 4.3. Let p and q be conjugate exponents, 1 < p, q <∞. Moreover, let φ : Ω×Ω → R

be positive, measurable and such that ‖φ(x, ·)‖q <∞ for all x ∈ Ω. Define S : Lp(Ω) → Lp(Ω)
as

S(f) =

∫

Ω
φ(·,y)f(y) dy.

Then S is a linear and compact operator.

Proof. See Borrvall and Petersson [28].
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Corollary 4.1. Let ℓ(u(·)) with η(ρ) = η be lower semi-continuous in the weak∗ topology of
L∞(Ω), and let PS = P ◦S where P : Lp(Ω) → R, 1 < p <∞ is strongly semi-continuous and
S is the integral operator described in Theorem 4.3. Then there exists at least one solution to
the following optimization problem:

ℓ
(
u(ρ)

)
→ min

ρ∈L∞(Ω)

subject to

∫

Ω
ρ(x) dx ≤ m0,

PS(ρ) ≤ εP ,

ρmin ≤ ρ(x) ≤ 1, a.e. in Ω.

We know now how to modify the penalization constraint P by the use of a linear compact
operator S to obtain a regularized penalization function PS . Let S : L2(Ω) → L2(Ω) be an
integral operator defined as

S(ρ) =

∫

Ω
φ(x,y)ρ(y) dy, ∀ x ∈ Ω, (4.8)

with the kernel

φ(x,y) = C(x)max

(
0, 1 − |x − y|

R

)
, (4.9)

where φ fulfills the requirements in Theorem 4.3 and additionally
∫
Ω φ(x,y) dy = 1. C(x) is

chosen such that the latter is satisfied, i.e. C(x) =
(∫

Ω φ(x,y) dy
)−1

. Basically this means a
linear convolution with a cone of base radius R. Using Fubini’s theorem and the symmetry of
the kernel φ it is possible to show (cf. Borrvall and Petersson [28]) that a penalization
of S(ρ) implies a penalization of ρ:

0 ≤ P (ρ) ≤ (P ◦ S) (ρ) ≤ εP .

The filter constraint now looks as the following:

PS(ρ) =

∫

Ω

(
1 − S

(
ρ(x)

))(
S
(
ρ(x)

)
− ρ
)
dx ≤ εP , (4.10)

where a suitable value for εP must be found by experiments. This procedure is mostly very
expansive. This is a serious disadvantage of the filter method. But on the other hand for
problems like minimal compliance it is mathematically well defined.

The second filter technique is used together with the RAMP interpolation scheme (4.6)
and was first proposed in Sigmund [121]. Here not the density, but the discrete element
sensitivities of an discrete objective Jh(ρh) are modified as follows:

∂̂Jh

∂ρh
k

=
1

ρh
k

∑n
i=1Hi,k

n∑

i=1

Hi,kρ
h
i

∂Jh

∂ρh
i

, (4.11)

where the convolution operator Hi,k with filter radius R is defined as

Hi,k = max
{
0, R − dist(i, k)

}
, for i, k = 1, . . . , n.
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The operator dist(i, k) represents the distance of the geometrical centroids of finite element
k and element i. Roughly speaking, this filter replaces the original derivative by a weighted
average of the derivatives of the surrounding area. The advantage of this filter approach is
that it is very easy to implement and it turned out to work very well in various different
topology optimization problems in 2D and in 3D. Moreover it is very robust with respect
to coarse grids. But it must be pointed out that this filter is purely heuristic and it is not
quite understood which problem is actually solved. In the following we will call this filter the
mesh-independence filter and refer to it as MIF.

Both filter techniques are able to control the minimal length scale of the components in
the optimal design. The larger the filter radius R, the larger is the minimal length scale, or,
the thicker are the occurring components, which is important, e.g. to ensure that the optimal
structure is not too complicated to be manufactured. This influence of the filter radius can
be seen in Figure 4.3.

Figure 4.3: Different optimal designs for the same optimization problem w.r.t. different filter radii
(RIDC): Left R = 0.15 and right R = 0.05.

Notes and remarks for Section 4.2

• Before the MIF approach was introduced to topology optimization by Sigmund [121],
similar ideas to ensure mesh-independence have been used, e.g. in bone-modeling (cf.
Mullender, Huiskes and Weinans [95]).

• In Bourdin [30] another filter method on the density is presented and analyzed. Here
no additional constraint is added to the optimization problem, but the dependence of
the material properties on the density is replaced by the filtered density.

4.3 An Adaptive Multilevel Approach

Our basic motivation for a multilevel algorithm is to solve the problem efficiently and to save
computational costs. This is achieved by solving the problem firstly on a coarse grid to get
a first coarse design for rather cheap computational costs. Then we will use this first coarse
design as an initial design on a finer grid and repeat the optimization on the finer grid, and so
on. As the first coarse optimal design is mostly close to the succeeding finer optimal designs,
this procedure will help us to avoid unnecessary long and expansive computations on very
fine meshes.
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4.3.1 Discretization

When solving problems like (4.4) numerically they are usually discretized using finite elements
on a triangulation Th = {τi | i = 1, . . . , n} (cf. Subsection 2.2.3). Following a standard finite
element procedure the ground structure Ω is partitioned into n = O(h−d) (n = nel = nρ)
triangles τi (or tetrahedrons for d = 3), where h is the discretization parameter. It is worth
noticing that there are two different variables, the displacements u and the density ρ. For
both variables the same finite element mesh is used, but not the same finite elements.

The density ρ is approximated by a piecewise constant finite element function ρ̃, i.e. ρ̃ is
constant over every triangle τi. The displacement field u is approximated using continuous
element-wise quadratic functions. The finite element function ũ ∈ V h

0 is now the unique
solution of the finite element equations for given feasible ρ̃ ∈ Qh

a(ρ̃; ũ, ṽ) = ℓ(ṽ), ∀ ṽ ∈ V h
0 , (4.12)

where V h
0 = {ṽ ∈ P2(Th) | ṽ continuous and ṽ = 0 on Γu} denotes the finite dimensional

subspace of V0 and ρ̃ ∈ Qh = P0(Th). Here Pk(Th) denotes the space of polynomials of
maximal degree k over the triangles τi. Whenever mesh refinement is performed, it is done
in such a way that V h

0 ⊃ V H
0 for h ≤ H. Let the vectors uh ∈ R

nu and ρh ∈ R
n contain

the coefficients of the finite element functions ũ ∈ V h
0 and ρ̃ ∈ Qh, respectively. Then, the

discrete analogon of the state equations (4.3b) turns from (4.12) to the following system of
linear equations:

K
(
ρh
)
uh = fh, (4.13)

where fh ∈ Rnu denotes the load vector. The stiffness matrix K(ρh) depends on the design
vector ρh = (ρh

i )i=1,...,n as follows:

K
(
ρh
)

=
n∑

i=1

η
(
ρh

i

)
Ki,

where Ki are the element stiffness matrices extended to nu×nu matrices, which are weighted
with the values of the material interpolation function η evaluated at the element densities.

Now, with uh(ρh) referring to the unique solution of (4.13) for a given feasible design ρh,

the discrete analogon of the objective (4.4a) is fhT
K−1

(
ρh
)
fh = fhT

(uh(ρh)). Furthermore,
let the vector mh = (mh

i )i=1,...,n represent the volumes the finite elements so that mh
i = |τi|.

Then the discrete version of the minimal compliance problem (4.4) can be posed as follows:

fhT (
uh(ρh)

)
→ min

ρh∈Rn

subject to mhT
ρh ≤ m0,

ρmin ≤ ρh
i ≤ 1, i = 1, . . . , n.

(4.14)

4.3.2 Adaptive Mesh-Refinement

Elements inside a region, solely occupied by material or void, far away from the structure’s
boundary, are very unlikely to be affected by the optimization on finer levels. Far more
interesting is the interface between material and void, i.e. the boundary of the structure. It
is much more efficient to identify this interface and only refine elements along this interface,
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instead of an uniform refinement. For identifying the interface the filter operator S, defined
in (4.8), turns out to be a useful tool. Consider an arbitrary but fixed point x ∈ Ω. If the
function ρ is locally constant inside the filter region of x (the support suppφ(x) of the integral
kernel φ(x, ·) in (4.9)), then S(ρ)(x) = ρ(x) holds. This is exactly the case for regions where
the design is material, i.e. ρ(x) = 1 for all x ∈ suppφ(x), or void, i.e. ρ(x) = ρmin for all
x ∈ suppφ(x). If ρ is not constant inside the filter region, |S(ρ)(x) − ρ(x)| will have values
different from 0. In fact |S(ρ)(x) − ρ(x)| ∈ [0, 1 − ρmin], since S(ρ)(x) ∈ [ρmin, 1] for x ∈ Ω
(cf. Borrvall and Petersson [28]). So, we mark the element τi to be refined, if

∣∣(Φρh
)
i
− ρh

i

∣∣ ≥ δ1 > 0, (4.15)

for some δ1 with 1 ≫ δ1 > 0. In (4.15) Φ ∈ R
n×n denotes the convolution matrix corre-

sponding to the integral kernel φ. In Figure 4.4 we see an example of the application of this

Figure 4.4: Sketch, coarse solution, identified boundary and refined mesh of the cantilever problem
in 2D.

refinement idea to the cantilever example in 2D. The lower left picture shows the identified
interface using the refinement indicator (4.15) (scaled to [0,1]). Moreover, in Figure 4.5, we
see the refinement indicator for the cantilever problem in 3D. Varying the size of the filter
radius Rref for the refinement indicator we can control the sensitivity of the indicator with
respect to the interface. The larger Rref is chosen, the more elements around the interface
will be refined. But of course Rref should be at least greater than the distance of all elements
centroids to their at most d+ 1 adjacent neighboring elements centroids:

Rref = δ2 · max
i=1,...,n

{
dist(τi, τk) | τk ∈ NH(τi)

}
, with δ2 > 1,

where the set NH(τi) represents the set of the adjacent neighboring elements of the element τi.
In Figure 4.6 two different refined meshes are shown, resulting from two different refinement
filter radii Rref.

For other publications dealing with adaptivity in topology optimization we refer e.g. to
Maute, Schwarz and Ramm [92].
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Figure 4.5: Left: The refinement indicator for the 3D cantilever problem. Right: Finally refined
mesh of the 3D cantilever problem.

Figure 4.6: Influence of the refinement filter radius Rref on the refined mesh. Original mesh: 1463
elements. Left: Refined mesh with 2625 elements. Right: Refined mesh with 3741 elements.

4.3.3 A Multilevel Approach

In our multilevel approach we basically tried to combine the two filter methods, see Section
4.2, so that their disadvantages are eliminated and only their advantages remain.

Assume that we have a hierarchy of adaptively refined meshes T0 ⊂ T1 ⊂ . . . ⊂ Tl at hand.
At the beginning the problem is solved on the coarsest grid T0. Here, at the first level, we use
the mesh-independency filter MIF for regularization together with the RAMP interpolation
scheme to penalize intermediate density values, combined with a continuation method. The
latter means that the RAMP- parameter q is slowly raised through the optimization progress.
In the first few iterations q = q0 is chosen, the for the next ones some higher value, and so
on, until a wanted value qmax is reached where the design is then finally fully optimized. The
advantage of such a continuation method is that it avoids to get stuck early in an unwanted
local minima. That may happen if the calculation is done only with one value of q, which is
chosen too large. There are two major reasons why we use the MIF method combined with
the RAMP scheme on the coarsest grid. On the one hand we can use coarser grids than with
the RIDC method. On the other hand we can use the optimal design ρH of the coarsest
grid to get a realistic value for εP in (4.7), setting εP = PH

S (ρH), where PH
S denotes the

discretization of PS . This saves costly experiments to find a proper value for εP . Although
we adapted the MIF formula (4.11) to work also on adaptively refined grids, see (4.16), the
filter lost its regularizing properties.

∂̂J

∂ρh
k

=
1

ρh
k

∑n
i=1Hi,k|τi|

n∑

i=1

Hi,kρ
h
i

∂J

∂ρh
i

|τi|. (4.16)
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Thus, we continue on the refined grids with the RIDC method, which works fine on
unstructured grids and is mathematically well-founded. Moreover, since the effective density
in a(ρ; ·, ·) and the original density ρ are the same (η(ρ) = ρ), there are no doubts which
density is the one to plot. Consequently, we solve, on the coarse level l = 0 problem (4.14),
and, on higher levels l ≥ 1, problem (4.14) with the additional penalty constraint (see (4.17))
by an MMA-like algorithm. In each iteration step k of the MMA algorithm we solve the
following optimization problem

fhT (
uh(ρh)

)
→ min

ρh∈Rn
(4.17a)

subject to mhT
ρh ≤ m0, (4.17b)

ph
k

T
ρh + qk ≤ εlP , (4.17c)

ρmin ≤ ρh
i ≤ 1, i = 1, . . . , n, (4.17d)

for determining ρh(k+1)
, where (4.17c) is a linearization of PS(ρ) with respect to the design

variables ρh(k)
.

In the optimal coarse grid design the interface I = {x ∈ Ω | ρmin < ρ(x) < 1} between void
and material might have a quite significant width (a fuzzy interface). In order to minimize
these zones of intermediate densities we reduce εP from level to level like εi+1

P = δ3ε
i
P with

0 ≤ i < l and 0 < δ3 ≤ 1. So the initial diffuse interface turns, as i increases, into a
sharp interface. Unfortunately, if δ3 is chosen too small, it may happen that the optimization
algorithm is unable to find a feasible design at the next level i+ 1. The following choice of δ3
turned out to work quite well, in fact it was successful with all test examples:

δ3 = 1 − 1

2

∫
Ω χI(x)ρ(x) dx∫

Ω ρ(x) dx
∈
[1
2
, 1
]
,

where χI denotes the characteristic function of the interface I. The fraction on the right
hand side describes the ratio of the mass of the interfacial region and the mass of the overall
structure.

Algorithm 4.1 An adaptive multilevel approach

Initialize start value ρH
0 , e.g. like ρH

0 = m0/|Ω|
Choose the parameters δ1 and δ2 with 0 < δ1 ≪ 1 and 1 < δ2 respectively.
l = 0;

Coarse grid solution ρH with MIF and RAMP;
Determine ε0P by ε0P = PH

S (ρH);
while design not satisfactory do

Mesh-refinement along the interface of void and material. Possible reduction of εP :
εl+1
P = δ3ε

l
P , 0 < δ3 ≤ 1;

Fine grid solution ρh using RIDC;
l = l + 1;

end while
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4.4 Numerical Experiments

The approach described above was tested with several benchmark examples and we got very
good results from all of them. All computations were performed on a computer with a 2.4
GHz CPU and 2 GB memory. Moreover, we used the following parameters for all our nu-
merical experiments: δ1 = 0.1 and δ2 = 1.1. For solving the discrete optimization problems
(4.14) and (4.17) the method of moving asymptotes was used (cf. Subsection 2.1.2). The
finite element assembling and the meshing part was realized with the software package NET-
GEN/NGSolve by Schöberl et al. [117], a powerful meshing and finite element software
tool. The additional code for the optimization routine including MMA was written in C++
and coupled with NETGEN/NGSolve. In Table 4.1 we list the computational data gained

Figure 4.7: Sketch, coarse grid and fine grid solution of the ’wheel’ example.

from the ’wheel’ example (measurements of the ground structure Ω: 4 × 2, filter radius R =
0.1, volume fraction: 0.25|Ω|). In Figure 4.7 we see the sketch, coarse grid solution and the
final fine grid solution of the wheel example. The columns nel and nu contain the number
of finite elements and the degrees of freedom with respect to the displacements. The other
columns tstate, t∇, topt, tfil and tit show the time used for one evaluation of the state equation,
of the derivatives, for the solution of the MMA subproblem, for applying the filter and the
overall time per iteration. In the last column the number of needed iterations is listed. The
algorithm was stopped at each level when the maximum norm of the difference between two
successive designs is less then 0.1 and the relative difference of two successive objective values
was less then 10−5. It turned out that this is a sufficiently tight convergence criteria for good
design results. For solving the state equation (4.13) we used a multigrid preconditioned con-
jugate gradient method, where per each iteration a V-cycle with one pre- and post-smoothing
step with a Gauß-Seidel smoother is done. Moreover, we computed the 2D examples in the
framework of plane strain (cf. Subsection 2.4.1). The adaptive multilevel algorithm was also

l Nel Nu tstate t∇ topt tfil tit Iter.

level 0: 3334 13666 0.8 0.1 0.1 0.0 1.0 84

level 1: 7654 30974 2.5 0.3 0.2 0.1 3.1 18

level 2: 16877 67920 6.1 0.6 0.5 0.4 8.2 16

level 3: 31280 125554 12.8 1.2 1.2 2.1 19.9 9

level 4: 60833 243796 29.0 2.3 3.1 12.0 59.3 9

level 5: 111397 446072 56.1 4.3 7.9 58.2 186.3 8

Table 4.1: Computational features from the 2D wheel example.

applied to other known 2D examples, where the solutions are shown in Figure 4.8. In all
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Figure 4.8: Sketches and fine grid solutions of other 2D examples.

these examples the available volume was restricted to 0.5|Ω| and the filter radius was chosen
as R = 0.1. The measurements of the ground structures of the examples are 6 × 1, 3.2 × 2,
and 2 × 1, respectively. The time tables are basically the same as for the wheel example,
hence we omit them.

Taking a close look at Table 4.1 it is apparent that the time used for applying the filter is
growing significantly (with quadratic order) for very fine meshes, which is still a bottleneck
of this approach. So far no sophisticated methods are used to speed up the (sparse) matrix
operation. Here, a more efficient way has yet to be investigated for very fine resolutions.
Approaches using H-matrices (see e.g. Hackbusch [72]), other data-sparse representations
techniques, or multipol/multilevel (see e.g. Of and Steinbach [97]) techniques are good
candidates to overcome this bottleneck.

The same effect appears of course when calculating 3D examples, like the cantilever beam
example (measurements of Ω: 16 × 10 × 3, filter radius R = 0.5, volume fraction 0.25|Ω|).
Due to symmetry, the actual computation was performed only in a quarter of the domain
Ω. Figure 4.9 shows sketch, coarse grid solution with 8100 elements and fine grid solution
with 1410880 elements. For visualization purposes for the 3D examples (Figures 4.9 and
4.10) we blanked all elements with a density lower than 0.9. Again, in Table 4.2, we list the

Figure 4.9: The cantilever beam in 3D: Sketch, coarse grid solution and fine grid solution.

computational data of the 3D example. In Figure 4.10 we present another 3D example. As
before, the computation was just done in a quarter of the domain. Since the computational
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l Nel Nu tstate t∇ topt tfil tit Iter.

level 0: 1725 9774 1.4 0.2 0.0 0.0 1.7 96

level 1: 8857 41307 11.4 1.2 0.2 0.2 13.4 93

level 2: 49437 214374 76.6 6.7 1.0 10.2 108.5 55

level 3: 189288 794628 330.5 26.1 3.9 160.7 691.8 45

Table 4.2: Computational features from the 3D cantilever beam example.

data is similar to Table 4.2, it is omitted again. Here the coarse grid solution is computed
with 30236 (7559) elements and the fine grid solution with 608340 elements corresponding to
608340 (152085) design unknowns and 953964 (238491) displacement unknowns, respectively.

Figure 4.10: The ’roof’ example, first line: Sketch and the finally refined mesh, once from above and
below. Second line: coarse grid solution and fine grid solution, once from above and once from below.



Chapter 5

Phase–Field Relaxation to Topology

Optimization with Local Stress

Constraints

We introduce a new relaxation scheme for topology optimization problems with local stress
constraints based on a phase–field approach. The starting point of the relaxation is a re-
formulation of the material distribution problem involving linear and 0-1 constraints only.
The 0-1 constraints are then relaxed and approximated by a Cahn-Hillard type penalty in
the objective functional, which yields convergence of minimizers to 0-1 designs as the related
penalty parameter decreases to zero. A major advantage of this kind of relaxation opposed
to standard approaches is a uniform constraint qualification that is satisfied for any positive
value of the penalization parameter.

The relaxation scheme yields a large-scale optimization problem with a high number of
linear inequality constraints. We discretize the problem by finite elements and solve the
arising finite-dimensional programming problems by a primal-dual interior–point method.
Numerical experiments for problems with local stress constraints based on different stress
criteria indicate the success and robustness of the new approach.

The reminder of the chapter is organized as follows: In the first section we give an intro-
duction to the field of topology optimization with local stress constraints and motivate the
phase–field method. Then, we consider the reformulation of the constraints, which is the first
fundamental of our approach. The second one, the phase–field relaxation, is introduced in
the next section, where we also analyze its basic properties. The finite element discretization
yielding linearly constrained programming problems is discussed in the section afterwards.
Finally, we present numerical results obtained for different stress criteria.

5.1 Introduction

In structural optimization there are two design - constraint combinations of particular impor-
tance, namely the maximization of material stiffness (minimizing the compliance) at given
mass and the minimization of mass while keeping a certain stiffness. The first combination,
also known as the minimal compliance problem, seems to be mathematically well understood
and various successful numerical techniques to solve the problem have been proposed. (see
also Chapter 4). The treatment of the second problem is by far less understood and until now

61
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there seems to be no approach that is capable of computing reliable (global) optimal designs
within reasonable computational effort. The main source of difficulties in this problem is
a lack of constraint qualifications for the set of feasible designs, defined by the local stress
constraints.

Starting point of our analysis is a reformulation of the equality constraints describing
the elastic equilibrium and the local inequality constraints for the stresses into a system
of linear inequality constraints as recently proposed by Stolpe and Svanberg [140]. A
remaining difficulty is that the arising problem also involves 0-1 constraints in addition to
the linear inequalities. The computational effort of methods for the global minimization of
these mixed linear programming problems grows fast with the number of degrees of freedom
in the discretization, so that the problem could be solved only for very coarse discretizations
so far (cf. Stope and Svanberg [140] and Stolpe [135, 136]). Instead of solving mixed
linear programming problems we propose to use a phase–field relaxation of the reformulated
problem. Due to the well-known ill-posedness of topology optimization problems we might
add a perimeter penalization to the objective functional. The phase–field relaxation consists
in using a material interpolation function η(ρ) = ρ, and additionally, a Cahn-Hillard type
penalization functional is used to approximate the perimeter.

Let Ωmat = {x ∈ Ω | ρ(x) = 1} ⊂ Ω ⊂ R
d (d = 2, 3), denote the optimal design,

which is of course initially unknown. Furthermore, let Γt0 ⊂ Γt describe the part of the
boundary Γt where the traction forces are zero, i.e. t = 0. Then, the stress constrained
topology optimization problem that we are going to investigate in this chapter states as
follows:

J(ρ) =

∫

Ω
ρ(x) dx → min

ρ,u
(5.1a)

subject to divσ = 0, in Ωmat, (5.1b)

σ − Cε(u) = 0, in Ω, (5.1c)

u = 0, on Γu, (5.1d)

σ · n = t, on Γt, (5.1e)

σ · n = 0, on
(
∂Ωmat \ Γt

)
∪ Γt0 , (5.1f)

ρ(x) ∈ {0, 1}, a.e. in Ω, (5.1g)

Φmin ≤ Φ
(
σ(x)

)
≤ Φmax, a.e. in Ωmat, (5.1h)

umin ≤ u(x) ≤ umax, a.e. in Ω. (5.1i)

Thus, in a first formulation, the objective functional (5.1a) only consists of a mass term.
Note, that we only optimize with respect to the design ρ and the displacements u, because
the stresses σ can be eliminated using the stress-strain relation (5.1c). But for sake of better
readability we will keep the stresses in the formulation. The constraints (5.1b) - (5.1f) describe
the elasticity equations with corresponding boundary conditions (cf. Section 2.4), where we
again neglect bodyforces for sake of simplicity. In an ideal case, the material density ρ only
attains two values, 1 for material and 0 for void, see the 0-1 constraint (5.1g). Moreover,
the vectors umin and umax in the bound constraint (5.1i) are lower and upper bounds for
the displacements u. In the bound constraints (5.1h), Φ denotes a proper stress criterion.
For Φ(σ) = σ we have that σmin ≤ σ ≤ σmax and we shall call this criterion total stress.
Alternatively, if the case of von Mises stress constraints is of interest, the local constraints on
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σ are replaced by
Φ
(
σ(x)

)
≤ Φmax, a.e. in Ωmat. (5.2)

Since von Mises stress is always non-negative, the lower bound Φmin can be omitted. Here
the von Mises stress is denoted via the functional Φ : R

d×d → R given by

Φ(σ) =

√∑d
i,j=1(λi − λj)2

2
,

where λi, i = 1, . . . , d are the principal stresses (the eigenvalues of σ) (cf. Han and

Reddy [74]). Note that for d = 2, the case we are focusing on, we simply have

Φ(σ) = |λ2 − λ1| =
√

(σ11 − σ22)2 + 4σ2
12.

The two following subsections we will give a short introduction to topology optimization
with local stress constraints and to the phase–field method.

5.1.1 Topology Optimization with Local Stress Constraints

Ω
Γt

Γu

b

Figure 5.1: The reference domain and applied forces in a minimal mass problem.

Let us again consider a sketch of a usual structural optimization problem in solid mechan-
ics, e.g. Figure 5.1. In difference to the minimal compliance problem, we aim for the lightest
structure that operates without material failure under loading. The most abstract way to
describe this problem in mathematical terms is probably the following:

mass → min

subject to Φ
(
σ(x)

)
≤ Φmax, ∀ x ∈ Ω.

But in order to solve this problem efficiently, several challenges must be overcome:

• For a 0-1 formulation, like e.g. (5.1), the stress constraints are well defined. But for
intermediate density values, the form of the stress criterion is not a-priori defined.
For instance, for a stress criterion for the SIMP model, we refer to Duysinx and

Bendsøe [59].

• Treating structural optimization problems with local stress constraints usually results
in a large scale optimization problem with a large number of constraints, e.g. two local
stress constraints per finite element after discretization.
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• The design domain (i.e. the feasible set defined by the constraints in (5.1)) may be
nonconvex (even nonconnected) and contain degenerated appendices with lower mea-
sure. (Global) optima are very likely to be located in this lower dimensional regions (cf.
Rozvany [109]), where constraint qualifications are lacking. In literature, this effect is
often called the singularity problem.

• In order to avoid mesh-dependent solution, a proper regularization has to be applied.

Under all these difficulties, the singularity problem is the most severe one. An explanation
for this phenomenon is the discontinuous nature of the stress constraints at zero density
(cf. Cheng and Jiang [54]). If the density of an related finite element tends to zero, the
corresponding stresses of that element tend to finite values. But the stresses of an element
with no density should not taken into account. Since stress constraints should only be imposed
if material is present, a reformulation, e.g. for the case of von Mises stress, of the original
stress constraints would be

Φ
(
σ(x)

)
≤ Φmax, a.e. in Ω, if ρ(x) > 0.

To avoid the condition ρ(x) > 0 in the constraints (which would yield a non-constant number
of constraints throughout the optimization process), the constraints are modified as:

ρ(x)
(
Φ
(
σ(x)

)
− Φmax

)
≤ 0, a.e. in Ω.

But unfortunately, the above reformulation does not eliminate the singularity phenomenon,
which is actually rooted in the lack of constraint qualifications (the Slater condition, see
e.g. Definition 2.3). If no constraint qualifications are valid, gradient based optimization
algorithms, based on the necessary first-order conditions (see Theorem 2.1), cannot reach the
optima in the degenerated parts of the design space. In other words, the algorithm is not able
to totally remove some low density regions and, as a consequence, to come up with optimal
designs.

A remedy is the so called ǫ-relaxation approach proposed in Cheng and Gou [53]. Here
the original constraints are replaced by the following perturbations

ρ(x)
(
Φ
(
σ(x)

)
− Φmax

)
≤ ǫ
(
1 − ρ(x)

)
, ǫ2 = ρmin ≤ ρ(x) ≤ 1, a.e. in Ω,

where the 0-1 constraint (5.1g) is relaxed to ρ(x) ∈ [ρmin, 1]. The ǫ-relaxed problems now have
a regular design space for all ǫ > 0. The resulting parameter dependent problem is then solved
using a continuation approach in ǫ, i.e. the problem is solved for a decreasing sequence ǫ→ 0.
Then the related sequence of design domains and of optimal designs converge to the original
(degenerated) design domain and to the corresponding optimal design, respectively. For
applications of the ǫ-relaxation in continuous topology optimization we refer e.g. to Duysinx

and Bendsøe [59] and Pereira, Fancello and Barcellos [101]. But the ǫ-relaxation
approach may fail, especially if the relaxed problem has many local minima, as shown in
Stolpe and Svanberg [139] for a simple truss optimization problem.

Another remedy would be to use one global stress constraint, like a global Lp constraint
‖Φ(σ)‖p ≤ Φmax, in contrast to the high number of local stress constraints, see e.g. Duysinx

and Sigmund [60]. The computational complexity is then of course much lower, however the
global constraint cannot assure that local stress values are below the given limit for all areas
in the optimal design. In Figure 1.1, we see the application of a global stress constraint in
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an industrial project. In order to ensure that the stresses in the optimal design stay below
the a-priori given limit, the 3D elasticity problem for the CAD prototype was solved, and the
actual stresses are re-checked.

Notes and remarks for Subsection 5.1.1

• Above, we mentioned references related to truss optimization and continuous topology
optimization. As an example for stress constrained material optimization we refer e.g.
to Lipton and Stuebner [86].

• “However, the best way to solve stress constrained problems has probably yet to be
suggested” (taken from Bendsøe and Sigmund [22]).

5.1.2 The Phase–Field Method

It is well known that optimal design problems are very likely to be ill-posed. Adding a
perimeter term to the objective functional regularizes the problem, since it prevents highly
oscillating optimal designs, i.e. we minimize

γ

∫

Ω
ρ(x) dx + |ρ|BV , (5.3)

with a proper parameter γ > 0 and for ρ(x) ∈ {0, 1}, where the definition of the BV-seminorm
is given as follows:

|ρ|BV = sup
g∈C∞

0 (Ω;Rd)
‖g‖∞≤1

∫

Ω
div g(x) ρ(x) dx.

The phase–field method consists now of introducing a continuous density ρ(x) ∈ [0, 1] and of
approximating the perimeter term in (5.3) by a Cahn-Hilliard type penalization functional
(cf. Cahn and Hilliard [51]) of the form

Pǫ(ρ) =
ǫ

2

∫

Ω

∣∣∇ρ(x)
∣∣2 dx +

1

ǫ

∫

Ω
W
(
ρ(x)

)
dx, (5.4)

where W : R → R∪{+∞} is a positive lower semicontinuous function with exactly two roots
at 0 and 1. We would like to mention that the penalization term Pǫ takes only into account
the part of the perimeter of Ωmat that lies in the interior of Ω. The composed objective
functional then looks as

γ

∫

Ω
ρ(x) dx + Pǫ(ρ). (5.5)

The first term of the penalty functional Pǫ controls the perimeter of the level sets of ρ, while
the second term ensures that the values of the material density ρ converge to 0 or 1 as ǫ→ 0.
The latter means that we use a continuation method in ǫ in order to compute optimal designs
{ρ(k)} with respect to a decreasing sequence {ǫ(k)}. Due to a famous result by Modica and

Mortola [94] (cf. also Alberti [4]) there exists a subsequence {ρ(k)} (again denoted by k)
of the sequence of minimizers of (5.5) and a subset Ωmat ⊂ Ω, so that ρ(k) → χΩmat almost
everywhere in Ω. Then {ρ(k)} converges to a solution of (5.3). In other words, minimizers of
Pǫ with fixed volume

∫
Ω ρ(x) dx converge to minimizers ρ of the perimeter at fixed volume

over functions satisfying ρ(x) ∈ {0, 1} almost everywhere. This convergence arises in the
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framework of Γ-convergence (cf. Braides [34] and the references cited therein), which ensures
in particular convergence of minimizers.

Of course, the phase–field method is not the only possible relaxation, one could e.g. use
standard material interpolation schemes or level set methods, which are closely related to
phase–field methods. However the phase–field approach incorporates some advantages with
respect to such approaches:

• In contrast to a direct relaxation to a continuous density variable and in contrast to
material interpolation schemes, the phase–field method still provides geometric infor-
mation. In particular, one can expect for sufficiently small ǫ the set {x ∈ Ω | ρ(x) > δ},
with δ ≪ 1

2 , to be a superset of the limit Ωmat and the set {x ∈ Ω | ρ(x) < 1− δ} to be
a subset of Ωmat.

• With the phase–field relaxation one can still use the density linearly (η(ρ) = ρ), which
is not true for material interpolation schemes, like e.g. SIMP and RAMP, or for the
level set method. In the latter case, the unknown is a signed distance function to some
boundary, and in the relaxation usually an application of a smoothed Heaviside function
is used. The additional nonlinearity does not only complicate the problem, but might
also destroy constraint qualifications.

• The parameter ǫ can be used for continuation. For ǫ being large, the functional Pǫ is
strictly convex (cf. Theorem 5.2), so that global optima can be computed for arbitrary
initial designs. When decreasing ǫ, the optimal design of the previous step can be
expected to provide a good initial guess for the next step carried out with a smaller ǫ.

To the knowledge of the author the phase–field method was first introduced in topology
optimization by Bourdin and Chambolle [31] for a design problem with design-dependent
loads, another type of problem where classical methods encounter difficulties. The method
has recently been applied to minimal compliance problems by Wang and Zhou [149].

5.2 Reformulation of Constraints

In this section we consider a reformulation of the constraints on subsets of locally bounded
stresses, i.e.

β
∣∣σij(x)

∣∣ ≤ 1, a.e. in Ω, i, j = 1, . . . , d, (5.6)

for some β > 0 so that βmaxij σ
max
ij < 1 and βminij σ

min
ij > −1. Condition (5.6) is an addi-

tional restriction on the design set, which will be needed for the reformulations below. Since
the original stress constraint is stronger than (5.6) in regions with material, the additional
constraint just states that the stresses should continued in a reasonable (in particular finite)
way in regions without material. We recall that the constraints for the displacements u and
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the density ρ are given by

divσ = 0, in Ωmat,

σ − Cε(u) = 0, in Ω,

u = 0, on Γu,

σ · n = t, on Γt,

σ · n = 0, on
(
∂Ωmat \ Γt

)
∪ Γt0 ,

ρ(x) ∈ {0, 1}, a.e. in Ω,

Φmin ≤ Φ
(
σ(x)

)
≤ Φmax, a.e. in Ωmat,

umin ≤ u(x) ≤ umax, a.e. in Ω.

(5.7)

We will now reformulate the constraints as linear inequality constraints without the unknown
set Ωmat for the case of total stress and von Mises stress constraints (cf. Stolpe and Svan-

berg [140]). For this sake we introduce the set of feasible designs, displacements and stresses
as

Fβ =
{
(ρ,u,σ) ∈ BV

(
Ω; [0, 1]

)
×H1

(
Ω; Rd

)
× L∞

(
Ω; Rd×d

) ∣∣∣

(ρ,u,σ) satisfies (5.6) and (5.7)
}

and an additional artificial stress variable s ∈ L∞(Ω; Rd×d).

5.2.1 Reformulation of Total Stress Constraints

We begin with the reformulation in the case of total stress constraints, i.e. Φ(σ) = σ. Let
(ρ,u,σ) ∈ Fβ , x ∈ Ω and let s(x) = σ(x) if ρ(x) = 1 and s(x) = 0 if ρ(x) = 0, i.e. s = ρσ.
Then the constraints

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω, (5.8)

with the matrix 1 = (1)ij and

ρ(x)σmin ≤ s(x) ≤ ρ(x)σmax, a.e. in Ω, (5.9)

are fulfilled.

Vice versa, assume, that (ρ,u,σ, s) ∈ BV (Ω; [0, 1]) × H1(Ω; Rd) × L∞(Ω; Rd×d)2 fulfills
(5.8), (5.9) and ρ(x) ∈ {0, 1} almost everywhere in Ω. Let x ∈ Ω, then, for ρ(x) = 0 the
inequalities (5.9) imply s(x) = 0 and the inequalities (5.8) yield −1 ≤ βσ(x) ≤ 1. For the
case ρ(x) = 1 (5.8) implies s(x) = σ(x) and (5.9) becomes σmin ≤ σ(x) ≤ σmax.

Moreover, since either s(x) = σ(x) or s(x) = 0 almost everywhere in Ω, we obtain that
div s(x) = 0 almost everywhere in Ω.
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The above arguments yield that (ρ,u,σ) ∈ Fβ if and only if there exists s so that

div s = 0, in Ω, (5.10a)

σ − Cε(u) = 0, in Ω, (5.10b)

u = 0, on Γu, (5.10c)

s · n = t, on Γt, (5.10d)

s · n = 0, on Γt0 , (5.10e)

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω, (5.10f)

ρ(x) ∈ {0, 1}, a.e. in Ω, (5.10g)

ρ(x)σmin ≤ s(x) ≤ ρ(x)σmax, a.e. in Ω, (5.10h)

umin ≤ u(x) ≤ umax, a.e. in Ω. (5.10i)

We mention that the conditions (5.10a), (5.10d), and (5.10e) have to be understood in a weak
sense, namely as ∫

Ω
s : ε(v) dx =

∫

Γt

v · t da, ∀ v ∈ H1
Γu
.

Note that, except of ρ(x) ∈ {0, 1} almost everywhere in Ω, the constraints (5.10) are linear
with respect to the new vector of unknowns (ρ,u,σ, s). In particular, all constraints are
formulated on Ω and not on the a-priori unknown set Ωmat.

5.2.2 Reformulation of Von Mises Stress Constraints

In the following we discuss the reformulation of the inequalities in the case of von Mises stress
constraints for spatial dimension d = 2 (similar arguing is possible for d = 3). Since both
sides of (5.2) are positive, we can square them and since the constraint must only hold for
ρ(x) = 1, it can be written equivalently as

ρ(x)(σ11 − σ22)
2 + 4ρ(x)σ2

12 ≤ ρ(x)Φmax2
, a.e. in Ωmat.

As in the case of total stress we introduce an artificial stress variable s(x) = ρ(x)σ(x), and
since ρ(x)2 = ρ(x) due to ρ(x) ∈ {0, 1}, we can reformulate the inequality above as

(
s11(x) − s22(x)

)2
+ 4
(
s12(x)

)2 ≤ ρ(x)Φmax2
, a.e. in Ω. (5.11)

This reformulation of the von Mises stress constraints results in the following set of constraints:

div s = 0, in Ω,

σ − Cε(u) = 0, in Ω,

u = 0, on Γu,

s · n = t, on Γt,

s · n = 0, on Γt0 ,

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω,
(
s11(x) − s22(x)

)2
+ 4
(
s12(x)

)2 ≤ ρ(x)Φmax2
, a.e. in Ω,

ρ(x) ∈ {0, 1}, a.e. in Ω,

umin ≤ u(x) ≤ umax, a.e. in Ω.

(5.12)
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Note that for the reformulation (5.11) the von Mises stress constraint does not imply directly
s(x) = 0 for the case ρ(x) = 0, but only s11(x)−s22(x) = 0 and s12(x) = 0. But additionally,
s is divergence free, and we may conclude for those spatial stresses that ∇s11(x) = 0. Hence,
s(x) is of the form

s(x) = ρ(x)σ(x) +
(
1 − ρ(x)

) ( c 0
0 c

)
, a.e. in Ω,

for any constant c ∈ R. Since such artificial stresses will not change the von Mises stress,
and since s(x) does not have a physical meaning for x ∈ Ω with ρ(x) = 0, the additional
terms will not play a major role (we are basically free to define s(x) for x ∈ Ω \ Ωmat). The
reformulation (5.11) involves convex quadratic constraints, but only with respect to the stress
variable s, which still yields constraint qualification after relaxation and discretization.

But for the approach in this chapter we rather use a conservative version of the von Mises
criterion (cf. Stolpe and Svanberg [140]) that leads to linear constraints after reformulation
and is given by

ρ(x)
∣∣σ11(x) − σ22(x)

∣∣ + 2ρ(x)
∣∣σ12(x)

∣∣ ≤ ρ(x)Φmax, a.e. in Ωmat,

and can actually be reformulated into linear inequalities. Again use s = ρσ to obtain

∣∣s11(x) − s22(x)
∣∣+ 2

∣∣s12(x)
∣∣ ≤ ρ(x)Φmax, a.e. in Ω. (5.13)

Moreover, we introduce functions p and q such that

0 ≤ p(x), 0 ≤ q(x), a.e. in Ω, (5.14)

and that

−p(x) ≤ s11(x) − s22(x) ≤ p(x), −q(x) ≤ s12(x) ≤ q(x), a.e. in Ω. (5.15)

These conditions yield that

∣∣s11(x) − s22(x)
∣∣ ≤ p(x), and

∣∣s12(x)
∣∣ ≤ q(x), a.e. in Ω.

Finally we impose the constraints

p(x) + 2q(x) ≤ ρ(x)Φmax, a.e. in Ω, (5.16)

and obtain as a consequence of the conservative von Mises stress (5.13) for s. On the other
hand, if the constraint (5.13) is satisfied by s, the functions

p(x) = max
{
−
(
s11(x) − s22(x)

)
, s11(x) − s22(x)

}
, a.e. in Ω,

q(x) = max
{
− s12(x), s12(x)

}
, a.e. in Ω,

satisfy the new linear constraints (5.14) - (5.16). Thus, we conclude the equivalence to the
original conservative von Mises stress constraints. The reformulation of the conservative von



70 CHAPTER 5. PHASE–FIELD RELAXATION TO LOCAL STRESS CONSTRAINTS

Mises stress constraints results in the following set of constraints:

div s = 0, in Ω,

σ − Cε(u) = 0, in Ω,

u = 0, on Γu,

s · n = t, on Γt,

s · n = 0, on Γt0 ,

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω,

−p(x) ≤ s11(x) − s22(x) ≤ p(x), a.e. in Ω,

−q(x) ≤ s12(x) ≤ q(x), a.e. in Ω,

p(x) + 2q(x) ≤ ρ(x)Φmax, a.e. in Ω,

p(x) ≥ 0, q(x) ≥ 0, a.e. in Ω,

ρ(x) ∈ {0, 1}, a.e. in Ω,

umin ≤ u(x) ≤ umax, a.e. in Ω.

(5.17)

A drawback of the reformulation is an increase in the number of unknowns and a high
number of inequality constraints. On the other hand, this higher number of unknowns and
constraints seems to be a reasonable price for the linear reformulation on Ω of the complicated
original constraints (5.7). Note, that the reformulation is only possible due to the simultaneous
formulation in ρ, u and σ. As a consequence, the elasticity equations are formulated like in
the Hellinger-Reissner principle (cf. Subsection 2.4.2).

5.3 Phase–Field Relaxation

All the constraints in (5.10) and in (5.17) are linear with respect to the vector of unknowns
(ρ,u,σ, s), except for ρ(x) ∈ {0, 1} almost everywhere in Ω. In this section we will turn
our attention to the relaxation of the minimal mass problems with the constraints (5.10) and
(5.17). For this sake we replace the 0-1 constraint ρ(x) ∈ {0, 1} by the following continu-
ous version ρ(x) ∈ [0, 1]. Moreover, we approximate the perimeter term in the regularized
objective functional (5.3) by the Cahn-Hilliard term Pǫ (5.4):

Jǫ(ρ) = γ

∫

Ω
ρ(x) dx +

ǫ

2

∫

Ω

∣∣∇ρ(x)
∣∣2 dx +

1

ǫ

∫

Ω
W
(
ρ(x)

)
dx. (5.18)

The term
∫
ΩW (ρ(x) dx favorites those designs which take values close to 0 or 1 (phase

separation), while the term
∫
Ω |∇ρ(x)|2 dx penalizes the spatial inhomogeneity of ρ. The

transition between the phases occurs in a thin layer, in fact in thickness of order ǫ. When
ǫ is small, the last term in (5.18) prevails, and the minimum of Pǫ is attained by a function
which takes mainly values close to 0 or 1. The theorem of Modica and Mortola tells that the
minimizers of (5.18) converge to the minimizers of

∫
Ω ρ(x) dx in the sense of Γ-convergence.

Definition 5.1 (Γ-Convergence). Let X be a metric space, and for ǫ > 0 let Fǫ : X → [0,+∞]

be given. Fǫ Γ-converges to F on X as ǫ → 0, written as Fǫ
Γ−→ F , if the following two

conditions hold: Lower bound inequality: For every u ∈ X and every sequence {uǫ} so that
uǫ → u in X there holds

lim inf
ǫ→0

Fǫ

(
uǫ

)
≥ F (u). (5.19)
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Upper bound inequality: For every u ∈ X there exists {uǫ} so that uǫ → u in X and

lim
ǫ→0

Fǫ

(
uǫ

)
= F (u). (5.20)

When (5.19) holds, then equality (5.20) can be replaced by lim sup
ǫ→0

Fǫ

(
uǫ

)
≤ F (u).

The notion of Γ-convergence has the following properties (cf. Alberti [4] or
Dal Maso [90]):

Remark 5.1 (Properties of Γ-convergence).

a) The Γ-limit F is always lower semicontinuous on X.

b) Stability under continuous perturbations: If Fǫ
Γ−→ F and G is continuous, then Fǫ +

G
Γ−→ F +G.

c) Stability of minimizing sequences: If Fǫ
Γ−→ F and uǫ minimizes Fǫ over X, then every

cluster point of {uǫ} minimizes F over X.

Let X denote the space of all measurable functions u : Ω → [0, 1], so that
∫
Ω u(x) dx < |Ω|,

endowed with the L1-norm. Furthermore, let Su denote the measure theoretic boundary of
{u = 1} in Ω and Hd−1 the (d − 1)-dimensional Hausdorff measure. Then we can state the
following theorem:

Theorem 5.1 (Modica and Mortola). Set α := 2
∫ 1
0

√
W (y) dy, and for every ǫ > 0 let

Pǫ(u) :=





ǫ

∫

Ω

∣∣∇u(x)
∣∣2 dx +

ǫ

2

∫

Ω
W
(
u(x)

)
dx if u ∈ H1(Ω) ∩X,

+∞ elsewhere in X,

and

P (u) :=

{
αHd−1(Su) if u ∈ BV

(
Ω; {0, 1}

)
∩X,

+∞ elsewhere in X,

where the parameter α is called the surface tension between the two phases. Then the func-
tionals Pǫ Γ-converge to P in X.

Moreover, let the sequences {ǫ(k)} and {u(k)} be given so that ǫ(k) → 0 and Pǫ(k)(u(k)) is
bounded. Then {u(k)} is pre-compact in X.

Proof. See Modica and Mortola [94].

Minimizing P over X means finding a set Ωmat ⊂ Ω among those with prescribed volume
which minimizes the (d− 1)-dimensional area of ∂Ωmat ∩Ω. Note, that Theorem 5.1 reduces
to the following three statements (see Alberti [4]):

Remark 5.2.

a) Compactness: Let the sequences {ǫ(k)} and {u(k)} be given so that ǫ(k) → 0 and
Pǫ(k)(u(k)) is bounded. Then {u(k)} is pre-compact in L1(Ω) and every limit point belongs
to BV (Ω; {0, 1}).
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b) Lower bound inequality: If u ∈ BV (Ω, {0, 1}), {u(k)} ⊂ H1(Ω) and u(k) → u in L1(Ω)
then

lim inf
ǫ→0

Pǫ

(
u(k)

)
≥ P (u).

c) Upper bound inequality: For every u ∈ BV (Ω, {0, 1}), exists {u(k)} ⊂ H1(Ω) so that
u(k) → u in L1(Ω),

∫
Ω u

(k)(x) dx =
∫
Ω u(x) dx for every ǫ and

lim sup
ǫ→0

Pǫ

(
u(k)

)
≤ P (u).

The resulting relaxation in the case of total stress constraints is given by:

Jǫ(ρ) → min
ρ,u,s

div s = 0, in Ω,

σ −Cε(u) = 0, in Ω,

u = 0, on Γu,

s · n = t, on Γt,

s · n = 0, on Γt0 ,

ρ = 1, on Γt,

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω,

0 ≤ ρ(x) ≤ 1, a.e. in Ω,

ρ(x)σmin ≤ s(x) ≤ ρ(x)σmax, a.e. in Ω,

umin ≤ u(x) ≤ umax, a.e. in Ω.

(5.21)

The function space setting for the relaxed problem (5.21) is given by

(ρ,u,σ, s) ∈
(
H1(Ω) ∩ L∞(Ω)

)
×
(
H1
(
Ω; Rd

)
∩ L∞

(
Ω; Rd

))
× L∞

(
Ω; Rd×d

)2
.

Note, that in addition to the reformulated set of constraints (5.10), there is a Dirichlet bound-
ary condition for ρ a.e. on Γt, which is well-defined in the sense of traces of functions in H1(Ω).
The reasoning of adding this constraint is as follows: In the original set of constraints we have
that s · n = t on Γt. Hence, there exists a small open neighbourhood of Γt in Ω, where ρ = 1.
Otherwise, ρ = 0 would imply s = 0 and therefore s · n = 0 on Γt. In the relaxed formulation,
the trace of ρ is positive by analogous arguments, but not necessarily equal to one. Thus, the
additional constraint will not change the limit of the constraint set. But on the other hand,
it restricts the relaxation and simplifies the analysis of the relaxed problem.

In a similar way, the relaxed formulation of the problem with conservative von Mises stress
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(d = 2) is stated as

Jǫ(ρ) → min
ρ,u,s,p,q

div s = 0, in Ω,

σ − Cε(u) = 0, in Ω,

u = 0, on Γu,

s · n = t, on Γt,

s · n = 0, on Γt0 ,

ρ = 1, on Γt,

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω,

−p(x) ≤ s11(x) − s22(x) ≤ p(x), a.e. in Ω,

−q(x) ≤ s12(x) ≤ q(x), a.e. in Ω,

p(x) + 2q(x) ≤ ρ(x)Φmax, a.e. in Ω,

p(x) ≥ 0, q(x) ≥ 0, a.e. in Ω,

0 ≤ ρ(x) ≤ 1 a.e. in Ω,

umin ≤ u(x) ≤ umax, a.e. in Ω.

(5.22)

with the function space setting

(ρ,u,σ, s, p, q) ∈
(
H1(Ω) ∩ L∞(Ω)

)
×
(
H1
(
Ω; Rd

)
∩ L∞

(
Ω; Rd

))
× L∞

(
Ω; Rd×d

)2 × L∞(Ω)2.

The basic of the relaxation idea is the Γ-convergence of problem (5.21) to (5.10) as ǫ tends to
zero (respectively Γ-convergence of (5.22) to (5.12)) for the von Mises stress constraints). This
can be derived form the Γ-convergence of the perimeter term Pǫ to which only a continuous
function is added (compare Remark 5.1).

So far we have not discussed possible choices for the function W in (5.4). Commonly
used in phase–field simulations of phase-transitions problems (e.g. in the Allen-Cahn and
Cahn-Hilliard equation, cf. e.g. Barles, Soner and Souganidis [13] and Caginalp and

Socolovsky [50]) is the double-well potential:

W (y) = y2(1 − y)2, y ∈ R.

Recently, the so-called double-obstacle potential

W (y) = y(1 − y), y ∈ [0, 1], (5.23)

has received further attention (cf. Blowey and Elliott [25]). In the case of evolutions like
the Allen-Cahn equation, the use of the double-obstacle potential is rather a computational
complication, because ρ(x) ∈ [0, 1] has to be enforced, in contrast to the evolution with the
double-well potential. Moreover, the partial differential equation has to be reformulated as
a variational inequality. In our case, the choice of the double-obstacle potential (5.23) seems
more attractive, since we enforce the bound constraints on ρ in (5.21) and (5.22) anyway.
Moreover, the double-obstacle potential causes a polynomial nonlinearity of lower degree
than the double-well potential.
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Obviously there is no restriction just to use two phases, 0 (void) and 1 (material), e.g.
with

W (y) =

n∏

i=1

(y − yi)
2

separates the phases yi, i = 1, . . . , n.

In the rest of the section we further examine the structure of the objective functional of
the relaxed problems. Due to the second term in the Cahn-Hilliard functional Pǫ, we have
to expect the objective functional Jǫ(ρ) to be nonconvex. In particular, for small ǫ, when
minimizers are forced to take values close to 0 or 1. For large values of ǫ, the first term in Pǫ

dominates and thus, the objective functional, and as a consequence, the optimization problem
is convex.

Theorem 5.2. Let W ∈ C2([0, 1]). Then there exists ǫ0 > 0 dependent on the ground
structure Ω only, so that the objective functional Jǫ(ρ) is convex for all ǫ > ǫ0.

Proof. The objective functional Jǫ(ρ) is twice continuously differentiable with the derivatives

J ′
ǫ(ρ)ψ = γ

∫

Ω
ψ(x) dx + ǫ

∫

Ω
∇ρ(x)T∇ψ(x) dx +

1

ǫ

∫

Ω
W ′
(
ρ(x)

)
ψ(x) dx

and

J ′′
ǫ (ρ)(ψ1, ψ2) = ǫ

∫

Ω
∇ψ1(x)T∇ψ2(x) dx +

1

ǫ

∫

Ω
W ′′
(
ρ(x)

)
ψ1(x)ψ2(x) dx.

Because of the constraint 0 ≤ ρ(x) ≤ 1 almost everywhere in Ω, we obtain |W ′′(ρ(x))| ≤W0,
where W0 ∈ R denotes the maximum of W ′′(ρ(x)) for all x ∈ [0, 1]. Moreover, since ρ(x) = 1
for all x ∈ Γt, admissible variations satisfy ψ(x) = 0 for all x ∈ Γt. Due to a Friedrich-type
inequality, there exists a constant CF > 0 so that

∫

Ω
ψ(x)2 dx ≤ CF

∫

Ω

∣∣∇ψ(x)
∣∣2 dx

for admissible variations ψ ∈ H1(Ω) with ψ(x) = 0 a.e. on Γt. Hence,

J ′′
ǫ (ρ)(ψ,ψ) ≥

(
ǫ− CFW0

ǫ

)∫

Ω

∣∣∇ψ(x)
∣∣ dx.

Consequently, for all ǫ ≥ ǫ0 :=
√
CFW0 the objective functional is convex. Since all constraints

are linear, the relaxed problem is convex.

Using the double-obstacle potential (5.23) in Pǫ we observe that (5.21) and (5.22) are
actually quadratic programming problems.

5.4 Existence of Solutions

In this section we will investigate the existence of solutions to the relaxed problem (5.21).
Before we start we introduce the Banach space of functions with essentially bounded strain

BS∞(Ω) :=
{
u ∈ L∞

(
Ω; Rd

) ∣∣∣ ε(u) ∈ L∞

(
Ω; Rd×d

)}
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and the Hilbert space with square-integrable strain

BS2(Ω) :=
{
u ∈ L2

(
Ω; Rd

) ∣∣∣ ε(u) ∈ L2

(
Ω; Rd×d

)}
,

with norms
‖u‖BS∞

:= max
{
‖u‖L∞(Ω), ‖ε(u)‖L∞(Ω)

}

and

‖u‖BS2 :=
√

‖u‖2
0 + ‖ε(u)‖2

0,

respectively. One can verify by standard arguments that BS∞(Ω) is a Banach space, including
all elements of the Sobolev space W 1

∞(Ω; Rd) and that BS2(Ω) is a Hilbert space with inner
product

〈u,v〉BS2 := 〈u,v〉L2 +
〈
ε(u), ε(v)

〉
L2
.

As usual for weak solutions of partial differential equations, we understand the equality con-
straints on s in a standard weak sense:

∫

Ω
s(x) : ε

(
ψ(x)

)
dx =

∫

Γt

t(a)T
ψ(a) da, ∀ ψ ∈ H1

Γu

(
Ω; Rd

)
.

Similarly, we interpret the stress-strain relation in an L2-sense, i.e.
∫

Ω
σ(x) : Ψ(x) − Cε

(
u(x)

)
: Ψ(x) dx = 0, ∀ Ψ ∈ L2

(
Ω; Rd×d

)
.

We start the analysis with the lower semicontinuity property of the objective funtional:

Lemma 5.1. Let W be defined by (5.23). Then the objective functional Jǫ : H1(Ω) → R is
sequentially weakly lower semicontinuous.

Proof. Due to the compact embedding H1(Ω) →֒ L2(Ω), the linear functional
ρ 7→ γ

∫
Ω ρ(x) dx and the quadratic functional ρ 7→ 1

ǫ

∫
ΩW (ρ(x)) dx are weakly continu-

ous. Together with the sequential weak lower semicontinuity of the square of the norm in
Hilbert spaces applied to the second term in Jǫ, we obtain the assertion.

Besides lower semicontinuity, a fundamental ingredient for the existence of solutions to
optimization problems is the compactness of the feasible set in appropriate topologies (cf.
Section 4.2). In order to obtain some weak compactness, we examine the boundedness of the
constraint set:

Lemma 5.2. Let ǫ > 0 and let (ρ,u,σ, s) ∈ (H1(Ω) ∩ L∞(Ω)) × BS∞(Ω) × L∞(Ω; Rd×d)2

satisfy the constraints in (5.21). Then, (ρ,u,σ, s) lies in a bounded set with respect to the
corresponding norms.

Proof. From the bound constraints 0 ≤ ρ(x) ≤ 1 a.e. in Ω we immediately conclude that ρ
lies in the unit ball of L∞(Ω). Consequently, we deduce that

min
{
0,σmin

}
≤ s ≤ max

{
σmax,0

}

and hence, s is bounded in the norm of L∞(Ω; Rd×d). Due to

s − 1 − ρ

β
1 ≤ σ ≤ s +

1 − ρ

β
1
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we further conclude the boundedness of σ in the norm of L∞(Ω; Rd×d). Finally, the bound
constraints on u imply its boundedness in the norm of L∞(Ω; Rd) and together with the
stress-strain relation and the positive definiteness of C we may conclude the boundedness of
u in the norm of BS∞(Ω).

With these preliminary results we can provide an existence result for the relaxed topology
optimization problem for arbitrary positive ǫ:

Theorem 5.3. Let ǫ > 0, β > 0, and let W be defined by (5.23). Moreover, let the feasible
set defined by the constraints in (5.21) be nonempty. Then there exists a solution

(ρ,u,σ, s) ∈
(
H1(Ω) ∩ L∞(Ω)

)
×BS∞(Ω) × L∞

(
Ω; Rd×d

)2

of the optimization problem (5.21).

Proof. For admissible densities ρ ≥ 0, the objective functional Jǫ is bounded below by zero
and thus, the infimum j0 of Jǫ on the admissible set is finite. Hence, we can find a minimizing
sequence

{(
ρ(k),u(k),σ(k), s(k)

)
∈
(
H1(Ω) ∩ L∞(Ω)

)
×BS∞(Ω) × L∞

(
Ω; Rd×d

)2

so that Jǫ(ρ
(k)) → j0. Since Jǫ(ρ

(k)) converges, the sequence is bounded in particular and
since

2

ǫ
Jǫ

(
ρ(k)

)
≥
∫

Ω

∣∣∇ρ(k)(x)
∣∣2 dx,

we obtain boundedness of ρ(k) in H1(Ω). Due to Lemma 5.2 and standard precompactness
results for bounded sets in weak or weak∗ topologies, we can extract a subsequence (again
denoted by the superscript k) so that

ρ(k) → ρ weak in H1(Ω), and weak∗ in L∞(Ω),

u(k) → u weak in BS2(Ω), and weak∗ in L∞

(
Ω; Rd

)
,

σ(k) → σ weak∗ in L∞

(
Ω; Rd×d

)
,

s(k) → s weak∗ in L∞

(
Ω; Rd×d

)
.

Because of the closedness of simple bounds with respect to weak∗ convergence in L∞, we can
conclude that the limit (ρ,u,σ, s) satisfies all the inequalities in (5.21). Moreover, since for
Ψ ∈ H1

Γu
(Ω; Rd), we have in particular ∇Ψ ∈ L1(Ω; Rd×d). Thus we may conclude that

∫

Γt

t(a)Tψ(a) da =

∫

Ω
s(k)(x) : ∇ψ(x) dx →

∫

Ω
s(x) : ∇ψ(x) dx

due to weak∗ convergence in L∞. Hence, s satisfies the associated equality constraints. From
the weak convergence of u(k) in BS2(Ω) we conclude that u satisfies the stress-strain relation
and hence, (ρ,u,σ, s) is in the feasible set. With the sequential lower semicontinuity from
Lemma 5.1 we finally obtain that (ρ,u,σ, s) is a solution of the optimization problem (5.21).

A similar analysis can be accomplished for the relaxed problem (5.22) with local von Mises
stress constraints.
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5.5 Discretization

In the following we consider the discretization of the relaxed problems for Ω ⊂ R
d, with

d = 2, detailing again the analysis for the case of total stress constraints (5.21). For sake of
simplicity and motivated by the typical choices of ground structures, we assume that Ω is of
polygonal shape.

In order to construct a finite element approximation for problem (5.21), we decompose
the ground structure Ω =

⋃n
i=1 τ i into a suitable triangulation Th = {τi | i = 1, . . . , n} with

n elements and m nodes (cf. Subsection 2.2.3). We shall use two different finite elements for
the density ρ, the displacements u and the stresses s. For the density ρ and the displacement
components u1 and u2 we use the discrete H1-subspace of linear elements

V h :=
{
ṽ ∈ C(Ω)

∣∣ ṽ|τi
∈ P1(τi), i = 1, . . . , n

}
.

The stress components of s are approximated by the L∞-subspace of constant elements

Qh :=
{
q̃ ∈ L∞(Ω)

∣∣ q̃|τi
∈ P0(τi), i = 1, . . . , n

}
.

Again Pk(τi) represents the space of polynomials of maximal degree k over the triangle τi.
Note that for u ∈ V h × V h ⊂ BS∞(Ω), we obtain ∂ui

∂xj
∈ Qh for i, j = 1, 2.

The equality constraints are discretized by a standard finite element approach, i.e. we look
for s̃ ∈ (Qh)2×2 and ũ ∈ V h × V h satisfying

∫

Ω
s̃(x) : ∇ṽ(x) dx =

∫

Γt

t(a)T ṽ(a) da, ∀ ṽ ∈ V h × V h, ṽ|Γu = 0,

and ∫

Ω
σ̃(x) : q̃(x) − Cε

(
ũ(x)

)
: q̃(x) dx = 0, ∀ q̃ ∈ (Qh)2×2.

The bound constraints on the displacements and density can be enforced directly, since for
piecewise linear functions, the constraints hold if and only if they hold in all nodes of the
grid.

Finally, we need to discretize the inequality constraints involving both, the stresses and the
density. Since the components of s are in a different subspace than ρ, the discretization is not
straightforward. In particular, we cannot pose local constraints in the grid nodes or on edges,
because functions in Qh are discontinuous over edges. Consequently, the more promising
approach is to interpret the inequality constraints as constraints in Qh. For this sake we
introduce the discrete projection operator (with respect to the L2-norm) Ph : V h → Qh,

(
Phṽ

)∣∣
τ

:=
1

|τ |

∫

τ
ṽ(x) dx, ∀ τ ∈ T h, ∀ ṽ ∈ V h. (5.24)

Let the vectors ρh ∈ R
m, uh ∈ R

2m, and sh ∈ R
3n (using the symmetry sij = sji)

contain the coefficients of the finite element functions ρ̃ ∈ V h, ũ ∈ V h × V h, and s̃ ∈
(Qh)2×2, respectively. The discretized problem can now be written equivalently as a quadratic
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programming problem:

γehT
ρh +

ǫ

2
ρhT

Kρh +
1

ǫ
ρhT (

eh − Mρh
)

→ min
(ρh,uh,sh)∈R3m+3n

(5.25a)

subject to
(
I− BT

u Bu

)
DT sh = th, (5.25b)

Buu
h = 0, (5.25c)

Btρ
h = 1, (5.25d)

−Q
(
1 − Pρh

)
≤ β

(
ChDuh − sh

)
≤ Q

(
1− Pρh

)
, (5.25e)

ΣminQPρh ≤ sh ≤ ΣmaxQPρh, (5.25f)

0 ≤ ρh ≤ 1, (5.25g)

umin ≤ uh ≤ umax. (5.25h)

In the objective functional (5.25a), eh ∈ R
n is a vector representing the coefficients of the

constant function 1 with respect to the linear basis function of the finite dimensional subspace
V h. K ∈ R

n×n is the stiffness matrix arising from the finite element discretization of the
negative Laplacian in V h and M ∈ R

n×n is the mass matrix for the identity in V h. Note
that in the above formulation (5.25) of the discretized problem, the stresses σ are eliminated
through the stress-strain relationship (5.1c). In the discretized formulation of the boundary
conditions (5.25c) - (5.25d) the matrices Bu ∈ R

2nu×2n and Bt ∈ R
nρ×n with entries 0

or 1 realize the boundary conditions, where nu is the number of nodes on Γu and nρ is
the number of nodes on Γt. In the discretized partial differential equation (5.25b) th is a
discrete representation of the traction forces. Moreover, the matrix DT ∈ R

3m×2n in (5.25e)
is the discretization of the divergence operator (restricted to symmetric stress tensors) and
Ch is the discrete analogon of the elastic tensor C. In (5.25f) Σmin,Σmax ∈ R

3m×3m and
are diagonal matrices, representing the corresponding entries of σmin and σmax, respectively.
Finally, Q ∈ R

3m×m is an extension matrix and P ∈ R
m×n is the matrix representation of

the projection operator Ph (5.24).
The above reasoning shows that after discretization we end up with a linearly constrained

quadratic programming problem for the variables (ρh,uh, sh) ∈ R
3m+3n with 2n + 2nu + nρ

equality, 12m inequality and 6n bound constraints. Note that 2nu equalities corresponding
to the divergence constraints (5.25b) for the nodal points in Γu are actually redundant and
can be eliminated. Additionally, the components of uh corresponding to the nodal points
on Γu and the corresponding bound constraints can be eliminated, since we have to assume
umin ≤ 0 ≤ umax anyway in order to obtain feasible points. Furthermore, the components of
ρh related to the nodal values of Γt and the related bound constraints can be eliminated.
So, we consequently end up with a smaller programming problem with 3n + 3m − 2nu − nρ

unknowns, 2n − 2nu equality constraints, 12m inequality constraints, and 6n − 4nu − 2nρ

bound constraints.
The existence of solutions for the reduced discretized programming problem can be verified

in an analogous way to the infinite-dimensional situation under the assumption that there
exists a feasible point.

5.5.1 Constraint Qualification

For linear constraints, the common notions of constraint qualifications such as the LICQ (see
Definition 2.1), the MFCQ (see Definition 2.2), and the Slater qualification (see Definition 2.3)
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are equivalent. In order to show that constraint qualification hold for the linear constraints
of (5.25), the equality constraints have to be linearly independent and there has to exist a
feasible point, that fulfills all inequality constraints strictly. Since the feasible set does not
depend on the relaxation parameter ǫ, the constraint qualification is always uniform with
respect to the relaxation.

We obtain the linear independence of the equality constraints by standard reasoning for fi-
nite element discretizations. Therefore, let us turn our attention to the inequality constraints.
Here we shall use a natural assumption, namely that stresses and displacements obtained from
a design domain completely occupied with material (ρh

1 = 1) satisfy the displacement and
stress constraints strictly. Thus, if the constraints are active at maximal mass already, it is
quite unlikely to find an optimal design with lower mass anyway. In other words, the con-
straints would be then too severe to allow a different optimal design. In the following let us
formulate this assumption in mathematical terms. Let uh and sh (sh = σh) be the solution
of the corresponding discrete elasticity problem:

(
I − BT

uBu

)
DT sh = th, sh − ChDuh = 0, Buu

h = 0,

which can be shown to be uniquely defined from standard finite element theory. Following
the above assumption we then assume that

ΣminQPρh
1 < sh < ΣmaxQPρh

1 and umin < uh < umax, (5.26)

where the < means strict inequality for each component. Then we obtain the following result:

Theorem 5.4. Let (5.26) be satisfied and let β > 0. Then, the inequality constraints of
problem (5.25), with the above mentioned elimination of variables, satisfy constraint qualifi-
cations.

Proof. As noticed above, it suffices to find a feasible point satisfying the inequality constraints
strictly. For this sake we choose a design ρh

δ = δ1 with 0 < δ < 1. Then ‖ρh
1 − ρh

δ ‖ =
(n − nρ)(1 − δ), i.e., the distance to ρh

1 becomes arbitrarily small as δ → 1. Because of
continuity we can find 0 < δ < 1 and a solution uh

δ , sh
δ (sh

δ = δσh
δ ) of

(
I − BT

uBu

)
DT sh = th, δ−1sh − ChDuh = 0, Buu

h = 0,

so that

ΣminQPρh
δ < sh

δ < ΣmaxQPρh
δ and umin < uh

δ < umax,

is fulfilled. Moreover, we have 0 < ρh
δ = δ1 < 1 and that

− Q(1 − δ)1 = −Q
(
1− Pρh

δ

)
< β

(
ChDuh − sh

)

< Q
(
1− Phρh

δ

)
= Q(1 − δ)1,

provided β is sufficiently small. Hence, all (reduced) inequality constraints are satisfied strictly
by (ρh

δ ,u
h
δ , s

h
δ ), which implies the assertion.
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5.5.2 First-Order Optimality

If the constraints satisfy constraint qualifications, which indeed holds under suitable assump-
tions as verified above, one can formulate the first-order necessary optimality conditions of
problem (5.25). So we introduce the Lagrangian L and the Lagrangian multipliers λh

i , for
i = 1, . . . , 11, whose dimension will be clear from their appearance in the Lagrangian L, via

L
(
ρh,uh, sh,λh

1 , . . . ,λ
h
11

)
= γehT

ρh +
ǫ

2
ρhT

Kρh +
1

ǫ
ρhT (

eh − Mρh
)
+

λh
1

T
((

I − BT
uBu

)
DT sh − th

)
+ λh

2
T (

Buu
h
)
+

λh
3

T (
Bρρ

h − 1
)
− λh

4
T
(
Q
(
1 − Pρh

)
+ β

(
CDuh − sh

))
+

λh
5

T
(
β
(
ChDuh − sh

)
−Q

(
1− Pρh

))
+

λh
6

T (
ΣminQPρh − sh

)
+ λh

7
T (

sh − ΣmaxQPhρh
)
−

λh
8

T
ρh + λh

9
T (
ρh − 1

)
+ λh

10
T (

umin − uh
)

+ λh
11

T (
uh − umax

)
,

with λi ≥ 0 for i = 4, . . . , 11.

Using the Lagrangian we can finally state the first-first optimality conditions for the
optimization problem (5.25):

∇ρhL = γeh + ǫKρh +
1

ǫ

(
eh − 2Mρh

)
+ BT

ρ λ
h
3 − λh

8 + λh
9+

+ PTQT
(
λh

4 + λh
5 + ΣmaxTλh

6 − ΣminT
λh

7

)
= 0,

∇uhL = BT
ρ λ

h
3 + βChT

DT
(
λh

5 − λh
4

)
− λh

10 + λh
11 = 0,

∇shL = D
(
I − BT

uBu

)
λh

1 + β
(
λh

4 − λh
5

)
− λh

6 + λh
7 = 0,

∇λh
1
L =

(
I − BT

uBu

)
DT sh − th = 0,

∇λh
2
L = Buu

h = 0, ∇λh
3

= Bρρ
h − 1 = 0,

∇λh
4
L = Q

(
1 − Pρh

)
+ β

(
ChDuh − sh

)
≤ 0,

λh
4

T
(
Q
(
1− Pρh

)
+ β

(
ChDuh − sh

))
= 0, and λh

4 ≥ 0,

∇λh
5
L = β

(
ChDuh − sh

)
− Q

(
1− Pρh

)
≤ 0,

λh
5

T
(
β
(
CDuh − sh

)
− Q

(
1 − Pρh

))
= 0, and λh

5 ≥ 0,

∇λh
6
L = ΣminQPρh − sh ≤ 0, λh

6
T (

ΣminQPρh − sh
)

= 0, and λh
6 ≥ 0,

∇λh
7
L = sh − ΣmaxQPρh ≤ 0, λh

7
T (

sh − ΣmaxQPρh
)

= 0, and λh
7 ≥ 0,

∇λh
8
L = − ρh ≤ 0, λh

8
T
ρh = 0, and λh

8 ≥ 0,

∇T
λh

9
L = ρh − 1 ≤ 0, λh

9
T (
ρh − 1

)
= 0, and λh

9 ≥ 0,

∇λh
10
L = umin − uh ≤ 0, λh

10
T (

umin − uh
)

= 0, and λh
10 ≥ 0,

∇λh
11
L = uh − umax ≤ 0, λh

11
T (

uh − umax
)

= 0, and λh
11 ≥ 0.
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Of course the discretization of the problem (5.22) with local von Mises constraints can be
accomplished in the same way as for the problem (5.21). By similar reasoning it is also pos-
sible to show the validity of constraint qualifications and to deduce the first-order optimality
conditions.

5.6 Numerical Experiments

5.6.1 Continuation in ǫ

As motivated above the optimization problem (5.25) will be solved for a decreasing sequence
of the relaxation parameter ǫ. As ǫ → 0, in analogy to Γ-convergence of the perimeter
functional, we expect convergence of the sequence of minimum solutions to a final solution.
Moreover, since the double obstacle term is of leading order in ǫ, such a final optimal design
will have a sharp interface between material Ωmat and void (Ω \ Ωmat).

To achieve this we will use a continuation method such that we choose a decreasing
sequence {ǫi} with ǫi → 0 for i = 0, . . . , l, where l describes the total number of continuation
levels. The corresponding optimization problems are then solved by an interior-point method,
as described in the next Subsection 5.6.2. Between the levels ǫ can be reduced, e.g. like
ǫi+1 = δǫi with 0 < δ < 1 or like ǫi+1 = ǫi0 if 0 < ǫ0 < 1. If we decrease ǫ too slow, we
may expect from theory and observations from numerical tests, that the final solution is not
changed, but we end up with a possible unnecessary high number of levels l. On the other
hand, if ǫ is decreased too fast, the optimization process might get stuck in some undesired
local minimum, since the objective functional Jǫ is turned from convex to non-convex too
quickly.

5.6.2 Adaption of the Problem to an Interior-Point Method

We solve the problem (5.25) with Ipopt (see Wächter et al [146]), which is a free available
optimization code realizing a primal-dual interior-point optimization method (cf., Subsection
2.1.3). Ipopt, implemented by A. Wächter and L. T. Biegler, is able to solve nonlinear
programming problems of the following form:

f(x) → min
x∈Rn

subject to cE (x) = 0,

xmin ≤ x ≤ xmax,

where E denotes the index set of the equality constraints. More information about the imple-
mentation and further issues of Ipopt are given in Wächter and Biegler [147].

General nonlinear programming problems with inequality constraints can be written in
the above framework using slack variables. So we reformulate (5.25) by introducing some
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vector zh = (zh
1 , z

h
2 , z

h
3 , z

h
4 ) ∈ R

12m of slack variables, leading to:

γehT
ρh +

ǫ

2
ρhT

Kρh +
1

ǫ
ρhT (

eh − Mρh
)

→ min
(ρh,uh,sh,zh)∈R15m+3n

subject to
(
I − BT

uBu

)
DT sh = th,

Buu
h = 0,

Btρ
h = 1,

−Q
(
1− Pρh

)
− β

(
ChDuh − sh

)
+ zh

1 = 0,

β
(
ChDuh − sh

)
− Q

(
1 −Pρh

)
+ zh

2 = 0,

ΣminQPρh − sh + zh
3 = 0,

sh − ΣmaxQPρh + zh
4 = 0,

0 ≤ ρh ≤ 1,

umin ≤ uh ≤ umax,

0 ≤ zh.

Finally we solve a programming problem with 3n + 15m− 2nu − nρ unknowns, 2n + 12m−
2nu equality constraints and 6n + 12m − 4nu − 2nρ bound constraints. A similar discrete
programming problem for the problem with conservative von Mises stress constraints (5.22)
can be deduced in a analogous way.

5.6.3 Numerical Examples

For numerical examples we have chosen two simple examples where the global optimal designs
are known on very coarse grids (cf. Stope and Svanberg [140]), which provides some
reference for our solutions. For sake of simplicity the Young’s modulus and the Poisson’s
ratio of the given material are E = 1N/m2 and ν = 0.3. We used the plain strain model
for the computations and also, for simplicity, all structures have a unit thickness of 1m and
are loaded with the half of the unit load. Reasonable bounds for the displacements u and
the stresses σ are provided by the unique solutions u and σ of the corresponding elasticity
problem when the whole design domain Ω is filled with material. Then the displacement
bounds are determined by

umax
i = −umin

i = 2max
{
|ui(x)|

∣∣ ∀ x ∈ Ω
}
, i = 1, 2,

and the stress bounds are set to

σmax
11 = σmax

22 = max
{
|σ11(x)|, |σ22(x)|

∣∣ x ∈ Ω
}
,

σmax
12 = σmax

21 = max
{
|σ12(x)|, |σ21(x)|

∣∣ x ∈ Ω
}
,

with σmin = −σmax. The von Mises stress bound is given by

Φmax = max
{
Φ
(
σ
) ∣∣ x ∈ Ω

}
.

All numerical examples are performed on a PC using a 2.4 GHz Intel CPU and 2 GB memory.
For the mesh generation the software package NETGEN/NGSolve was used (see Schöberl
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et al. [117]). The optimization part was done using the interior-point code Ipopt. As Ipopt
is used as a ’black-box’, we did not adjust its linear solver and its stopping criterion to our
needs. So we stop the optimization process per continuation level if the stopping criterion
of Ipopt is fulfilled with a tolerance of 10−5 or a maximum number of iterations is reached.
For an approximation of the Hessian of the Lagrange functional a BFGS routine is used. We
know that tailoring the problem to a black-box optimizer is not the most efficient approach
for the numerical solution. However, the aim of this chapter is rather to develop and to test
the general relaxation approach than to construct an efficient optimization method. In both
examples the scaling parameter γ of the mass term in the objective (5.18) is set to γ = 2 and
we start the ǫ-continuation for l = 4 levels with ǫ0 = 0.1. Between the levels ǫ is reduced like
ǫi+1 = 0.5ǫi.
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Figure 5.2: Sketches of simple beam examples.

As a first example we treat the problem shown left in Figure 5.2. There, the load condition,
bearings and geometry are illustrated with a design domain of dimension 2m× 1m. Here we
consider stress constraints with respect to local stresses. The corresponding bound constraints
are:

umax = −umin =

(
0.525
0.525

)
m and σmax = −σmin =




σmax
11

σmax
22

σmax
12


 =




0.65
0.65
0.262


 N

m2
.

A mesh with 14182 elements is used for the optimization process, so we finally end up with
234532 unknowns. In more detail we have 7260, 14182, 42546, and 170184 degrees of freedom
for the density, displacements, stresses, and slacks, respectively. The total number of equality
constraints is 184725 and 191986 for the bound constraints, respectively. The overall compu-
tational time for the 4 levels is about 16 hours and the volume of the final optimal design is
0.344 m3 (17.2% of |Ω|). In Figure 5.3 we see the final optimal design and the corresponding
final values of the σ11 stress component. Moreover, the optimal designs concerning the levels
of the ǫ-continuation are shown in Figure 5.4.

For the second example we consider the right problem in Figure 5.2, where the load
condition, bearings and geometry is shown. The dimensions of the design domain are 3m×1m.
Here we choose to calculate an optimal design with respect to bounded conservative von Mises
stress and again we list the corresponding bound constraints:

umax = −umin =

(
0.99
0.99

)
m and Φmax = 0.78

N

m2
.

For the discretization and the optimization process we use a mesh with 17291 elements,
which results in 355098 unknowns, 8849, 17698, 51873, 51871, and 224784 degrees of freedom
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Figure 5.3: Solution of the short beam example. Left: Optimal material distribution. Right: Final
values of the σ11 stress component.

Figure 5.4: Optimal designs of the 4 level ǫ-continuation with ǫ0 = 0.1, ǫ1 = 0.05, ǫ2 = 0.025, and
ǫ3 = 0.0125, respectively.

for the density, displacements, stresses, conservative von Mises stress approximation and
slacks, respectively. Here we end up with a total number of 242503 equality constraints and
251352 bound constraints. In Figure 5.5 we see the optimal design of the problem and the

Figure 5.5: Solution of the long beam example. Left: Optimal material distribution. Right: Final
values of the conservative von Mises stress.

corresponding final values of the conservative von Mises stress. The solution time for 4 levels
of ǫ-continuation was about 19 hours and total volume is reduced to 1.134m3 (37.8% of |Ω|).
For comparison, we show in Figure 5.6 an optimal design with respcect to minimal compliance
with the same volume as the minimal mass solution. Finally, the Figures 5.7 and 5.8 show
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Figure 5.6: An optimal design of the long beam example with respect to minimal compliance.

the final values of the displacement and stress components.

Figure 5.7: Final values of the displacement components u1 and u2, respectively.

Figure 5.8: Final values of the stress components σ11, σ22 and σ12, respectively.
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Chapter 6

An Optimal Solver to a

KKT-System

Over the last two decades interior-point methods turned out to be efficient optimization
methods for solving large-scale nonlinear optimization problems (cf. Subsection 2.1.3). Most
of the computing time is actually spent in the solution of linear systems like (2.8) arising
from the linearization of the primal-dual equations (2.7). Instead of solving the nonsymmetric
system (2.8), a symmetric system like

(
A BT

B 0

)(
△x

△y

)
=

(
f

g

)
(6.1)

can be achieved by some elimination steps. For this system we have to ensure that A is
positive definite when projected onto the null space of the matrix B (cf. the V0-ellipticity
(2.16)). It might also happen that BT does not have full rank, as a consequence the system
matrix in (6.1) is singular. Thus, it might be necessary to modify the matrix in the following
way to sustain regularity:

(
A + δ1I BT

B −δ2I

)(
△x

△y

)
=

(
f

g

)
,

with some small δ1, δ2 ≥ 0 (see also Section 6.3).
Multigrid methods certainly belong to the most efficient methods for solving large-scale

systems, arising from discretized partial differential equations. While the construction of such
methods for symmetric and positive definite systems, like resulting from a discretization from
(2.11), is quite standard, this is not the case for saddle point problems. A successful construc-
tion of a solver with optimal complexity for linear systems like (6.1) would yield a significant
speedup for an interior-point method. One of the most important ingredients of an efficient
multigrid method is an appropriate smoother, i.e. a simple iterative smoothing procedure (cf.
Subsection 2.3.3). In this chapter we consider a multiplicative Schwarz-type iteration method
as a smoother in a multigrid method. Each iteration step of such a multiplicative Schwarz-
type smoother consists of the solution of several small local saddle point problems, i.e. small
local version of the problem (6.1).

More information about this kind of smoother will be given in Section 6.2. In the next
section, as a starting point, we will deduce a saddle point problem from the primal-dual
optimality conditions for the optimization problem (5.21) presented in the previous chapter.

87
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Finally, in Section 6.3 we will present some numerical experiments from the application of a
multigrid method with the mentioned smoother to the derived saddle point problem.

6.1 The Optimality System

In this section we will derive an optimality system for the optimization systems (5.21) and
(5.22) from the previous Chapter 5. The derivation can be performed for both stress criteria,
total stress and conservative von Mises stress, but we restrict ourselves to the case of total
stress for sake of simplicity. As a starting point we reconsider the following optimization
problem:

Jǫ(ρ) → min
ρ,u,s

(6.2a)

div s = 0, in Ω, (6.2b)

σ − Cε(u) = 0, in Ω, (6.2c)

u = 0, on Γu, (6.2d)

s · n = t, on Γt, (6.2e)

s · n = 0, on Γt0 , (6.2f)

ρ = 1, on Γt, (6.2g)

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω, (6.2h)

0 ≤ ρ(x) ≤ 1, a.e. in Ω, (6.2i)

ρ(x)σmin ≤ s(x) ≤ ρ(x)σmax, a.e. in Ω, (6.2j)

umin ≤ u(x) ≤ umax, a.e. in Ω. (6.2k)

with

Jǫ(ρ) = γ

∫

Ω
ρ(x) dx +

ǫ

2

∫

Ω

∣∣∇ρ(x)
∣∣2 dx +

1

ǫ

∫

Ω
ρ(x)

(
1 − ρ(x)

)
dx,

and the function space setting

(ρ,u, s) ∈
(
H1(Ω) ∩ L∞(Ω)

)
×
(
H1
(
Ω; R2

)
∩ L∞

(
Ω; R2

))
× L∞

(
Ω; R2×2

)
.

Again, as in Section 5.2, we understand the equality constraints (6.2b), (6.2e), and (6.2f) in a
weak sense. Because we aim at an interior-point optimization method to solve this problems,
we will perform the derivation in a primal-dual interior-point framework. Especially, we
consider a primal-dual barrier method to solve nonlinear optimization problems of the form

f(x) → min
x∈Rn

subject to c(x) = 0,

xmin ≤ x ≤ xmax,

see, e.g. Wächter and Biegler [147]. Problems with inequality constraints, like (6.2),
can be reformulated in the above form by introducing slack variables. Thus, we rewrite
the inequality constraints (6.2h) and (6.2i) as equalities with the additional functions zi ∈
L2(Ω; R2×2), i = 1, . . . , 4. Furthermore, to ease the representation of the problem, we omit

the boundary conditions (6.2d) - (6.2g), and rely on their proper treatment throughout the
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reformulations. As an additional simplification we eliminate σ using the identity (6.2c).
Consequently, we end up with the following optimization problem:

Jǫ(ρ) → min
ρ,u,s,z

(6.3a)

div s(x) = 0, in Ω, (6.3b)

−
(
1 − ρ(x)

)
1 − β

(
Cε
(
u(x)

)
− s(x)

)
+ z1(x) = 0, in Ω, (6.3c)

−
(
1 − ρ(x)

)
1 + β

(
Cε
(
u(x)

)
− s(x)

)
+ z2(x) = 0, in Ω, (6.3d)

ρ(x)σmin − s(x) + z3(x) = 0, in Ω, (6.3e)

s(x) − ρ(x)σmax + z4(x) = 0, in Ω, (6.3f)

0 ≤ ρ(x) ≤ 1, a.e. in Ω, (6.3g)

umin ≤ u(x) ≤ umax, a.e. in Ω, (6.3h)

zi(x) ≥ 0, a.e. in Ω, i = 1, . . . , 4. (6.3i)

Interior-point methods propose to add the bound constraints to the objective functional and
treat them implicitly by using a barrier function. With a barrier parameter µ > 0 this leads
to the barrier objective functional

Jǫ,µ(ρ) = Jǫ(ρ) − µ

(∫

Ω
ln
(
ρ(x)

)
+ ln

(
1 − ρ(x)

)
dx +

+

∫

Ω
ln
(
u(x) − umin

)
+ ln

(
umax − u(x)

)
dx +

∫

Ω
ln
(
z(x)

)
dx

)
,

where we write lnu instead of lnu1 + lnu2 for u ∈ R
2 and ln z instead of

∑2
i,j=1 ln zij for

z ∈ R
2×2 for simplicity. The corresponding barrier problem then looks like

Jǫ,µ(ρ) → min
ρ,u,s,z

div s(x) = 0, in Ω,

−
(
1 − ρ(x)

)
1− β

(
Cε
(
u(x)

)
− s(x)

)
+ z1(x) = 0, in Ω,

−
(
1 − ρ(x)

)
1 + β

(
Cε
(
u(x)

)
− s(x)

)
+ z2(x) = 0, in Ω,

ρ(x)σmin − s(x) + z3(x) = 0, in Ω,

s(x) − ρ(x)σmin + z4(x) = 0, in Ω,

(6.4)

In order to formulate the first order necessary conditions for (6.4), we consider the Lagrangian
for the above problem. For this sake we introduce Lagrange multipliers λ0 ∈ H1

0 (Ω; R2),
λ1, . . . ,λ4 ∈ L2(Ω; R2×2) and state

L(ρ,u, s, z,λ) = Jǫ,µ(ρ) − 〈s, ε(λ0)〉 +
〈
− (1 − ρ)1 − β

(
Cε(u) − s

)
+ z1,λ1

〉
+

+
〈
− (1 − ρ)1 + β

(
Cε(u) − s

)
+ z2,λ2

〉
+

+
〈
ρσmin − s + z3,λ3

〉
+
〈
s − ρσmax + z4,λ4

〉
,

(6.5)
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with the notation λ = (λ0, . . . ,λ4) and z = (z1, . . . , z4). The optimality conditions then look
as:

∇ρL = γ + ǫ∆ρ+
1

ǫ
(1 − 2ρ) − µ

ρ
+

µ

1 − ρ
+ 1 : λ1 +

+ 1 : λ2 + σmin : λ3 − σmax : λ4 = 0, (6.6a)

∇uL = − µ

u− umin
+

µ

umax − u
+ βC divλ1 − βC divλ2 = 0, (6.6b)

∇sL = − ε(λ0) + βλ1 − βλ2 − λ3 + λ4 = 0, (6.6c)

∇zi
L = − µ

zi
+ λi = 0, (6.6d)

∇λ0L = div s = 0, (6.6e)

∇λ1L = − (1 − ρ)1 − β
(
Cε(u) − s

)
+ z1 = 0, (6.6f)

∇λ2L = − (1 − ρ)1 + β
(
Cε(u) − s

)
+ z2 = 0, (6.6g)

∇λ3L = ρσmin − s + z3 = 0, (6.6h)

∇λ4L = s− ρσmax + z4 = 0. (6.6i)

In (6.6b) and (6.6d) (and further on) the fractions are meant by components. Moreover, we
use the identity

∫

Ω
divσ · v dx = −

∫

Ω
σ : ε(v) dx

for v ∈ H1
0 (Ω) for the derivation of (6.6) and for the statement of the Lagrangian (6.5).

Moreover, the equality (6.6b) again has to be understood in a weak sense. In the spirit of
primal-dual interior point methods we now introduce new independent variables νi that act as
multipliers for the bound constraints (6.3g) - (6.3i). In particular we choose ν1, ν2 ∈ H1(Ω),
ν3,ν4 ∈ H1(Ω; R2), and νi ∈ L2(Ω; R2×2) for i = 5, . . . , 8, such that

ν1 =
µ

ρ
, ν2 =

µ

1 − ρ
, ν3 =

µ

u− umin
, ν4 =

µ

umax − u
,

ν5 =
µ

z1
, ν6 =

µ

z2
, ν7 =

µ

z3
, ν8 =

µ

z4
.

(6.7)
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Using the definition (6.7) of the dual variables, the optimality conditions (6.6) turn into the
following system in the primal variables ρ, u, s, z, and the dual variables λ and ν:

γ + ǫ∆ρ+
1

ǫ
(1 − 2ρ) − ν1 + ν2 + 1 : λ1 + 1 : λ2 + σmin : λ3 − σmax : λ4 = 0, (6.8a)

−ν3 + ν4 + βC divλ1 − βC divλ2 = 0, (6.8b)

−ε(λ0) + βλ1 − βλ2 − λ3 + λ4 = 0, (6.8c)

−ν5 + λ1 = −ν6 + λ2 = −ν7 + λ3 = −ν8 + λ4 = 0, (6.8d)

div s = 0, (6.8e)

−
(
1 − ρ

)
1 − β

(
Cε(u) − s

)
+ z1 = 0, (6.8f)

−
(
1 − ρ

)
1 + β

(
Cε(u) − s

)
+ z2 = 0, (6.8g)

ρσmin − s + z3 = 0, (6.8h)

s − ρσmax + z4 = 0, (6.8i)

−ρ+
µ

ν1
= 0, (6.8j)

ρ− 1 +
µ

ν2
= 0, (6.8k)

−
(
u− umin

)
+

µ

ν3
= 0, (6.8l)

−
(
umax − u

)
+

µ

ν4
= 0, (6.8m)

−z1 +
µ

ν5
= −z2 +

µ

ν6
= −z3 +

µ

ν7
= −z4 +

µ

ν8
= 0, (6.8n)

where the form of the equalities (6.8j) - (6.8n) is motivated to get a symmetric system matrix
after discretization.

In the following we consider the discretization of the primal-dual equations (6.8). In order
to construct a finite element approximation we assume that Ω =

⋃n
i=1 τ i is partitioned into

a proper triangulation T = {τi | i = 1, . . . , n} with n triangles τi. We shall use two different
finite elements for the primal and dual variables. For the density ρ, the components of the
displacements u, the dual variables ν1, ν2, and the components of the dual variables ν3, ν4,
we use the discrete H1-subspace of linear elements

V h :=
{
ṽ ∈ C(Ω);

∣∣ ṽ|τi
∈ P1(τi), i = 1, . . . , n}.

For the components of the Lagrangian multiplier λ0 we use the discrete H1
0 -subspace V h

0 of
linear elements with zero boundary conditions. The components of the stress s, the slack
variables z, the dual variables ν5, . . . ν8, and of the Lagrange multipliers λ1, . . . ,λ4 are ap-
proximated by the L∞-subspace of constant elements

Qh :=
{
q̃ ∈ L∞(Ω)

∣∣ q̃|τi
∈ P0(τi), i = 1, . . . , n

}
.

As in the previous chapters, Pk(τi) represents the space of polynomials of maximal degree
k over the triangle τi. Using these finite element approximations we discretize the system
(6.8) by a standard finite element approach, i.e. we consider the weak formulations of the
equations (6.8a) - (6.8n) and perform a partial integration for the divergence terms in the
equations (6.8b) and (6.8e). Taking into account the Hilbert spaces V = H1(Ω), V0 = H1

0 (Ω),
VΓu = H1

Γu
(Ω), and Q = L2(Ω) and having the application of a Newton type method in mind,
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we can write the weak linearized formulation of (6.8) in the following way: Find updates
ρ, ν1, ν2 ∈ V , u,ν3,ν4 ∈ V 2

Γu
, λ0 ∈ V 2

0 , and s, z1, . . . , z4,λ1, . . . ,λ4,ν5, . . . ,ν8 ∈ Q2×2 for the

current values of ρ,u, s, z,λ, ν1, ν2,ν3, . . . ,ν8, respectively, such that

−ǫ(∇ρ,∇v)0 −
2

ǫ
(ρ, v)0 − (ν1, v)0 + (ν2, v)0 + (1 : λ1, v)0 +

+ (1 : λ2, v)0 + (σmin : λ3, v)0 + (σmax : λ4, v)0 = −
(
γ +

1

ǫ

)
(1, v)0,

−(ν3,φ)0 + (ν4,φ)0 − β
(
Cλ1, ε(φ)

)
0
+ β

(
Cλ2, ε(φ)

)
0

= 0,

−
(
ε(λ0),q

)
0
+ β(λ1,q)0 − β(λ2,q)0 − (λ3,q)0 + (λ4,q)0 = 0,

−(ν5,q)0 + (λ1,q)0 = −(ν6,q)0 + (λ2,q)0 =

−(ν7,q)0 + (λ3,q)0 = −(ν8,q)0 + (λ4,q)0 = 0,

−
(
s, ε(ψ)

)
0

=

∫

Γt

t · ψ dx,

(ρ1,q)0 − β
(
Cε(u),q

)
0
+ β(s,q)0 + (z1,q)0 = (1,q)0,

(ρ1,q)0 + β
(
Cε(u),q

)
0
− β(s,q)0 + (z2,q)0 = (1,q)0,

(ρσmin,q)0 − (s,q)0 + (z3,q)0 = 0,

(s,q)0 − (ρσmax,q)0 + (z4,q)0 = 0,

−(ρ, v)0 +
µ

ν1
(ν1, v)0 = 0,

(ρ, v)0 +
µ

ν2
(ν2, v)0 = (1, v)0,

−(u,φ)0 +
µ

ν3
(ν3,φ)0 = −(umin,φ)0,

(u,φ)0 +
µ

ν4
(ν4,φ)0 = (umax,φ)0,

−(z1,q)0 +
µ

ν5
(ν5,q)0 = −(z2,q)0 +

µ

ν6
(ν6,q)0 =

= −(z3,q)0 +
µ

ν7
(ν7,q)0 = −(z4,q)0 +

µ

ν8
(ν8,q)0 = 0,

where the above equalities shall hold for all test functions v ∈ V , φ ∈ V 2
0 , ψ ∈ V 2

Γu
, and

q ∈ Q2×2. Let the vectors △ρh, △uh, and so on, contain the coefficients of the finite element
functions ρ̃ ∈ V h and ũ ∈ (V h

Γu
)2, and so on, respectively. We add the symbol △ to emphasis

that we consider the updates of current iterates in a Newton type iteration method. Moreover,
we use the symmetries in the occurring variables s, λ1, . . . ,λ4, z1, . . . , z4, and ν5, . . . ,ν8 (e.g.
sij = sji) to reduce the number of unknowns. The discretized problem can now be written
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as:

−ǫK△ρh − 2

ǫ
M△ρh − M△νh

1 + M△νh
2 + ÑT△λh

1 +

+ ÑT△λh
2 + ÑTΣmin△λh

3 − ÑTΣmax△λh
4 = −

(
γ +

1

ǫ

)
eh

V h , (6.9a)

−M2△νh
3 + M2△νh

4 − βDTCh△λh
1 + βDT Ch△λh

2 = 0, (6.9b)

−D△λh
0 + βN△λh

1 − βN△λh
2 − N△λh

3 + N△λh
4 = 0, (6.9c)

−N△νh
5 + N△λh

1 = −N△νh
6 + N△λh

2 =

= −N△νh
7 + N△λh

3 = −N△νh
8 + N△λh

4 = 0, (6.9d)

−DT△sh = th, (6.9e)

Ñ△ρh − βChD△uh + βN△sh + N△zh
1 = eh

(Qh)3 , (6.9f)

Ñ△ρh + βChD△uh − βN△sh + N△zh
2 = eh

(Qh)3 , (6.9g)

ΣminÑ△ρh − N△sh + N△zh
3 = 0, (6.9h)

−ΣmaxÑ△ρh + N△sh + N△zh
4 = 0, (6.9i)

−M△ρh + µMν1△νh
1 = 0, (6.9j)

M△ρh + µMν2△νh
2 = eh

V h , (6.9k)

−M2△uh + µMν3△ν3 = −M2u
minh

, (6.9l)

M2△uh + µMν4△ν4 = M2u
maxh, (6.9m)

−N△zh
1 + µNν5△νh

5 = −N△zh
2 + µNν6△νh

6 =

−N△zh
3 + µNν7△νh

7 = −N△zh
4 + µNν8△νh

8 = 0. (6.9n)

In (6.9a), K is a stiffness matrix arising from the finite element discretization of the Laplacian
in V h and M is a mass matrix for the identity in V h. Furthermore, Ñ is mixed mass matrix
between the spaces V h and (Qh)3. eh

V h and eh
(Qh)3

are vectors representing the coefficients of

the constant function 1 with respect to the spaces V h and (Qh)3, respectively. Σmin and Σmax

are diagonal matrices representing the corresponding entries of σmin and σmax, respectively.
In (6.9b), M2 is a mass matrix for the identity in V h

Γu
×V h

Γu
and Ch is the discrete analogon of

elasticity tensor C. Moreover, DT is the representation of the divergence operator (restricted
to symmetric stress tensors). The mass matrix N in (6.9c) represents the mass matrix for
the identity in (Qh)3. In the discretized partial differential equation (6.9e) th is a discrete
representation of the traction forces. Moreover, in the equations (6.9j) - (6.9m) the matrices
Mν1 , . . . ,Mν4 , and the matrices Nν5 , . . . ,Nν8 , in (6.9n) are weighted mass matrices with the
weights ν1, . . . ,ν8, respectively.

The linear system (6.9) can be written in a compact representation as

K△x = fh, (6.10)

with

△x =
(
△ρh,△uh,△sh,△zh

1 , . . . ,△zh
4 ,△λh

0 , . . . ,△λh
4 ,△νh

1 , . . . ,△νh
8

)
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and

fh =

(
−
(
γ +

1

ǫ

)
eh

V h ,0,0,0,0,0,0, t
h , eh

(Qh)3 , e
h
(Qh)3 ,0,0,0,

eh
V h ,−M2u

minh
,M2u

maxh,0,0,0,0

)
.

The coefficient matrix K in (6.10) contains the matrices in (6.9) as block matrices and turns
out to be large (even too large to be printed on one page). In order to reduce the size of the
system to a more reasonable one, we reduce the system (but we keep the notation K for the
system matrix and fh for the right-hand side after each of the following eliminations) using
the following eliminations of the dual variables:

△νh
1 =

1

µ
M−1

ν1
M△ρh, △νh

2 = − 1

µ
M−1

ν2
M△ρh +

1

µ
M−1

ν2
eh

V h ,

△νh
3 =

1

µ
M−1

ν3
M2△uh − 1

µ
M−1

ν3
M2u

minh
,

△νh
4 = − 1

µ
M−1

ν4
M2△uh +

1

µ
M−1

ν4
M2u

maxh,

△νh
5 =

1

µ
N−1

ν5
N△zh

1 , △νh
6 =

1

µ
N−1

ν6
N△zh

2 ,

△νh
7 =

1

µ
N−1

ν7
N△zh

3 , △νh
8 =

1

µ
N−1

ν8
N△zh

4 .

(6.11)

This first elimination leads to a smaller linear system like

K△x = fh, (6.12)

with
△x =

(
△ρh,△uh,△sh,△zh

1 , . . . ,△zh
4 ,△λh

0 , . . . ,△λh
4

)

and

fh =

(
−
(
γ +

1

ǫ

)
eh

V h − 1

µ
MM−1

ν2
eh

V h ,−
1

µ
M2

(
M−1

ν3
uminh

+ M−1
ν4

umaxh
)
,

0,0,0,0,0, th, eh
(Qh)3 , e

h
(Qh)3 ,0,0

)
.

The system matrix K of (6.12) is given by

K =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

Kρρ 0 0 0 0 0 0 0 Ñ
T

Ñ
T

Ñ
T
Σ

min
−Ñ

T
Σ

max

0 Kuu 0 0 0 0 0 0 −βD
T
C

h βD
T
C

h
0 0

0 0 0 0 0 0 0 −D βN −βN −N N

0 0 0 Kz1z1
0 0 0 0 N 0 0 0

0 0 0 0 Kz2z2
0 0 0 0 N 0 0

0 0 0 0 0 Kz3z3
0 0 0 0 N 0

0 0 0 0 0 0 Kz4z4
0 0 0 0 N

0 0 −D
T

0 0 0 0 0 0 0 0 0

Ñ −βC
h
D βN N 0 0 0 0 0 0 0 0

Ñ βC
h
D −βN 0 N 0 0 0 0 0 0 0

Σ
min

Ñ 0 −N 0 0 N 0 0 0 0 0 0

−Σ
max

Ñ 0 N 0 0 0 N 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

with

Kρρ = − ǫK − 2

ǫ
M − 1

µ
M
(
M−1

ν1
+ M−1

ν2

)
M,

Kuu = − 1

µ
M2

(
M−1

ν3
+ M−1

ν4

)
M2,

Kzizi
= − 1

µ
NN−1

νi
N, i = 1, . . . , 4.
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As further eliminations we eliminate the slack variables △zh
i , for i = 1, . . . , 4, from the system

(6.12):
△zh

i = µN−1Nνi
△λh

i , i = 1, . . . , 4. (6.13)

Hence, we come up with the following system

K




△ρh

△uh

△sh

△λh
0

△λh
1

△λh
2

△λh
3

△λh
4




=




−
(
γ + 1

ǫ

)
eh

V h − 1
µMM−1

ν2
eh

V h

− 1
µM2

(
M−1

ν3
uminh

+ M−1
ν4

umaxh
)

0

th

eh
(Qh)3

eh
(Qh)3

0

0




(6.14)

with the coefficient matrix

K =




Kρρ 0 0 0 ÑT ÑT ÑTΣmin −ÑTΣmax

0 Kuu 0 0 −βDTCh βDT Ch 0 0

0 0 0 −D βN −βN −N N

0 0 −DT 0 0 0 0 0

Ñ −βChD βN 0 µNν5 0 0 0

Ñ βChD −βN 0 0 µNν6 0 0

ΣminÑ 0 −N 0 0 0 µNν7 0

−ΣmaxÑ 0 N 0 0 0 0 µNν8




.

As a last reduction we eliminate the updates concerning the Lagrange multipliers λ1, . . .λ4,
from the linear system (6.14) using

△λh
1 =

1

µ
N−1

ν5
eh

(Qh)3 −
1

µ
N−1

ν5
Ñ△ρh +

β

µ
N−1

ν5
ChD△uh − β

µ
N−1

ν5
N△sh,

△λh
2 =

1

µ
N−1

ν6
eh

(Qh)3 −
1

µ
N−1

ν6
Ñ△ρh − β

µ
N−1

ν6
ChD△uh +

β

µ
N−1

ν6
N△sh,

△λh
3 = − 1

µ
ΣminN−1

ν7
Ñ△ρh +

1

µ
N−1

ν7
N△sh,

△λh
4 =

1

µ
ΣmaxN−1

ν8
Ñ△ρh − 1

µ
N−1

ν8
N△sh.

(6.15)

This elimination finally results in the symmetric saddle point problem



Kρρ Kρu Kρs 0

K
T
ρu Kuu Kus 0

K
T
ρs K

T
us Kss DT

0 0 D 0







△ρh

△uh

△sh

△λh
0


 = fh, (6.16)

with

fh =




−
(
γ + 1

ǫ

)
eh

V h − 1
µMM−1

ν2
eh

V h − 1
µÑT

(
N−1

ν5
+ N−1

ν6

)
eh

(Qh)3

− 1
µM2

(
M−1

ν3
uminh

+ M−1
ν4

umaxh
)
− β

µChD
(
N−1

ν5
− N−1

ν6

)
eh

(Qh)3

−β
µN3

(
N−1

ν5
− N−1

ν6

)
eh

(Qh)3

0
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and the final block matrices

Kρρ = − ǫK − 2

ǫ
M− 1

µ
M
(
M−1

ν1
+ M−1

ν2

)
M −

− 1

µ
ÑT
(
N−1

ν5
+ N−1

ν6
+ Σmin2

N−1
ν7

+ Σmax2N−1
ν8

)
Ñ,

Kuu = − 1

µ
M2

(
M−1

ν3
+ M−1

ν4

)
M2 −

β2

µ
DTCh2(

N−1
ν5

+ N−1
ν6

)
D,

Kss = − 1

µ
N
(
β2N−1

ν5
+ β2N−1

ν6
+ N−1

ν7
+ N−1

ν8

)
N,

Kρu =
β

µ
ÑT
(
N−1

ν5
− N−1

ν6

)
ChDT ,

Kρs =
1

µ
ÑT
(
βN−1

ν6
− βN−1

ν5
+ ΣminN−1

ν7
+ ΣmaxN−1

ν8

)
N,

Kus =
β2

µ
ChDT

(
N−1

ν5
+ N−1

ν6

)
N.

(6.17)

The linear system (6.16) yields a solution in the variables △ρh,△uh,△sh,△λh
0 . Using this

solution, the other variables are determined by the substitutions (6.15), (6.13), and finally
(6.15).

6.2 A Multigrid KKT Solver

In this section we consider (additive and multiplicative) Schwarz-type iteration methods as
smoothers in a multigrid method for saddle point problems. Each iteration step of such a
Schwarz-type smoother consists of the solution of several small local saddle point problems in
a Jacobi- or Gauss-Seidel-type manner. The computational domain is therefore divided into
overlapping cells, also called patches. One iteration step of a Schwarz-type smoother consists
now of solving a local saddle point problem for each patch. This is done in a Jacobi- or
Gauß-Seidel-type manner and thus, called additive or multiplicative Schwarz-type smoother.

To begin with, we state the two most basic iterative methods for a linear system

Ku = f ,

which are used as smoothing methods, namely the Jacobi- and the Gauss-Seidel iterations,
being the origins of the additive and multiplicative Schwarz methods, respectively. In Algo-
rithm 6.1 we present the Jacobi iteration. The algorithm is simple, but with the disadvantage
of slow convergence (note the analogy to the Richardson iteration in Algorithm 2.1). We state
the Jacobi iteration without any consideration about convergence, but refer e.g. to Jung and

Langer [80]. One criterion for the convergence of the damped Jacobi iteration is the symme-
try and positive definiteness of the system matrix K. A similar method to the Jacobi iteration
is the Gauss-Seidel method. In difference to the Jacobi iteration we use for the computation
of the i-th component uk

i the already updated components uk
j , for j = 1, . . . , i−1, in iteration

k. The Gauß-Seidel method is presented in Algorithm 6.2. Again, the Gauss-Seidel iteration
converges if the system matrix K is symmetric and positive definite. For more information
we refer again e.g. to Jung and Langer [80] or to Hackbusch [71]. Both iteration methods
(Jacobi iterations after under-relaxation, damped Jacobi) have smoothing properties in the



6.2. A MULTIGRID KKT SOLVER 97

Algorithm 6.1 Damped Jacobi iteration

Choose a damping parameter τ , 0 < τ < 2
λmax(diag(K)−1K)

.

Choose a relative error bound ε > 0.
Initialize start value u0 ∈ R

n.
k = 0;

while not converged do

for i = 1, . . . , n do

uk+1
i = (1 − τ)uk

i +
τ

Kii

(
fi −

n∑

j=1
j 6=i

Kiju
k
j

)
;

end for

k = k + 1;
end while

Algorithm 6.2 Gauß-Seidel iteration

Choose a relative error bound ε > 0.
Initialize start value u0 ∈ R

n.
k = 0;

while not converged do

uk+1
1 =

1

K11

(
f1 −

n∑

j=2

K1ju
k
j

)
;

for i = 2, . . . , n− 1 do

uk+1
i =

1

Kii

(
fi −

i−1∑

j=1

Kiju
k+1
j −

n∑

j=i+1

Kiju
k
j

)
;

end for

uk+1
n =

1

Knn

(
fn −

n−1∑

j=1

Knju
k
j

)
;

k = k + 1;
end while

sense that they reduce the high frequency part of the error components and are cheap to
apply.

The above definitions of the iteration methods would lead to pointwise methods. Below
we shall define smoothing operators in terms of subspace decompositions, which will lead to a
blockwise iteration method. These procedures are related to overlapping domain decomposi-
tion algorithms and to the classical Schwarz method. They are generalizations of Jacobi and
Gauß-Seidel iteration procedures.

We start to introduce the Schwarz-type smoothers in an abstract framework of mixed
variational problems (cf. Subsection 2.2.2). For this sake let V and Q be Hilbert spaces and
let a(·, ·) : V × V → R, b(·, ·) : V × Q → R, and c(·, ·) : Q × Q → R be continuous bilinear
forms. Furthermore, let f(·) : V → R and g(·) : Q→ R be continuous linear forms. Then we
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can formulate the following mixed variational problem: Find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v), ∀ v ∈ V,

b(u, q) − c(p, q) = g(q), ∀ q ∈ Q.
(6.18)

Following on the framework of multigrid methods we would introduce now a hierarchy of
finite element spaces V0 ⊂ . . . ⊂ Vl ⊂ V , Q0 ⊂ . . . ⊂ Ql ⊂ Q on a corresponding hierarchy
of increasingly finer meshes and so on. But since the smoothing procedure involves only one
level of the sequence of spaces, we will omit these notations and fix one level i, 0 < i < l. For
simplification of notation we will also drop the subindex k when denoting spaces, matrices
and so on. Following a standard finite element discretization let the vectors v ∈ R

n and
q ∈ R

n contain the coefficients of the corresponding finite element functions with respect
to some bases of V and Q. Moreover, we introduce the matrix representation of the mixed
variational problem (6.18):

(
A BT

B −C

)(
u

p

)
=

(
f

g

)
. (6.19)

In the sequel we will again abbreviate the system matrix with K, i.e.

K =

(
A BT

B −C

)
.

As a consequence from the properties from the bilinear forms, we assume that A is a symmetric
positive semi-definite n × n matrix, C is a symmetric positive semi-definite m ×m matrix,
that B is a m× n matrix, and that K is regular.

We shall start with a decomposition of the spaces

V =

l∑

i=1

V i and Q =

l∑

i=1

Qi.

Before we define the additive and multiplicative smoother we have to introduce linear opera-
tors for each subspace to set up the local sub-problems:

PV i : R
ni → R

n and PQi : R
mi → R

m, for i = 1, . . . , l, (6.20)

with ni, mi denoting the dimensions of the local subspaces Vi and Qi, respectively. The
matrices PV i and PQi denote prolongation operators with the associated restriction operators
PV

T
i and PQ

T
i , respectively. Furthermore, let the operators (6.20) satisfy the conditions

l∑

i=1

PV iPV
T
i = I and

l∑

i=1

PQiPQ
T
i is regular. (6.21)

With these preliminaries we can now define two Schwarz-type smoothers assuming that uk

and pk are some approximations for the exact solutions u and p of (6.19).
The first one will be called an additive Schwarz smoother and is defined by

uk+1 = uk +
l∑

i=1

PV ivi, pk+1 = pk +
l∑

i=1

PQiqi,
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with vi and qi, i = 1, . . . , l, solving the local saddle point problem

(
Âi BT

i

Bi BiÂ
−1
i BT

i − Ŝi

)(
vi

qi

)
=

(
PV

T
i

(
f − Auk − BTpk

)

PQ
T
i

(
g − Buk + Cpk

)
)
,

where Ŝi = 1
τ (Ci + BiÂ

−1
i BT

i ), with some damping parameter τ > 0. Thus, the actual
residuum is restricted to the smaller spaces. Then the local saddle point problems are solved
for all patches, and the solutions are finally prolongated back onto the whole space. This
Jacobi-type process can be seen as an additive Schwarz method and the corresponding smooth-
ing operator SA can be written as

SA

(
uk

pk

)
=

(
uk

pk

)
+

l∑

i=1

PiK̂
−1
i PT

i

((
f

g

)
− K

(
uk

pk

))
,

where we used the abbreviations

K̂i =

(
Âi BT

i

Bi BiÂ
−1
i BT

i − Ŝi

)
and Pi =

(
PV i 0

0 PQi

)
.

Moreover, we define the multiplicative Schwarz smoother based on the above subspace
decomposition as the following procedure: Set w0 = 0 and r0 = 0 and compute
(

wi

ri

)
=

(
wi−1

ri−1

)
+ PiK̂

−1
i PT

i

((
f

g

)
− K

(
wi−1

ri−1

))
, for i = 1, . . . , l, (6.22)

where we set τ = 1, i.e. the local saddle point problems resemble the global saddle point
problem in shape. Finally we define the multiplicative smoother as

SM

(
uk

pk

)
=

(
uk

pk

)
+

(
wl

rl

)
. (6.23)

So far we did not pose any conditions on the local matrices Âi, Bi, and Ci. For the
additive case we can state the following theorem, under which assumptions it is possible to
interpret the additive Schwarz iteration as a symmetric inexact Uzawa method. Then, the
smoothing property, an important part of a convergence proof for multigrid methods, can be
shown (cf. Schöberl and Zulehner [116]).

Theorem 6.1. Assume that (6.21) is satisfied, the matrices Âi and Ŝi are symmetric and
positive definite, and there is a symmetric positive definite n× n matrix Â such that

PV iÂ = ÂiPV
T
i , for i = 1, . . . , l.

Furthermore, assume that the matrices Bi satisfy the condition

PQ
T
i B = BiPQ

T
i , for i = 1, . . . , l.

Then we have
uk+1 = uk + vk and pk+1 = pk + qk, (6.24)

where vk and qk satisfy the equation

(
Â BT

B BÂ−1BT − Ŝ

)(
vk

qk

)
=

(
f

g

)
− K

(
uk

pk

)
(6.25)
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and

Ŝ =

(
l∑

i=1

PQiŜ
−1
i PQ

T
i

)−1

.

Proof. See Schöberl and Zulehner [116].

Up to the knowledge of the author, there is no theory available for the multiplicative
Schwarz-type smoother. But in practice, the multiplicative version turns out to much more
efficient than the additive iteration scheme. So, we realized our numerical test examples with
the multiplicative Schwarz-type smoother, as presented in the next section. The verification
of the assumptions of Theorem 6.1 for our particular case, as well as numerical experiments
for the additive version, are still missing and will be part of future research.

Notes and remarks for Section 6.2

• Note, that the Gauß-Seidel iteration depends on the ordering of the unknowns and that
the Jacobi iteration is independent of the ordering of the unknowns, see e.g. Hack-

busch [73]. In order to get a symmetric multigrid operator (2.25) the post smoothing
has to be arranged in a backward fashion for the Gauß-Seidel-type iteration. Moreover,
the same number of pre- and post-smoothing steps has to be used.

• Usually numerical experiments show that the multiplicative Schwarz smoother leads to
significantly better convergence rates as the additive variant. We refer to Schöberl

and Zulehner [116] for a theoretical analysis for the convergence and smoothing prop-
erties of the additive smoother. A theoretical analysis for the multiplicative version,
however, is still missing.

6.3 Numerical experiments

For the numerical results we choose Ω = (0, 1) × (0, 1) and decompose it into a regular
triangulation T k

h = {τi | i = 1, . . . , nk} for each level k of a hierarchy of l nested meshes with
3 ≤ k ≤ l. That means that level k = 3 is the coarsest grid where the corresponding linear
system is solved exactly. For each level k we assemble the block matrices that finally build
up the saddle point system (6.16). For convenience we state the system matrix again:

Kk =




Kρρ Kρu Kρs 0

K
T
ρu Kuu Kus 0

K
T
ρs K

T
us Kss DT

0 0 D 0


 , (6.26)

with the block matrices (6.17). In order to test the multiplicative patch smoother (6.22) -
(6.23) we solved the saddle point system (6.16) on a hierarchy with an increasing number
of meshes. We set fk = 0 and used randomly chosen starting values for △x0

k for the exact
solutions △xk. For constructing the local subproblems we decomposed the grid T k

h into mk

overlapping patches, where mk denotes the number of nodes on level k. Each patch consists of
the at most 6 surrounding triangles for each node. As mentioned in the previous section, we
approximated the density ρ, the displacements u, and the Lagrangian multiplier λ0 with linear
elements and the stresses s with constant elements. The corresponding subspaces Vi, for i =
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Figure 6.1: Patch of a local saddle point problem.

1, . . . ,mk, consist now of the degrees of freedom of the node i, related to the approximations of
the density and the displacement components, and the degrees of freedom in the surrounding
elements, related to the stress components. The subspaces Qi, for i = 1, . . . ,mk, consist of the
unknowns at node i with respect to the approximation of the Lagrangian multiplier λ0. Figure
6.1 shows an example of a patch, where the places marked with a ’�’ indicate the unknowns
of the constant elements and the places marked with a ’•’ indicate the unknowns of the
linear elements. For the actual numerical tests we chose the local block matrix Âi = Ai and

Smoothing steps
Level Unknowns 2 4

Iterations Conv. Factor Iterations Conv. Factor

4 725 25 0.478 14 0.255

5 2853 27 0.510 15 0.269

6 11333 26 0.489 14 0.255

7 45189 25 0.479 13 0.230

8 180485 23 0.445 12 0.209

Table 6.1: Convergence rates for a W-cycle and an error reduction by a factor of 10−8 (ǫ = 0.1,
µ = 0.1, νh

i
= 1 for i = 1, . . . , 8).

used a W-cycle with 2 smoothing steps (one pre- and one post-smoothing step. We stopped
the iteration process when the initial defect was reduced by a factor of 10−8, measured by
the Euclidean norm. In Table 6.1 we list the convergence data for the following choice of
parameters: ǫ = 0.1, µ = 0.1, and νh

i = 1 for i = 1, . . . , 8. The table shows the typical
multigrid convergence behavior, i.e., convergence rates that are asymptotic independent of
the grid level and an asymptotic constant number of iterations. For the next test example
we set µ and ǫ so smaller values, as these parameters are supposed to tend to zero in actual
computations. We chose µ = 10−6 and ǫ = 10−4, smaller values as have actually been used in
the computations in Subsection 5.6.3. All in all, Table 6.2 shows again the expected behavior.

Also arbitrary values of the dual variables νh
1 , . . . ,ν

h
4 , in [10−6, 101], possibly after suitable

scaling, do not change this behaviour. However, the dual variables νh
5 , . . . ,ν

h
8 , that act as

Lagrange multipliers for the slack variables zh
1 , . . . , z

h
4 (see (6.7) in Subsection 6.1) may cause

troubles. In the case that vh
5 ≤ vh

6 and vh
7 ≤ vh

8 the condition number of the system
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Smoothing steps
Level Unknowns 2 4

Iterations Conv. Factor Iterations Conv. Factor

4 725 39 0.621 19 0.376

5 2853 25 0.478 14 0.258

6 11333 24 0.460 13 0.226

7 45189 22 0.427 12 0.210

8 180485 22 0.425 12 0.211

Table 6.2: Convergence rates for a W-cycle and an error reduction by a factor of 10−8 (ǫ = 10−4,
µ = 10−6, νh

i
= 1 for i = 1, . . . , 8).

matrix is raising, but the multigrid iteration still achieves convergence with more then 4
smoothing steps. See Table 6.3 for the convergence data for extreme values νh

5 = νh
7 = 10 and

νh
6 = νh

8 = 10−6 with 5 and 9 pre- and post-smoothing steps, respectively. Unfortunately,

Smoothing steps
Level Unknowns 10 18

Iterations Conv. Factor Iterations Conv. Factor

4 725 52 0.701 26 0.490

5 2853 45 0.664 23 0.446

6 11333 34 0.582 18 0.358

7 45189 29 0.529 17 0.321

8 180485 27 0.500 16 0.298

Table 6.3: Convergence rates for a W-cycle and an error reduction by a factor of 10−8. (ǫ = 10−4,
µ = 10−6, νh

5 = νh
7 = 10, and νh

6 = νh
8 = 10−6).

for some choices vh
5 > vh

6 and vh
7 > vh

8 the upper left block of the system matrix (6.26)
becomes almost indefinite, e.g., λmin ∈ [−9 ·10−6, 9 ·10−6]. Similar behaviour is reported, e.g.
in Maar and Schulz [89] and Wächter and Biegler [147]. If the upper left block looses
its property to be positive definite, the smoother fails and the multigrid iteration diverges.
For instance for the choices vh

5 = vh
7 = 102 and vh

6 = vh
8 = 10−6 we get λmax = 336 and

λmin = −8 · 106.
A known remedy for the above situation is to add a small multiple of the identity matrix

to the upper left block, which is called inertia correction in literature and is, e.g. used in the
software packages Ipopt and LOQO. In our test examples a addition of δI, with δ = 10−3, to
the upper left part removed the mentioned difficulties.



Chapter 7

Conclusions and Outlook

In this thesis we presented two new approaches, one to the minimal compliance problem
with respect to limited mass and one to the minimal mass problem with respect to limited
local stresses. Moreover, we gave a brief discussion of the two conceptual approaches how to
formulate an optimal design problem and developed an optimal solver for a KKT-system.

The discussion in Chapter 3 highlight the pros and cons of the nested and simultaneous
approach. Here, the construction of optimal solvers for the KKT-systems for various design
problems and a comparison to the nested approach in terms of computational effort is an
interesting and hot topic.

In Chapter 4 we presented an adaptive multilevel approach to the minimal compliance
problem, which turned out to work successful for several examples in 2D and 3D. Further-
more, due to a multigrid method, we solve the systems of linear equations, resulting from the
discretized state equations, with optimal complexity. The bottleneck of the high computa-
tional time for the applying the discrete filter operator on very fine unstructured grids can
be overcome by using, e.g. H-matrices or other data-sparse approximating techniques. This
could serve as a starting point for future research.

A new method for solving topology optimization problems with local stress constraints
is presented in Chapter 5. The reformulation of the set of constraints and the phase-field
relaxation lead to a parameter-dependent family of large-scale optimization problems, satis-
fying uniform constraint qualifications. So far no particular emphasis has been laid on the
efficient solution of the discretized problems. Tailoring a suitable optimization routine, e.g.
a QP solver or a tuned interior-point method for nonlinear constraints, will reduce the com-
putational times tremendously in comparison to the use of a black-box solver. Moreover, the
possibility of a better tuning of the optimization method will raise the possibility to solve
more advanced examples. This will be treated in future, due to the high importance of local
stress constraints in the field of structural optimization and due to high interest of the author.

The optimal solver of the KKT-system presented in Chapter 6 shows the potential of
Schwarz-type smoothers in the multigrid framework. The linear complexity solver should
be embedded in a dual-primal interior-point optimization method to show its true potential.
This is a task that can be accomplished within the construction of a suitable optimization
routine for the discretized optimization problems resulting from the approach in Chapter 5.
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[45] M. Burger and W. Mühlhuber. Iterative regularization of parameter identification prob-
lems by sequential quadratic programming methods. Inverse Problems, 18(4):943–969,
2002.
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