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Abstract

In this thesis, we introduce a new finite element method to discretize the equations of elasticity.
It is analyzed thoroughly both in the infinite-dimensional and in the discrete setting, where
finite element schemes of arbitrary order are presented. As the main result of this work, we
prove that the new method is locking-free with respect to volume and shear locking, i.e that
it is applicable for both nearly incompressible materials and the discretization of the thin
structures using flat elements.

To date, several well-known methods for the discretization and subsequent solution of
the equations of elasticity have been introduced: the primal method using continuous finite
element functions for the displacement, the mixed method due to Hellinger and Reissner,
where the stress tensor is considered as a separate unknown, and mixed methods with weak
symmetry, where the symmetry of the stress tensor holds only in weak sense. However, each
of these methods has its drawbacks, which motivates the need for yet another formulation.
The primal method breaks down for both nearly incompressible materials and thin structures,
i.e. it suffers from volume and shear locking phenomena. Mixed methods can be shown to be
stable with respect to volume locking; however, the construction of finite elements can only
be done at high polynomial orders, and therefore high computational cost. Mixed methods
with weak symmetry are easier to construct, but the exact symmetry of the stress tensor is
lost.

The new method lies “in between” the primal method and the mixed Hellinger-Reissner
method. The vector-valued displacement function is chosen in the space H(curl), which
ensures continuity of the tangential component across interfaces. This choice implies to search
for the stresses in the newly introduced space H(div div) consisting of symmetric tensor valued
functions, whose divergence again allows for a distributional divergence lying in H−1. It is
shown that such tensor fields have their normal-normal component continuous. The resulting
mixed formulation is referred to as “Tangential-Displacement-Normal-Normal-Stress (TD-
NNS) formulation”. Its stability in the infinite-dimensional setting is analyzed.

To discretize the TD-NNS formulation, a stable pair of finite elements is introduced. For
the displacement space, Nédélec elements as standard choice for an H(curl) conforming dis-
cretization are used. For the stress space, a new family of symmetric tensor-valued finite
elements of arbitrary order is constructed. Stability and approximation properties of the
resulting finite element method are provided, the method shows an optimal order of conver-
gence.

A major drawback of mixed methods is the indefiniteness of the resulting system matrix.
In order to obtain a positive definite matrix, we apply hybridization. The normal-normal
continuity of the stresses is torn, and re-enforced by Lagrangian multipliers resembling the
normal displacement on interfaces. After a static condensation of the stresses on the element
level, one is left with a positive definite matrix. In this setup, stability with respect to volume
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locking is provided. An additive Schwarz block preconditioner is shown to be an optimal
choice, also in case of nearly incompressible materials.

Finally, the TD-NNS method is used on thin structures, where flat prismatic elements are
used. Stability and error estimates which are independent of the aspect ratio of the elements
are derived. All results are confirmed by computational examples.



Zusammenfassung

Diese Dissertation widmet sich der Entwicklung einer neuen Finite-Elemente-Methode zur
Diskretisierung der Gleichungen der Elastizitätstheorie. Es werden sowohl die unendlich-
dimensionale Formulierung, als auch die darauf basierende Finite-Elemente-Methode gründlich
analysiert. Zur Diskretisierung werden Finite-Elemente-Basen beliebiger Ordnung bereit-
gestellt. Unser Hauptaugenmerk liegt darauf zu zeigen, dass die Methode nicht von sogenan-
nten “Locking”-Phänomenen betroffen ist, die im Zusammenhang mit fast inkompressiblen
Materialien (“volume locking”) oder flachen Elementen zur Diskretisierung von dünnen Struk-
turen (“shear locking”) auftreten. Solche Phänomene sind für den Verlust von Stabilität und
Approximationsgüte verantwortlich.

Es sind mehrere verschiedene Varianten zur Diskretisierung und darauffolgenden Auflösung
der Gleichungen der Elastizitätstheorie bekannt: die primale Methode, in der stetige Finite-
Elemente-Funktionen für die Verschiebungen verwendet werden, die gemischte Methode von
Hellinger und Reissner, wo der Spannungstensor als zusätzliche Unbekannte eingeführt wird,
und gemischte Methoden mit schwacher Symmetrie, wo die Symmetrie des Spannungsten-
sors im schwachen Sinn gefordert wird. Jede dieser Methoden hat jedoch ihre Nachteile, was
uns die Motivation für die Entwicklung einer neuen Formulierung liefert. Die primale Meth-
ode zeigt volume- und shear-locking, sie bricht im Fall von fast inkompressiblen Materialien
und flach strukturierten Gittern zusammen. Für gemischte Methoden lässt sich zeigen, dass
sie auch für fast inkompressible Materialien stabil bleiben. Allerdings ist die Konstruktion
von Finite-Elemente-Basen technisch schwierig; Formfunktionen hoher polynomialer Ordnung
werden benötigt, was den Aufwand stark vergrößert. Gemischte Methoden mit schwacher
Symmetriebedingung sind einfacher zu konstruieren, allerdings ist die Symmetrie der berech-
neten Spannungen nicht mehr gegeben.

Die neue Methode liegt nun “zwischen” der primalen und der Hellinger-Reissner-Methode.
Der Verschiebungsvektor wird im RaumH(curl) gesucht, was die Tangentialstetigkeit der Ver-
schiebung liefert. Das impliziert, den Spannungstensor im neu eingeführten Raum H(div div)
zu suchen, der tensorwertige Funktionen enthält, deren Divergenzvektor wiederum eine Di-
vergenz besitzt, die in H−1 liegt. Solche Tensorfelder sind durch eine stetige Normal-Normal-
Komponente gekennzeichnet. Wir nennen die sich ergebende gemischte Formulierung “Tangential-
Displacement-Normal-Normal-Stress (TD-NNS)-Formulierung”. Ihre Stabilität wird unter-
sucht.

Für die Diskretisierung der TD-NNS-Methode präsentieren wir ein stabiles Paar von
Finiten Elementen. Wir verwenden Nédélec-Elemente für dieH(curl)-konforme Verschiebung,
und stellen eine Familie von symmetrischen, tensorwertigen Finiten Elementen für die Span-
nungen zur Verfügung. Wir untersuchen Stabilität und Approximationseigenschaften der
Methode, die von optimaler Ordnung sind.

Ein großer Nachteil von gemischten Methoden ist die Indefinitheit der Systemmatrix. Um
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die Positivität der primalen Formulierung wiederherzustellen, verwenden wir Hybridisierung.
Die Normal-Normal-Stetigkeit des Spannungtensors über Elementgrenzen wird dabei verletzt,
und durch Lagrangemultiplikatoren wiederhergestellt. Diese Multiplikatoren entsprechen der
Normalverschiebung auf den Element-Flächen. Die Spannungen werden am Elementlevel
statisch kondensiert, das Schur-Komplement ist symmetrisch und positiv definit. Wir präsen-
tieren einen Additiv-Schwarz-Blockvorkonditionierer, der auch im Fall von fast inkompress-
iblen Materialien optimal ist.

Letztendlich wenden wir die TD-NNS-Methode auf dünne Strukturen an, die wir mit
flachen Tensorproduktelementen diskretisieren. Stabilität und Fehlerabschätzungen können
unabhängig vom Verhältnis der Diskretisierungsfeinheiten in Dicken- und Horizonalrichtung
gezeigt werden.



Acknowledgements

First of all, I want to express my thanks to my advisor Joachim Schöberl, for supervising my
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Chapter 1

Introduction

1.1 State of the art

Today, the need for computational simulations of mechanical problems arises in many different
fields, such as engineering sciences, medicine, or industry. In general, one wants to calculate
the deformation of a body under certain loads and the corresponding stress fields. Widely
known examples are virtual car crash tests, the simulation of stresses arising in mechanical
constructions, but also the optimal design of artificial joints. Often, the problems are not of
purely mechanical nature, but coupled, such as the simulation of power transformers, where
the arising forces stem from the unknown electromagnetic field.

Mechanical problems can be modeled using partial differential equations (PDEs). The full
set of equations for the time-dependent problem consists of certain conservation equations,
such as the conservation of mass and momentum, and additional material laws, which have
to be chosen for the specific type of solid under consideration. The whole system of PDEs
is non-linear, both due to the non-linear nature of the fundamental equations of continuum
mechanics, and possibly also to due non-linear material laws. However, in theory as well as in
applications, it is necessary to have a good understanding of the underlying linear problem.
Linearization of the equations is possible under the assumption of small deformations; one
of the simplest material laws is Hooke’s law, which states a linear dependence between stress
and deformation.

Different formulations of the problem of linear elasticity have been derived in the past.
Starting from the conservation equations, which are posed in integral sense, it is possible to
show equivalence to the classical formulation, which consists of partial differential equations,
and is well-defined for differentiable stresses and displacements. A very common formulation is
the primal variational formulation, or pure displacement formulation, where the displacements
are sought in the Sobolev space H1 of weakly differentiable functions. The stress tensor is
eliminated in this formulation, as it can be expressed in terms of the displacement. One
obtains a symmetric, coercive problem, for which existence and uniqueness of a solution can
be guaranteed. However, this formulation has its drawbacks: in particular, one may expect
stability problems in case of nearly incompressible materials. This is due to the fact that
the compliance tensor, which links stress and strain, becomes singular in the incompressible
limit. The inverse of this tensor acts as a coefficient in the pure displacement formulation,
which deteriorates with growing incompressibility of the material. In the incompressible
limit, the inverse does not exist, hence the stress tensor cannot be expressed in terms of the
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2 CHAPTER 1. INTRODUCTION

displacement. It is not possible to pose the pure displacement formulation in this case.
A possible remedy to stability problems are mixed variational formulations, where the

stresses are considered as separate unknowns. Here, the compliance tensor itself acts as
coefficient. In the framework of mixed problems, it was shown in [ADG84] that then stability
estimates do not deteriorate for nearly incompressible materials, the formulation can also be
used in the incompressible limit. Due to the singularity of the compliance tensor, compatibility
conditions have to be satisfied for certain types of boundary conditions.

The results on existence and uniqueness of solutions in the different formulations as well
as the corresponding stability estimates can then be used in more complicated setups. The
analysis of the linear case provides the necessary background for both geometrically nonlinear
problems, where large deformations are concerned, and non-linear material laws.

Usually, it is not possible to solve the partial differential equations arising from mechanical
problems analytically. Therefore, one aims at finding approximate solutions, which solve a
discrete system stemming from the infinite-dimensional one. A well known and widely used
technique for the discretization of PDEs is the finite element method (FEM). This method
is based on the variational formulation of the corresponding PDE. Its main advantage is
probably the fact that it is applicable to a huge class of problems, be they linear or non-linear,
with varying coefficients, on complex domains with different types of boundary conditions. It
has been used and analyzed in different fields, the best-known one the Poisson equation and
its variants. Important contributions were made within the context of electromagnetic field
problems or fluid mechanics. For an extensive introduction into the finite element method,
we refer to [Bra92, BS02].

The general idea of the finite element method is to project the variational formulation
posed in some infinite-dimensional space onto a discrete subspace, and solve the corresponding
finite-dimensional problem. There are different ideas how to choose these subspaces: probably,
the one most commonly used is to take piecewise linear functions on finer and finer meshes. As
the mesh size of such triangulations is usually denoted by h, this kind of method is referred to
as h-FEM. A different approach is to use piecewise polynomials of increasing order on some
prescribed mesh, which results in the p-FEM method (see [BSK81]). In case of analytical
solutions, this method results in exponential convergence of the solutions; however, when
singularities arise, the h-FEM is better suited to resolve them. The hp-FEM now couples
the two approaches, using high order elements, where the solution is smooth, and employing
mesh refinement towards singularities. These methods were introduced in [BSK81, BD81].
We refer to the monographs by [Sch98, KS99] for an introduction into hp-FEM, and to
[Dem07, DKP+08], where also implementation and automatization of the hp method are
treated.

As the number of degrees of freedom in computations is usually large, it is not possible
to solve the resulting linear system of equations directly. Instead, iterative solvers such
as preconditioned conjugate gradient methods are used. Preconditioning is necessary, as the
condition of the system deteriorates with shrinking mesh-size and growing polynomial degree.
Symmetry and positive definiteness of the system matrix prove to be of advantage. Different
techniques have been developed, and optimal preconditioners for such problems have been
designed. When systems stemming from h-FEM discretization are concerned, we mention
multilevel and multigrid methods (see [Hac85, BPX90, Bra93, BZ00]), algebraic multigrid
methods (see [RS85, RS87]), and domain decomposition methods (see [DW90, TW05]). In
context with high-order methods, mostly two-level preconditioners are used. There, one level
corresponds to the lowest-order problem, for which either a direct solver, or some optimal
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preconditioner is applied. For the high-order degrees of freedom, domain decomposition
methods induced by the triangulation are common. For details on and examples of such
preconditioners, we point the interested reader to [Man90, Sch98, Ain96a, Ain96b, SMPZ08].

There are now several possibilities to define finite element methods for elasticity, which
stem from the different variational formulations. Most straightforward is probably to start
from the pure displacement formulation and to use piecewise linear functions to approximate
the displacement. This approach corresponds to the h-version of the finite element method,
and has been analyzed thoroughly, see monographs such as [Bra92, BS02] for details. In
general settings, one obtains convergence of the approximate solution to the true one at
an optimal rate, as the mesh-size becomes smaller. Preconditioners, such as multigrid or
algebraic multigrid methods, have been designed to solve the resulting linear system in optimal
complexity, see e.g. [KM87, GOS03, Kra08].

Also for the mixed formulation, finite element methods have been developed, as this
formulation shows better stability properties in case of nearly incompressible materials. These
methods are often summarized as Hellinger-Reissner methods, they go back to [Rei50]. It
proves surprisingly hard to construct a pair of finite elements for the displacement vector
and the symmetric stress tensor, which satisfies the stability conditions of Brezzi’s theory
[Bre74, BF91]. In [AW02] a pair of elements in two space dimensions was introduced, the
corresponding method in three space dimensions was first characterized in [AC05], a thorough
analysis and finite elements were provided in [AAW08]. The construction of these elements
in a computational code is not simple, they are of high polynomial order, which implies
large costs even for the lowest-order scheme. These problems have been circumvented by yet
another mixed formulation, where the symmetry of the stress tensor is enforced only weakly
via Lagrangian multipliers. We refer to [Ste86, Ste88, ABD84, AFW07], where such methods
were constructed, not all of them conforming. Also the solution of the mixed problem is more
involved, we refer to [PW06] for a multigrid method for the conforming mixed problem, which
uses the theory developed in [AFW97b, AFW98, AFW00] for the mixed approximation of
the potential equation.

Known problems All of the methods mentioned above have their drawbacks, among them
locking phenomena such as volume and shear locking. Here, volume locking happens for
nearly incompressible materials, while shear locking is usually observed for slim elements.
Such elements are natural for the discretization of thin domains, such as plates or shells. In
both of these cases, the condition number of the linear system deteriorates, and the computed
solutions are of poor quality. We shortly summarize known results and remedies for these
problems

• Nearly incompressible materials. As one may expect from the analysis in the infinite-
dimensional setting, the primal finite element method breaks down, as the material tends
to the incompressible limit. Mixed methods are a remedy to this problem; however, we
saw that these methods, whether conforming or with weak symmetry, are much more
costly than the primal one. For linear elastic, isotropic materials, it is possible to reduce
the elasticity problem to a mixed formulation similar to the Stokes problem. Here, not
the full stress tensor, but only the scalar-valued pressure is introduced as a separate
unknown. This method is shown to be stable also in the incompressible limit. In
both cases, the analysis of solution algorithms for the resulting linear system requires
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additional effort. Apart from [PW06], where multigrid for the full mixed problem is
discussed, we refer to [Sch99, Wie00] for suitable preconditioning techniques.

• Slim domains. A second difficulty in the discretization of mechanical problems is the
aspect ratio of the domain. The standard theory for convergence of the finite element
method relies on a shape-regular triangulation of the domain. This means, that the
shape of the elements must not deteriorate. When a slim domain, such as a plate or
shell, is concerned, the overall mesh size has to be of the order of the thickness of the
domain. This implies an enormous amount of elements necessary for discretization. A
natural idea is now, to use meshes consisting of flat, prismatic or hexahedral elements,
which are aligned with the domain. However, many standard methods fail on such a
mesh. This effect is known as shear locking. It is closely linked to the constant in Korn’s
inequality [Nit81, DL76], which deteriorates with the aspect ratio of the domain (here
element). In engineering sciences, plate and shell models have been developed to cir-
cumvent this problem. There, the system of PDEs on the three-dimensional domain is
reduced to a problem on the mid-surface of the structure. Well known are the Reissner-
Mindlin [Rei45, Min51] or the Kirchhhoff plate models [TW59]. For shells, the Koiter
model [Koi60] is often used. These approaches have been generalized under the notion
of hierarchical modeling. There, displacements and/or stresses are assumed to be poly-
nomial in normal direction to the mid-surface. Thereby, one obtains a family of models,
as one increases the polynomial order. This may be seen as a p-version of a related,
three-dimensional finite element method, and was introduced in [VB81]. We refer to
[DFY04] for an overview over different methods of discretization for plates and shells,
with an introduction into hierarchical models and asymptotic expansions. Analysis for
different approaches is given in [BL91, AAFM99, DBR01]. A main difficulty related
to such methods is the fact, that one additionally obtains unknowns corresponding to
rotations or angles of deformation. Thus, coupling these methods to standard ones used
in non-degenerated parts of the domain is not straightforward. Also the solution of the
underlying system, when direct solvers are not applicable, is less developed than for
standard methods. We refer to [PRS90, Pei91, Bre96, AFW97a, SS06], where multigrid
methods for plates are analyzed.

1.2 On this work

In this thesis, we present a variational formulation of the elasticity problem, which allows us
to construct a finite element method which is stable with respect to volume and shear locking.
We propose to use a mixed formulation of the problem of elasticity, where the stresses and
displacements are considered as separate unknowns. For the displacement space, we use the
space H(curl), which is well known from the analysis and discretization of Maxwell’s equa-
tions. It can be shown that finite elements for this space must have a continuous tangential
component. Widely known as Nédélec elements or edge elements, they were first constructed
in [Néd80]. We refer to the monograph [Mon03] for an extensive introduction into the prop-
erties of H(curl) and conforming discretization techniques, and to [Dem07, DKP+08] for the
treatment of the hp-version of Maxwell’s equations in two and three space dimensions.

The specific choice of H(curl) as displacement space implies a certain space to be used
for the stresses. It turns out to be the space of tensor-valued symmetric L2 functions, whose
divergence vector has a divergence, that lies in H−1. We refer to this space as H(div div).
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Tensor fields in H(div div) have their normal-normal component continuous across interfaces.
We thus see that it is necessary to construct tensor-valued symmetric stress finite elements,
whose normal-normal component is continuous across element faces. We call the resulting
scheme the Tangential-Displacement-Normal-Normal-Stress (TD-NNS) method. We present
an analysis of this new problem formulation in both the infinite-dimensional and the discrete
setting. We verify the conditions of Brezzi’s theory. In the infinite-dimensional setting,
this directly implies stability with respect to nearly incompressible materials. To discretize
the displacement space H(curl), we use high-order Nédélec finite elements introduced in
[Néd80, Néd86]. We explicitly construct shape functions for the stress space of arbitrary
polynomial degree greater or equal to one, such that the corresponding finite element method
is stable. Using nodal Nédélec interpolation operators for the displacements, and newly
defined operators for the stress space, we are able to provide interpolation error estimates
with respect to the relevant norms. These estimates then ensure a-priori error bounds, which
are of optimal order with respect to mesh refinement.

The resulting discrete linear system is symmetric, but indefinite. We apply a hybridization
technique to gain back the positivity, which characterizes the pure displacement formulation
of elasticity. Hybridization is a method stemming from domain decomposition. There, the
inter-element continuity of the flux variable (which are the stresses in our case) is cut, and
re-imposed via Lagrangian multipliers living on the interfaces. These multipliers can be
seen as approximations to the primal variable. The flux field is then discontinuous, and
can be eliminated locally on each element. One ends up with a symmetric positive definite
(SPD) system in terms of the Lagrangian multiplier. Such a method was first introduced
in [dV65] as an implementation technique for the mixed formulation of Poisson’s problem.
These techniques were further developed in [AB85], where also an a-priori error bound for
the multiplier is given. More recently, hybridization of variable-order Raviart-Thomas and
Brezzi-Douglas-Marini elements has been analyzed in [CG04], error estimates can be found
in [CG05c].

In the setting of the TD-NNS method, we enforce normal-normal continuity of the stress
variable via a Lagrangian multiplier, which then corresponds to the normal displacement.
The stress degrees of freedom are local to only one element, and can be eliminated locally.
After this elimination, we obtain a SPD system in terms of the displacement quantities (i.e.
of the displacement and the Lagrangian multiplier) only. We propose an additive Schwarz
preconditioner to use in a preconditioned conjugate gradient method, and prove its spectral
equivalence to the SPD system. We show that the hybridized problem is well-suited for the
treatment of nearly incompressible materials. In that case, we propose to add a consistent,
local stabilization term. Then, the condition of the preconditioned system can be shown to
be independent as well of the mesh size, as of the material tending to the incompressible
limit. We provide error estimates for the displacement quantities, which are independent of
the Poisson ratio of the material, which tends to 1/2 for nearly incompressible materials.

A major task is the application of the TD-NNS method to anisotropic domains, such
as plates or shells. We propose to use flat quadrilateral or prismatic elements aligned with
the domain. Prismatic or quadrilateral, H(curl) conforming elements are well known, see
e.g. [Néd80, Néd86, Mon03, DKP+08]. We explicitely construct finite element bases on for
corresponding stress finite elements. We provide stability and approximation estimates, which
are independent of the aspect ratio of the elements. This is possible, as we use a broken H1

norm for the displacements, which contains only the strain tensor, and not the full gradient of
the displacement. Also interpolation error estimates are provided with respect to the strain
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tensor only. This way, we are able to avoid the use of Korn’s inequality on the element.
Thus, it is possible to use flat elements of high order in the in-plane direction, which allows us
to save a considerable number of degrees of freedom compared to standard methods, where
a shape-regular mesh of overall mesh size similar to the thickness of the domain has to be
used. In comparison to standard plate or shell models, we retain more flexibility regarding the
polynomial order in our method, as also coupling to well-shaped parts of the computational
domain can easily be done.

The TD-NNS method, as described in this thesis, has been implemented in the finite
element open-source software package Netgen/NgSolve

http://www.hpfem.jku.at/.

The proposed stress elements are available of arbitrary order and for all types of elements
considered in this work. All computations have been done using this code.

This thesis is organized as follows.

In Chapter 2, the fundamental equations of continuum mechanics are presented. The ma-
terial law of linear elasticity (Hooke’s law) is stated, and the notion of (near) incompressibility
is introduced. Different kinds of boundary conditions to guarantee unique solvability of the
underlying boundary value problem are prescribed.

In Chapter 3, first a background concerning Sobolev spaces, their properties and trace
maps, is given. Then, variational formulations for the problem of mixed elasticity are de-
duced. Among them, well-known are the primal pure displacement, the Hellinger-Reissner,
and mixed-symmetry schemes. Last, we present the TD-NNS formulation, which is analyzed
subsequently.

Chapter 4 deals with finite element methods for elasticity. After a short summary on basic
notions concerning FEM for mixed problems, we state existing methods, before proceeding to
the development of finite elements for the TD-NNS method. A thorough analysis of stability
and a-priori error estimates follows.

Hybridization techniques are considered in Chapter 5. There, we deal with preconditioning
for the positive definite problem. Subsequently, the method is applied to nearly incompressible
materials, where independence of the degree of incompressibility can be shown.

Chapter 6 is devoted to the analysis of the TD-NNS method on anisotropic domains.
Tensor product elements of arbitrary order are constructed and analyzed. Error estimates
independently of the aspect ratio of the finite elements are given.

1.3 Notations

In this thesis, we use the following symbols and notations. Precise definitions of non-standard
items are given at the indicated pages. Let D ⊂ R

d, d = 2, 3 be a domain, A ⊂ ∂D a part of
its boundary, v,w vector fields and σ a tensor field of second order.

v · w inner product of two vectors

v ⊗ w tensor product vwT of two vectors
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vn, vτ normal and tangential component of v on surface with normal n;
vn = v · n, vτ = v − vnn

σn surface vector of a tensor field, σn = σn

σnn, σnτ normal and tangential component of σn;
σnn = nTσn, σnτ = σn − σnnn

n⊥ rotation in two dimensions (−n2, n1)
T

RSYM ,RSKW the sets of symmetric and skew-symmetric matrices

| · | absolute value of a scalar, Euclidean norm of a vector, and Frobenius
norm of a matrix-valued quantity

λmin(σ), λmax(σ) smallest and largest eigenvalue of a matrix

|σ|s spectral norm of a matrix, |σ|s = λmax(σ
Tσ)

V ∗ dual space of V

A∗ adjoint operator of A;

P k(D) polynomial space on the domain D of order at most k, page 51

P k0 (D) subspace of P k(D) satisfying zero boundary conditions on ∂D, page 52

Qk1,...,kn
x1,...,xn(D) polynomial space of mixed order, Qk1,...,kn

x1,...,xn(D) = P k1x1
⊗· · ·⊗P kn

xn
, page 113

Ck(D), C∞(D) space of k-times/infinitely often continuously differentiable functions on
D, page 11

Ck0 (D),Ck0,A(D) subspaces of Ck(D) satisfying homogenous boundary conditions for the
function and its first k − 1 derivatives on ∂D or the boundary part
A ⊂ ∂D, respectively, page 19

C∞
0 (D), C∞

0,A(D) subspace of C∞(D) of functions of compact support in the open domain
D, or D ∪A respectively, page 19

Hk(D) Sobolev space of order k, page 19

Hk
0 (D),Hk

0,A(D) subspaces of Hk(D) satisfying homogeneous boundary conditions for the
function and its first k − 1 derivatives on ∂D, A respectively, page 19

H(curl;D) Space allowing for a weak curl operator, page 19

H(div;D) Space allowing for a weak divergence operator, page 19

P k(D), Hk(D) for a domain decomposition D are defined piecewise without continuity
assumptions, page 51

V ⊗W tensor product of spaces, page 10

a ≃ b similarity of a, b ∈ R; there exist global constants c1, c2 > 0 such that
c1a ≤ b ≤ c2a, possible (in)dependencies of c1, c2 are pointed out
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Chapter 2

Elasticity

This chapter is devoted to the basic principles of continuum mechanics. We recall the theory
as provided in standard literature on elasticity, such as [MH94, Cia88, FdV79]. Starting from
some reference configuration of the body of interest, we first define the notions of deforma-
tion, displacement, velocity and acceleration. We further introduce the strain tensor, which
describes the change of length and angles in the body. Under the assumption of small defor-
mations, we identify reference and deformed configuration. It is then rectified to replace the
non-linear strain tensor by its linearization.

The balance of mass and momentum are the basic equations of kinematics. For the stress
tensor, the balance of angular momentum implies its symmetry. In the steady state case, the
conservation of mass and momentum reduce to the equilibrium equation, which relates the
divergence of the stress tensor with the given volume forces.

We further discuss material laws, which relate stress and strain, and thereby characterize
also the relation between stress and displacement. We restrict ourselves to the case of linear
elastic materials, which are governed by Hooke’s law. It states a linear dependence between
the stress and strain tensor. A homogenous, isotropic material is determined by two constants.
In the classical theory of mechanics, one mostly uses Young’s modulus and Poisson’s ratio.
We introduce the notion of nearly incompressible and incompressible materials in this case.

In Section 2.1, we introduce some standard vector, matrix and differential operators. In
Section 2.2, we provide the governing equations of continuum mechanics, and their lineariza-
tion. Section 2.3 contains material laws for elastic bodies, while in Section 2.4 the boundary
value problem of linear elasticity is stated.

2.1 Notations

In this thesis, we do not differ in our notation between scalar, vectorial and tensor-valued
quantities, and we identify matrices and tensors of second order. Let d ∈ N be fixed, and let
v ∈ R

d be a d-dimensional vector. We refer to its i-th component as vi, and denote

v = (v1, . . . , vd)
T .

A vector can also be seen as d × 1-matrix. For general d1, d2 ∈ N, γ ∈ R
d1×d2 is a tensor of

dimension d1 × d2, with components γij. A quadratic tensor γ ∈ R
d×d is called symmetric,

iff it coincides with its transpose, γ = γT , and skew-symmetric, iff γ = −γT . We refer to the

9
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respective real spaces as R
d×d
SYM and R

d×d
SKW . If the dimension is clear from the context, we

simply write RSYM and RSKW .
We use the dot for the inner product between vector fields v,w ∈ R

d, and the column for
the matrix inner product between γ, δ ∈ R

d1×d2

v · w := vTw =

d∑

i=1

viwi, γ : δ :=

d1∑

i=1

d2∑

j=1

γijδij .

In case of d = 3, we introduce the cross product

v × w :=




v2w3 − w2v3
v3w1 − w3v1
v1w2 − w1v2


 .

The tensor product ⊗ shall denote the outer product between two vectors v ∈ R
d1 , w ∈ R

d2

v ⊗ w := vwT ∈ R
d1×d2 .

We use | · | to denote the absolute value of a scalar, as well as the Euclidean norm of
a vector, and the Frobenius norm of a tensor. For a domain or surface D, |D| shall be its
volume or area, respectively. The spectral norm | · |s of a second order tensor is defined by

|γ|s :=
√
λmax(γTγ),

where λmax(δ) denotes the maximal eigenvalue of the matrix δ.
Let now I be the identity matrix of dimension d. For a quadratic tensor γ ∈ R

d×d, we
define the trace and deviator by

tr(γ) = γ : I, dev(γ) := γ −
1

d
tr(γ)I.

Note that there holds tr(dev(γ)) = 0.
Let now d, k ∈ N be fixed, and x = (x1, . . . , xd)

T . We denote the set of polynomial

functions in x up to order k on R
d by P kx (Rd). For k1, . . . kd ∈ N, the space Qk1,...,kd

x (Rd) shall
be the polynomial space of mixed order,

Qk1,...,kd
x (Rd) := P k1x1

(R) ⊗ · · · ⊗ P kd
xd

(R).

There, the tensor product ⊗ between spaces is defined by

V ⊗W := span
{
vw| v ∈ V,w ∈W

}
.

If clear from the context, the subscript x can also be omitted. By P kSYM (Rd) and P kSKW (Rd),
we abbreviate the spaces of tensor-valued, d× d-dimensional, symmetric and skew-symmetric
polynomials, respectively.

Let now D ⊂ R
d be an open domain with smooth boundary. By P k(D), Qk1,...,kd(D),

P kSYM (D) and P kSKW (D) we mean the respective spaces of polynomial functions restricted
to D. Next, we consider some smooth function w : D → R. Then the gradient operator
∇ := ( ∂

∂x1
, . . . , ∂

∂xd
)T applied to w yields

∇w :=

(
∂w

∂x1
, . . . ,

∂w

∂xd

)T
.
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For a vector-valued function v : D → R
d, its gradient is a tensor, where each of its rows is

the gradient of the respective component of v,

∇v :=




∇vT1
...

∇vTd


 .

In two dimensions, there exist two curl operators: the vector Curl mapping scalar to vector
fields, and the scalar curl operator acting vice versa,

Curlw :=

(
−
∂w

∂x2
,
∂w

∂x1

)
, curl v :=

∂v1
∂x2

−
∂v2
∂x1

.

In three space dimensions, there is only one curl operator, which maps vector fields to vector
fields

curl v := Curl v := ∇× v.

The divergence of a vector-valued function q is defined as

div q := ∇ · q =

d∑

i=1

∂qi
∂xi

.

For a tensor-valued function τ : D → R
d×d, d = 2, 3, curl and divergence are defined row-wise

curl τ :=




curl(τ11, . . . , τ1d)
...

curl(τd1, . . . , τdd)


 , div τ :=




div(τ11, . . . , τ1d)
...

div(τd1, . . . , τdd)


 .

They map to R
d×d(d−1)/2 and R

d, respectively. Throughout this work, we denote

• C(D) the sets of continuous functions on D,

• Ck(D), C∞(D) the set of k times/infinitely often continuously differentiable functions
on D,

• Ck0 (D) the subset of Ck(D) with vanishing traces of the function and its first k − 1
derivatives on the boundary ∂D,

• C∞
0 (D) the set of functions in C∞(D) with compact support.

Given a non-overlapping domain-decomposition D := {D1, . . . ,DS} ofD into sub-domains
Di, we define all above spaces also for this decomposition. There, we do not pose any assump-
tions on the continuity between the different domains, i.e. the spaces are defined piecewise.
For example P k(D) = {v : D → R | v|Di ∈ P k(Di) for i = 1, . . . , S}.

2.2 The equations of elasticity

In this section, we introduce the basics of continuum mechanics. Let Ω ⊂ R
d, d = 2, 3 be a

domain in space, which is identified with the body of interest at some initial time. We call Ω
the reference configuration. We provide a framework for the description of the motion of Ω in
time and space under given surface and volume forces. We always assume that Ω is open and
connected. So far, let the boundary of Ω be smooth, we will consider more general settings
later in this thesis.
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2.2.1 Kinematics

Kinematics is the mathematical description of the deformation and motion of a piece of
material, cf. [MH94]. Let Ω ⊂ R

d, d = 2, 3 be identified with this piece at time t0 = 0. We
are then interested in its movement in the time interval [0, T ]. We call a smooth mapping
Φ : Ω → R

d a configuration or deformation of Ω, if it preserves orientations and is invertible,
i.e. if

det(∇XΦ(X)) > 0 for all X ∈ Ω.

A point X ∈ Ω is called material point, while some point x ∈ R
d is called spatial point. We

will denote quantities related to the reference configuration by uppercase letters. For the
same quantity on the deformed configuration, the respective lowercase letter is then used, e.g.
the material point X matches the spatial point x = Φ(X).

A time-dependent, continuous family of deformations (Φ(·, t)) is called motion. At time
t, any X ∈ Ω is mapped to some spatial point x = Φ(X, t). For such a point x = Φ(X, t) we
define the

displacement U(X, t) := Φ(X, t) −X, u(x, t) := U(X, t),

velocity V (X, t) :=
∂

∂t
Φ(X, t), v(x, t) := V (X, t),

acceleration A(X, t) :=
∂2

∂t2
Φ(X, t), a(x, t) := A(X, t),

with respect to material and spatial coordinates.
We now introduce the notion of strain. Let ∇XΦ be the gradient of Φ with respect to

X, which is referred to as the deformation gradient. The local deformation of the medium is
characterized by the right Cauchy-Green tensor

C(X, t) := ∇XΦ(X, t)T∇XΦ(X, t),

or, equivalently, Green’s strain tensor

E(U)(X, t) :=
1

2

(
C(X, t) − I

)
=

1

2

(
∇XU(X, t) + ∇XU(X, t)T + ∇XU(X, t)T∇XU(X, t)

)
.

Note that these tensors are nonlinear with respect to deformation or displacement. A detailed
analysis of the properties of these tensors can e.g. be found in [MH94]. We state that the
strain vanishes, if the motion is a rigid body transformation, i.e. if

Φ(X, t) = Q(t)X + b(t)

for some smooth vector field b : [0, T ] → R
d and a smooth, orthogonal tensor field Q : [0, t] →

R
d×d, Q(t)TQ(t) = I. For such a motion, Q corresponds to the rotation, while b is related to

the translation of the body.
So far, we provided basic notions of continuum mechanics for arbitrary motions. In the

following, we will restrict ourselves to “small deformations”. Thus, it is rectified to identify
the material point X with its image x at time t. We can replace material coordinates by
spatial ones, setting X = x. We will use u(x, t), v(x, t) and a(x, t) for displacement, velocity
and acceleration. In this setup, the nonlinear Green tensor can be replaced by

ε(u)(x, t) :=
∂E

∂U
(0)(X, t) =

1

2

(
∇xu(x, t) + ∇xu(x, t)

T
)
.
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Here the nabla operator ∇x denotes the gradient with respect to the spatial variable x. We
note, that the linearized strain vanishes for infinitesimal rigid body motions

u(x, t) = γ(t)x+ a(t),

where a : [0, T ] → R
d and γ : [0, T ] → RSKW are smooth.

2.2.2 Balance equations

In the previous section, we introduced the basic quantities considered in continuum mechanics.
In the following, we present the fundamental equations related to the motion of a body.
We consider the balance of mass and momentum, and state the equations implied by these
conservation laws. We do not give an insight into the derivation of these equations; we point
the interested reader to monographs such as [MH94, FdV79, Cia88].

Let now Ω ⊂ R
d, d = 2, 3 be a smooth, connected domain. Let Φ : Ω× [0, T ] be a motion

of the body. We assume that all deformations are small, such that a linearization of the strain
tensor is rectified. For x ∈ Ω, t ∈ [0, T ], we introduce the quantities of

mass density ρ(x, t),

specific force density f̄(x, t).

Let now ω ⊂ Ω be some connected, smooth sub-domain of Ω. Let moreover ωt := Φ(ω, t) be
the deformed configuration of ω at time t. In any surface point x ∈ ∂ω, we denote by n the
outer unit normal vector. Then, we define the

surface force density ~t(x, t, n),

which describes the forces acting in point x at time t onto a surface with normal n. If the
balance of momentum below is satisfied, it can be shown that this vector-valued quantity
depends linearly on the normal vector n. This statement is referred to as Cauchy’s theorem,
and proven e.g. in [MH94]. Then there exists a tensor field σ(x, t) on Ω such that ~t(x, t, n) =
σ(x, t)n on the boundary. This tensor field is called

stress field σ(x, t).

Conservation of mass Let ω be some sub-body of Ω as described above, and ωt its de-
formed configuration at time t. Let ρR be the (prescribed) mass density of the reference
configuration. Then, the law of conservation of mass states that

∫

ω
ρR(x) dx =

∫

ωt

ρ(x, t) dx for t ∈ (0, T ]. (2.1)

Using Reynold’s Transport Theorem (Theorem 1.1 in Chapter 2 of [MH94]), one can show
that having (2.1) for any ω ⊂ Ω is equivalent to a partial differential equation, provided the
mass density ρ and velocity v are smooth enough. Indeed, if both functions are differentiable,
it is equivalent to impose

∂ρ

∂t
= − div(ρv) in Ω × (0, T ], (2.2)

ρ(0) = ρR in Ω. (2.3)
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Balance of momentum Under the same assumptions as above, Newton’s second law states
that for any smooth sub-domain ω the balance of linear momentum holds true,

∂

∂t

∫

ωt

ρv dx =

∫

∂ωt

~t(x, t, n) ds +

∫

ωt

ρf̄ dx for t ∈ (0, T ].

Similarly, the balance of angular momentum asserts that

∂

∂t

∫

ωt

x× ρv dx =

∫

∂ωt

x× ~t(x, t, n) ds +

∫

ωt

x× ρf̄ dx for t ∈ (0, T ].

Similar to the conservation of mass, one can deduce an equivalent formulation as a partial
differential equation, given all involved fields are smooth enough. Then the two equations
above imply Cauchy’s equation of motion and the symmetry of the stress tensor

ρ
∂v

∂t
= div σ + f in Ω × (0, T ], (2.4)

σ = σT in Ω × (0, T ]. (2.5)

Here, we use the volume force density f := ρf̄ , and the characterization of ~t(x, t, n) by the
stress tensor σ(x, t).

Steady state In this thesis, we do not treat time-dependent problems. We rather consider
steady state solutions, which do not change in time. We assume that all given quantities are
independent of time t, and then compute the steady state displacement u : Ω → R

d. Thus,
both velocity and acceleration vanish. The equations of balance of momentum (2.4), (2.5)
simplify to

0 = div σ + f in Ω, (2.6)

σ = σT in Ω. (2.7)

If we also fix the mass density ρ to its initial value ρR, the material is called incompressible.
Then, the equation of conservation of mass (2.2) reduces to

0 = div u in Ω. (2.8)

2.3 Material laws

So far, the equations of balance of momentum (2.6), (2.7) provided a relation between the
stress tensor σ and the given volume forces f . In this section, we prescribe a material law,
which states a linear relation between the strain and the stress tensor (Hooke’s law).

Linear elastic materials A material is called linear elastic, if the stress tensor depends
linearly on the strain. Then, there exists a fourth order tensor field C̄(x) such that

σ = C̄ε(u) in Ω. (2.9)

This relation is referred to as “Hooke’s law”. If C̄ does not depend on x, the material is called
homogenous. A material is isotropic, if it is independent of the direction of the main strains,
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i.e. of the eigenvectors of the strain tensor. One can show that a linear elastic, homogenous,
isotropic material is determined by two constant values. One often uses the Young modulus
Ē and the Poisson ratio ν̄ to characterize C̄. Then, the relation between stress and strain
reads

σ =
Ē

1 + ν̄

(
ν̄

1 − 2ν̄
tr(ε(u))I + ε(u)

)
. (2.10)

Physically sensible values of Ē and ν̄ range between

0 < ν̄ < 1/2 and Ē > 0.

Another possibility is to use the Lamé constants λ̄ and µ̄, which are related to Ē, ν̄ via

λ̄ =
Ēν̄

(1 + ν̄)(1 − 2ν̄)
, µ̄ =

Ē

2(1 + ν̄)
.

Then, the stress-strain relation is defined by

σ = λ̄ tr(ε(u))I + 2µ̄ε(u) = λ̄div uI + 2µ̄ε(u). (2.11)

The fourth order tensor C̄ exists and is invertible as long as λ̄ <∞, or, equivalently, ν̄ < 1/2.
In this case, we may set

Ā := C̄−1.

We call Ā the compliance tensor, its application to some stress function σ is given by

Āσ =
1

2µ̄
dev σ +

1

d(dλ̄+ 2µ̄)
tr(σ)I. (2.12)

One sees from (2.11), that for λ̄→ ∞, the divergence of the displacement field is penalized.
In the limiting case, the divergence of u has to vanish. Having in mind equation (2.8), we
see that this means that the material is incompressible. When using Ē and ν̄ as material
parameters, incompressibility is reached for ν̄ = 1/2. In this case, the fourth order tensor C̄
does not exist. The compliance tensor Ā can still be defined in the incompressible limit, it is
then singular, and its application to a stress function σ is given by

Āσ =
1

2µ̄
dev σ.

Thus, the strain depends only on the deviator of the stress. We talk of nearly incompressible
materials, if we mean that λ̄ → ∞. In this case, straightforward analytical and numerical
methods fail, one runs into stability troubles. Thus, special methods, which are stable with
respect to λ̄ → ∞ are needed. In the scope of this thesis, we will present a method which is
feasible in this setup.

2.4 Boundary value problems

In this section, we add suitable conditions on the stress and displacement on the boundary
of the body Ω. Later, we will see, that correctly chosen conditions ensure that the equations
of elasticity presented above have a unique solution. From intuition it seems clear, that the
deformation of and stresses occurring in the body are uniquely determined, if it is fixed along
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at least a part of its boundary, such that no rigid body motions can occur. If this is not the
case, the solution can only be unique up to such rigid body motions, which do not affect the
strains and stresses in the body.

Let now Ω ⊂ R
d, d = 2, 3 be an open, connected domain with suitably smooth boundary.

Which smoothness assumptions on the boundary really are required will be discussed later
in this thesis. We divide the boundary Γ = ∂Ω into two parts, Γ = ΓD ∪ ΓN . These parts
shall not intersect, ΓD ∩ ΓN = ∅. There, ΓD is regarded as closed set, while ΓN is regarded
as open. We further assume that ΓD is non-trivial, i.e. of positive d− 1 dimensional measure
|ΓD| > 0. We include the case of ΓN = ∅.

On the boundary part ΓD, we impose Dirichlet boundary conditions, i.e. we fix the dis-
placement u to some given surface displacement uD,

u = uD on ΓD.

The remaining part ΓN is governed by traction or Neumann boundary conditions. There, the
surface tractions ~t(x, n) = σ(x)n are prescribed,

σn = ~tN on ΓN .

There are more physically sensible types of boundary conditions, such as the pressure
boundary condition, where the pressure is prescribed. Then, the surface traction points in
normal direction, and the tangential tractions vanish. This is obtained setting

σn = pn.

However, we do not treat this kind of condition separately, it can be viewed within the more
general framework of traction boundary conditions.



Chapter 3

Variational Framework

In this chapter, we present several variational formulations for the elasticity problem on a
suitable, bounded and connected domain Ω ⊂ R

d, d = 2, 3.

Problem 3.1 (Elasticity problem). Find u : Ω → R
d, and σ : Ω → R

d×d symmetric such
that

Aσ − ε(u) = 0 in Ω, (3.1)

− div(σ) = f in Ω, (3.2)

with boundary conditions

u = uD on ΓD, (3.3)

σn = ~tN on ΓN . (3.4)

We introduce the scalar-valued function space H1(Ω), as well as the vector-valued spaces
H(curl; Ω) and H(div;Ω). As the stress is a tensor-valued symmetric quantity, we discuss
feasible spaces and some of their properties for such fields. Then, we present three well-known
variational formulations for the elasticity problem. The first is the primal formulation, where
all derivatives are applied to the displacement. The second one is the mixed formulation
by Hellinger and Reissner. Here, the displacement can be totally discontinuous, but the
divergence of the symmetric stress tensor must exist in a weak sense. The third is a mixed
formulation with weak symmetry, where, as the name suggests, the symmetry of the stress
tensor is imposed via Lagrangian multipliers.

In the second part of this chapter, we introduce a new mixed variational formulation,
which lies in between the first two concepts. We search for the displacement in H(curl; Ω),
which lies in between the primal and the Hellinger-Reissner choice. We provide a proper
space H(div div;Ω) for the stress. We show existence and uniqueness for all the different
formulations, using abstract theory for mixed problems.

This chapter is organized as follows: In Section 3.1, spaces allowing for weak gradient, curl,
and divergence operators on domains and manifolds are introduced, and their basic properties
are recalled. In Section 3.2, abstract theory for mixed variational problems is presented, and
well-known mixed formulations of the elasticity problem are shortly described. Section 3.3
deals with the formulation and analysis of our new mixed approach.

17
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3.1 Function spaces

In the following, we define differential operators and function spaces on an exemplary do-
main D. Throughout this work, we will assume that any domain satisfies the conditions
below.

Assumption 3.2. Let D ⊂ R
d, d = 2, 3 be an open Lipschitz domain, i.e. its boundary can

be represented by a finite number of Lipschitz continuous functions. We assume that the
boundary ∂D is

• either smooth, ∂D ∈ C∞,

• or polygonal/polyhedral, consisting of straight open facets Γi, i = 1, . . . , s, such that

∂D =

s⋃

i=1

Γ̄i, Γi ∩ Γj = ∅, ni := n|Γi = const.

In the following, we will call the boundary polyhedral, no matter whether in two or
three space dimensions. Note that, in the plane, the “facets” Γi are the edges of the polygon,
whereas facets in three-dimensional space are faces of a polyhedron. We will meet the concept
of facets again when finite element triangulations of the domain are concerned.

In this section, let D be of unit size, diamD ≃ 1. Then, all constants depending on D
only depend on the shape of D, and not on its size; proper scalings of terms can be introduced
when needed.

The differential operators from Section 2.1 are defined for smooth functions. Let now

L2(D) :=
{
w : D → R

∣∣∣
∫

D
|w|2 dx <∞

}

be the standard Lebesgue space of square integrable functions. It is equipped with the
following inner product and induced norm

(u, v)L2(D) := (u, v)D :=

∫

D
uv dx, ‖u‖L2(D) := ‖u‖D :=

√
(u, u)D .

The gradient, curl and divergence operators can also be defined in weak sense:

Definition 3.3. For w ∈ L2(D), g = ∇w ∈ [L2(D)]d is called weak gradient of w iff

∫

D
g · φdx = −

∫

D
w divφdx ∀φ ∈ [C∞

0 (D)]d.

For v ∈ [L2(D)]d, c = curl v ∈ [L2(D)]d(d−1)/2 is called weak curl of v iff

∫

D
c · φdx =

∫

D
v · Curlφdx ∀φ ∈ [C∞

0 (D)]d(d−1)/2.

For q ∈ [L2(D)]d, d = div q ∈ L2(D) is called weak divergence of q iff

∫

D
d · φdx = −

∫

D
q · ∇φdx ∀φ ∈ C∞

0 (D).
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3.1.1 Sobolev spaces on a domain

The weak differential operators define Hilbert spaces, which are appropriate for the analysis
of PDEs in variational form.

Definition 3.4. Define the Sobolev space H1(D), and the spaces H(curl;D),H(div;D) al-
lowing for weak curl- and divergence operators,

H1(D) := {w ∈ L2(D) : ∇w ∈ [L2(D)]d},

H(curl;D) := {v ∈ [L2(D)]d : curl v ∈ [L2(D)]d(d−1)/2},

H(div;D) := {q ∈ [L2(D)]d : div q ∈ L2(D)}.

When equipped with inner products

(u, v)H1(D) := (u, v)D + (∇u,∇v)D,

(u, v)H(curl;D) := (u, v)D + (curlu, curl v)D,

(q, p)H(div;D) := (q, p)D + (div q,div p)D,

and the induced norms ‖.‖H1(D), ‖.‖H(curl;D) and ‖.‖H(div;D), they are Hilbert spaces.

Sobolev spaces of higher order can be defined similarly, for k ∈ N we set

Hk(D) := {w ∈ L2(D) : ∇kw ∈ [L2(D)]d
k
},

Hk(curl;D) := {v ∈ [Hk(D)]d : curl v ∈ [Hk(D)]d(d−1)/2},

Hk(div;D) := {q ∈ [Hk(D)]d : div q ∈ Hk(D)}.

When k = 0, we have H0(D) = L2(D). For the space Hk(D), we use the following semi-norm
and norm

|w|Hk(D) := ‖∇kw‖L2(D), ‖w‖2
Hk(D) := ‖w‖2

L2(D) + |w|2Hk(D).

The Sobolev spaces Hs(D) with real index s > 0 can be defined using the Fourier trans-
form; see e.g. [GR86]. The spaces Hs(curl;D) and Hs(div;D) can be defined accordingly. It
can be shown, that the spaces H1(D),H(curl;D), and H(div;D) are the closure of C∞(D̄) in
the respective norms.

Let now A ⊂ ∂D be a part of the boundary of the domain D. We define Ck0,A(D) to be the

subset of Ck(D) consisting of functions whose trace and first k − 1 derivatives vanish on the
boundary part A. By C∞

0,A(D), we denote the set of infinitely often continuously differentiable

functions with compact support on D̄\A. Then, we define

Hk
0,A(D) := C∞

0,A(D)
‖.‖

Hk(D) , k ∈ N,

H0,A(curl;D) := [C∞
0,A(D)]d

‖.‖H(curl;D)
,

H0,A(div;D) := [C∞
0,A(D)]d

‖.‖H(div;D)
.

We write Hk
0 (D),H0(curl;D) and H0(div;D) in case of A = ∂D. These spaces satisfy cer-

tain kinds of homogenous boundary conditions on A, which we will see in more detail in
Section 3.1.3. We can now define distributional Sobolev spaces of negative index

H−k(D) := Hk
0 (D)∗, H−k

A (D) := Hk
0,A(D)∗, k ∈ N.
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These duality relations imply to use the norm

‖q‖H−k
A (D) := sup

v∈Hk
0,A(D)

〈q, v〉Hk(D)

‖v‖Hk(D)

.

We denote the corresponding inner product by (·, ·)H−k
A (D).

We introduce the Lebesgue spaces of symmetric and skew-symmetric, tensor-valued func-
tions

L2
SYM(D) := {τ ∈ [L2(D)]d×d : τ = τT },

L2
SKW (D) := {τ ∈ [L2(D)]d×d : τ = −τT }.

Analogously, the space of symmetric tensor fields with weak divergence is

HSYM(div;D) :=
{
τ ∈ L2

SYM(D) : div τ ∈ [L2(div;D)]d
}
.

As their scalar- and vector-valued equivalents, these spaces are Hilbert spaces.

3.1.2 Sobolev spaces on a manifold

We again consider a domain D satisfying Assumption 3.2. Let A ⊆ ∂D denote a bounded,
Lipschitzian manifold of dimension d − 1. Let moreover B := ∂D\A be its complement on
the boundary. Note that also the case A = ∂D is included.

We can define the Lebesgue space L2(A) as the space of square integrable functions on
this manifold. We will heavily use the space

H1/2(A) := C∞(Ā)
‖.‖

H1/2(A) .

Here, ‖.‖H1/2(A) is the norm induced by the inner product

(u, v)H1/2(A) :=

∫

A

∫

A

(u(x) − u(y))(v(x) − v(y))

|x− y|d
dsxdsy +

∫

A
uv dsx.

This definition is equivalent to one using the Fourier transform, as e.g. given in [GR86]. If
A 6= ∂D, the space

H
1/2
00 (A) := C∞

0 (A)
‖.‖

H1/2(∂D)

can be extended by zero to the whole boundary ∂D, and the extension lies in H1/2(∂D). We

see that H
1/2
00 (∂D) := H1/2(∂D). Following [BC01a], we introduce the dual spaces

H−1/2(A) := [H1/2(A)]∗, H
−1/2
00 (A) := [H

1/2
00 (A)]∗.

The space H1/2(∂D) is scalar-valued. Next, we define vector-valued spaces on the sur-
face. Therefore, on a polyhedral boundary consisting of facets {Γi}i=1,...s as described in
Assumption 3.2, we need to introduce the space of functions piecewise in H1/2(∂D),

H1/2
pw (∂D) :=

{
w ∈ L2(∂D) : w|Γi ∈ H1/2(Γi)

}
,



3.1. FUNCTION SPACES 21

with norm

‖w‖
H

1/2
pw (∂D)

:=

(
s∑

i=1

‖w‖2
H1/2(Γi)

)1/2

.

In case of a smooth boundary, we simply set H
1/2
pw (∂D) := H1/2(∂D). Of course, this space

can be restricted to H
1/2
pw (A) directly. Let us now define

L2
τ (∂D) :=

{
q ∈ [L2(∂D)]d : q · n = 0 a.e. on ∂D

}
,

H1/2
τ (∂D) :=

{
q ∈ L2

τ (∂D) : q ∈ [H1/2
pw ]d

}
.

The first space is the vector-valued Lebesgue space of square integrable functions, which lie in

the tangential plane of ∂D almost everywhere. The second space, H
1/2
τ , consists of functions

in the tangential plane whose components are piecewise in H1/2. Now, we provide a space,
which, as we will see later, is a proper trace space for the tangential component of [H1(D)]d.

For a smooth boundary, we already find this space in H
1/2
τ . Now, we introduce such a space

for a polyhedral boundary consisting of facets {Γi}i=1,...s. We first do so for the case of three
space dimensions. All following definitions are taken from [BC01a, BC01b]. Let Eij := Γ̄i∩Γ̄j
be the edge between facets Γi,Γj, and let τij be the tangential vector along this edge. On
this edge, let τi := τij × ni be the vector lying in Γi, and orthogonal to the edge. We define

H
1/2
‖ (∂D) :=

{
q ∈ H1/2

τ (∂D) : q|Γi · τij
1/2
= q|Γj · τij on all Eij

}
,

H
1/2
⊥ (∂D) :=

{
q ∈ H1/2

τ (∂D) : q|Γi · τi
1/2
= q|Γj · τj on all Eij

}
.

There,
1/2
= on an edge Eij means

qi
1/2
= qj on Eij iff

∫

Γi

∫

Γj

|qi(x) − qj(y)|
2

|x− y|3
dsxdsy <∞.

Intuitively, this means, that functions in H
1/2
‖ (∂D) have continuous tangential components

in the surface, as well as functions in H
1/2
⊥ (∂D) have continuous normal components.

For D ⊂ R
2 with polyhedral boundary, let Vij be the vertex between facets Γi and Γj .

Similarly to the 3d case, let ni be the normal to facet Γi, and let τi = n⊥i be the tangent

vector. There exists no equivalent to the edge tangent vector τij. The spaces H
1/2
⊥ (∂D) and

H
1/2
‖ (∂D) are then defined via

H
1/2
‖ (∂D) := H1/2

τ (∂D),

H
1/2
⊥ (∂D) :=

{
q ∈ H1/2

τ (∂D) : q|Γi · τi
1/2
= q|Γj · τj on Vij

}
for d = 2,

where
1/2
= on the vertex Vij is defined in a similar way as for an edge in three dimensions,

qi
1/2
= qj on Vij iff

∫

Γi

∫

Γj

|qi(x) − qj(y)|
2

|x− y|2
dsxdsy <∞.
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If the boundary ∂D is smooth, we set H
1/2
‖ (∂D) := H

1/2
⊥ (∂D) := H

1/2
τ (∂Ω) in both two

and three dimensions. We set H
−1/2
‖ (∂D) := [H

1/2
‖ (∂D)]∗, and H

−1/2
⊥ (∂D) :=

[
H

1/2
⊥ (∂D)

]∗
.

Now, we introduce even less regular vector-valued spaces on the surface. We do so for the
case of three space dimensions first. All following definitions are taken from [BC01a, BC01b].
We need differential operators living on ∂D: We use ∇∂D, curl∂D and div∂D, which are
defined for smooth domains e.g. in [Mon03, Section 3.4], for polyhedral domains in [BC01a].
We define

H
−1/2
⊥ (curl∂D; ∂D) :=

{
q ∈ H

−1/2
⊥ (∂D) : curl∂D q ∈ H−1/2(∂D)

}
,

H
−1/2
‖ (div∂D; ∂D) :=

{
q ∈ H

−1/2
‖ (∂D) : div∂D q ∈ H−1/2(∂D)

}
.

In two space dimensions, the boundary is of local dimension one, therefore the notion of
gradient and divergence is replaced by the tangential derivative. The curl operator does not
exist. Nevertheless, to unify notation in two and three space dimensions, we define for D ⊂ R

2

H
−1/2
⊥ (curl∂D; ∂D) := H

−1/2
⊥ (∂D),

H
−1/2
‖ (div∂D; ∂D) := H

1/2
⊥ (∂D).

Later on, we will obtain the same trace theorems in both cases d = 2, 3. Note that, also in
both two and three dimensions, the surface spaces are dual to each other, we have [BC01b]

H
−1/2
⊥ (curl∂D; ∂D) =

[
H

−1/2
‖ (div∂D; ∂D)

]∗
.

All these spaces can be restricted to a part A of the boundary, we write

H
−1/2
⊥ (curlA;A) and H

−1/2
‖ (divA;A).

If A has a boundary ∂A, it is possible to define subspaces

H
−1/2
⊥ (curl0A;A) and H

−1/2
‖ (div0

A;A)

such that functions can be extended conformingly by zero to the whole boundary ∂D.

Well aware that spaces with negative index contain distributions, we call them function
spaces. We may even refer to their elements as functions, when it seems more intuitive to do
so.

Last, we need to introduce one further space on a manifold, namely the Neumann trace
space of H2(D) ∩H1

0 (D). We set

H
1/2
n,0 (∂D) :=

{∂ϕ
∂n

: ϕ ∈ H2(D) ∩H1
0 (D)

}
, (3.5)

with its norm defined by

‖q‖
H

1/2
n,0 (∂D)

:= inf
ϕ∈H2∩H1

0
∂ϕ/∂n=q

‖w‖H2(D). (3.6)

Note that, up to now, we did not introduce the notion of trace operators formally. In Sec-
tion 3.1.3, we will rectify this choice. For a smooth boundary ∂D, this space is equal to
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H1/2(∂D). In case of a polyhedral domain with boundary facets {Γi}i=1...s, this space con-

sists of piecewise H
1/2
00 contributions,

H
1/2
n,0 (∂D) = {w ∈ L2(∂D) : w|Γi ∈ H

1/2
00 (Γi)}.

This characterization can be derived from the more involved setup in [Gri85, Theorem 1.5.8.2].
For the case of mixed boundary conditions, we also introduce

H
1/2
n,0,A(∂D) :=

{∂ϕ
∂n

: φ ∈ H2(D) ∩H1
0,A(D)

}
. (3.7)

We denote the dual spaces

H−1/2
n (∂D) := H

1/2
n,0 (∂D)∗, (3.8)

H
−1/2
n,A (∂D) := H

1/2
n,0,A(∂D)∗. (3.9)

3.1.3 Trace theorems

The spaces H1(D),H(curl;D), and H(div;D) allow different types of boundary conditions.
We provide trace and inverse trace theorems for all spaces. From these theorems, we deduce
interface conditions for piecewise defined vector fields.

3.1.3.1 Traces in the classical sense

For a continuous function, the trace operator

tr∂D : C(D̄) → C(∂D), (tr∂D w)(x) := w(x) for x ∈ ∂D

is well defined on a Lipschitz domain. Note that, on the boundary ∂D of a Lipschitz domain,
the outward unit normal vector n can be defined almost everywhere. For a vector v ∈ R

d, its
normal and tangential components with respect to n are given by

vn = v · n, vτ = v − vnn.

In three space dimensions, there holds vτ = n× (v×n). Thus, for a vector valued, continuous
function v, we may also define the normal and tangential traces tr∂D,n v, tr∂D,τ v almost
everywhere by

tr∂D,n v = vn, tr∂D,τ v = vτ .

Note that tr∂D,n v is a scalar quantity, whereas tr∂D,τ v is vector-valued and lies in the tangen-
tial space of ∂D, which is locally of dimension d− 1. For A ⊂ ∂D, trace operators trA, trA,τ ,
and trA,n can be defined as the restriction of the respective traces to A.

We will see that the notion of a trace operator can be extended to H1 functions, whereas
functions in H(curl) allow for a tangential trace, as well as functions in H(div) have a normal
trace.
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3.1.3.2 Traces of the space H1

The classical trace operator can be extended to the Sobolev space H1(D); its image is then
H1/2(∂D). Moreover, any function w in the trace space H1/2(∂D) can be extended to some
w̃ ∈ H1(D), and both the trace and extension operator are continuous. For the proof, we
refer to [Gri85].

Theorem 3.5 (Trace theorem for H1). Let D ⊂ R
d, d = 2, 3 be a bounded Lipschitz domain

satisfying Assumption 3.2, diamD ≃ 1,

1. The trace operator tr∂D is well defined on H1(D) as an extension from C∞(D̄). It is
continuous from H1(D) to H1/2(∂D); there exists a constant ctr > 0 such that

‖ tr∂D u‖H1/2(∂D) ≤ ctr‖u‖H1(D) ∀u ∈ H1(D).

2. For g ∈ H1/2(∂D), there exists some u ∈ H1(D) such that

tr∂D u = g on ∂D and ‖u‖H1(D) ≤ cext‖g‖H1/2(∂D).

The constants ctr, cext are positive and only depend on the shape of the domain D.

The second statement is often referred to as inverse trace theorem or extension theo-
rem. Both directions are needed for the incorporation of boundary conditions in the primal
variational setting.

There exists also a trace theorem for the vector-valued space [H1(D)]d. For smooth
domains, it follows directly from Theorem 3.5, for polyhedral boundaries we refer to [BC01a].

Theorem 3.6 (Tangential trace of (H1)d). Let D ⊂ R
d, d = 2, 3 be a bounded Lipschitz

domain satisfying Assumption 3.2, diamD ≃ 1,

1. The tangential trace operator trτ,∂D is continuous from [H1(D)]d to H
1/2
‖ (∂D), there

exists a constant ctr,τ > 0 such that

‖ trτ,∂D u‖H1/2
‖

(∂D)
≤ ctr,τ‖u‖H1(D) ∀u ∈ [H1(D)]d.

2. For g ∈ H
1/2
‖ (∂D), there exists some u ∈ [H1(D)]d such that

trτ,∂D u = g on ∂D and ‖u‖H1(D) ≤ cext,τ‖g‖H1/2
‖

(∂D)
.

The constants cτ,tr, cτ,ext are positive and only depend on the shape of the domain D.

Remark 3.7. Note that, in three dimensions, this statement is equivalent to posing continuity

and surjectivity of the rotated tangential trace u 7→ u× n from [H1(D)] to H
1/2
⊥ (∂D).
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3.1.3.3 Traces of the space H(curl)

The space H(curl;D) allows the definition of a tangential trace operator, which coincides
with the tangential trace in the classical sense for smooth functions. The following theorem
holds by [BC01b].

Theorem 3.8 (Trace theorem for H(curl)). Let D ⊂ R
d, d = 2, 3 be a bounded Lipschitz

domain as in Assumption 3.2, diamD ≃ 1.

1. The classical tangential trace operator tr∂D,τ can be extended to H(curl;D). It is con-

tinuous from H(curl;D) to H
−1/2
⊥ (curl∂D; ∂D), there exists a constant ctrτ > 0 such

that
‖ tr∂D,τ v‖H−1/2

⊥ (curl∂D ;∂D)
≤ ctrτ ‖v‖H(curl;D) ∀v ∈ H(curl;D).

2. Any g ∈ H
−1/2
⊥ (curl∂D; ∂D) can be extended to v ∈ H(curl;D) such that

tr∂D,τ v = g on ∂D and ‖v‖H(curl;D) ≤ cextτ ‖g‖H−1/2
⊥ (curl∂D;∂D)

.

The constants ctrτ , cextτ are positive and depend only on the shape of the domain D.

Remark 3.9. In three dimensions, we observe similarly to Remark 3.7, that we equivalently
have the rotated tangential trace operator u 7→ u×n continuous and surjective from H(curl;D)

to H
−1/2
‖ (div∂D; ∂D).

Theorem 3.8 is necessary for the analysis of boundary conditions for the tangential trace
of a function in H(curl). We will see later, that these conditions are essential in our mixed
variational formulation, while conditions on the normal trace can be imposed only weakly,
and are therefore natural.

3.1.3.4 Traces of the space H(div)

The normal trace operator tr∂D,n can be extended from [C∞(D̄)]d to H(div;D). The mapping
is continuous and surjective onto the space H−1/2(∂D), as the next theorem states. A proof
for the statement is given in [GR86, Corollary 2.8].

Theorem 3.10 (Trace theorem for H(div)). Let D ⊂ R
d, d = 2, 3 be a bounded Lipschitz

domain satisfying Assumption 3.2, diamD ≃ 1.

1. The trace operator tr∂D,n is well defined on H(div;D) as an extension from [C∞(D̄)]d.
It is continuous onto H−1/2(∂D), there exists a constant ctrn > 0 such that

‖ tr∂D,n q‖H−1/2(∂D) ≤ ctrn‖q‖H(div;D) ∀q ∈ H(div;D).

2. For g ∈ H−1/2(∂D), there exists some q ∈ H(div;D) such that

tr∂D,n q = g on ∂D and ‖q‖H(div;D) ≤ cextn‖g‖H−1/2(∂D).

The constants ctrn , cextn are positive and depend only on the shape of the domain D.

We will see that boundary conditions on the normal component of a function in H(div)
are essential, and have to be included into the solution space of a variational formulation.
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Boundary conditions Let again A ⊂ ∂D be a part of the boundary. It can be shown that
the spaces H1

0,A(D),H0,A(curl;D) and H0,A(div;D) satisfy the respective essential homoge-
nous boundary conditions on A,

H1
0,A(D) = {w ∈ H1(D) : trAw = 0},

H0,A(curl;D) = {v ∈ H(curl;D) : trA,τ v = 0},

H0,A(div;D) = {q ∈ H(div;D) : trA,n q = 0}.

Functions in H1
0 (D),H0(curl;D),H0(div;D) can be extended to H1(Rd), H(curl; Rd) and

H(div; Rd) by zero.
In an abuse of notation, we will often write u|∂D meaning tr∂D u for u ∈ H1(D), or

similarly vτ |∂D and qn|∂D meaning the respective traces tr∂D,τ v, tr∂D,n q of v ∈ H(curl;D)
and q ∈ H(div;D). When clear from the context that the evaluation is on the boundary ∂D,
we may even use u, vτ and qn only.

3.1.4 Green’s formulae

We recall some standard facts on integration by parts for the operators ∇, curl, and div. These
identities are well-known in the classical sense, but also hold in the weak setting, as long as
all arising integrals are well-defined at least in the sense of duality products. For boundary
integrals, the respective trace operators have to be used. In order not to complicate notation,
we write integrals in any case, well aware that duality products are necessary when considering
traces in Sobolev spaces of negative indices.

Theorem 3.11 (Green’s formulae). The following integration by parts formulae hold on a
Lipschitz domain D ⊂ R

d, d = 2, 3:
∫

D
∇u · q dx = −

∫

D
udiv q dx+

∫

∂D
u qn ds ∀u ∈ H1(D), q ∈ H(div;D),(3.10)

∫

D
curlu · v dx =

∫

D
u · Curl v dx−

∫

∂D
(u× n) · v ds

∀u ∈ H(curl;D), v ∈ [H1(D)]d(d−1)/2,(3.11)∫

D
ε(u) : τ dx = −

∫

D
u · div τ dx−

∫

∂D
u · τn ds

∀u ∈ [H1(D)]d, τ ∈ HSYM (div;D). (3.12)

Here, we set u× n := u2n1 − u1n2 in formula (3.11) in case of d = 2. Note that identity
(3.12) can be seen directly from equation (3.10) and the symmetry of all involved tensor-valued
quantities.

This theorem can be used to show interface conditions for piecewise defined functions.

Theorem 3.12 (Interface conditions). Let D = {D1, . . . ,DN} be a non-overlapping do-
main decomposition for D, i.e. Di ∩ Dj = ∅ for i 6= j ∈ {1, . . . ,N} and D̄ =

⋃
D̄i. Let

Γij := ∂Di ∩ ∂Dj be the common interface of any two sub-domains Di,Dj ∈ D. Let u, v,
and q be defined piecewise such that ui := u|Di ∈ H1(Di), vi := v|Di ∈ H(curl;Di) and
qi := q|Di ∈ H(div;Di) for i = 1, . . . N . Then there holds

• if trΓij ui = trΓij uj for i, j = 1, . . . ,N , u lies in the global space H1(D), and (∇u)|Di =
∇(ui).
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• if trΓij ,τ vi = trΓij ,τ vj for i, j = 1, . . . ,N , v lies in the global space H(curl;D), and
(curl v)|Di = curl(vi).

• if trΓij ,n qi = trΓij ,n qj for i, j = 1, . . . ,N , q lies in the global space H(div;D), and
(div q)|Di = div(qi).

From this theorem one can see that, when constructing finite element functions using
piecewise polynomials on some prescribed mesh, one has to keep continuity across interfaces
to be conforming for H1. Similarly, tangential continuity for H(curl) and normal continuity
for H(div) have to be satisfied. Boundary conditions of the respective types have to be
included into solution spaces of a variational formulation or finite element discretization, and
are therefore essential.

3.1.5 Dual space of H(curl)

Let again A ⊂ ∂D be a part of the boundary. We investigate the dual space of H0,A(curl;D).
This includes [H(curl;D)]∗, [H0(curl;D)]∗ by setting either A = ∅ or A = ∂D. The following
lemma states, that the dual space we are looking for is a distributional space allowing for a
distributional divergence.

Lemma 3.13. Let D ⊂ R
d, d = 2, 3 be a bounded, connected Lipschitz domain as described

in Assumption 3.2, and let A ⊂ ∂D be a part of the boundary. Then

[H0,A(curl;D)]∗ = H−1
A (div;D). (3.13)

where H−1
A (div;D) := {q ∈ [H−1

A (D)]d : div q ∈ H−1
A (D)} is the space of all distributions from

[H−1
A (D)]d, such that the distributional divergence, in this context defined by

〈div q, v〉 := −〈q,∇v〉 ∀v ∈ C∞
0,A(D),

lies in H−1
A (D).

Proof. As we will see in Theorem 3.18, for v ∈ H0,A(curl;D) there exists a regular decompo-
sition

v = ∇φ+ z, ‖φ‖H1(D) + ‖z‖H1(D) ≃ ‖v‖H(curl;D)

for some φ ∈ H1
0,A(D) and z ∈ [H1

0,A(D)]d. We analyze the dual norm of H0,A(curl;D).
For better readability, we drop the subscript in the duality product 〈., .〉H0,A(curl;D). Let
q ∈ [H0,A(curl;D)]∗, then we obtain for its dual norm

‖q‖[H0,A(curl;D)]∗ = sup
v∈H0,A(curl;D)

〈q, v〉

‖v‖H(curl;D)

≃ sup
φ∈H1

0,A
(D)

z∈[H1
0,A

(D)]d

〈q,∇φ+ z〉

‖φ‖H1(D) + ‖z‖H1(D)

≃ sup
φ∈H1

0,A(D)

〈q,∇φ〉

‖φ‖H1(D)
+ sup
z∈[H1

0,A(D)]d

〈q, z〉

‖z‖H1(D)

= sup
φ∈H1

0,A(D)

〈div q, φ〉

‖φ‖H1(D)
+ sup
z∈[H1

0,A(D)]d

〈q, z〉

‖z‖H1(D)

= ‖div q‖H−1
A (D) + ‖q‖H−1

A (D).
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3.1.6 Inequalities

We list some important inequalities on Sobolev spaces, such as the Poincaré and Friedrichs
inequalities on Hk(D), and Korn’s inequality on [H1(D)]d. We will heavily use these inequal-
ities for our analysis, both in the continuous and in the finite element setting. We state them
on a domain D of unit size, and take care of proper scalings when needed. Poincaré’s and
Friedrichs’ inequalities can be found in different forms e. g. in [Gri85, GR86, TW05].

We first state Friedrichs’ inequality. It yields, that on the subspace of Hk satisfying
homogenous boundary conditions for the functions at least on a part of the boundary, semi-
norm and norm are equivalent.

Theorem 3.14 (Friedrichs’ inequality). Let D ⊂ R
d, d > 0 be a connected, bounded Lipschitz

domain of unit size diam(D) = 1. Let A ⊂ ∂D be a non-trivial part of the boundary. Then,
for k ∈ N, there exists a constant cF > 0 depending only on the shape of D, the boundary
part A, and k such that

‖w‖Hk(D) ≤ cF |w|Hk(D) ∀w ∈ Hk
0 (D). (3.14)

Poincaré’s inequality can be used on spaces where no boundary conditions are prescribed.

Theorem 3.15 (Poincaré’s inequality). Let D ⊂ R
d, d > 0 be a connected, bounded Lipschitz

domain of unit size diam(D) = 1. Then there exists a constant cp > 0 depending only on the
shape of D, such that

‖w‖H1(D) ≤ cP

(
|w|2H1(D) +

(∫

D
w dx

)2
)1/2

∀w ∈ H1(D). (3.15)

Korn’s inequality states, that the gradient of a vector-valued function is bounded from
above by the strain tensor. For a proof of this theorem, we refer to [Nit81, DL76].

Theorem 3.16 (Korn’s inequality). Let D ⊂ R
d, d = 2, 3 be a connected, bounded Lipschitz

domain of unit size diam(D) = 1. Then there exists a constant cK > 0 depending only on the
shape of D, such that

‖ε(v)‖2
L2(D) + ‖v‖2

L2(D) ≥ c2K‖v‖
2
H1(D) ∀v ∈ [H1(D)]d. (3.16)

The constant of boundedness depends on the shape of the domain: as the aspect ratio deteri-
orates, so does the Korn constant.

Remark 3.17. Assuming that A ⊂ ∂D is a nontrivial part of the boundary, one can deduce

‖ε(v)‖2
L2(D) ≥ c̃2K |v|2H1(D) ∀v ∈ [H1

0,A(D)]d. (3.17)

The proof of this and similar inequalities is usually done using the compact embedding of
H1(Ω) in L2(Ω). It moreover uses Friedrichs’ and Korn’s inequalities.

3.1.7 Regular decompositions of vector fields

In this section, we provide a regular decomposition of vector fields satisfying mixed bound-
ary conditions. Such decompositions satisfying homogenous Dirichlet or Neumann boundary
conditions have been shown e.g. by [PZ02, Hip02]. We utilize an extension operator first
introduced in [Sch08] to obtain results also in case of mixed boundary conditions.
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D

D

D’

D
~

A

B
A

Figure 3.1: Extension of the domain D including neighborhood DA of Dirichlet boundary A.

Theorem 3.18 (regular decomposition). Let D ⊂ R
d satisfy Assumption 3.2, and let A ⊂ ∂D

be a boundary part. For u ∈ H0,A(curl;D) there exists a decomposition

u = ∇ϕ+ z,

where ϕ ∈ H1
0,A(D) and z ∈ [H1

0,A(D)]d. The respective parts can be bounded by

‖ϕ‖H1 ≤ c‖u‖H(curl) and ‖z‖H1 ≤ c‖ curl u‖L2(D).

Proof. A proof for this theorem with homogenous Dirichlet boundary conditions (i.e. A = ∂D)
is given in [PZ02], Neumann boundary conditions are treated in [Hip02].

We now proceed to the case of mixed boundary conditions. One can deduce the statement
of the theorem for non-trivial A ⊂ ∂D by extendingD to some domain D′ ⊃ D, see Figure 3.1.
Here, DA ⊂ D′ is an outer neighborhood of the Dirichlet boundaryA, while D̃ = D′\(D∪DA)
is a stripe around domain and neighborhood. In [Sch08], an H(curl) conforming bounded
extension operator was constructed, which allows to extend u to u′ ∈ H(curl;D′) such that
u = 0 on DA. We now apply the theory of [Hip02] to u′, and find a decomposition

u′ = ∇ϕ′ + z′,

where ϕ′ ∈ H1(D′) and z′ ∈ [H1(D′)]d. Note that we can avoid the usage of cohomology
spaces for domains which are not simply connected, since we do not require the gauging
condition divϕ′ = 0. Since u′ = 0 on DA, Lemma 2.6 in [Hip02] even ensures that ϕ′|DA

∈
H2(DA). We apply the extension operator from [Ste70, Theorem 5], to obtain an extension ϕ̃
such that

ϕ̃ ∈ H2(D′) and ϕ̃|DA
= ϕ′|DA

.

This allows for the decomposition

u = ∇(ϕ′ − ϕ̃) + z′ + ∇ϕ̃.

We verify that ϕ := ϕ′ − ϕ̃ and z := z + ∇ϕ̃ satisfy homogenous boundary conditions on
A. Since ϕ = ϕ′ − ϕ̃ = 0 on the neighborhood DA of A, this implies ϕ|D ∈ H1

0,A(D). For
z := z′ + ∇ϕ̃, we observe that

z = z′ + ∇ϕ̃ = −∇(ϕ′ − ϕ̃) = 0 on DA,

which implies z|D ∈ [H1
0,A(D)]d.
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3.2 Variational formulations – State of the art

In this section, we first recall the theorem by Lax and Milgram, which ensures existence and
uniqueness for coercive variational problems. Then, we move to Brezzi’s abstract theory for
mixed problems. We then introduce several mixed formulations of the elasticity problem,
which fit into this framework. All these formulations are well-studied: the first one is equiv-
alent to the pure displacement formulation, whereas the second one is the Hellinger-Reissner
formulation of elasticity. The third one is a method where the symmetry of the stress tensor
is imposed weakly. We will shortly comment on existence and uniqueness of solutions, as well
as stability matters. This analysis will motivate our choice of approximation spaces and the
corresponding new variational formulation.

Let now Ω ⊂ R
d, d = 2, 3 be a connected, Lipschitzian domain satisfying Assumption 3.2.

Let ΓD ⊆ ∂Ω be a non-trivial part of its boundary, and let ΓN := ∂Ω\ΓN be the remainder.
For the elasticity problem, we impose boundary conditions

u = uD on ΓD, σn = ~tN on ΓN .

For all the different formulations, we specify Hilbert spaces V, Σ for the displacements and
stresses, respectively. We then define suitable subspaces V0, Σ0 satisfying the respective
essential, homogenous boundary conditions on ΓD,ΓN . The solution spaces VD, ΣN are the
manifolds where essential boundary conditions are fulfilled. Due to the respective extension
and trace theorems, we will see that they are of the form

VD = ũD + V0, ΣN = t̃N + Σ0,

where ũD, t̃N are extensions of uD,~tN from the boundary into the full spaces V, Σ.

3.2.1 Existence and uniqueness for variational problems

We give a fundamental result on existence and uniqueness for coercive, linear variational
equations. We consider the following problem, where V0 ⊂ V are Hilbert spaces, and
a : V × V → R and F : V → R are bilinear and linear forms on V .

Problem 3.19 (Primal variational problem). Find u ∈ V0 such that

a(u, v) = 〈F, v〉V ∀v ∈ V0.

The following theorem is used as a basic tool in many proofs in numerical analysis. It
can be found in almost every textbook dealing with numerical methods for partial differential
equations, among them [BS02, Joh87, Bra92]

Theorem 3.20 (Lax-Milgram). Let V0 ⊂ V be Hilbert spaces, and let a : V × V → R be
bounded and coercive, i.e.

a(u, v) ≤ ca,2‖u‖V ‖v‖V ∀u, v ∈ V0,

a(v, v) ≥ ca,1‖v‖
2
V ∀v ∈ V0.

Let moreover F ∈ V ∗
0 , then there exists a unique solution u ∈ V to Problem 3.19. It satisfies

the stability bound

‖u‖V ≤
1

ca,1
‖F‖V ∗

0
.
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3.2.2 Brezzi’s theory of mixed methods

In the following, we recall basic facts on mixed systems, following the abstract theory in
[Bre74, BF91]. Let V0, Σ0 be Hilbert spaces equipped with norms ‖.‖V , ‖.‖Σ. We analyze the
following problem.

Problem 3.21 (Abstract mixed formulation). Find u ∈ V0, σ ∈ Σ0 such that

a(σ, τ) + b(τ, u) = 〈F1, τ〉Σ ∀τ ∈ Σ0,
b(σ, v) = 〈F2, v〉V ∀v ∈ V0.

(3.18)

The bilinear forms naturally introduce linear operators A : Σ0 → Σ∗
0, B : Σ0 → V ∗

0 via
the relations

〈Aσ, τ〉Σ = a(σ, τ) ∀σ, τ ∈ Σ0,

〈Bτ, v〉V = b(τ, v) ∀τ ∈ Σ0, v ∈ V0.

The following assumptions shall be valid for a(·, ·), b(·, ·) throughout this subsection, they
provide the basis for the application of Brezzi’s theorem below.

Assumption 3.22. Let Σ0 ⊂ Σ, V0 ⊂ V be Hilbert spaces. Let a : Σ0×Σ0 → R, b : Σ0×V0 →
R be bilinear forms satisfying

1. boundedness of a(·, ·), b(·, ·): there exist positive constants ca,2, cb,2 > 0 such that

a(σ, τ) ≤ ca,2‖σ‖Σ‖τ‖Σ ∀σ, τ ∈ Σ0, (3.19)

b(τ, v) ≤ cb,2‖τ‖Σ‖v‖V ∀τ ∈ Σ0, v ∈ V0, (3.20)

2. inf-sup stability of b(·, ·): there exists a positive constant cb,1 > 0 such that

inf
v∈V0

sup
τ∈Σ0

b(τ, v)

‖τ‖Σ‖v‖V
≥ cb,1, (3.21)

3. coercivity of a(·, ·) on the kernel of B: there exists a positive constant ca,1 > 0 such
that

a(τ, τ) ≥ ca,1‖τ‖
2
Σ ∀τ ∈ KerB, (3.22)

where the kernel of B is defined by

KerB := {τ ∈ Σ0 : b(τ, v) = 0 ∀v ∈ V0 } ⊆ Σ0.

Conforming [BF91, Theorem 1.1], existence and uniqueness of a solution as well as stability
can then be guaranteed.

Theorem 3.23 (Brezzi’s theorem). Let Σ0 ⊂ Σ, V0 ⊂ V be Hilbert spaces, and let the bilinear
forms a : Σ0 × Σ0 → R, b : Σ0×V0 → R satisfy Assumption 3.22. Then, for F1 ∈ Σ∗

0, F2 ∈ V ∗
0 ,

there exists a unique solution (σ, u) ∈ Σ0×V0 to Problem 3.21. It satisfies the stability bounds

‖σ‖Σ ≤
1

ca,1
‖F1‖Σ∗

0
+

1

cb,1

(
1 +

ca,2
ca,1

)
‖F2‖V ∗

0
, (3.23)

‖u‖V ≤
1

cb,1

(
1 +

ca,2
ca,1

)
‖F1‖Σ∗

0
+
ca,2
c2b,1

(
1 +

ca,2
ca,1

)
‖F2‖V ∗

0
. (3.24)
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Note that coercivity of a(·, ·) is not even necessary, and can be reduced to an inf-sup
condition on KerB. However, the above assumptions will be sufficient for our further analysis.
We will embed all the following methods in this framework, and use Theorem 3.23 for the
analysis.

Remark 3.24. If the solution is not sought to lie in the Hilbert space Σ0 × V0, but in a
manifold ΣD × VD = (t̃N , ũD) + Σ0 × V0, we apply a standard homogenization technique. We
then search for (σ0, u0) = (σ − t̃N , u− ũD) ∈ Σ0 × V0 such that

a(σ0, τ) + b(τ, u0) = 〈F1, τ〉Σ − a(t̃N , τ) − b(τ, ũD) ∀τ ∈ Σ0,
b(σ0, v) = 〈F2, v〉V − b(t̃N , v) ∀v ∈ V0

(3.25)

The right hand sides of system (3.25) still lie in the respective dual spaces, the stability esti-
mates (3.23), (3.24) have to be modified replacing

‖F1‖V ∗
0

by ‖F1‖V ∗
0

+ ca,2‖t̃N‖Σ0 + cb,2‖ũD‖V0 ,

‖F2‖Σ∗
0

by ‖F2‖Σ∗
0

+ cb,2‖t̃N‖Σ0 .

3.2.3 The pure displacement formulation

We recall the probably most straightforward weak formulation of the elasticity problem.
There, one chooses Vpr := [H1(Ω)]d as space for the displacements, and Σpr := L2

SYM (Ω) for
the stresses. Suitable subspaces satisfying essential boundary conditions are

Vpr,0 := [H1
ΓD,0

(Ω)]d,

Vpr,D := {v ∈ [H1(Ω)]d : v|ΓD
= uD },

Σpr,0 := Σpr,N := Σpr.

In order to obtain the primal mixed formulation, one multiplies the first equation in the
elasticity problem (3.1) by test functions τ ∈ Σpr,0, and the second line (3.2) by v ∈ Vpr,0.
Then one applies integration by parts using formula (3.12) in the second line, followed by a
substitution of the known normal trace σn = ~tN on ΓN . Using that v = 0 on ΓD by definition,
we end up with the primal mixed formulation of elasticity.

Problem 3.25 (Primal mixed formulation of elasticity). Find u ∈ Vpr,D, σ ∈ Σpr,N such that
∫

Ω
(Āσ) : τ dx−

∫

Ω
ε(u) : τ dx = 0 ∀τ ∈ Σpr,0, (3.26)

−

∫

Ω
ε(v) : σ dx = −

∫

Ω
f · v dx−

∫

ΓN

~tN · v ds ∀v ∈ Vpr,0. (3.27)

Problem 3.25 can be embedded straightforward in the abstract theory of Subsection 3.2.2.
We define for σ, τ ∈ Σ0, v ∈ V0

apr(σ, τ) :=

∫

Ω
(Āσ) : τ dx,

bpr(τ, v) := −

∫

Ω
τ : ε(v) dx,

〈F1,pr, τ〉Σ := 0,

〈F2,pr, v〉V := −

∫

Ω
f · v dx−

∫

ΓN

~tN · v ds.
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Now, existence and uniqueness of a solution (σ, u) ∈ Σpr,N × Vpr,D as well as stability can
be obtained ensuring the conditions of Brezzi’s theorem. The right hand sides clearly lie

in the respective dual spaces if f ∈ H−1
ΓD

(Ω), and ~tN ∈ H
−1/2
00 (ΓN ). This is ensured by

the trace theorem for H1. Also boundedness of a(·, ·), b(·, ·) follow trivially, applying the
Cauchy-Schwarz inequality.

To prove inf-sup stability for b(·, ·), Korn’s and Friedrichs inequalities (3.17), (3.14) are
needed: For v ∈ V0, choose τ = ε(v), then

b(τ, v) ≥ ‖ε(v)‖2
Ω ≥ c̃K‖∇v‖Ω‖τ‖Ω ≥ c̃Kc

−1
F ‖v‖V ‖τ‖Σ.

As c̃K deteriorates with the aspect ratio of the domain Ω, we expect stability problems for
anisotropic domains such as plates or shells. Finite element discretizations of the mixed
primal method usually show shear locking phenomena.

Coercivity of a(·, ·) can be shown straightforward, we obtain

a(τ, τ) ≥ λmin(Ā)‖τ‖2
Σ.

There λmin(Ā) is the minimal eigenvalue of the compliance tensor Ā, which tends to zero for
nearly incompressible media. As a result, we expect volume locking.

Due to the fact that ε(u) ∈ L2
SYM(Ω) for u ∈ [H1(Ω)]d and the invertibility of Ā, we may

conclude from the first equation that

σ = Ā−1ε(u) in L2
SYM (Ω).

Thereby, we can eliminate σ from the system above and end up with the (equivalent) pure
displacement formulation of elasticity:

Problem 3.26 (Pure displacement formulation of elasticity). Find u ∈ Vpr,D such that
∫

Ω
(Ā−1ε(u)) : ε(v) dx =

∫

Ω
f · v dx+

∫

ΓN

~tN · v ds ∀v ∈ Vpr,0. (3.28)

This problem can easily be discretized using standard continuous finite elements. But,
equivalently to the primal mixed problem, we expect a deterioration of stability when treating
anisotropic domains or nearly incompressible media.

3.2.4 The Hellinger-Reissner formulation of elasticity

In the pure displacement formulation, all derivatives are applied to the displacements in form
of the strain tensor. It is therefore necessary, to have the displacements in H1(Ω), the stresses
are left totally discontinuous. In the Hellinger-Reissner formulation, one chooses differently:
Differentiation is done with respect to the stresses, the stress space is Σ = HSYM(div). The
matching displacement space is then V = [L2(Ω)]d. The boundary conditions imply to use

VHR,0 := VHR,D := [L2(Ω)]d,

ΣHR,0 := HSYM,ΓN ,0(div) := {τ ∈ HSYM(div) : τn|ΓN
= 0 },

ΣHR,N := {τ ∈ HSYM(div) : τn|ΓN
= ~tN }.

As in Section 3.2.3, we multiply the equations of elasticity (3.1),(3.2) by test functions
v ∈ VHR,0 and τ ∈ ΣHR,0. Now, we apply Green’s formula (3.12) to the first line, and
substitute u = uD on the Dirichlet boundary ΓD. As τn = 0 on ΓN , the following problem is
obtained.
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Problem 3.27 (Hellinger-Reissner formulation of elasticity). Find u ∈ VHR,D, σ ∈ ΣHR,N

such that
∫

Ω
(Āσ) : τ dx+

∫

Ω
u · div τ dx =

∫

ΓD

uD · τn, ds ∀τ ∈ ΣHR,0, (3.29)

∫

Ω
v · div σ dx = −

∫

Ω
f · v dx ∀v ∈ VHR,0. (3.30)

We shortly analyze Problem 3.27 under the aspects of Theorem 3.23. Therefore, we define

aHR(σ, τ) =

∫

Ω
(Āσ) : τ dx for σ, τ ∈ ΣHR,

bHR(τ, v) =

∫

Ω
div τ · v dx for τ ∈ ΣHR, v ∈ VHR.

Due to trace theorems, the right hand sides of equations (3.29), (3.30) are clearly in Σ∗
HR,0,

V ∗
HR,0, and the essential boundary conditions are suitable for the respective spaces. Proving

inf-sup stability for bHR(·, ·) is rather simple. A proof can be found e.g. in [Bra92].
Coercivity of aHR(·, ·) is also more involved. The bilinear form is clearly not uniformly co-

ercive on the whole space ΣHR,0, as the Lamé parameter λ̄ tends to infinity. However, one can
prove that, on KerBHR, the constant of coercivity is independent of this quantity. Therefore,
the formulation is suitable for the analysis of nearly incompressible elasticity. For a more
detailed discussion of the kernel-coercivity, see [ADG84] or [BF91, IV.3]. When constructing
locking free finite elements, coercivity of aHR(·, ·) must also hold on the discrete kernel. As
shown in [AC05, AW02, AAW08], conforming finite elements satisfying this restriction can
only be provided at the cost of high polynomial order.

3.2.5 Mixed methods with weak symmetry

A major problem when constructing finite elements for the Hellinger-Reissner formulation
of elasticity is the symmetry of the stress tensor σ. In order to avoid this, several authors
have introduced methods where the symmetry of the stress tensor is enforced by means of
Lagrangian multipliers, among them [Ste86, Ste88, ABD84, AFW07].

The main idea is to introduce a skew-symmetric matrix ω, which corresponds to the skew
part of ∇u. It acts as a Lagrangian multiplier ensuring the condition “σ is symmetric”. Then
the equations of elasticity can be reformulated to find u : Ω → R

d, σ : Ω → R
d×d, ω : Ω →

RSKW such that
Āσ −∇u+ ω = 0,

σ − σT = 0,
− div σ = f



 in Ω.

We choose the solution spaces

Qws := L2
SKW (Ω) := {γ ∈ [L2(Ω)]d×d : γ = −γT },

Vws,0 := Vws,D := [L2(Ω)]d ×Qws,

Σws,0 := [HΓN ,0(div)]d,

Σws,N := {τ ∈ [H(div)]d : τn|ΓN
= ~tN }.

Now, similarly to the Hellinger-Reissner case, we derive a variational formulation, ending up
with the following problem.
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Problem 3.28 (Mixed elasticity with weak symmetry). Find
(
σ, (u, ω)

)
∈ Σws,N × Vws,D

such that
∫

Ω
(Āσ) : τ dx+

∫

Ω
u · div τ dx+

∫

Ω
ω : τ dx =

∫

ΓD

uD · σN , ds ∀τ ∈ Σws,0, (3.31)

∫

Ω
v · div σ dx+

∫

Ω
γ : σ dx = −

∫

Ω
f · v dx ∀(v, γ) ∈ Vws,0. (3.32)

This problem is equivalent to the mixed problem (Problem 3.27) in the sense that for
each solution (σ, u, ω) to Problem 3.28, (σ, u) is a solution ot Problem 3.27. The analy-
sis of this problem can again be done in the scope of Theorem 3.23. Using the results for
the Hellinger-Reissner formulation (Problem 3.27), solvability and stability estimates can be
shown straightforward. Although the infinite-dimensional problem of weak symmetry is equiv-
alent to the Hellinger-Reissner formulation, it allows for different discretization techniques.
There, the symmetry of the stress solution is usually not guaranteed. Comparably simple
finite elements with respect to this formulations are available, the probably best known one
is the PEERS element [ABD84].

3.3 A new weak formulation of elasticity

In this section, we present our new formulation of the equations of elasticity. We motivate
the choice of spaces, and provide some basic results on their properties. We show existence
and uniqueness of a solution as well as stability estimates.

Our new method will be situated “in between” the primal mixed method, where all
smoothness assumptions are put on the displacement field, and the Hellinger-Reissner for-
mulation, where the setting is vice versa, and the stresses have to satisfy a differentiability
property. In both cases, the bilinear form a(·, ·) is defined in the same way, namely as
L2 product between stress and strain. When considering homogeneous, isotropic, linear elas-
tic materials, the compliance tensor Ā is determined by the Lamé constants µ̄, λ̄, which yields

a(σ, τ) :=

∫

Ω
(Āσ) : τ dx =

∫

Ω

1

2µ̄
dev σ : dev τ dx+

∫

Ω

1

dλ̄+ 2µ̄
tr(σ) tr(τ) dx. (3.33)

The bilinear form b(·, ·) can be viewed as a duality product between the divergence of the
stress and the displacement,

b(τ, v) = 〈div τ, v〉V .

For the primal mixed method, the duality product reads

b(τ, v) = 〈div τ, v〉H1(Ω) = −

∫

Ω
τ : ε(v) dx,

whereas in the Hellinger-Reissner setting it reads

b(τ, v) = 〈div τ, v〉L2(Ω) =

∫

Ω
div τ · v dx.

We choose now the displacement space as

V := H(curl; Ω),
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with subspace V0 := H0,ΓD
(curl) and manifold VD := {v ∈ H(curl) : vτ |ΓD

= uD,τ} containing
the solution u. Thus, the stress space Σ has to satisfy the following properties, such that a
mixed system of the form (3.18) is well defined:

1. Σ ⊂ L2
SYM (Ω), such that the volume integral (Āσ, τ)Ω can be evaluated

2. For τ ∈ Σ, we need that div τ ∈ V ∗
0 = H−1

ΓD
(div); this ensures that the duality product

〈div τ, v〉V is well defined.

We introduce a new space, which consists of functions satisfying these two conditions.

Definition 3.29. Let D ⊂ R
d be a domain satisfying Assumption 3.2. We define the Hilbert

space

H(div div;D) := {τ ∈ L2
SYM(D) : div div τ ∈ H−1(D) }. (3.34)

The space is equipped with norm

‖τ‖2
H(div div;D) := ‖τ‖2

L2(D) + ‖div τ‖2
H−1(div;D)

= ‖τ‖2
L2(D) + sup

v∈H0(curl;D)

〈div τ, v〉2H(curl;D)

‖v‖2
H(curl;D)

.

In this definition, the divergence of the divergence of a tensor-valued function is a scalar
field. For the case of a symmetric tensor in two space dimensions, it reads

div div τ = div

(
∂τ11
∂x1

+ ∂τ12
∂x2

∂τ12
∂x1

+ ∂τ22
∂x2

)
=
∂2τ11
∂x2

1

+ 2
∂2τ12
∂x1∂x2

+
∂2τ22
∂x2

2

.

We search for the stresses in the space

Σ := H(div div;Ω).

As we will see later, it is possible to define a normal-normal trace operator trnn on the
space H(div div;Ω). Recall the normal-normal and normal-tangential trace of some smooth,
tensor-valued field τ ,

trnn(τ) := τnn := τnn = nT τn, trnτ (τ) := τnτ := τn − τnnn.

Analogously, we will provide an inverse trace theorem, which allows to lift any distribution
from a suitable trace space to the volume space H(div div). Therefore, we define the spaces

Σ0 := H0,ΓN
(div div;Ω) := {τ ∈ L2

SYM(Ω) : div div τ ∈ H−1
ΓD

(Ω), τnn|ΓN
= 0},

ΣN := {τ ∈ L2
SYM (Ω) : div div τ ∈ H−1

ΓD
(Ω), τnn|ΓN

= ~tN,n}.

We note that

‖τ‖2
H(div div;Ω),ΓN

:= ‖τ‖2
L2(Ω) + ‖div τ‖2

H−1
ΓD

(div;Ω)

= ‖τ‖2
L2(Ω) + sup

v∈H0,ΓD
(curl;Ω)

〈div τ, v〉2H(curl;Ω)

‖v‖2
H(curl;Ω)
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is a suitable norm for the space H0,ΓN
(div div;Ω).

We use the spaces V = H(curl) and Σ = H(div div) and their respective subspaces V0, VD
and Σ0,ΣN to derive a new variational formulation. We have already seen in Theorem 3.12,
that the choice of H(curl) means we have tangential continuity for the displacements. We
will see that for the stresses, the choice of spaces implies normal-normal continuity, i.e. we
have σnn continuous across interfaces. Therefore, we speak of the Tangential-Displacement-
Normal-Normal-Stress (TD-NNS) formulation of elasticity.

Problem 3.30 (TD-NNS formulation of elasticity). Find σ ∈ ΣN , u ∈ VD such that

∫

Ω
(Āσ) : τ dx+ 〈div τ, u〉V0 =

∫

ΓD

uD,n τnn ds ∀τ ∈ Σ0, (3.35)

〈div σ, v〉V0 = −

∫

Ω
f · v dx+

∫

ΓN

~tN,τ · vτ ∀v ∈ V0. (3.36)

This formulation again fits into the framework of Section 3.2.2. It is a problem of form
(3.18), where for σ, τ ∈ Σ0, v ∈ V0

a(σ, τ) :=

∫

Ω
(Āσ) : τ dx, (3.37)

b(τ, v) := 〈div σ, v〉H(curl), (3.38)

F1(τ) :=

∫

ΓD

uD,n τnn ds, (3.39)

F2(v) := −

∫

Ω
f · v dx+

∫

ΓN

~tN,τ · vτ . (3.40)

In order to show existence and uniqueness of a solution, as well as stability estimates, we
need to investigate for properties of the space H(div div).

3.3.1 The space H(div div)

Throughout the following, let D ⊂ R
d, d = 2, 3 be a connected, Lipschitzian domain of

unit size, diamD ≃ 1. Let D satisfy Assumption 3.2, then the boundary ∂D is either
smooth or polyhedral. Let A ⊆ ∂D denote a closed part of its boundary, while B = ∂D\A
denotes the remainder. First, we are concerned with the evaluation of the duality product
〈div τ, v〉H(curl;D) for smooth functions. We see that it can be done by means of surface and
volume integrals. We provide a trace and an inverse trace theorem for the space H(div div;D),
as well as an integration by parts formula. From these results we derive interface conditions
for piecewise defined spaces.

Lemma 3.31 (Evaluation of the duality product). For some τ ∈ H0,B(div div;D) and v ∈
H0,A(curl;D) smooth enough, the duality product 〈div τ, v〉H(curl;D) can be evaluated as follows

〈div τ, v〉H(curl;D) =

∫

D
div τ · v dx−

∫

B
τnτvτ ds (3.41)

= −

∫

D
τ : ε(v) dx +

∫

A
τnnvn ds. (3.42)
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Remark 3.32. The first evaluation (3.41) is still true for v ∈ H0,A(curl;D) and τ ∈

HSYM,0,B(div;D), if τnτ ∈ H
−1/2
‖ (divB;B) and the surface integrals are understood as du-

ality pairings. As we will see in Theorem 3.34, the normal-normal trace of τ ∈ H(div div;D)

lies in the dual space of the Neumann trace space of H2(D)∩H1
0,A(D), which is H

1/2
n,0,A(∂D) by

its definition (3.7). The second form of evaluation (3.42) is then possible for v ∈ [H1
0,A(D)]d

and τ ∈ H0,B(div div;D). These statements follow, as the set of smooth functions lies dense
in the respective spaces.

Proof of Lemma 3.31. Let τ ∈ H0,B(div div;D), v ∈ H0,A(curl;D) be smooth. We first show
representation (3.42), the second representation follows then from integration by parts, see
formula (3.12). The distributional divergence is defined such that for any function τ and
φ ∈ C∞

0,τ (D̄)

〈div τ, φ〉H(curl;D) = −

∫

D
τ : ε(φ) dx +

∫

∂D
τnφds

= −

∫

D
τ : ε(φ) dx +

∫

∂D
τnnφn ds+

∫

∂D
τnτ φτ︸︷︷︸

=0

ds.

We take this definition for arbitrary, sufficiently smooth v, τ , which satisfy the boundary
conditions vτ = 0 on A, τnn = 0 on B. They obviously satisfy identities (3.41) and (3.42).

Remark 3.33. We note that the evaluation of the duality product 〈div τ, v〉H(curl;D) by means
of equation (3.41) for general v ∈ H(curl) is only possible if the normal-tangential component

τnτ of the stress tensor lies in H
−1/2
‖ (div∂D; ∂D). This condition may be violated even for

smooth τ on domains with corners.

The following trace theorem states, that functions in H(div div) have a normal-normal
trace.

Theorem 3.34 (Trace theorem for H(div div)). Let D ⊂ R
d, d = 2, 3 be a bounded Lipschitz

domain with polyhedral boundary according to Assumption 3.2, diamD ≃ 1.

1. The trace operator tr∂D,nn is well defined the space on H(div div;D) as an extension

from C∞
SYM (D̄). It is continuous onto H

−1/2
n (∂D), there exists a constant ctrnn > 0 such

that
‖ tr∂D,nn τ‖H−1/2

n (∂D)
≤ ctrnn‖τ‖H(div div;D) ∀τ ∈ H(div div;D).

2. For g ∈ H
−1/2
n (∂D), there exists some τ ∈ H(div div;D) such that

tr∂D,nn τ = g on ∂D and ‖τ‖H(div div;D) ≤ cextnn‖g‖H−1/2
n (∂D)

.

The constants ctrnn , cextnn are positive and depend only on the shape of the domain D.

Proof. 1. Let τ ∈ C∞
SYM (D̄) be arbitrary. For simplicity of notation, we write τnn for

tr∂D,nn τ . By the definition of the dual norm, we have

‖τnn‖H−1/2
n (∂D)

= sup
w∈H

1/2
n,0 (∂D)

〈τnn, w〉H1/2
n,0 (∂D)

‖w‖
H

1/2
n,0 (∂D)

. (3.43)
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We note that, due to Friedrichs inequality (Theorem 3.14), the semi-norm ‖∇ · ‖H1(D)

forms an equivalent norm on H2(D) ∩ H1
0 (D). From the definition of the Neumann

trace space H
1/2
n,0 (∂D), we have that

‖τnn‖H−1/2
n (∂D)

= sup
ϕ∈H2(D)∩H1

0 (D)

〈τnn, ∂ϕ/∂n〉H1/2
n,0 (∂D)

‖∇ϕ‖H1(D)
.

We may proceed, using Green’s formula, and setting ψ = ∇ϕ in the second line,

‖τnn‖H−1/2
n (∂D)

= sup
ϕ∈H2(D)∩H1

0 (D)

(div τ,∇ϕ)D + (τ, ε(∇ϕ))D − 〈τnτ , ∂ϕ/∂τ〉

‖∇ϕ‖H1(D)

≤ sup
ψ∈[H1

0 (D)]d

(div τ, ψ)D
‖ψ‖H1(D)

+ sup
ϕ∈H2(D)∩H1

0 (D)

(τ, ε(∇ϕ))D
‖∇ϕ‖H1(D)

+ 0

≤ ‖div τ‖H−1(D) + ‖τ‖L2(D)

≤ c‖τ‖H(div div;D)

Here, we used that the tangential derivative ∂ϕ/∂τ vanishes for ϕ ∈ H1
0 (D). This

implies that the normal-normal trace operator is continuous with respect to the norm
on H(div div;D), and can therefore be extended to the full space.

2. Let g ∈ H
−1/2
n (∂D), and let w̃ ∈ H2(D) be a weak solution to

div div∇2w̃ + w̃ = 0 in D,

w = 0 on ∂D,

(∇2w̃)nn = g on ∂D,

where ∇2w̃ denotes the Hessian of w̃. The weak formulation of this problem reads
∫

D
∇2w̃ : ∇2ṽ dx+

∫

D
w̃ ṽ dx =

∫

∂D
g
∂ṽ

∂n
ds ∀ṽ ∈ H2(D) ∩H1

0 (D). (3.44)

It is well posed, the bilinear form coincides with the H2 inner product (·, ·)H2(D), and
g lies in the dual of the Neumann trace space of H2(D) ∩H1

0 (D). As w̃ ∈ H2(D), we

have ∂w̃/∂n ∈ H
1/2
n,0 (∂D). As w̃ vanishes on the boundary, we may estimate, using the

definition of the norm (3.6) for the Neumann trace space H
1/2
n,0 (∂D)

‖w̃‖H2(D) ≥
∥∥∥
∂w̃

∂n

∥∥∥
H

−1/2
n (∂D)

.

By the Lemma of Lax and Milgram (Theorem 3.20), we conclude

‖w̃‖H2(D) ≤ c‖g‖
H

−1/2
n (∂D)

.

Then we have, for τ = ∇2w

‖g‖
H

−1/2
n (∂D)

≥ c‖w̃‖H2(D) ≥ c‖τ‖L2(D).

As we have div div τ = −w̃, we obtain

‖g‖
H

−1/2
n (∂D)

≥ c‖w̃‖L2(D) ≥ c‖div div τ‖H−1(D),

which proves the second statement.
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Theorem 3.35 (Integration by parts). Let D ⊂ R
d, d = 2, 3 be a bounded Lipschitz domain

satisfying Assumption 3.2, diamD ≃ 1. Let v ∈ H(curl;D) and τ ∈ H(div div;D). In case
of additional smoothness, the following integration by parts formulae hold true.

1. For v ∈ [C1(D̄)]d,

〈div τ, v〉H(curl) = −

∫

D
τ : ε(v) dx +

∫

∂D
τnnvn ds. (3.45)

2. For τ ∈ C1
SYM (D̄) with τnτ ∈ H

−1/2
‖ (div∂D; ∂D)

〈div τ, v〉H(curl) =

∫

D
div τ · v dx−

∫

∂D
τnτ · vτ ds. (3.46)

Proof. Both integration by parts formulae hold true for smooth v, τ , see Theorem 3.11. Due
to trace theorems (Theorem 3.8 and Theorem 3.34), we have boundedness of the respective
boundary integrals on the right hand sides of equations (3.45) and (3.46) in the sense of duality
products. By density arguments, they can be extended to the full spaces H(curl),H(div div).

Theorem 3.36 (Interface conditions for H(div div)). Let D = {D1, . . . ,DN} be a non-
overlapping domain decomposition for D, i.e. Di ∩ Dj = ∅ for i 6= j ∈ {1, . . . ,N} and
D̄ =

⋃
D̄i. Let Γij := ∂Di∩∂Dj be the common interface of any two sub-domains Di,Dj ∈ D.

Let τ be defined piecewise such that τi := τ |Di ∈ H(div div;Di), and let moreover div τi lie in
[H(curl;Di)]

∗ for i = 1, . . . , N . Then, if

trΓij ,nn τi = trΓij ,nn τj for i, j = 1, . . . N,

the composite function τ lies in the global space H(div div;D).

Proof. Clearly, the composite function τ lies in L2(D), as the restrictions to the respective
sub-domains do. Thus, it remains to verify that div div τ ∈ H−1(D). Equivalently, we will
prove

div τ ∈ H−1(div) = [H0(curl)]∗.

Let therefore φ ∈ [C∞
0 (D)]d be a smooth test function. Due to the integration by parts formula

given in Theorem 3.35, we have

〈div τ, φ〉H(curl) = −

∫

D
τ : ε(φ) dx +

∫

∂D
τnnφn ds

= −
N∑

i=1

∫

Di

τ : ε(φ) dx +

∫

∂D
τnnφn ds+

∑

Γij

∫

Γij

(τnini − τnjnj)︸ ︷︷ ︸
=0

φn ds.

Here, the surface integrals are to be understood as duality products. We may reorder the
surface terms sub-domain by sub-domain, and obtain, using again the integration by parts
formula from Theorem 3.35

〈div τ, φ〉H(curl) =

N∑

i=1

[
−

∫

Di

τ : ε(φ) dx +

∫

∂Di

τnn φn ds

]

=
N∑

i=1

〈div τi, φ〉H(curl,Di) ≤

[
N∑

i=1

‖div τi‖[H(curl;Di)]∗

]
‖φ‖H(curl;D).
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This implies div τ ∈ [H0(curl)]∗.

Remark 3.37. Note that τi ∈ H(div div;Di) for i = 1, . . . ,N does not imply the condition
“ div τi ∈ [H(curl;Di)]

∗”, but only “ div τi ∈ [H0(curl;Di)]
∗”. For a piecewise smooth ten-

sor field τ , “ div τi ∈ [H(curl;Di)]
∗” is satisfied iff its normal-tangential trace τi,nτ lies in

H
−1/2
‖ (div∂Di

; ∂Di). Then, the duality product 〈div τi, vi〉H(curl) for vi ∈ H(curl;Di) can be

evaluated using the integration by parts formula (3.46) provided in Theorem 3.35. Note that
this additional condition needs not be satisfied even for smooth functions on sub-domains with
corners. In this regard, our finite element approximations presented in Chapter 4 will not be
conforming for H(div div). However, our analysis will rectify this lack of conformity.

3.3.2 Stability analysis

We are concerned with stability analysis of our mixed formulation. In all our statements,
we assume that the domain Ω is connected, with its boundary either smooth or polyhedral,
according to Assumption 3.2. We verify the conditions of Assumption 3.22. Continuity of
a(·, ·), b(·, ·) are clear, as

a(σ, τ) =

∫

Ω
(Āσ) : τ dx ≤

1

2µ̄
‖σ‖Σ‖τ‖Σ,

b(τ, v) = 〈div τ, v〉H(curl) ≤ ‖τ‖Σ‖v‖V .

Also, an inf-sup condition for the divergence operator acting on H(div div) can be shown
directly.

Lemma 3.38. Let V0 = H0,ΓD
(curl; Ω),Σ0 = H0,ΓN

(div div;Ω) be the spaces satisfying ho-
mogenous essential boundary conditions on ΓD,ΓN , respectively. The bilinear form b(·, ·)
defined by relation (3.38) is inf-sup stable on Σ0 × V0, i.e. there exists a constant cb,1 > 0
such that

inf
v∈V0

sup
τ∈Σ0

b(τ, v)

‖τ‖Σ‖v‖V
> cb,1 > 0.

Proof. Let I denote the Riesz isomorphism from V0 to V ∗
0 . It is defined by the relation

〈q, v〉V = (q,Iv)V ∗
0

∀q ∈ V ∗
0 .

Being an isomorphism, it moreover satisfies ‖Iv‖V ∗
0

= ‖v‖V for any v ∈ V0. For our choice of

spaces, I maps v ∈ V0 = H0,ΓD
(curl) to Iv ∈ H−1

ΓD
(div).

Let now v ∈ V0 be fixed; in order to show the inf-sup condition it suffices to find some
τ ∈ Σ0 such that

b(τ, v) ≥ cb,1‖τ‖Σ‖v‖V .

Now, for this v, let q := Iv be its dual element in H−1
ΓD

(div). We choose w ∈ [H1
0,ΓD

]d to be a
weak solution to ∫

Ω
ε(w) : ε(v) dx =

∫

Ω
q · v dx ∀v ∈ [H1

0,ΓD
]d.

Due to Theorem 3.20 (Lax, Milgram) and Korn’s inequality, this equation defines w uniquely,
and we see that

‖ε(w)‖L2(Ω) ≃ ‖q‖H−1(Ω).
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We emphasize that, when estimating the full norm ‖w‖H1(Ω), Korn’s constant cK comes
in. However, this is not necessary in our line of proof. We will end up with an estimate
independent of cK . We choose τ = ε(w), and verify that τ ∈ Σ0:

• The tensor τ lies in L2
SYM (Ω), as

‖τ‖L2(Ω) ≃ ‖q‖H−1(Ω) ≤ ‖v‖V .

• Since div τ = q ∈ H−1
ΓD

(div), we know that div div τ ∈ H−1
ΓD

(Ω), and

‖div div τ‖H−1(Ω) = ‖div q‖H−1(Ω) ≤ ‖q‖H−1(div) = ‖v‖V .

• The natural boundary condition τn = ε(w)n = 0 on the Neumann boundary ΓN then
ensures that τ ∈ Σ0.

As q = div τ , we have ‖div τ‖H−1(div;Ω) = ‖v‖V by definition. We can even bound ‖τ‖Σ by
‖div τ‖H−1(div;Ω):

‖τ‖2
Σ = ‖div div τ‖2

H−1(Ω) + ‖τ‖2
L2(Ω)

≃ ‖div div τ‖2
H−1(Ω) + ‖q‖2

H−1(Ω)

= ‖div div τ‖2
H−1(Ω) + ‖div τ‖2

H−1(Ω) = ‖div τ‖2
H−1(div;Ω).

Thus, we conclude,

b(τ, v) = 〈div τ, v〉V = (div τ,Iv)H−1(div) = ‖div τ‖2
H−1(div) ≃ ‖τ‖Σ‖v‖V .

Last, we show coercivity of a(·, ·) on the kernel KerB. There, we lay special emphasis
that the constant of coercivity does not deteriorate as the material becomes incompressible,
i.e. as the Lamé parameter λ̄ tends to infinity. We first prove a lemma, which can be found in
[GR86, BS02] for pure Dirichlet or Neumann boundary conditions, i.e. ∂Ω = ΓD or ∂Ω = ΓN .

Lemma 3.39. Let ΓN = ∂Ω\ΓD be a non-trivial part of the boundary. Then for all p ∈ L2(Ω)
there exists a function v ∈ H1(Ω) ∩H0,ΓN

(curl; Ω) satisfying

div v = p in Ω,

vn = 0 on ΓD.

If ΓN = ∅, and p satisfies the compatibility condition
∫
Ω p dx = 0, we can find v ∈ H1

0 (Ω)
such that

div v = p in Ω.

In both cases, there exists a positive constant cdiv such that

‖v‖H1(Ω) ≤ cdiv‖p‖L2(Ω).
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Proof. The case of pure Dirichlet boundary conditions is covered by [GR86, BS02]. Note that
the statement of the lemma is even stronger in this case, as we have v ∈ H1

0 (Ω), i.e. the full
trace of v vanishes, not only its normal component.

We adapt this proof for the case of mixed boundary conditions. Let p ∈ L2(Ω) be fixed,
and let ΓN be a non-trivial subset of ∂Ω. Let p̄ ∈ R be the average value of p on Ω,

p̄ :=
1

|Ω|

∫

Ω
p dx.

Then p− p̄ satisfies the compatibility condition above, and we deduce the existence of some
v1 ∈ H1

0 (Ω) such that

div v1 = p in Ω,

‖v‖H1(Ω) ≤ cdiv‖p‖L2(Ω).

Secondly, we are concerned with finding some v2 ∈ H1(Ω), v2,τ = 0 on ΓN , v2,n = 0 on ΓD,
and div v2 = p̄. To do so, let w be the unique weak solution to

−∆w = p̄ in Ω,

w = 0 on ΓN ,

∂w

∂n
= 0 on ΓD.

Existence and uniqueness follow from Theorem 3.20 (Lax, Milgram). Note that we required
ΓN to be non-trivial. As the right hand side is constant and all boundary conditions are
homogenous, elliptic regularity [Gri85] ensures that w ∈ H2(Ω) and moreover ‖w‖H2(Ω) ≤
c ‖p̄‖Ω. We set v2 := ∇w, and observe

• v2 lies in H1(Ω),

• div v2 = p̄,

• v2,τ = ∂w/∂τ = 0 on ΓN as w = 0,

• v2,n = ∂w/∂n = 0 on ΓD,

• ‖v2‖H1(Ω) ≤ c ‖p̄‖Ω.

This implies that v = v1 + v2 satisfies the statement of the lemma.

This enables us to prove coercivity of the problem of mixed elasticity.

Lemma 3.40. The bilinear form a(·, ·) defined by relation (3.33) is coercive on the subspace
KerB ⊂ V0,

a(τ, τ) ≥ ca,1‖τ‖
2
H(div div) ∀τ ∈ KerB,

and the constant ca,1 > 0 is independent of the Lamé parameter λ̄ tending to infinity. The
kernel of B is the subspace of divergence free L2 functions,

KerB = {τ ∈ L2
SYM (Ω) : div τ = 0 in H−1

ΓD
(div)}. (3.47)
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Proof. The characterization (3.47) of KerB follows directly from the definition of b(·, ·) and V0.
Note that, for τ ∈ KerB, also div div τ vanishes, and ‖τ‖Σ = ‖τ‖L2(Ω). To prove coercivity
of a(·, ·), we proceed similar to [BF91]. In case of pure Dirichlet boundary conditions, we
restrict the stress space Σ0 to

Σ̃0 :=
{
τ ∈ Σ0 :

∫

Ω
tr(τ) dx = 0

}
.

This is possible as the solution σ to the homogenous problem satisfies this constraint, since

∫

Ω
tr(τ) dx =

∫

Ω
tr(Ā−1ε(u)) dx =

∫

Ω
(dλ̄+ 2µ̄) div u dx = (dλ̄+ 2µ̄)

∫

∂Ω
un ds = 0

Due to Lemma 3.39 there exists some v ∈ [H1(Ω)]d such that vτ = 0 on ΓN and vn = 0
on ΓD and

div v = tr(τ), and ‖v‖H1(Ω) ≤ cdiv‖ tr(τ)‖L2(Ω).

Then, we estimate

‖ tr(τ)‖2
L2(Ω) =

∫

Ω
tr(τ) div v dx

=

∫

Ω
(tr(τ)I) : ε(v) dx

= d

∫

Ω
(τ − dev τ) : ε(v) dx.

Now, since τ lies in KerB, its divergence vanishes in H−1
ΓD

(div), this means, using the repre-

sentation (4.19) for v ∈ H1(Ω)

0 = 〈div τ, v〉H(curl) =

∫

Ω
τ : ε(v) dx −

∫

ΓD

τnn vn︸︷︷︸
=0

ds

We insert this above, and obtain

‖ tr(τ)‖2
L2(Ω) = d

∫

Ω
(τ − dev τ) : ε(v) dx = −d

∫

Ω
dev τ : ε(v) dx

≤ d ‖dev τ‖L2(Ω)‖v‖H1(Ω) ≤ c 2
div ‖dev τ‖L2(Ω)‖ tr(τ)‖L2(Ω).

Thus we bounded the trace of τ by its deviator, and may conclude

a(τ, τ) =
1

2µ̄
‖dev τ‖2

L2(Ω) +
1

2µ̄(dλ̄+ 2µ̄)
‖ tr(τ)‖2

L2(Ω)

≥
1

4µ̄

(
‖dev τ‖2

L2(Ω) +
1

c 2
div

‖ tr(τ)‖2
L2(Ω)

)
+ 0

≥
1

4µ̄
min(1, 1/c 2

div)‖τ‖
2
Σ.



Chapter 4

Finite Element Methods

In this chapter, we concentrate on finite element approximations for the different mixed
formulations of elasticity. We shortly recall some basic concepts on Galerkin finite element
methods, stability issues and approximation results. Then we review on existing finite element
pairs for the discretization of the primal mixed formulation, as well as the Hellinger-Reissner
and weak symmetry formulations.

We provide a suitable pair of finite elements for the discretization of our new mixed for-
mulation. There, the displacement space will be approximated using Nédélec finite elements,
while we construct a family of tensor-valued, symmetric, normal-normal continuous finite
elements for the stresses. We show stability in the discrete setting, using mesh-dependent,
broken norms. To be able to give a-priori error estimates, we use interpolation operators.
Such operators are well known for the Nédélec space, we construct one for the normal-normal
continuous stress space.

Throughout this chapter, we will assume that all essential boundary conditions are ho-
mogenous, such that no homogenization of the mixed problem is necessary, and we have
ΣN = Σ0 and VD = V0. We further assume that the compliance tensor Ā is well condi-
tioned. In Chapter 5, we will then provide a method which is also stable in case of nearly
incompressible materials, when the minimal eigenvalue of Ā tends to zero.

This chapter is organized as follows: In Section 4.1, we are concerned with general tech-
niques and results for mixed finite element methods. Section 4.2 deals with finite element
methods for elasticity: First, standard methods are recalled, then a pair of finite elements for
our new formulation is introduced. In Section 4.3, this method is analyzed with respect to its
stability and approximation properties. Explicit bases for the stress and displacement finite
element on a triangular and a tetrahedral reference element are provided in Section 4.4.

4.1 Basic ingredients

We recall basic properties of Galerkin approximations to saddle point problems, concerning
stability and a-priori error estimates. We provide the concept of a finite element space on a
shape-regular mesh.

We first dwell on the well known abstract framework of Galerkin methods for saddle point
problems. We move along the same lines as [BF91]; all proofs can be found in standard finite
element literature, wherever mixed problems are concerned, as for example [BF91, GR86,
Bra92, BS02].

45
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Then we discuss basic ingredients for the finite element method, such as the underlying
discretization of the domain by some shape regular mesh, the finite element itself and the
corresponding finite element space, the reference element and the transformation to an element
in the mesh.

Let Vh ⊂ V0, Σh ⊂ Σ0 be finite-dimensional subspaces of V0, Σ0. By using an index h, we
indicate that later on the spaces are based on a shape-regular triangulation of the domain Ω
of mesh size h. So far, we only assume that the respective families approximate the infinite-
dimensional ones,

⋃
h>0 Σh = Σ0 and

⋃
h>0 Vh = V0. The orthogonal projection operators

ΠΣ
h : Σ0 → Σh, ΠV

h : V0 → Vh are naturally defined via

〈ΠΣ
hσ, τh〉Σ = 〈σ, τh〉Σ ∀τh ∈ Σh, (4.1)

〈ΠV
h u, vh〉V = 〈u, vh〉V ∀vh ∈ Vh. (4.2)

We first state the Galerkin approximation of the mixed formulation in Problem 3.21.

Problem 4.1. Find σh ∈ Σh, uh ∈ Vh such that

a(σh, τh) + b(τh, uh) = 〈F1, τh〉Σ ∀τh ∈ Σh,
b(σh, vh) = 〈F2, vh〉V ∀vh ∈ Vh,

(4.3)

where a : Σ0 × Σ0, b : Σ0 × V0 are bilinear forms, and F1, F2 lie in the respective dual spaces
Σ∗

0, V
∗
0 .

As in the continuous case, we introduce corresponding operators Ah : Σh → Σ∗
h, Bh :

Σh → V ∗
h by

〈Ahσh, τh〉Σ = a(σh, τh) ∀σh, τh ∈ Σh,

〈Bhτh, vh〉V = b(τh, vh) ∀τ ∈ Σh, v ∈ Vh.

The operator Bh can also be extended to an operator mapping Σh to V ∗ by

〈Bhτh, v〉V := 〈Bhτh,Π
V
h v〉V ∀v ∈ V.

4.1.1 Galerkin approximations of saddle point problems

In the following, we recall well-known results on stability and error analysis for the Galerkin
approximation in Problem 4.1 of the variational equation in Problem 3.21. We will employ
the general framework provided by Brezzi’s theory, see [Bre74, BF91]. We assume that the
bilinear forms a(·, ·), b(·, ·) satisfy conditions similar to Assumption 3.22, but on the discrete
level.

Assumption 4.2. Let Σh, Vh be Hilbert spaces as described above. Let a : Σh × Σh → R,
b : Σh × Vh → R be bilinear forms with associated discrete operators Ah, Bh satisfying

1. boundedness of a(·, ·), b(·, ·): there exist positive constants c̃a,2, c̃b,2 > 0 such that

a(σh, τh) ≤ c̃a,2‖σh‖Σh
‖τh‖Σh

∀σh, τh ∈ Σh, (4.4)

b(τh, vh) ≤ c̃b,2‖τh‖Σh
‖vh‖Vh

∀τh ∈ Σh, vh ∈ Vh, (4.5)
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2. discrete inf-sup stability of b(·, ·): there exists a positive constant c̃b,1 > 0 indepen-
dent of h such that

inf
vh∈Vh

sup
τh∈Σh

b(τh, vh)

‖τh‖Σh
‖vh‖Vh

≥ c̃b,1, (4.6)

3. coercivity of a(·, ·) on the kernel of Bh: there exists a positive constant c̃a,1 > 0
independent of h such that

a(τh, τh) ≥ c̃a,1‖τh‖
2
Σh

∀τh ∈ KerBh, (4.7)

where

KerBh := {τh ∈ Σh : b(τh, vh) = 0 ∀vh ∈ Vh }.

If these assumptions are satisfied for some pair of spaces Σh×Vh, we can directly conclude
existence and uniqueness of a solution to the discrete equations in Problem 4.1, by using
Theorem 3.23. For the stability, it is important that the constants c̃b,1, c̃a,1 do not deteriorate
as h→ 0.

Note that these conditions are not automatically satisfied for any pair of subspaces Σh×Vh,
even if Assumption 3.22 is met on the infinite-dimensional level. This is due to the fact that,
in general, Bh : Σh → V ∗ does not coincide with the restriction of B to Σh, as

〈Bhτh, v〉V = 〈Bhτh,Π
V
h v〉V = 〈Bτh,Π

V
h v〉V 6= 〈Bτh, v〉V .

Thus, also the kernels of B and Bh do not coincide, and both inf-sup stability and coercivity
have to be verified in the discrete setting separately. A popular tool to achieve this, is
the construction of a Fortin operator, which maps the infinite-dimensional space Σ0 to the
subspace Σh in a way, that this mapping is orthogonal to Vh with respect to the bilinear form
b(·, ·).

Let now (σ, u) ∈ Σ0 × V0 be the solution to the mixed equations (3.18), while (σh, uh) ∈
Σh × Vh shall denote the solution to the corresponding discrete system (4.3). We recall
well-known a-priori error estimates, as can be found in [BF91, GR86, BS02].

Lemma 4.3. Assume Σh ⊂ Σ0, Vh ⊂ V0 are Hilbert spaces. Let a(·, ·), b(·, ·) satisfy Assump-
tion 4.2, and let (σh, uh) denote the solution to the discrete problem (4.3). Assuming that a
solution (σ, u) to the respective continuous problem exists, there hold the error bounds

‖σ − σh‖Σh
≤

(
1 +

c̃a,2
c̃a,1

)(
1 +

c̃b,2
c̃b,1

)
inf

τh∈Σh

‖σ − τh‖Σh
+
c̃b,2
c̃a,1

inf
vh∈Vh

‖u− vh‖Vh
,

‖u− uh‖Vh
≤

(
1 +

c̃b,2
c̃b,1

)
inf
vh∈Vh

‖u− vh‖Vh
+
c̃a,2
c̃b,1

‖σ − σh‖Σh
.

If the finite element spaces Σh, Vh are chosen such that KerBh ⊆ KerB, there holds the
improved error bound

‖σ − σh‖Σh
≤

(
1 +

c̃a,2
c̃a,1

)(
1 +

c̃b,2
c̃b,1

)
inf

τh∈Σh

‖σ − τh‖Σh
.



48 CHAPTER 4. FINITE ELEMENT METHODS

4.1.2 Triangulation

So far, we only assumed that Σh, Vh are families of finite dimensional spaces approximating
the infinite dimensional spaces Σ0, V0. In many applications, these finite element spaces are
derived from a family of underlying discretizations of the domain Ω. The parameter h is then
associated to the mesh size of these triangulations, the method is referred to as “h-FEM”.
We now provide basic concepts for such families of triangulations. We assume the domain
Ω ⊂ R

d, d = 2, 3 to have a piecewise polynomial boundary which is Lipschitz continuous.

Definition 4.4 (Regular Triangulation). Let T := {T} be a non-overlapping domain decom-
position of Ω into elements T of simple geometry. We call T a regular triangulation of Ω
iff

1. the elements are non-overlapping, T ∩ T̃ = ∅ for T 6= T̃ ∈ T ,

2. the domain Ω is covered by the triangulation, Ω̄ =
⋃
T∈T T̄ ,

3. the intersection of two elements is either empty, or a common edge, face, or vertex of
both.

We further call the triangulation simplicial, if all elements are simplices, i.e triangles for
d = 2 and tetrahedrons for d = 3.

Note that condition 3. excludes hanging nodes. We introduce the set of vertices V = {V },
the set of element edges E = {E}, and the set of element interfaces or facets F = {F}. For
two-dimensional meshes, the last two sets coincide. Sometimes, it will not be necessary to
distinguish between edges, facets and elements. Then we use the union

X = E ∪ F ∪ T ,

and mean by X ∈ X any edge, facet or element in the triangulation. We will further use
E(T ) := {E ∈ E : E ⊂ ∂T} and similarly F(T ) as the set of edges/facets corresponding
to element T . The set X (T ) is again the union of edges, facets, and the element itself;
X (T ) = E(T )∪F(T )∪ {T}. Furthermore, for some element T , we define ∆T to be the patch
of all neighboring elements, i.e. elements sharing at least a vertex with T . Similarly, ∆E , ∆F

shall denote the patches of neighboring elements for an edge E or a facet F .
We assume that all facets F ∈ F are oriented, i.e. that their normal nF is uniquely

determined. This allows the following definition of jump operators.

Definition 4.5 (jump operators). For a facet F ∈ F , let T1, T2 be its neighboring elements,
where we assume that nF = nT1 = −nT2. Let w : (T1 ∪ T2) → R be piecewise smooth, then
the jump operator is defined by

[[w]]F := w|T1 − w|T2 . (4.8)

For a vector-valued function v : (T1 ∪ T2) → R
d, the normal jump is given by

[[v]]n,F := vnT1
|T1 + vnT2

|T2 = [[vn]]F . (4.9)

For a boundary facet F ⊂ (∂T ∩ Γ), the jump and normal jump are defined by

[[w]]F := w|T , [[v]]n,F := vn (4.10)



4.1. BASIC INGREDIENTS 49

The jump operator can be used to impose continuity of a piecewise defined function, as
well as homogenous boundary conditions. If the facet F is clear from context, the subscript
may also be omitted, we use then [[·]], [[·]]n only.

In the finite element method, it is common to define basis functions of the respective
discrete spaces not directly for the global mesh, but on the reference element. They are then
mapped to an element in the mesh using a suitable transformation. The reference element
is usually of unit size, and of the same topological shape as the element. We will consider
unit segments in 1D, unit triangles or squares in 2D, and tetrahedrons and prisms in 3D as
reference elements. Also numerical integration or calculation of derivatives can be done on
the reference element, which is useful especially in case of curved elements.

Let now T̂ be the reference element for some element T ∈ T . Let

ΦT : T̂ → T, x̂ 7→ ΦT (x̂) =: x

a smooth, one-to-one mapping from the reference element T̂ to an element T . We use the
convention to mark all quantities on the reference element by a hat. A point x̂ ∈ T̂ is then
mapped to x ∈ T .

The Jacobian of this transformation shall be denoted by FT ,

FT (x̂) =

(
∂ΦT,i

∂x̂j
(x̂)

)

ij

.

The Hessian of the i-th component H i
T is given by

H i
T (x̂) =

(
∂2ΦT,i

∂x̂j∂x̂k
(x̂)

)

jk

, 1 ≤ i, j, k ≤ d.

The Jacobi determinant is given by JT (x̂) = det(FT (x̂)). Similarly, for a facet F or an edge
E, let JF , JE be the transformation of measures of the facet transformation F̂ → F or the
edge transformation Ê → E respectively. Now, let E,F be an edge, facet of element T ∈ T ,
respectively. For a normal vector n on F and a tangential vector τ along E we have

n = JT /JF F
−T
T n̂, τ = 1/JE FT τ̂ .

In general, the map ΦT is non-linear. We will use polynomial mappings, such that polyno-
mial boundaries can be represented exactly. In case of an affine linear map ΦT , the Jacobian
FT is constant on T , and the Hessians H i

T , i = 1, . . . d vanish. Such a transformation is used
for simplicial elements or elements of tensor product structure, as long as no curvature of the
elements is necessary. In our analysis, we will only consider affine linear transformations, if
not indicated differently. Then, the Jacobi determinants JT , JF , JE of element, facet, or edge
transformation equal the respective relative sizes of T, F and E,

JT =
|T |

|T̂ |
, JF =

|F |

|F̂ |
, JE =

|E|

|Ê|
.

Using ΦT , we can define the local mesh size for some x ∈ T, x = ΦT (x̂)

h(x) := |FT (x̂)|s, hT := max
x∈T

h(x).

Here we use the spectral norm | · |s of the matrix-valued quantity FT . For a facet F , let T1, T2

be the adjacent elements. Then we set hF := (|T1| + |T2|)/|F | as the average height of those
two elements perpendicular to F .

Last, we define the notion of quasi-uniform and shape-regular triangulations.
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Definition 4.6. Let (Th)h→0 be a family of regular triangulations of Ω, where Th is of max-
imum mesh size h = maxT∈Th

hT . Let Fh, Eh, and Vh denote the respective sets of facets,
edges, and vertices of the triangulation Th.

1. The family (Th) is called uniform iff there exists a global mesh size h such that h(x) = h
for all x ∈ Ω.

2. The family (Th) is called quasi-uniform iff for each element T ∈ Th the local mesh size
hT is proportional to a global mesh size h,

c1h ≤ hT ≤ c2h ∀T ∈ Th,

where c1, c2 are independent of h.

3. The family (Th) is called shape-regular iff there exist constants c1, c2 > 0 independent
of the local mesh size hT such that

c1 ≤ ‖FT ‖‖F
−1
T ‖ ≤ c2 ∀T ∈ Th, h > 0.

4.1.3 Finite element spaces

We now define the notion of finite element spaces, which are based on a triangulation of the
computational domain. Therefore, each element in the triangulation is equipped with a finite
element. The union of these finite elements is then used to build the global finite element
space. Following [BS02], we use the following definition of a finite element due to [Cia78].

Definition 4.7 (Finite Element). A finite element is a triplet (T,X,N ) consisting of

1. the element domain T ⊂ R
d, which is a bounded closed set with non-empty interior and

piecewise smooth boundary,

2. the space of shape functions X, which is of finite dimension,

3. the set of nodal variables or degrees of freedom (dofs) N = {N1, . . . Nk}, which is a
basis for X∗.

In order to specify the space of shape functionsX, one can use any set of linear independent
functions spanning X. For a given set of nodal variables N , there exists a unique nodal basis.

Definition 4.8 (Nodal basis). Let (T,X,N ) be a finite element. The basis {ϕi, i = 1, . . . , k}
is called a nodal basis for X if it is dual to N , i.e.

Ni(ϕj) = δij for i, j = 1, . . . , k.

Inspired by [Cia91], we define a finite element space.

Definition 4.9. Let now Th be a regular triangulation of the domain Ω ⊂ R
d, where each

T ∈ Th is equipped with a finite element (T,X(T ),N (T )). The associated finite element space
Xh is defined by

Xh :=
{
v ∈ ΠT∈Th

X(T ) : N(v|Ti) = N(v|Tj ) for all N ∈ N (Ti) ∩ N (Tj)
}

as the space of finite element shape functions, where degrees of freedom shared between ele-
ments coincide.
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Using the nodal basis, it is then straightforward to define the local and global nodal
interpolation operators.

Definition 4.10 (Nodal interpolation operator).

1. Consider a finite element (T,X(T ),N (T )) with nodal basis {ϕi : T → R, i = 1, . . . k}
for some finite dimensional space R. Let v : T → R be a sufficiently smooth map such
that Ni(v) is well defined for i = 1, . . . k. Then we call

IX(T )v :=

k∑

i=1

Ni(v)ϕi

the local nodal interpolant of v.

2. Let now Th be a regular triangulation of the domain Ω ⊂ R
d, where each T ∈ Th is

associated with a finite element (T,X(T ),N (T )). For v : Ω → C sufficiently smooth,
we define the global nodal interpolation operator IXh mapping to the associated finite
element space Xh by

(IXh v)|T := IX(T )(v|T ) ∀T ∈ Th.

4.2 Finite element methods for mixed elasticity

We shortly comment on existing families of finite elements for mixed elasticity. Then, we
introduce finite elements for our approach. We use Nédélec finite elements (edge elements)
for the displacements, as they are a standard choice when discretizing H(curl). We refer
to [Néd80, Néd86] for their first introduction. There the tangential components along edges
and across faces are continuous. For the stresses, we introduce a new finite element space.
Its degrees of freedom enforce normal-normal continuity across element interfaces. We prove
existence and uniqueness of the discrete solution, as well as its continuous dependence on the
given data. Using nodal interpolation operators, we provide a-priori error estimates.

Throughout the following, we assume that all boundary conditions are homogenous, i.e.

uD = 0 on ΓD, ~tN = 0 on ΓN .

Thus, the spaces Σ0,ΣN and V0, VD coincide. Inhomogeneous boundary conditions can be
included into the variational formulations and finite element spaces in a straightforward way.

Moreover, we assume that Ω is a polyhedral Lipschitz domain, which is decomposed by
a family of shape-regular, quasi-uniform affine linear triangulations (Th) of maximum mesh
size h. For our constructions, we will further assume that the triangulation Th is simplicial,
i.e. it consists of triangular elements in 2D, or tetrahedral elements in 3D. In Chapter 6, we
extend these results to tensor product elements, such as quadrilaterals or prisms.

Notation All our finite element spaces will be based on piecewise polynomial functions on
a triangulation Th. On some simplicial element T , we use the space P k(T ), which consists of
polynomials up to order k. Similarly, P kSYM (T ) shall be the space of tensor-valued symmetric
functions where each component lies in P k(T ). We write P k(T ), P kSYM (T ) for the respective
piecewise defined spaces, without any continuity assumptions across element interfaces. We
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additionally need the “bubble space” P k0 (T ), which is the subset of P k(T ) of functions satis-
fying homogenous Dirichlet boundary conditions on ∂T . Furthermore, we denote P k0,τ (T ) to
be the space of vector-valued polynomial functions with vanishing tangential trace. Similarly,
P k0,nn(T ) shall be the space of tensor-valued symmetric polynomials, where the normal-normal
component is zero on the boundary. In short, we use the following polynomial spaces satisfying
boundary conditions

P k0 (T ) := {q ∈ P k(T ) : q|∂T = 0 },

P k0,τ (T ) := {q ∈ [P k(T )]d : qτ |∂T = 0 },

P k0,nn(T ) := {q ∈ P kSYM (T ) : qnn|∂T = 0 }.

We will dwell on the explicit construction of bases for all these spaces in Section 4.4.

4.2.1 Existing methods

We shortly outline possible methods of discretization for the primal, the Hellinger-Reissner,
and the mixed method with weak symmetry.

4.2.1.1 FEM for the primal method

When discretizing the primal mixed method with finite elements of order k, the most natural
choice is to use the spaces

Σk
pr,h := {τh ∈ L2

SYM(Ω) : τh ∈ P kSYM (Th) }, (4.11)

V k
pr,h := {vh ∈ [L2(Ω)]d : vh ∈ P k+1(Th), vh cont., vh = 0 on ΓD}. (4.12)

These spaces satisfy an inf-sup condition, as for each vh ∈ V k
pr,h the tensor τh := ε(vh) lies in

Σk
pr,h, and therefore

inf
vh∈V

k
h,pr

sup
τh∈Σk

pr,h

b(vh, τh) ≥

∫

Ω
|ε(vh)|

2 dx ≥ c̃KcF ‖vh‖H1(Ω)‖τh‖L2(Ω).

The constant of stability again depends on the constant in Korn’s inequality, therefore we
expect locking when treating anisotropic geometries and/or meshes. Also, the constant of
coercivity for a(·, ·) depends on the smallest eigenvalue of Ā, which tends to zero for almost
incompressible materials. Thus, the method (and especially the equivalent method based on
the pure displacement formulation), is a good choice as long as the above problems do not
occur. Finite element methods based on the pure displacement formulation are probably the
fastest methods available.

4.2.1.2 FEM for the Hellinger-Reissner formulation

A main achievement of the Hellinger-Reissner formulation is the fact that, in the continuous
setting, it is stable independently of the Lamé parameter λ̄ going to infinity. To discretize
the Hellinger-Reissner formulation, one needs to construct a pair of finite element spaces
Σk
HR,h × V k

HR,h, such that they are conforming for the infinite dimensional spaces HSYM(div)

and [L2(Ω)]d. The latter space can simply be set up using piecewise polynomial functions of
some prescribed degree. However, finite elements for the stress space need
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• to be symmetric tensor-valued,

• to be normal continuous

• to satisfy KerBh ⊂ KerB, or div Σk
HR,h ⊂ V k

HR,h.

A construction of such spaces cannot be done in a simple way. In three space dimensions, a
rigorous analysis of these spaces was done in [AC05], a finite element basis in two and three
space dimensions is provided in [AW02, AAW08]. In the plane, the lowest order stress element
consists of piecewise cubics with linear divergence, whereas the displacement is approximated
by discontinuous, piecewise linear finite elements. In three dimensions, the stress element has
to contain the full quadratic space, enhanced by divergence free functions of orders 3 and 4.
Again, the displacement space consists of piecewise linears. The local dimension of the stress
space is then 24 in two, and 162 in three dimensions.

4.2.1.3 FEM for methods with weakly imposed symmetry

When discretizing methods with weak symmetry, one does not need to use stress finite el-
ements which are symmetric. Therefore, one can use well-known elements for H(div), and
take them d times to get an approximation of [H(div)]d. Many different choices of triples of
finite elements have been analyzed by several authors, not all of these triples are conforming.
We refer to [Ste86, Ste88, AFW07]. Probably the best-known among these elements is the
PEERS element [ABD84], which was also analyzed in the general framework of [AFW07].
There, one chooses the famous Raviart-Thomas finite element space [RT0]

d for the stresses,
augmented by curls of bubble functions. For a definition of the Raviart-Thomas space, see
[RT77, Néd80]. It consists of vector-valued linear functions, which have constant normal
components on the facets of a triangle/tetrahedron. Then, the displacement is approximated
using piecewise constants, and piecewise linear, continuous functions are used for the La-
grangian multipliers, which may be interpreted as the rotation of the displacement. These
elements are stable also for nearly incompressible materials. Counting the coupling degrees of
freedom of a tetrahedral element, one obtains 24 nodal values for a method of approximation
order one. Increasing all orders by one, we get 66 coupling nodal values per element for a
second order method.

4.2.2 The TD-NNS method

We are concerned with discretizing the infinite dimensional set of equations (3.35), (3.36)
by suitable finite element spaces Σh approximating Σ0, Vh approximating V0. As our choice
for the displacement space was V = H(curl), we use tangential continuous finite elements in
order to be conforming. For Σ = H(div div), we saw the need of continuous normal-normal
components of the stress tensor. Note that this condition alone does not imply conformity for
a piecewise smooth function τ , not even for a piecewise polynomial: Additionally, the local

traces of the normal-tangential component τnτ has to lie in H
−1/2
‖ (div∂T ), cf. Remark 3.37.

This is a local continuity constraint on τnτ which is not satisfied in general. However, we
violate this condition in the proposed finite element spaces, which is rectified by the analysis
provided.

In several occasions, we also need a finite element space W k
h which approximates the

Sobolev space H1
0,ΓD

(Ω) conformingly, and the space Ph
k consisting of piecewise polynomial
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functions without any continuity assumptions. We use the spaces

Σk
h :=

{
τh ∈ L2

SYM (Ω) : τh ∈ P kSYM (Th), τh,nn cont., τh,nn = 0 on ΓN
}
, (4.13)

V k
h :=

{
vh ∈ [L2(Ω)]d : vh ∈ [P k(Th)]

d, vh,τ cont., vh,τ = 0 on ΓD
}
, (4.14)

W k
h :=

{
wh ∈ C(Ω) : wh ∈ P k(Th), wh = 0 on ΓD

}
, (4.15)

Pk
h :=

{
qh ∈ L2(Ω) : qh ∈ P k(Th)

}
. (4.16)

There, and throughout the remainder of this work, k ∈ N0 shall be a non-negative integer.
We may omit it as an index, if it is not necessary in the context. The above choice of spaces
induces the following mixed problem formulation.

Problem 4.11 (TD-NNS formulation). Find (σh, uh) ∈ Σk
h × V k

h defined as above such that

a(σh, τh) + b(τh, uh) = 〈F1, τh〉Σ ∀τh ∈ Σk
h,

b(σh, vh) = 〈F2, vh〉V ∀vh ∈ V k
h .

(4.17)

The bilinear forms a(·, ·), b(·, ·) and the right hand sides F1, F2 are defined by the relations
(3.37) – (3.40). Due to the smoothness of finite element functions, one can evaluate b(·, ·)
using

b(τh, vh) = 〈div τh, vh〉V =
∑

T∈Th

[∫

T
div τh · vh dx−

∫

∂T
τh,nτ · vh,τ ds

]
(4.18)

=
∑

T∈Th

[
−

∫

T
τh : ε(vh) dx+

∫

∂T
τh,nnvh,n ds

]
. (4.19)

The evaluation of b(·, ·) by (4.18), (4.19) for piecewise smooth functions τh, vh can be seen
easily: Let first v be a (globally) smooth test function. with tangential component vanishing
on ΓD. The divergence operator div for general τ ∈ H(div div) is defined as

〈div τ, v〉V := −

∫

Ω
τ : ε(v) dx +

∫

ΓD

τnnvn ds,

where the surface integral is understood as duality product. For the piecewise smooth function
τh, we may integrate by parts on each element,

〈div τh, v〉V =
∑

T∈Th

[∫

T
div τh · v dx−

∫

∂T
τh,n · v ds

]
+

∫

ΓD

τh,nnvn ds

=
∑

T∈Th

[∫

T
div τh · v dx−

∫

∂T
(τh,nτ · vτ + τh,nnvn) ds

]
+

∫

ΓD

τh,nnvn ds.

Reordering the boundary terms for the normal components facet by facet, we see

〈div τh, v〉V =
∑

T∈Th

[∫

T
div τh · v dx−

∫

∂T
τh,nτ · vτ ds

]
−
∑

F∈Fh
F⊂Ω

∫

F
[[τh,nnvn]]︸ ︷︷ ︸

=0

ds

+

∫

ΓD

(τh,nnvn − τh,nnvn)︸ ︷︷ ︸
=0

ds−

∫

ΓN

τh,nn︸ ︷︷ ︸
=0

vn ds.
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The jump terms for interior facets cancel out, as τh ∈ Σk
h is normal-normal continuous, and

v is smooth. Similarly, on the Dirichlet boundary ΓD, the terms cancel, whereas τh,nn is zero
on the remaining part ΓN . This yields equality (4.18), the second identity (4.19) follows by
integration by parts.

We give a more detailed description of the spaces Σk
h, V

k
h , and W k

h and the underlying
finite elements in the sequel. We will see that the lowest order method is given for k = 1,
and results in 24 coupling degrees of freedom on a tetrahedron: 3 · 4 = 12 for the piecewise
linear normal-normal stresses on the facets, plus 2 · 6 = 12 for the piecewise linear tangential
displacements on element edges. This is the same number as for the PEERS element; however,
we propose a second order method which needs again 12 coupling dofs for the stresses, and 30
for the displacements: this results in a total number of 42, which is considerably lower than
the 66 dofs, which one obtains for the PEERS element.

4.2.2.1 Finite elements for H1

High order finite elements for H1 have been constructed in many different ways: The most
straightforward idea is to use point evaluations as nodal values, where the points are dis-
tributed regularly, see e.g. [QV97, Cia91]. These elements are not often used in high order
computations, as their numerical stability for higher polynomial orders deteriorate. Spectral
elements [KS99] are more suitable for high order finite elements. In this work, we use a hier-
archical basis for the discretization of H1. A first general construction of such elements was
given in [AC03]. We stay close to the notation and results from [Zag06]. There, the order of
the finite element can be chosen for each edge, face, and for the interior separately. However,
we will assume uniform polynomial order on the whole space, as this very much simplifies
notation.

For T ∈ Th, we define the H1 conforming element of order k ∈ N as the triplet (T , W k(T ),
NW
k (T )). We use the full polynomial space W k(T ) := P k(T ). The set of nodal values NW

k (T )
consists of vertex-, edge-, facet- and cell-based degrees of freedom,

NW
k (T ) :=




⋃

V ∈V(T )

NW
V


 ∪




⋃

E∈E(T )

NW
E,k


 ∪




⋃

F∈F(T )

NW
F,k


 ∪ NW

T,k.

The respective sets are defined via

• for V ∈ V(T ), NW
V := {NW

V } where

NW
V (w) := w(V ).

• for E ∈ E(T ), NW
E,k := {NW

E,i : 2 ≤ i ≤ k} where

NW
E,i(w) :=

∫

E

∂w

∂s

∂qi
∂s

ds

with {qi : 2 ≤ i ≤ k} a basis for P k0 (E).

• in 3D, for F ∈ F(T ), NW
F,k := {NW

F,i} where

NW
F,i(w) :=

∫

F
∇Fw · ∇F qi ds,

where {qi} form a basis for P k0 (F ).
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• NW
T,k := {NW

T,i} where

NW
T,i(v) :=

∫

T
∇w · ∇qi dx,

where {qi} form a basis for P k0 (T ).

These degrees of freedom are unisolvent for the local space W k(T ).

4.2.2.2 Finite elements for H(curl)

According to Theorem 3.12, for the discretization of H(curl) one needs to use finite elements,
whose degrees of freedom ensure tangential continuity of the discrete functions. Elements of
this kind were first proposed in [Néd80, Néd86]. We use Nédélec elements of variable order of
the second kind, as proposed in [SZ05, Zag06]. In this approach, again the order of the finite
element can be chosen independently for each edge, facet and the interior. For a compact
presentation, we restrict ourselves to a uniform order for the whole space.

We define the Nédélec element of order k associated to element T ∈ Th as the triple
(T, V k(T ),N V

k (T )). There, V k(T ) = [P k(T )]d is the full polynomial space of order at most
k. The set of degrees of freedom N V

k (T ) can be divided into edge-, face- and cell-based dofs,

N V
k (T ) :=




⋃

E∈E(T )

N V
E,k


 ∪




⋃

F∈F(T )

N V
F,k


 ∪ N V

T,k.

The respective sets are defined via

• for E ∈ E(T ), N V
E,k := {NV

E,i : 0 ≤ i ≤ k} where

NV
E,i(v) :=

∫

E
vτEqi ds

with {qi : 0 ≤ i ≤ k} a basis for P k(E).

• in 3D, for F ∈ F(T ), N V
F,k := {NV

F,i,N
V
F,j} where

NV
F,i(v) :=

∫

F
curlF (v) · curlF (qi) ds, NV

F,j(v) :=

∫

F
v · rj ds

where {qi} are such that {curlF qi} form a basis for curlF (P k0,τ (F )), and {rj} are a basis

for ∇F (P k+1
0 (F )).

• N V
T,k := {NV

T,i, N
V
T,j} where

NV
T,i(v) :=

∫

T
curl(v) · curl(qi) dx, NV

T,j(v) :=

∫

T
v · rj dx

where {qi} are such that {curl qi} form a basis for curl(P k0,τ (T )), and {rj} are a basis

for ∇(P k+1
0 (T )).

Recall that P k0,τ (T ) is the space of vector-valued polynomials up to order k, which satisfy
homogenous tangential boundary conditions on the boundary ∂T of the simplex T . The
degrees of freedom are unisolvent for the local space V k(T ), see [Mon03], where they are
defined also for elements of variable order.



4.2. FINITE ELEMENT METHODS FOR MIXED ELASTICITY 57

4.2.2.3 Finite elements for H(div div)

We provide a suitable finite element for the space Σk
h. The degrees of freedom are chosen

such that the normal-normal component of a finite element function is continuous across
interfaces. We add degrees of freedom interior to the element, such that these nodal variables
are unisolvent for the local space.

Our finite element associated to T ∈ Th is given by (T,Σk(T ),NΣ
k (T )). There we define

the local finite element space Σk(T ) := P kSYM (T ) as the full polynomial space of symmetric,
tensor-valued fields. The set of degrees of freedoms NΣ

k (T ) consists of values associated to
facets and cells,

NΣ
k (T ) =




⋃

F∈F(T )

NΣ
F,k


 ∪ NΣ

T,k.

We define the respective sets

• for F ∈ F(T ), NΣ
F,k = {NΣ

F,i : i ∈ IF} where

NΣ
F,i(τ) :=

∫

F
JF τnnqi ds, (4.20)

where {qi, i ∈ IF } is a basis for P k(F ), and IF is a suitable index set,

• NΣ
T,k = {NΣ

T,i : i ∈ IT } where

NΣ
T,i(τ) :=

∫

T
JT τ : (F−T

T γiF
−1
T ) dx. (4.21)

There {γi : i ∈ IT } is a basis for P k0,nn(T ), the space of polynomial symmetric tensor
fields up to order k, with homogenous normal-normal boundary conditions, and IT is a
suitable index set.

The following lemma states that these degrees of freedom are unisolvent for the local space
Σk(T ); we will give an explicit basis for this space in Section 4.4.

Lemma 4.12. For T ∈ Th, the triple (T,Σk(T ),Nk(T )) defined as above forms a finite
element, the nodal variables Nk(T ) are a basis for Σk(T )∗ = P kSYM (T )∗.

Proof. For τh ∈ Σk(T ), we show

NΣ(τh) = 0 ∀NΣ ∈ NΣ
k (T ) =⇒ τh = 0.

From the fact that NΣ
F,iτh = 0 for all i ∈ IF on all boundary facets F ∈ F(T ), we deduce that

τh,nn = 0 on ∂T . Thus, τh lies in P k0,nn(T ), it has a representation in the basis {γi, i ∈ IT },
τh =

∑
i∈IT

aiγi. We obtain for the degrees of freedom associated to the interior, for all i ∈ IT

0 = NΣ
F,i(τh) =

∫

T
JT

( ∑

j∈IT

ajγj

)
: (F−T

T γiF
−1
T ) dx

=
∑

j∈IT

∫

T
JTaj(γjF

−1
T )(γiF

−1
T ) dx.

From this we conclude that ai = 0 for i ∈ IT , as the {γi : i ∈ IT } are linearly independent,
FT is invertible, and JT 6= 0.
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4.2.2.4 Finite elements for L2

The last finite element we discuss is suitable for the discretization of L2. The corresponding
finite element space is the space Pk

h consisting of piecewise polynomial functions, without any
restrictions on the inter-element continuity. The degrees of freedom correspond to a family
of, preferably orthogonal, polynomials (qi). Our finite element associated to T ∈ Th is given
by (T,Pk(T ),NP

k (T )). The local finite element space Pk(T ) := P k(T ) is the full polynomial
space of order up to k. The set of degrees of freedoms NP

k (T ) consists of cell-bound values
only,

NP
k (T ) = NP

T,k.

There, we define

• NP
T,k = {NP

T,i} where

NP
T,i(p) :=

∫

T
p qi dx, (4.22)

where {qi} is a basis for P k(T ).

These degrees of freedom are obviously unisolvent for the local space Pk(T ). We note, that
if the family (qi) is chosen orthogonal in the L2 sense, it coincides with the nodal basis. The
corresponding nodal interpolation operator IP

k is the L2 projection.

4.2.2.5 Transformations

In order to transform functions from the reference element to an element T in the mesh,
we need conforming transformations, which preserve the degrees of freedom of the finite
element. For an element T ∈ Th, let x = ΦT (x̂) be the point corresponding to x̂ ∈ T̂ .
Let Σ̂k := Σk(T̂ ), V̂ k := V k(T̂ ) and Ŵ k := W k(T̂ ) be the local spaces on the reference
element. We introduce the local operators ΦΣ

T : Σ̂k → Σk(T ), ΦV
T : V̂ k → V k(T ) and

ΦW
T : Ŵ k → W k(T ) on element T by

ΦΣ
T (τ̂h)(x) := τh(x) := 1

J2
T
FT τ̂h(x̂)F

T
T for τ̂h ∈ Σ̂k, (4.23)

ΦV
T (v̂h)(x) := vh(x) := F−T

T v̂h(x̂) for v̂h ∈ V̂ k, (4.24)

ΦW
T (ŵh)(x) := wh(x) := ŵh(x̂) for ŵh ∈ Ŵ k. (4.25)

Let now v̂h ∈ V̂ k. By application of basic calculus, one can directly see, that the strain of
vh := ΦV

T (v̂h) is given by

ε(vh) = F−1
T ε̂(v̂h)F

−T
T +

d∑

i=1

v̂h,iF
−1
T (H i

T )−1F−T
T .

On a mesh consisting of affine linear elements only, the Hessians H i
T vanish, and we obtain

ε(vh) = F−1
T ε̂(v̂h)F

−T
T .

As one can easily check, these transformations preserve the respective degrees of freedom
for the local spaces W k(T ), V k(T ),Σk(T ). We show these identities for the edge-based degrees
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of freedom for the displacements, as well as the facet-based nodal values for the stresses:

∫

E
vh,τqi ds =

∫

Ê

(
v̂ThF

−1
T

)( 1

JE
FT τ̂

)
q̂iJE dŝ =

∫

Ê
v̂h,τ̂ q̂i dŝ,

∫

F
σh,nnqiJF ds =

∫

F̂

(JT
JF

F−T
T n̂

)T ( 1

J2
T

FT σ̂hF
T
T

)(JT
JF

F−T
T n̂

)
q̂iJ

2
F dŝ =

∫

F̂
σ̂h,n̂n̂q̂i JF̂︸︷︷︸

=1

dŝ.

Here qi are taken from the respective bases in the definitions of the degrees of freedom above.
For all other degrees of freedom, similar identities can be shown along the same lines. All
equivalences follow from basic calculus, but the respective terms become more lengthy.

These transformations can be used to map a nodal basis given explicitely on the reference
element T̂ to any element T ∈ Th, and thereby get a nodal basis there. Doing this, one ends
up with the finite element spaces Σk

h, V
k
h , and W k

h as defined in (4.13),(4.14).

4.2.2.6 A decomposition of the Nédélec space

The degrees of freedom for the finite element space V k
h are associated to element edges,

facets, or interiors. This enables us to split the space into subspaces corresponding to these
quantities. Remember we called Xh = Eh∪Fh∪Th the union of all edges, facets, and elements
in the mesh. The finite element space can be written as the direct sum

V k
h =

⊕

E∈Eh

V k
E ⊕

⊕

F∈Fh

V k
F ⊕

⊕

T∈Th

V k
T =

⊕

X∈Xh

V k
X . (4.26)

Given a nodal basis for the Nédélec space, this splitting is induced by a splitting of this basis
with respect to the different X ∈ Xh. Note that all these subspaces are local, their support
is restricted to only few elements.

Later on, it will prove useful not only to define the local spaces above, but also some
global, low-order space. We call this space Vh,0. This space is the lowest-order Nédélec type I
space, as introduced in [Néd80]. It consists of piecewise linear functions, where the tangential
component along edges is constant. It corresponds to the lowest-order edge-based degrees of
freedom above. We call the remaining part, which is built using the higher-order degrees of
freedom, Ṽ k

h . Similar to the splitting of V k
h above, we can decompose Ṽ k

h into subspaces,

Ṽ k
h =

⊕

X∈Xh

Ṽ k
X .

In Section 4.4, an explicit basis for the Nédélec space will be given. Using this, we will then
define all these spaces accurately.

4.3 Analysis of the TD-NNS method

In the sequel, we are concerned with the analysis of our mixed finite element method. We
verify the conditions of Brezzi’s theorem also in the discrete setting (Assumption 4.2). We
introduce suitable nodal interpolation operators for the stress and displacement space, which
lead to an a-priori bound for the discretization error. We provide a Korn-type inequality
which relies on the splitting of V k

h into a high- and a low-order part.
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4.3.1 Stability properties

This section is devoted to verifying the discrete stability conditions from Assumption 4.2. On
the continuous level, both Σ = H(div div) and V = H(curl) are equipped with their natural
norms. For the finite element analysis, we use a different set of norms. We use a broken
H1 norm for the displacements, and the L2 norm for the stresses,

‖vh‖
2
Vh

:=
∑

T∈Th

‖ε(vh)‖
2
T +

∑

F∈Fh

h−1
F ‖[[vh]]n‖

2
F , (4.27)

‖τh‖Σh
:= ‖τh‖Ω. (4.28)

Note that, using piecewise strains instead of piecewise gradients in ‖.‖Vh
, we are able to avoid

Korn’s inequality. This will become useful when treating anisotropic geometries or elements,
as arise in the discretization of shell- or beam-like structures. For a shape-regular mesh, the
broken norm above is equivalent to one using piecewise gradients, which is frequently used in
discontinuous Galerkin methods. It is then also possible not to take the full jump [[.]]n, but its
facet-wise projection Π1[[.]]n onto the space of linear polynomials. We heavily use the theory
provided in [Bre04].

Lemma 4.13. Let Th be a shape-regular, quasi-uniform triangulation of the domain Ω, then
there exist constants c1, c2 > 0 depending only on Ω and the shape-regularity of Th such that
for all vh ∈ V k

h

‖vh‖
2
Vh

≥ c1



∑

T∈Th

‖∇vh‖
2
T +

∑

F∈Fh

h−1
F ‖[[vh]]n‖

2
F


 , (4.29)

‖vh‖
2
Vh

≤ c2



∑

T∈Th

‖ε(vh)‖
2
T +

∑

F∈Fh

h−1
F ‖Π1[[vh]]n‖

2
F


 . (4.30)

There Π1 denotes the facet-wise projection onto P 1(Fh). These inequalities ensure equivalence
of norms on V k

h .

Proof. We first prove the lower bound (4.29). In [Bre04, Theorem 3.1], the existence of a
constant c depending only on Ω and the shape-regularity of Th was stated, such that

∑

T∈Th

‖∇vh‖
2
T ≤ c



∑

T∈Th

‖ε(vh)‖
2
T + Φ(vh)

2 +
∑

F∈Fh

h−1
F ‖[[vh]]n‖

2
F


 ,

where Φ is a suitable semi-norm. Similar to [Bre04, equation (1.19)], we set

Φ(vh)
2 =

∑

F⊂Γ

h−1
F ‖vh,n‖

2
F .

Note that, in the original work, the whole of vh was measured on the boundary, not only the
normal component vh,n. It is possible to use only this normal component due to the fact that
vh,τ vanishes on the non-trivial boundary part ΓD. As this choice of Φ is absorbed by ‖.‖Vh

,
we directly obtain the desired result (4.29).
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For the second inequality, we again apply theory from [Bre04]. Let now D ⊂ R
d be a

bounded, connected Lipschitz domain. We call

RM(D) := {v : D → R
d, x 7→ a+ γx | a ∈ R

d, γ ∈ RSKW} (4.31)

the space of (infinitesimal) rigid body motions. Let ΠRM denote the element-wise projection
onto the space of piecewise rigid body motions RM(Th). This projection can be defined
element-wise via

∫

T
vh − ΠRMvh dx = 0,

∫

T
curl(vh − ΠRMvh) dx = 0.

As RM(T ) is a subspace of P 1(T ), for any facet F ∈ Fh,

‖(id − Π1)[[vh]]n‖F = ‖(id− Π1)[[vh − ΠRMvh]]n‖F ≤ c ‖[[vh − ΠRMvh]]n‖F .

Following [Bre04], the operator ΠRM satisfies the approximation property

‖[[vh − ΠRM (vh)]]n‖
2
F ≤ c

∑

T∈∆F

hF ‖ε(vh)‖
2
T ∀vh ∈ Vh

where c > 0 is independent of the mesh size h. Combining these estimates, and using an
argument of finite overlap, we obtain

1

2

∑

F∈F

h−1
F ‖[[vh]]n‖

2
F ≤

∑

F∈F

[
h−1
F ‖Π1[[vh]]n‖

2
F + h−1

F ‖(id − Π1)[[vh]]n‖
2
F

]

≤ c



∑

F∈F

h−1
F ‖Π1[[vh]]n‖

2
F +

∑

T∈Th

‖ε(vh)‖
2
T


 .

This relation proves the second norm equivalence for the displacements.

Lemma 4.14. On Σh, there holds the equivalence of norms

‖τh‖
2
Σh

≤ ‖τh‖
2
Ω +

∑

F∈Fh

hF ‖τh,nn‖
2
F ≤ c3‖τh‖

2
Σh
,

given the triangulation Th of Ω is shape regular.

Proof. The lower bound is trivial, we prove the upper bound by a scaling argument. We trans-
form the domain of integration element-wise to the reference element, using the H(div div)
conforming transformation ΦΣ

T given in (4.23). We do all calculations in detail here; we will
often use a similar approach later in this work, but then abandon this level of exactness. Let
now τh ∈ Σh be arbitrary, the shape-regularity of Th ensures that |FT |s ≃ hT on each element
T , and therefore

‖τh‖
2
T =

∫

T̂

1

J4
T

(FT τ̂hF
T
T )2JT dx̂ ≃ h4−3d

T

∫

T̂
|τ̂h|

2dx̂.

On the finite dimensional space Σ̂k on the reference element, there holds
∫

T̂
|τ̂h|

2 dx̂ ≥ c
∑

F̂∈F(T̂ )

∫

F̂
|τ̂h,n̂n̂|

2dŝ
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Thereby we conduct

‖τh‖
2
T ≥ ch4−3d

T

∑

F̂∈F(T̂ )

∫

F̂
τ̂2
h,n̂n̂dŝ

= ch4−3d
T

∑

F∈F(T )

∫

F

∣∣∣(n̂TF−1
T )(FT τ̂hF

T
T )(F−T

T n̂)
∣∣∣
2 1

JF
ds

= ch4−3d
T

∑

F∈F(T )

∫

F

J4
TJ

4
F

J4
T

|τh,nn|
2 1

JF
ds

≃
∑

F∈F(T )

hF ‖τh‖
2
F .

Here we used that, on a shape-regular triangulation, we have hT ≃ hF for all T ∈ Th,
F ∈ F(T ). This estimate concludes the proof of the lemma.

The next three lemmas state that the finite element spaces Σk
h, V

k
h are a stable pair for

discretizing the equations of elasticity.

Lemma 4.15. The bilinear forms a(·, ·), b(·, ·) are bounded on Σk
h, V

k
h in the respective discrete

norms, there exist constants c̃a,2, c̃b,2 > 0 such that

a(σh, τh) ≤ c̃a,2‖σh‖Σh
‖τh‖Σh

∀σh, τh ∈ Σk
h,

b(τh, vh) ≤ c̃b,2‖τh‖Σh
‖vh‖Vh

∀τh ∈ Σk
h, vh ∈ V k

h .

The constants c̃a,2, c̃b,2 are independent of the mesh size h.

Proof. It is straightforward to prove continuity of a(·, ·) in the discrete norm ‖.‖Σh
. For the

constant of boundedness we obtain

c̃a,2 = λmax(Ā) =
1

2µ̄
,

where λmax(Ā) is the maximal eigenvalue of the symmetric fourth order tensor Ā. The last
identity holds for isotropic, linear elastic, homogenous materials. One can see that this bound
does not deteriorate for nearly incompressible materials.

Continuity of b(·, ·) also follows directly when using representation (4.19) and the norm
equivalence on the discrete level stated in Lemma 4.14.

We have seen that, in the continuous setting, it is possible to show coercivity of a(·, ·) on
the kernel of B; the constant of coercivity is then independent of the Lamé parameter λ̄. In
the discrete setting, we cannot provide such a result for a(·, ·). In Chapter 5, we propose a
stabilized bilinear form which is coercive independently of λ̄.

Lemma 4.16. The bilinear form a(·, ·) is coercive on the space Σk
h; the constant of coercivity

c̃a,1 > 0, which satisfies

a(τh, τh) ≥ c̃a,1‖τh‖Σh
∀τh ∈ Σk

h

is independent of the mesh size h, but depends on the Lamé parameter λ̄ as c̃a,1(λ̄) = O(1/λ̄).
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Proof. The lemma follows directly from the fact that

c̃a,1 = λmin(Ā) =
1

3λ+ 2µ
.

Our next aim is proving an inf-sup condition for b(·, ·). Let therefore T̂ be the reference
element, with (simplicial) facets F̂i, i = 1, . . . , d + 1. In Section 4.4, we provide facet basis
tensors ŜFi , i = 1, . . . , d + 1. These tensors are constant on the element, and their normal-
normal component vanishes on all facets but F̂i. In two space dimensions, the family {ŜFi :
i = 1, 2, 3} is a basis for Σ̂0 = P 0

SYM (T̂ ). Conversely, in three dimensions, the four constant

tensor fields ŜFi cannot span the six-dimensional space P 0
SYM (T̂ ). There exist two further,

linearly independent fields ŜT,1, ŜT,2, which can be constructed such that their normal-normal
component vanishes on the whole boundary. Then the family {ŜFi : i = 1, . . . , 4}∪{ŜT,1, ŜT,2}
provides a proper basis for Σ̂0 = P 0

SYM (T̂ ). Using the conforming transformation ΦΣ
T , one can

build the global space Σ0
h.

In the following, we will additionally need facet-based finite element subspaces Σk
F , which

have support only on the two elements neighboring the facet F . Moreover, their normal-
normal component restricted to F shall span P k(F ), and vanish on all other facets,

{σFh,nn|F : σFh ∈ Σk
F } = P k(F ),

σFh,nn|F̃ = 0 for σFh ∈ Σk
F , F̃ ∈ Fh, F̃ 6= F.

This means that the space Σk
F corresponds to the degrees of freedom of facet F . A suitable

basis for this space will be provided in Section 4.4. We note that these spaces are linearly
independent.

Let now λi be the barycentric coordinate for the vertex opposite facet Fi. Then, λi = 0
on Fi, the tensor fields

B̂i := λiŜ
Fi , i = 1, . . . , d+1

are bubble functions, i.e. their normal-normal component vanishes on the whole boundary
∂T̂ . In 3D, we additionally set

B̂5 = ŜT,1, B̂6 = ŜT,2,

as these fields are already element bubbles. We call

Σ̂k
T := span{B̂i}

the bubble space on the reference element. Again, Σk
T shall denote its transformation to an

element T ∈ Th.

Lemma 4.17. Let Th be a quasi-uniform shape-regular triangulation of Ω. There holds the
stability estimate

inf
vh∈V

k
h

sup
τh∈Σk

h

b(τh, vh)

‖τh‖Σh
‖vh‖Vh

≥ c̃b,1,

where c̃b,1 > 0 is independent of the mesh size h.
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Proof. The finite element space Σk
h can be decomposed in two parts,

Σk
h = Σk,f

h ⊕ Σk,b
h .

Here Σk,f
h is associated to the degrees of freedom lying on element facets, while Σk,b

h is called
“bubble space” and consists of element bubble functions which correspond to the degrees of
freedom interior to one element.

The facet space Σk,f
h is the direct sum of contributions coming from the different facets

F ∈ Fh,

Σk,f
h =

⊕

F∈Fh

Σk
F .

The bubble space Σk,b
h is built from element bubble spaces Σk

T described above,

Σk,b
h =

⊕

T∈Th

Σk
T .

Note that the two spaces are linearly independent and the finite element functions have
bounded overlap. Thus, there exists a constant independent of h such that

‖τ fh ‖Σh
+ ‖τ bh‖Σh

≤ c‖τh‖Σh
for all τh = τ fh + τ bh, τ

f
h ∈ Σk,f

h , τ bh ∈ Σk,b
h .

Let now vh ∈ V k
h be given. We construct τh = cf τ

f
h + cbτ

b
h, where τ fh ∈ Σk,f

h , τ bh ∈ Σk,b
h ,

and cf , cb ∈ R are to be specified below. Let τ fh be such that

τ fh,nn|F = h−1
F [[vh]]n,F .

This is possible, as [[vh]]n,F is of polynomial degree k for each facet F .

Next, we construct the bubble part τ bh. We use the bubble functions B̂i defined on the

reference element. Each of these bubbles is linked to some ŜFi , ŜT,j by definition. For
simplicity of notation, we do the following calculations for the case d = 2, as then we have
B̂i = λiŜ

Fi , i = 1, 2, 3. For d = 3, all estimates work along the same lines, using both
ŜFi , ŜT,j . We define τ bh element-wise via its representation τ̂ bh on the reference element:

τ̂ bh :=
J2
T

h4
T

3∑

i=1

(
ε̂(v̂h) : ŜFi

)

︸ ︷︷ ︸
∈P k−1(T )

B̂i
︸︷︷︸

∈P 1(T )

.

We now estimate the two parts separately. As Σk,f
h consists of facet-bound fields only, we

obtain similar to Lemma 4.14,

‖τ fh ‖
2
Σh

≤ c1
∑

F∈Fh

hF ‖τ
f
h,nn‖

2
F = c1

∑

F∈Fh

h−1
F ‖[[vh]]n‖

2
F .

For the bubble part, we can show the following bound by transformation to the reference
element:

‖τ bh‖
2
Σh

≤ c22
∑

T∈Th

‖ε(vh)‖
2
T .
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Thus, we may deduce

‖τh‖Σh
≤ max(c1cf , c2cb)‖vh‖Vh

. (4.32)

Next, we show the existence of c3 > 0 such that, on each element T ∈ Th,

∫

T
τ bh : ε(vh) dx ≥ c3‖ε(vh)‖

2
T .

We do this again by transformation to the reference element, employing that by shape-
regularity |F−1

T |s ≃ h−1
T .

∫

T
τ bh : ε(vh) dx =

∫

T̂

1

J2
T

τ̂ bh : ε̂(v̂h)JT dx̂

=

∫

T̂
h−4
T

3∑

i=1

(
ε̂(v̂h) : ŜFi

)
B̂i : ε̂(v̂h)JT dx̂

=

∫

T̂
h−4
T

3∑

i=1

(
ε̂(v̂h) : ŜFi

)2
λiJT dx

≃

∫

T̂
h−4
T |ε̂(v̂h)|

2JT dx̂

≃

∫

T̂
|F−1
T ε̂(v̂h)F

−T
T |2JT dx̂ = ‖ε(vh)‖

2
T .

We used that the B̂i are linearly independent, and that the ŜFi form a basis for the piecewise
constant, symmetric tensor fields in 2D. We can now show the following lower bound for
b(τh, v), where we use the estimates from above, as well as Young’s inequality in the last line:

b(τh, vh) =
∑

T∈Th

∫

T
ε(vh) : τh dx−

∑

F∈Fh

∫

F
τh,nn[[vh]]n ds

=
∑

T∈Th

∫

T
ε(vh) : (cf τ

f
h + cbτ

b
h) dx−

∑

F∈Fh

∫

F
cf τ

f
h,nn[[vh]]n ds

≥
∑

T∈Th

[
cbc3‖ε(vh)‖

2
T − cf‖τ

f
h ‖T ‖ε(vh)‖T

]
+
∑

F∈Fh

cfh
−1
F ‖[[vh]]n‖

2
F

≥
∑

T∈Th

[
cbc3‖ε(vh)‖

2
T −

∑

F⊂∂T

cf c1h
−1/2
F ‖[[vh]]n‖F ‖ε(vh)‖T

]
+
∑

F∈Fh

cfh
−1
F ‖[[vh]]n‖

2
F

≥
∑

T∈Th

(
cbc3 −

cfc1γ
2

2
)‖ε(vh)‖

2
T +

∑

F∈Fh

cfh
−1
F

(
1 −

c1
2γ2

)
‖[[vh]]n‖

2
F .

Setting γ2 = c1, cf = 1, cb = (1+ c21)/(2c3), the estimate above together with (4.32) yields the
required result,

b(τh, vh) ≥
1

2
‖v‖2

Vh
≥ min

(
1

2c1
,

c3
c2(1 + c21)

)
‖τh‖Σh

‖v‖Vh
.
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Corollary 4.18. Let Th be a shape-regular triangulation of Ω, and define

Σ
k,kf

h := {τh ∈ Σk
h : τh,nn|F ∈ P kf (F ) ∀F ∈ Fh}.

Then the statement of Lemma 4.17 still holds on Σk,1
h × V k

h .

Proof. We obtain this statement when choosing τ fh in the proof of Lemma 4.17 like

τ fh,nn|F = h−1
F Π1[[v]]n,F .

Then we get stability using the norm equivalence (4.30) in Lemma 4.13.

4.3.2 Nodal interpolation and error estimates

This section is devoted to giving a-priori error estimates for the difference between the exact
solution (σ, u) and the Galerkin approximation (σh, uh). Lemma 4.3 states, that the error
can be estimated by the best-approximation error of Σk

h×V
k
h . We bound this quantity by the

interpolation error for suitable interpolators for the finite element spaces. We propose to use
nodal interpolation operators as implied by the finite elements for Σk

h, V
k
h . First we shortly

present the nodal interpolation operator IWh,k for the space W k
h , and recall its approximation

properties. For the displacement space V k
h , the nodal interpolation operator IVh,k is the well-

known Nédélec interpolation operator, as defined e.g. in [Mon03]. For the stress space, we
introduce and analyze the corresponding nodal interpolation operator IΣ

h,k. Last, we observe

that the nodal interpolation operator IP
h,k for the L2 conforming space Pk

h reduces to an

element-wise L2 projection.

One major drawback of the nodal interpolation operators is that they are usually not
defined on the whole space of interest, e.g. on H1, H(curl),H(div div) or L2. This diffi-
culty can be circumvented by the usage of quasi-interpolation operators, which require less
smoothness, and are well defined on L2(Ω). Most famous among them is probably the Clément
quasi-interpolation operator introduced in [Clé75], which was constructed for continuous finite
elements. Generalizations of this interpolator are e.g. the Scott-Zhang interpolation operator
[SZ80], which preserves boundary conditions, or the family of quasi-interpolation operators
for H1, H(curl), H(div) and L2, which was introduced in [Sch01]. The operators stemming
from the latter family satisfy a commuting diagram property, and can be constructed such
that degrees of freedom are preserved for polynomial functions. We do a careful analysis in
Section 6.2.1. Last, we refer to the family of projection-based interpolation operators, which
also can be defined on H1, H(curl), H(div) and L2, and commute with differential operators
[DB05].

4.3.2.1 An interpolation operator for H1

We shortly recall the definition of the nodal interpolation operator IWh,k for H1. It is defined

using the degrees of freedom of the high-order H1 finite element:

NW (w − IWh,kw) = 0 ∀NW ∈ NW
k . (4.33)

The following theorem provides the standard result on the interpolation error for the nodal
operator. A proof can be found e.g. in [BS02, Mon03].
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Theorem 4.19. Let Th be a shape-regular, uniform triangulation of Ω. Let IWh,k denote the

nodal interpolant for W k
h as defined in (4.33). Let s ∈ [d/2 + δ, k + 1], δ > 0 such that

w ∈ Hs(Ω), then

‖w − IWh,kw‖H1(Ω) ≤ chs−1|w|Hs(Ω).

The restriction w ∈ Hs(Ω) for s > d/2 + δ ensures that all nodal values can be evaluated,
and the interpolation operator IWh,k is well defined. If this is not the case, one can obtain a
similar estimate using one of the quasi-interpolation operators mentioned above.

4.3.2.2 An interpolation operator for the Nédélec space

The nodal interpolation operator for the Nédélec space V k
h is defined via the degrees of freedom

for the Nédélec element:

NV (v − IVh,kv) = 0 ∀NV ∈ N V
k . (4.34)

The following theorem concerning the approximation properties of this interpolator is widely
used for error estimates. A proof can be found in [Mon03].

Theorem 4.20. Let Th be a shape-regular, quasi-uniform triangulation of Ω. Let IVh,k denote

the nodal interpolant for V k
h defined as above. If v ∈ Hs(curl; Ω) for some s ∈ [d/2− 1 + δ, k]

for δ > 0, then

‖v − IVh,kv‖H(curl) ≤ chs
(
‖v‖Hs(Ω) + ‖ curl v‖Hs(Ω)

)
.

The restriction v ∈ Hs(curl; Ω), s > d/2−1+δ in the theorem above ensures that all nodal
values are well-defined for v. Otherwise, one has to use quasi-interpolation operators as men-
tioned before. For the remainder of this section, we will use the nodal Nédélec interpolation
operator IVh,k on H(curl). Therefore, we assume that the solution u to the elasticity problem
is sufficiently smooth, such that the interpolation operator is well defined. Otherwise, all
estimates can be done using the local averaging operators described above.

For error analysis in the TD-NNS method, we need to quantify the approximation prop-
erties of the Nédélec interpolation operator in the discrete norm ‖.‖Vh

.

Theorem 4.21. Let Th be a regular triangulation of Ω. Let IVh,k denote the nodal interpolant

for V k
h defined as above. Let v ∈ Hs(curl; Ω) with s ∈ [d/2 − 1 + δ, k] for δ > 0 satisfy

v|T ∈ Hk+1(T ) for all elements T ∈ Th. Then there holds for 1 ≤ m ≤ k

∥∥v − IVh,kv
∥∥
Vh

≤ c
( ∑

T∈Th

h2m
T

∥∥∇mε(v)
∥∥2

T

)1/2
.

The generic constant c depends on the shape-regularity of the triangulation, but not on the
mesh size h.

Proof. Let v fulfilling the conditions above be arbitrary, and let T ∈ Th. Due to [Mon03,
Lemma 5.38] and the Sobolev embedding theorem (see e.g. [GR86, Wer02]), we have that the

local interpolation operator I V̂k on the reference element is continuous on Hs(curl; T̂ ). From

this, we deduce that also I V̂k : Hm+1(T̂ ) → H1(T̂ ) is bounded; let ‖I V̂k ‖ be the corresponding
operator norm.
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We now use a similar approach as in [BS02, Theorem 4.4.4]. We use that I V̂k preserves
polynomials up to order k, and estimate

∥∥v̂ − I V̂k v̂
∥∥
H1(T̂ )

≤ inf
q̂∈[P k(T̂ )]d

‖v̂ − q̂‖H1(T̂ ) +
∥∥I V̂k (q̂ − v̂)

∥∥
H1(T̂ )

≤ inf
q̂∈[P k(T̂ )]d

(
1 + ‖I V̂k ‖

)
‖v̂ − q̂‖Hm+1(T̂ )

≤ c
(
1 + ‖I V̂k ‖

)
|v̂|Hm+1(T̂ ).

There, we used the Lemma of Bramble-Hilbert (Lemma 4.3.8 in [BS02]) in the last line.
Using this local estimate on the reference element, we proceed

∥∥v − IVh,kv
∥∥2

Vh
=

∑

T∈Th

∥∥ε(v − I
V (T )
k v)

∥∥2

T
+
∑

F∈Fh

h−1
F

∥∥[[v − I
V (∆F )
k v]]n

∥∥2

F

≤
∑

T∈Th

[∥∥ε(v − I
V (T )
k v)

∥∥2

T
+ h−1

T

∥∥v − I
V (T )
k v

∥∥2

∂T

]
.

Here we reordered the facet integrals element-wise in the last line, and estimated the jump
in normal direction by the full trace. For an element T ∈ Th, we transform the respective
summand to the reference element T̂

∥∥ε(v − I
V (T )
k v)

∥∥2

T
+ h−1

T

∥∥vn − I
V (T )
k vn

∥∥2

∂T
=

=

∫

T̂
|F−1
T ε̂(v̂ − I V̂k v̂)F

−T
T |2JT dx̂+

∫

∂T̂
h−1
T |(v̂ − I V̂k v̂)F

−1
T |2JF dŝ

≤ ch−4+d
T

(∥∥ε̂(v̂ − I V̂k v̂)
∥∥2

T̂
+
∥∥v̂ − I V̂k v̂

∥∥2

∂T̂

)

≤ ch−4+d
T

∥∥v̂ − I V̂k v̂
∥∥2

H1(T̂ )

≤ ch−4+d
T |v̂|2

Hm+1(T̂ )
.

Here we used the local approximation estimate on the reference element T̂ . Transformation
back to element T yields again

∥∥ε(v − I
V (T )
k v)

∥∥2

T
+ h−1

T

∥∥vn − I
V (T )
k vn

∥∥2

∂T
≤ ch2m

T |v|2Hm+1(T ).

Summarizing, we obtain the required result

∥∥v − IVh,kv
∥∥
Vh

≤ c
( ∑

T∈Th

h2m
T |v|2Hm+1(T )

)1/2
≤ c
( ∑

T∈Th

h2m
T |ε(v)|2Hm(T )

)1/2
.

In the last step, we used that for integer m ≥ 1 one can show |ε(v)|Hm(T ) ≤ c|v|Hm+1(T ) by
a direct evaluation of the respective differential terms. Thus, Korn’s inequality is not needed
in this step.

4.3.2.3 An interpolation operator for the stress space

As for the Nédélec space, we use the nodal interpolation operator IΣ
h,k implied by the degrees

of freedom of the normal-normal continuous finite element:

NΣ(τ − IΣ
h,kτ) = 0 ∀NΣ ∈ NΣ

k . (4.35)
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Again, this operator is not well defined on L2(Ω), but on Σ = H(div div): Due to the trace
theorem, we have that the normal-normal trace of some element τ ∈ Σ can be tested against
polynomial functions, thus the facet-bound degrees of freedom are well-defined. The interior
degrees of freedom can be evaluated for any τ ∈ L2(Ω). As the local space spans P kSYM (T ) on
each element T , we expect convergence of order k+ 1 in the L2 norm. We first show stability
of the operator.

Lemma 4.22. Let Th be a regular triangulation of Ω. Let τ ∈ L2(Ω) be such that τnn|F ∈
L2(F ) for all facets F ∈ Fh. Then the nodal interpolant IΣ

h,k for Σk
h defined by equation (4.35)

is bounded, its norm ‖IΣ
h,k‖ satisfies

‖IΣ
h,kτ‖Σh

≤ ‖IΣ
h,k‖

(
‖τ‖2

Ω +
∑

F∈Fh

hF ‖τnn‖
2
F

)1/2
.

Here, ‖IΣ
h,k‖ does not depend on the mesh size h.

Proof. We show the estimate on the reference element, i.e.

‖IΣ̂
k τ̂‖

2
T̂
≤ c

(
‖τ̂‖2

T̂
+ ‖τ̂n̂n̂‖

2
∂T̂

)
.

Let
{
ϕ̂Σ
F̂i,j

, ϕ̂Σ
T̂ ,l

: j ∈ IF̂i
, l ∈ IT̂

}
be a nodal basis for the stress finite element with degrees of

freedom NΣ
k (T̂ ) =

{
NΣ
F̂i,j

, NΣ
T̂ ,l

}
, as they were defined in (4.20), (4.21). Then we have

‖IΣ̂
k τ̂‖T̂ =

∥∥∥
∑

F̂i∈F(T̂ )

∑

j∈I
F̂i

(NΣ
F̂i,j

τ̂)ϕ̂Σ
F̂i,j

+
∑

l∈I
T̂

(NΣ
T̂ ,l
τ̂)ϕ̂Σ

T̂ ,l

∥∥∥
T̂

≤
∑

F̂i∈F(T̂ )

∑

j∈I
F̂i

|NΣ
F̂i,j

τ̂ |‖ϕ̂Σ
F̂i,j

‖T̂ +
∑

l∈I
T̂

|NΣ
T̂ ,l
τ̂ |‖ϕ̂Σ

T̂ ,l
‖T̂

≤ c

[
∑

F̂i∈F(T̂ )

∑

j∈I
F̂i

|NΣ
F̂i,j

τ̂ | +
∑

l∈I
T̂

|NΣ
T̂ ,l
τ̂ |

]
.

In the last line we used that the nodal basis on the reference element is finite and therefore is
bounded uniformly from above and below in the L2 norm. It remains to bound the absolute
values of the degrees of freedom. For the facet-based nodal values, we obtain, using the basis
{qj : j ∈ IF̂i

} of P k(F̂i) taken from (4.20),

∣∣NΣ
F̂i,j

τ̂
∣∣ =

∣∣∣∣
∫

F̂i

τ̂n̂n̂qjJF̂i
ds

∣∣∣∣ =
∣∣∣∣
∫

F̂i

τ̂n̂n̂qj ds

∣∣∣∣
≤ ‖τ̂n̂n̂‖F̂i

‖qj‖F̂i
≤ c ‖τ̂n̂n̂‖F̂i

.

Similarly, we see for the interior degrees of freedom that

∣∣NΣ
T̂ ,l
τ̂
∣∣ =

∣∣∣∣
∫

T̂
JT̂ τ̂ : F−T

T̂
γlF

−1

T̂
dx

∣∣∣∣ =

∣∣∣∣
∫

T̂
τ̂ : γl dx

∣∣∣∣
≤ ‖τ̂‖T̂ ‖γl‖T̂ ≤ c ‖τ̂‖T̂ ,

where {γl : l ∈ IT̂ } is the basis of P k0,nn(T̂ ) used in (4.21). A scaling argument using the

transformation ΦΣ
T directly leads to the h-dependent estimate from the Lemma.
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As the local space Σk(T ) is a full polynomial space for T ∈ Th, we are able to show an
optimal order of approximation for the nodal interpolation operator.

Theorem 4.23. Let Th be a shape-regular triangulation of Ω, and let IΣ
h,k be the nodal inter-

polation operator defined in (4.35). Let 1 ≤ m ≤ k+1, and τ ∈ L2(Ω) such that τ |T ∈ Hm(T )
for all elements T ∈ Th. Then the interpolation error is bounded by

‖τ − IΣ
h,kτ‖Σh

≤ c
( ∑

T∈Th

h2m
T |τ |2Hm(T )

)1/2
.

The constant c depends on the shape-regularity of the triangulation, but not on the mesh
size h.

Proof. The proof for this theorem runs very much along the same lines as the one for [BS02,
Theorem 4.4.4] or for Theorem 4.21. Again, we can verify, using that Σ̂k spans P kSYM (T̂ ),
that on the reference element

‖τ̂ − IΣ̂
k τ̂‖T̂ ≤ c inf

γ̂∈P k
SYM (T̂ )

(
‖τ̂ − γ̂‖T̂ + ‖τ̂n̂n̂ − γ̂n̂n̂‖∂T̂

)

≤ c inf
γ̂∈P k

SYM (T̂ )
‖τ̂ − γ̂‖Hm(T̂ ) ≤ c|τ̂ |Hm(T̂ ).

Transformation to an arbitrary element T ∈ Th using the conforming transformation ΦΣ
T

yields then the scaled estimate.

4.3.2.4 An interpolation operator for the space Pk
h

Last, we define the nodal interpolation operator for the L2 conforming space Pk
h . We already

mentioned in Section 4.2.2.4 that the nodal interpolation operator coincides with the element-
wise L2 projection onto the local finite element space. Therefore, the following interpolation
error estimate follows directly.

Lemma 4.24. Let Th be a shape-regular triangulation of Ω, and let IP
h,k be the nodal inter-

polation operator for Pk
h . Let 1 ≤ m ≤ k + 1, and p ∈ Hm(Ω). Then the interpolation error

is bounded by

‖p − IP
h,kp‖Ω ≤ c

( ∑

T∈Th

h2m
T |p|2Hm(T )

)1/2
,

where c > 0 does not depend on the mesh size h.

4.3.2.5 Basic error estimate

Using the abstract error estimate in Lemma 4.3 and the estimates for the nodal interpolation
operators, we can provide a priori bounds for the discretization error.

Theorem 4.25. Let Ω ⊂ R
d be a polyhedral Lipschitz domain, which is decomposed by a

family of shape-regular, quasi-uniform triangulations (Th) of mesh size h → 0. Let (σ, u) be
the solution to the elasticity problem (3.2) - (3.1) satisfying boundary conditions (3.3) - (3.4).
Let (σh, uh) be the Galerkin approximation in Σk

h× V k
h according to Problem 4.11. Assuming

that σ ∈ Hm
SYM(Ω) and u ∈ [Hm+1(Ω)]d for 1 ≤ m ≤ k,

‖σ − σh‖Σh
+ ‖u− uh‖Vh

≤ chm
(
|σ|Hm(Ω) + |u|Hm+1(Ω)

)
.
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Remark 4.26. The result can easily be generalized to piecewise smooth solutions, then the
bound reads

‖σ − σh‖Σh
+ ‖u− uh‖Vh

≤ c



∑

T∈Th

h2m
T

(
|σ|2Hm(T ) + |u|2Hm+1(T )

)



1/2

.

When using the approximation spaces Σ
k,kf

h ×V k
h for kf := max(1, k−1), the order of conver-

gence is still optimal, as then P k−1
SYM (T ) ⊂ Σ

k,kf

h (T ), and the stability estimate in Lemma 4.17
still holds.

4.3.3 A Korn-type inequality

In Section 4.2.2.6, we decomposed the Nédélec space V k
h into a global, low-order space Vh,0,

and its high-order complement Ṽ k
h . Exact bases for these spaces will be given in Section 4.4;

however, we now show a Korn-type inequality on the high-order part Ṽ k
h

∑

T∈Th

‖∇ṽh‖
2
T ≤ c2

K,Ṽ

∑

T∈Th

‖ε(ṽh)‖
2
T ∀ṽh ∈ Ṽ k

h .

The proof of this inequality is closely related to [Bre04] and additions made in [MW06].
Let now D ⊂ R

d, d = 2, 3 be a bounded, connected domain satisfying Assumption 3.2.
The space of (infinitesimal) rigid body motions RM(D), as defined in (4.31), is exactly the
kernel of the strain operator:

v ∈ RM(D) ⇔ ε(v) = 0.

The low-order space Vh,0, as defined in Section 4.4, is closely related to the rigid body motions:
On each element T ∈ Th, the local space Vh,0(T ) is exactly equal to RM(T ). For vh ∈ V k

h , we
have

vh ∈ Vh,0 ⇔ vh|T ∈ RM(T ) ∀T ∈ Th.

Thus, Vh,0 consists of piecewise rigid body motions, which have continuous tangential com-
ponents.

Let IVh,0 denote the nodal interpolation operator for the low order Nédélec space Vh,0, as
defined in Section 4.3.2.2. It preserves the piecewise rigid body motions on the tangentially
continuous space V k

h . In Section 4.2.2.6, we decomposed the Nédélec space into a low-order
space Vh,0 and a high order space Ṽ k

h . This induces a unique decomposition of vh ∈ V k
h

vh = v0 + ṽ such that v0 ∈ Vh,0, ṽ ∈ Ṽ k
h .

For this decomposition, we have IVh,0vh = v0.
We will first prove a Korn-type inequality on an element of the triangulation. There, the

constant cT depends on the shape of the element only, and not on its size h. In this proof, we
use the fact that the low-order Nédélec interpolant IVh,0 is stable on V k

h in the L2 norm, i.e.

‖IVh,kvh‖Ω ≤ c‖vh‖Ω ∀vh ∈ V k
h .

This estimate holds independently of the mesh size h. One can prove this using the finite
overlap and linear independence of the discrete basis functions.
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Lemma 4.27. Let vh ∈ V k(T ) for some element T ∈ Th. It satisfies the Korn-type inequality

‖∇vh‖
2
T ≤ c2T

(
‖ε(vh)‖

2
T + h−2

T ‖IVh,0vh‖
2
T

)
. (4.36)

The constant cT does not depend on the element size hT .

Proof. We first do the proof on the reference element, where hT̂ ≃ 1. Assume that the

inequality does not hold, i.e. there exists a sequence (v̂h,n) in V̂k such that

‖ε(v̂h,n)‖
2
T̂

+ ‖I
V (T̂ )
k v̂h,n‖

2
T̂
→ 0 and ‖∇v̂h,n‖T̂ = 1 ∀n ∈ N.

As the interpolation operator I V̂0 preserves constants, we see by a Poincaré-type inequality
that not only ‖∇v̂h,n‖T̂ , but also the full norm ‖v̂h,n‖H1(T ) is bounded. The compact em-
bedding of H1 in L2 (see e.g. [GR86, Wer02]) ensures convergence of a subsequence, without
restriction of generality we assume v̂h,n → v̂0 in L2. We know that the limit v̂0 lies in V̂k, as
the finite-dimensional space is closed in L2. Using Korn’s inequality (Theorem 3.16), we may

conclude that v̂h,n → v̂0 in H1(T̂ ), and therefore ‖∇v̂0‖ = 1. As I V̂0 is continuous on V̂k in
the L2 norm, we obtain

‖ε(v̂0)‖
2
T̂

+ ‖I V̂0 v̂0‖
2
T̂

= lim
n→∞

(
‖ε(v̂h,n)‖

2
T̂

+ ‖I V̂0 v̂h,n‖
2
T̂

)
= 0.

This ensures v̂0 = 0, which contradicts ‖∇v̂0‖T̂ = 1, and thereby concludes the proof on
the reference element. The mesh-size dependent estimate (4.36) then follows from a scaling
argument, where the conforming transformation ΦV

T is used.

We can now prove a Korn-type inequality for vh ∈ V k
h , which is based on the splitting of

V k
h into its high-order and low-order components. The proof heavily relies on the techniques

developed in [Bre04]. From the proof of [Bre04, Lemma 2.2], one can see that for a piecewise
linear vector field v0 ∈ Vh,0 on the quasi-uniform triangulation Th there holds

∑

T∈Th

‖∇v0‖
2
T ≤ c

( ∑

T∈Th

‖ε(v0)‖
2
T + ‖v0‖

2
Ω +

∑

F∈Fh

hd−2
F

∑

P∈V(F )

|[[v0]]F (P )|2
)
. (4.37)

There V(F ) denotes the set of vertices of a facet F , and [[·]]F is the jump operator across this
facet (cf. Definition 4.5).

Lemma 4.28. Let (Th) be a family of shape-regular, quasi-uniform triangulations. There
exists a constant c̄K > 0 such that for all vh ∈ V k

h

∑

T∈Th

‖∇vh‖
2
T ≤ c̄2K

(∑

T∈T

‖ε(vh)‖
2
T + ‖IVh,0vh‖

2
Ω +

∑

F∈Fh

h−1
F ‖[[IVh,0vh]]n‖

2
F

)
. (4.38)

The constant c̄K is independent of the local mesh size.

Proof. We use the decomposition

1

2

∑

T∈Th

‖∇vh‖
2
T ≤

∑

T∈Th

‖∇(vh − IVh,0vh)‖
2
T +

∑

T∈Th

‖∇IVh,0vh‖
2
T . (4.39)
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We estimate both terms on the right hand side separately. For the first term in (4.39), we
use Lemma 4.27, which yields

∑

T∈Th

‖∇(vh−IVh,0vh)‖
2
T ≤ c

∑

T∈Th

[
‖ε(vh−IVh,0vh)‖

2
T+h−2

T ‖IVh,0(vh−IVh,0vh)‖
2
T

]
= c

∑

T∈Th

‖ε(vh)‖
2
T .

As IVh,0vh is piecewise linear with ε(IVh,0vh) = 0, the second term in (4.39) can be bounded

using inequality (4.37), setting v0 = IVh,0vh:

∑

T∈Th

‖∇IVh,0vh‖
2
T ≤ c

(
‖IVh,0vh‖

2
Ω +

∑

F∈Fh

hd−2
F

∑

P∈V(F )

|[[IVh,0vh]]F (P )|2
)
.

On F , the jump [[IVh,0vh]] across this facet is linear. Moreover, we know that the tangential

component of IVh,0vh is continuous. This gives

hd−2
F

∑

P∈V(F )

|[[IVh,0vh]]F (P )|2 ≤ ch−1
F ‖[[IVh,0vh]]n‖

2
F .

Taking all estimates together, we obtain the required result.

Corollary 4.29. Let (Th) be a family of shape-regular, quasi-uniform triangulations. Let Ṽ k
h

be the high-order finite element subspace of V k
h according to the splitting in Section 4.2.2.6.

Then there exists a constant c̄K,Ṽ independent of the local mesh size such that for all ṽh ∈ Ṽ k
h

∑

T∈Th

‖∇ṽh‖
2
T ≤ c̄2

K,Ṽ

∑

T∈Th

‖ε(ṽh)‖
2
T . (4.40)

Proof. The result follows directly from the fact that IVh,0ṽh = 0 for ṽh ∈ Ṽ k
h .

4.4 TD-NNS elements

In the sequel, we provide bases for the local finite element spaces Σ̂k and V̂ k on simplicial ref-
erence elements in two or three space dimensions, i.e. on triangles and tetrahedrons. Although
the suggested bases are not nodal as suggested in Definition 4.8, they will be appropriate for
forming the global spaces Σk

h, V
k
h . The shape functions are divided into ones corresponding

to edges, facets and element interiors. For V̂ k, each edge-based shape corresponds to one
edge degree of freedom, and vanishes for all others. Also, a facet-bound shape will only take
non-zero values for degrees of freedom lying on this facet and the interior of the element, and
not for nodes on edges or other facets. Similarly, interior shapes have zero nodal values in
all nodes lying on element edges or facets. This way, global finite element shape functions
corresponding to an edge, facet or element in the mesh can be built by transforming the
respective shape on the reference element to the matching mesh elements.

Orientation In order to obtain a conforming finite element space by transforming the shape
functions from the reference element to elements in the mesh, a unique orientation of edges
and facets is necessary. In this work, we assume that global vertex numbers of the respective
element are available on the reference element. Then the edge between local vertices Vα, Vβ
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Figure 4.1: The reference segment: left: barycentric coordinates and integrated Legendre
polynomials, right: Legendre polynomials.

is oriented, such that it points from the higher- to the lower-indexed global vertex. We refer
to an oriented edge by brackets, E = [Vα, Vβ ], where the first vertex is the one with the
higher global index. On an edge E shared between two elements in the mesh, the tangent will
point into the same direction on both elements. In three dimensions, we similarly introduce
oriented facets, F = [Vα, Vβ, Vγ ], where the vertices are again ordered such that their global
index is decreasing. A more detailed description of the orientation problem can be found in
[Mon03, Zag06]. Another method to come by this problem is described in [AC03], where one
defines different bases for the respective orientations of the element in the mesh.

Notation Throughout the following, all calculations are done on the reference element,
which we usually denote by T̂ . However, in order not to complicate notation, we will drop
the hat throughout this section, and simply write T . We do similarly for all other involved
quantities, especially we use local coordinates x instead of x̂, and build finite element spaces
Σk, V k instead of Σ̂k, V̂ k.

4.4.1 Reference elements and orthogonal polynomials

We define the reference simplices of dimensions one, two and three, i.e. the reference segment
T1, triangle T2, and tetrahedron T3. We further provide hierarchical bases for P k(Td) as well
as P k0 (Td) which are orthogonal with respect to the L2 inner product. We use the families of
Legendre and Jacobi polynomials for their construction.

4.4.1.1 The reference segment

The one-dimensional reference element T1 = (0, 1) is the line segment with vertices V1 = 0
and V2 = 1. We will use the concept of barycentric coordinates, which are linear functions on
the segment, and take value one in one vertex, and vanish in the other. We define

λ1 := 1 − x1, λ2 := x1.

The barycentric coordinates provide a partition of unity, and are used for the standard, lowest
order nodal basis (“hat basis”) for the discretization of H1.
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On the segment T1, we provide a basis for P k(T1) using Legendre polynomials. These
polynomials, denoted by {ℓi : 0 ≤ i ≤ k} form a basis of P k[−1, 1]. They are orthogonal in
the L2 sense, they satisfy ∫ 1

−1
ℓi(ξ)ℓj(ξ) dξ =

2

2i+ 1
δij .

There are many possibilities for their definition, in computations we use the three-term re-
currence relation [Dem07]

ℓ0(ξ) = 1,

ℓ1(ξ) = x,

(i+ 1)ℓi+1(ξ) = (2i + 1)ℓi(ξ)ξ − iℓi−1(ξ) for i ≥ 2.

There exists a similar recurrence for the derivatives of Legendre polynomials. This enables
us to evaluate the polynomials as well as their derivatives fast and numerically stable.

A basis for P k(T1) is now given by {qi(λ1, λ2) : 0 ≤ i ≤ k} where

qi(λα, λβ) := ℓi(λβ − λα). (4.41)

This family is orthogonal in the L2 sense.

The integrated Legendre polynomials {Li : 2 ≤ i ≤ k} are defined on [−1, 1] by

Li(ξ) :=

∫ ξ

−1
ℓi−1(η)dη for 2 ≤ i ≤ k.

Due to their definition, these polynomials are orthogonal with respect to the H1 semi-norm,

∫ 1

−1
L′
i(ξ)L

′
j(ξ) dξ =

2

2i+ 1
δij .

We will use that the integrated Legendre polynomials vanish at the endpoints {−1, 1}, and
therefore form a basis for P k0 [−1, 1]. This way, the family {ui(λ1, λ2) : 2 ≤ i ≤ k}, where

ui(λα, λβ) := Li(λβ − λα),

is a basis for P k0 (T1). For a visualization of the reference element and the respective families
of polynomials, see Figure 4.1.

The Legendre polynomials were constructed in such a way, that they are orthogonal with
respect to the L2 inner product. They are a special case of a larger family of polynomials,
namely the Jacobi polynomials. We denote Jacobi polynomials by

p
(α,β)
i (ξ) for ξ ∈ [−1, 1], α, β > −1.

They are orthogonal on L2[−1, 1] with respect to the weight function wα,β(ξ) = (1−ξ)α(1+ξ)β .
Also Jacobi polynomials can be computed via three-term recurrence relations. We refer to
[KS99] for some general properties of Jacobi polynomials, for an extensive overview, including
their application in the finite element method, see [Pil08].
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Figure 4.2: The reference triangle: left: sketch of T2, middle and right: polynomial functions
u3, v3 on the triangle, generated using the Duffy transform.

4.4.1.2 The reference triangle

In the plane R
2, we define the reference element T2 to be the triangle with vertices V1 = (0, 0),

V2 = (1, 0) and V3 = (0, 1). Its edges Ei, i = 1, 2, 3 shall be chosen such that edge Ei lies
opposite vertex Vi. As edges and facets coincide in two space dimensions, we set Fi = Ei. For
a sketch of the reference triangle, see Figure 4.2. We define barycentric coordinates on the
triangle to be linear functions, which take value one in one vertex, and vanish in the other
two vertices. We set

λ1 := 1 − x1 − x2, λ2 := x1, λ3 := x2.

Then λi(Vi) = 1 and λi|Ei = 0 for i = 1, 2, 3, i.e. the barycentric coordinate matching vertex
Vi vanishes on edge Ei. As in the one-dimensional case, they provide a partition of unity and
are widely used in finite element methods for H1 problems.

We need the notion of scaled Legendre and integrated Legendre, as well as scaled Jacobi
polynomials. These functions live on the triangle {(ξ, η) : η ∈ [0, 1], ξ ∈ [−η, η]}, and are
generated from tensor-product functions on the unit square using the Duffy transform. Ac-
cording to [KS99, Zag06], where also a more detailed discussion can be found, we define the
following scaled polynomial functions for i ≥ 0, j ≥ 2:

ℓSi (ξ, η) := ηiℓi

(ξ
η

)
, p

(α,β),S
i (ξ, η) := ηip

(α,β)
i

( ξ
η

)
, LSj (ξ, η) := ηjLj

( ξ
η

)
.

Basically, polynomial functions on the edge are extended to the interior of the triangle. We
use the family {qij(λ1, λ2, λ3) : 0 ≤ i+ j ≤ k}, where

qij(λα, λβ , λγ) := ℓSi (λβ − λα, λα + λβ)p
(2i+1,0)
j (λγ − λα − λβ). (4.42)

In this definition, and also in the following, we inherently assume that indices only take values
in the range of definition of the respective quantity, i.e. i, j ≥ 0 in this case. This family
spans P k(T2) and is linearly independent. Note that the restriction of qij(λα, λβ , λγ) to edge
Eγ coincides with qi(λα, λβ) from the one-dimensional element. This basis is orthogonal with
respect to the L2 inner product, as one can easily see from the defining properties of Legendre
and Jacobi polynomials.

For the polynomial space satisfying zero boundary conditions, let us define

ui(λα, λβ) := Lsi (λβ − λα, λα + λβ) i ≥ 2,

vj(λα, λβ , λγ) := λγℓj−1(λγ − λα − λβ) j ≥ 1.
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Figure 4.3: Reference tetrahedron.

There, ui vanishes on edges Eα, Eβ , and is a polynomial of order i along edge Eγ = [Vα, Vβ].
Indeed, it is defined in such a way such that ui(λα, λβ) restricted to edge Eγ coincides with
the bubble function ui defined on the reference segment. The second family of polynomials,
namely {vj}, takes zero values on the third edge Eγ . We plot two functions ui, vj in Figure 4.2.
We can characterize P k0 (T2) as

P k0 (T2) = span{ui(λ1, λ2)vj(λ1, λ2, λ3) : 3 ≤ i+ j ≤ k}.

4.4.1.3 The reference tetrahedron

Let now the reference tetrahedron T3 be defined as the convex hull of its vertices, T3 =
[V1, V2, V3, V4], where V1 = (0, 0, 0), V2 = (1, 0, 0), V3 = (0, 1, 0) and V4 = (0, 0, 1), see also
Figure 4.3. Then, the barycentric coordinates are given by

λ1 := 1 − x1 − x2 − x3, λ2 := x1, λ3 := x2, λ4 := x3.

Similar to the one- and two-dimensional elements, we first provide a basis for the full polyno-
mial space of order k on the tetrahedron. This is realized by the family {qijl : 0 ≤ i+j+l ≤ k},
where

qijl(λα, λβ , λγ , λδ) :=

ℓSi (λβ − λα, λα + λβ) p
(2i+1,0),S
j (λγ−λα−λβ, λα+λβ+λγ) p

(2i+2j+2)
l (λδ−λα−λβ−λγ).

This family is constructed such that, restricting qijl to edge E = [Vα, Vβ ], one obtains
qi(λα, λβ) on the segment. On the face Fδ = [Vα, Vβ, Vγ ], qijl coincides with qij as defined on
the triangle. Again, the family is orthogonal with respect to the L2 inner product.

Last, we come to the polynomial space of order k satisfying homogenous boundary con-
ditions. We set

ui(λα, λβ) := Lsi (λβ − λα, λα + λβ) i ≥ 2,

vj(λα, λβ , λγ) := λγℓ
S
j−1(λγ − λα − λβ, λα + λβ + λγ) j ≥ 1,

wl(λα, λβ, λγ , λδ) := λδℓl−1(λδ − λα − λβ − λγ) l ≥ 1.

Here, ui vanishes on facets Fα, Fβ ; its restriction to the edge E = [Vα, Vβ] or to facets
containing this edge yields ui defined on the segment or the triangle, respectively. The family
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{vj} is zero on facet Fγ due to the factor λγ . On the other three facets, it equals vj defined
on the triangle. Finally, wl is defined such that it vanishes on the fourth facet Fδ. Together,
they can be used as a basis for P k0 (T3):

P k0 (T3) = span{uivjwl : 4 ≤ i+ j + l ≤ k}.

4.4.2 On the triangle

We now define shape functions for V k and Σk on the triangle T := T2.

4.4.2.1 A triangular element for the Nédélec space

Hierarchical constructions of finite elements for the Nédélec space are well known. We use
the shape functions provided in [Zag06], where also a detailed analysis of their properties is
given.

As already mentioned, the finite element shape functions are organized in edge- and cell-
based functions. This is realized in the following way: Let V k := span ΨV

k , where

ΨV
k :=




⋃

E∈E(T )

ΨV
E,k


 ∪ ΨV

T,k.

Then ΨV
E,k shall consist of shapes bound to edge E, whereas ΨV

T,k corresponds to the interior
shapes. We define

• the set of edge-based shapes ΨV
E,k := {ψVE,i} for an edge E = [Vα, Vβ ]

ψVE,0 := ∇λαλβ − λα∇λβ,

ψVE,i := ∇ui+1(λα, λβ) 1 ≤ i ≤ k,

where ψVE,0 is the lowest order shape function as in [Néd80],

• the set of cell-based shapes ΨV
T,k := {ψVT,m,ij}

ψVT,1,ij := ∇(uivj), 3 ≤ i+ j ≤ k + 1,

ψVT,2,ij := ∇uivj − ui∇vj, 3 ≤ i+ j ≤ k + 1,

ψVT,3,0j := (∇λ1λ2 − λ1∇λ2)vj , 1 ≤ j ≤ k − 1.

Note that the tangential components of ΨV
E,k span P k(E) on this edge, whereas they vanish

on all other edges. For the interior shapes, the tangential component equals zero on the whole
boundary. Therefore, ΨV

T,k is a basis of P k0,τ (T ).
In Section 4.2.2.6, we described a decomposition of the Nédélec space into a global, low-

order space Vh,0, and local high-order spaces Ṽ k
X for any X in the union Xh = Eh ∪ Fh ∪ Th.

Note that, in two space dimensions, Eh and Fh coincide. Using the basis functions from above,
we can now explicitely define

Vh,0 := span

( ⋃

E∈Eh

{ψVE,0}

)
, (4.43)

Ṽ k
E := span{ψVE,i : i = 1, . . . , k}, (4.44)

Ṽ k
T := spanΨV

T,k. (4.45)
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4.4.2.2 A triangular element for the stress space

For the definition of finite element shapes for the normal-normal continuous space Σk, we first
present a set of constant, symmetric tensor fields {SF : F ∈ F(T )}, such that

• the normal-normal component of SF vanishes on all facets but F ,

• the normal-normal component of SF on F is constant, and

• the union {SF : F ∈ F(T )} spans the space of piecewise constant, symmetric tensor
fields P 0

SYM (T ).

We propose
SFi := ∇λ⊥i+1 ⊗∇λ⊥i+2.

There the index is to be understood modulo 3. Calculating the fields, one obtains

SF1 =

(
0 1
1 0

)
, SF2 =

(
−2 1
1 0

)
, SF3 =

(
0 −1
−1 2

)
. (4.46)

Using these tensor fields, it is easy to construct “bubble functions” Bi, for which the normal-
normal component vanishes on the whole boundary ∂T . This is simply done by multiplication
of SFi with λi, which is zero on facet Fi:

Bi := λiS
Fi .

Now, we provide a finite element basis ΨΣ
k for Σk. We organize it in facet- and cell-based

functions,

ΨΣ
k :=




⋃

F∈F(T )

ΨΣ
F,k


 ∪ ΨΣ

T,k.

There we define

• the set of facet-based shapes ΨΣ
F,k := {ψΣ

F,i} for a facet F = [Vα, Vβ ]

ψΣ
F,i := qi0(λα, λβ)S

F , 0 ≤ i ≤ k.

• the set of cell-based shapes ΨΣ
T,k := {ψΣ

T,m,ij}

ψΣ
T,m,ij := qijB

m = qijλmS
Fm, 0 ≤ i+ j ≤ k − 1, 1 ≤ m ≤ 3.

The construction ensures that a shape from ΨΣ
F,k takes values only on facet F and not on the

other two facets. On F , ΨΣ
F,k spans the full polynomial space P k(F ). Any shape in ΨΣ

T,k,
which is bound to the interior, satisfies homogenous normal-normal boundary conditions on

∂T . We have P k0,nn(T ) = span
(
ΨΣ
T,k

)
, as the next lemma states. There we show that ΨΣ

k

really provides a basis for the finite element space Σk, i.e. the shapes are linearly independent.

Lemma 4.30. For an integer k ≥ 0, the set of shape functions ΨΣ
k on the triangle T is

linearly independent, and forms a basis for Σk = P kSYM (T ). The subset ΨΣ
T,k spans the bubble

space P k0,nn(T ).
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Proof. We first show the linear independence of ΨΣ
k . From the definitions of ΨΣ

F,k,Ψ
Σ
T,k we

see that

ΨΣ
k =

3⋃

m=1

{qijλmS
Fm : 0 ≤ i+ j ≤ k − 1} ∪

3⋃

m=1

{qi0S
Fm : 0 ≤ i ≤ k}.

As, for m = 1, 2, 3,

span{λmqij : 0 ≤ i+ j ≤ k − 1} =

= span{λmℓ
S
i (λm+2 − λm+1, λm+1 + λm+2)ℓj(λm − λm+1 − λm+2) : 0 ≤ i+ j ≤ k − 1}

= span{ℓSi (λm+2 − λm+1, λm+1 + λm+2)ℓj+1(λm − λm+1 − λm+2) : 0 ≤ i+ j ≤ k − 1}

= span{qi,j+1 : 0 ≤ i+ j ≤ k − 1},

we conclude

span
(
ΨΣ
k

)
= span

(
3⋃

m=1

{qijS
Fm : 0 ≤ i+ j ≤ k}

)
= P kSYM (T ).

Here we used that the SF span P 0
SYM (T ). Counting the respective numbers of shape functions,

we get that |ΨΣ
k | = 3(k+1)(k+2)/2, which is exactly the dimension of P kSYM (T ). Analogously,

we see that |ΨΣ
T,k| = 3(k+ 1)k/2, which is the dimension of P k0,nn(T ). As the shapes all lie in

P kSYM (T ), P k0,nn(T ) respectively, this completes the proof.

4.4.3 On the tetrahedron

In the following, we define shape functions for V k, and Σk on the tetrahedron T := T3. All
constructions are similar to the case of two space dimensions, but of course more involved.
Again, we use the basis for the Nédélec space, which was provided and analyzed in [Zag06].
For the stress space, we construct shapes similar to the ones on the triangle.

4.4.3.1 A tetrahedral element for the Nédélec space

On the tetrahedron, shape functions for V k are divided into edge-, facet- and cell-based ones.
We denote the local basis of V k by ΨV

k , which is then decomposed as

ΨV
k :=




⋃

E∈E(T )

ΨV
E,k


 ∪




⋃

F∈F(T )

ΨV
F,k


 ∪ ΨV

T,k.

The set ΨV
E,k shall consist of shapes bound to edge E, whereas ΨV

F,k corresponds to a facet

F , and ΨV
T,k contains the interior shapes. We define

• the set of edge-based shapes ΨV
E,k := {ψVE,i} for an edge E = [Vα, Vβ ]

ψVE,0 := ∇λαλβ − λα∇λβ,

ψVE,i := ∇ui+1(λα, λβ) 1 ≤ i ≤ k,

where ψVE,0 is the lowest order shape function as in [Néd80],
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• the set of facet-based shapes ΨV
F,k := {ψVF,m,ij} for a facet F = [Vα, Vβ , Vγ ]

ψVF,1,ij := ∇(uivj), 3 ≤ i+ j ≤ k + 1,

ψVF,2,ij := ∇uivj − ui∇vj, 3 ≤ i+ j ≤ k + 1,

ψVF,3,0j := (∇λ1λ2 − λ1∇λ2)vj , 1 ≤ j ≤ k − 1,

where ui = ui(λα, λβ) and vj = vj(λα, λβ , λγ),

• the set of cell-based shapes ΨV
T,k := {ψVT,m,ijl}

ψVT,1,ijl := ∇(uivjwl), 4 ≤ i+ j + l ≤ k + 1,

ψVT,2,ijl := ∇uivjwl − ui∇vjwl + uivj∇wl, 4 ≤ i+ j + l ≤ k + 1,

ψVT,3,ijl := ∇uivjwl + ui∇vjwl − uivj∇wl, 4 ≤ i+ j + l ≤ k + 1,

ψVT,4,0jl := (∇λ1λ2 − λ1∇λ2)vjwl, 2 ≤ j + l ≤ k − 1,

where ui = ui(λ1, λ2), vj = vj(λ1, λ2, λ3) and wl = wl(λ1, λ2, λ3, λ4).

As on the triangle, the tangential components of ΨV
E,k span P k(E) on this edge, whereas they

vanish on all other edges. Also, shapes bound to facet F have zero tangential trace on all
other facets, and for interior shapes, the tangential component is zero on the whole boundary.

Again, we can now define the decomposition of the Nédélec space into a global, low-order
space Vh,0, and local high-order spaces Ṽ k

X for any X in the union Xh = Eh ∪Fh ∪ Th, as was
described in Section 4.2.2.6. Using the basis functions from above, we set, similarly to the
two-dimensional case,

Vh,0 := span

( ⋃

E∈Eh

{ψVE,0}

)
, (4.47)

Ṽ k
E := span{ψVE,i : i = 1, . . . , k}, (4.48)

Ṽ k
F := spanΨV

F,k, (4.49)

Ṽ k
T := spanΨV

T,k. (4.50)

4.4.3.2 A tetrahedral element for the stress space

Now, to define a basis for Σk, we again use constant, symmetric tensor fields, for which the
normal-normal component vanishes on all facets but one. The fields

SFi = sym[(∇λi+1 ×∇λi+2) ⊗ (∇λi+2 ×∇λi+3)], i = 1, . . . , 4.

satisfy this assumption. In two dimensions, we have seen that the fields SFi span the space
of constant symmetric tensor fields. On the tetrahedron, we have to add two further fields
ST,1 and ST,2, as the corresponding space is of dimension 6. We construct them in such a
way, that their normal-normal components vanish on ∂T ,

ST,1 = sym[(∇λ1 ×∇λ2) ⊗ (∇λ3 ×∇λ4)],

ST,2 = sym[(∇λ1 ×∇λ3) ⊗ (∇λ2 ×∇λ4)].
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Explicitely, they read as

SF1 =




−2 1 0
1 0 0
0 0 0


 , SF2 =




0 1 −1
1 −2 1
−1 1 0


 , SF3 =




0 0 0
0 0 −1
0 −1 2


 ,

SF4 =




0 0 1
0 0 0
1 0 0


 , ST,1 =




0 0 −1
0 0 1
−1 1 0


 , ST,2 =




0 −1 0
−1 0 1
0 1 0


 .

As for the triangle, we additionally provide bubble functions Bi. For the four facets F i, we
set

Bi := λiS
Fi .

Additionally, we use

B5 = ST,1, B6 = ST,2,

as these fields are already element bubbles.

We define a finite element basis ΨΣ
k for Σk. As on the triangle, we split it into facet- and

cell-based functions,

ΨΣ
k :=




⋃

F∈F(T )

ΨΣ
F,k


 ∪ ΨΣ

T,k.

There we define

• the set of facet-based shapes ΨΣ
F,k := {ψΣ

F,ij} for a facet F = [Vα, Vβ , Vγ ]

ψΣ
F,i := qij0(λα, λβ, λγ)S

F , 0 ≤ i+ j ≤ k,

• the set of cell-based shapes ΨΣ
T,k := {ψΣ

T,m,ijk}

ψΣ
T,m,ijk := qijB

m = qijλmS
Fm, 0 ≤ i+ j + l ≤ k − 1, 1 ≤ m ≤ 4,

ψΣ
T,m,ijk := qijB

m = qijS
T,m−4, 0 ≤ i+ j + l ≤ k, m = 5, 6.

From this construction, one can see that the facet-based shapes satisfy zero normal-normal
boundary conditions on all facets but one, whereas the normal-normal components of interior
shapes are totally vanishing. Similar to the triangle, one can prove the following lemma,
which states that the spaces of shape functions are well chosen.

Lemma 4.31. For an integer k ≥ 0, the set of shape functions ΨΣ
k on the tetrahedron T is

linearly independent, and forms a basis for Σk = P kSYM (T ). The subset ΨΣ
T,k spans the bubble

space P k0,nn(T ).
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Figure 4.4: Coupling degrees of freedom vs. error ‖σ − σh‖Ω: We plot the convergence of
methods of orders k = 1, 2, 4, as well as of the p-version on an a-priori geometrically refined
grid.

4.5 Numerical Results

In the following, we present results obtained from computations with the TD-NNS method.
We use the open-source software package Netgen/NgSolve, see http://www.hpfem.jku.at

or [Sch97]. For the examples described below, we implemented stress elements of arbitrary
order on triangles and tetrahedrons, as are described in Section 4.4.

The first example concerns computations on the unit square. We assume that the left
hand side is fixed (i.e. it corresponds to ΓD, where u = uD = 0). Surface forces are prescribed
on the right hand side, where we set σn = (1, 1)T . The remaining parts of the boundary
are free, i.e. they are governed by homogenous boundary conditions. We assume to have a
homogenous, isotropic, linearly elastic material with Young’s modulus Ē = 1, and Poisson
ratio ν̄ = 0.4. We use an initial mesh consisting of 18 triangular elements, and calculate with
elements of uniform orders k = 1, 2, 4. We do adaptive refinement as implied by a Zienkiewicz-
Zhu type error estimator, which was introduced for H1 problems in [ZZ87]. In Figure 4.4,
we plot the convergence of the stress in the L2 norm. We observe the predicted optimal
order of convergence. Additionally, we consider an hp-version of the finite element method.
We prescribe an a-priori geometric mesh refinement towards the singularities occurring in the
corners of the domain, and then increase the order of the finite element method. In Figure 4.4
we plot the results obtained for five levels of geometric refinement.

As a second example, we consider a crankshaft in three space dimensions. We assume
that the shaft is fixed on one end, whereas a tangential force is acting counter-clock-wise on
the other end. The remaining boundary is free. We assume the shaft is made of steel, with a
Poisson ratio of ν̄ = 0.3 and a Young’s modulus Ē = 2 · 1011N/m2. We use a mesh consisting
of 6 710 tetrahedral elements, which are partially curved to approximate the geometry of
the shaft. We use a method of order k = 4, with facet-order kf = 3. The corresponding
linear system contains 440 725 coupling degrees of freedom. In Figure 4.5, we plot the stress
components σx2x3 and σx2x2.



84 CHAPTER 4. FINITE ELEMENT METHODS

Figure 4.5: Crankshaft, 6710 elements, order k = 4, 440 725 coupling degrees of freedom. We
plot the stress components σx2x3 (upper plot) and σx2x2 (lower plot).



Chapter 5

A hybrid finite element method

The present chapter is devoted to hybridization techniques for the TD-NNS method. In
general, hybridization of a mixed method means that the imposed inter-element continuity
of the flux field (which is the stress field in context of elasticity) is not enforced directly by a
conforming choice of the finite element space, but via Lagrangian multipliers living on element
interfaces. In our case, we see that these multipliers correspond to normal displacements on
the facets. This hybridized problem is equivalent to the original one in the sense that the
calculated stresses and displacements coincide. We can directly transfer stability properties
of the TD-NNS method to this formulation.

The Lagrangian multipliers enter the set of equations as additional unknowns. At first
glance, it does not seem feasible to enlarge the number of unknowns deliberately. Subse-
quently, we present several reasons in favor of hybridization. One of them is the simpler
structure of the stress finite element space. Instead of the normal-normal continuous finite el-
ement basis described in Section 4.4, one can use piecewise polynomial, globally discontinuous
shape functions.

A major benefit of the hybrid setup is that all degrees of freedom for the stresses are
completely local to each element. Thus, the stress field can be eliminated from the system
of equations at optimal complexity. One is left with solving a system for the displacement
quantities, i.e. for u and the Lagrangian multiplier only. The remaining system matrix is sym-
metric and positive definite (SPD). Therefore, iterative solvers such as the conjugate gradient
(CG) method are directly applicable. We propose an additive Schwarz block preconditioner,
which is spectrally equivalent to the inverse of the system matrix, independently of the mesh
size h. With this choice, the preconditioned conjugate gradient (PCG) method is an optimal
solver for the elasticity problem.

Moreover, we are concerned with finding a finite element method, which is stable also
in the case of almost incompressible materials. Assuming that the material is linear elastic,
isotropic and homogenous, we call it almost incompressible, if the Poisson ratio ν̄ approaches
1
2 , or, equivalently, the Lamé parameter λ̄ tends to infinity. We have seen that in this case,
all stability estimates for the primal variational formulation deteriorate, whereas stability can
be preserved for the mixed scheme of Hellinger and Reissner. Also our new mixed method is
stable in the infinite-dimensional setting. However, we have lost this property when doing a
straightforward discretization as in Chapter 4.

We analyze the problem in the hybrid setup using discrete, parameter dependent norms.
We prove stability of the hybridized formulation with respect to these norms, and error

85
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estimates for the displacement, which are independent of the degree of incompressibility.
Moreover, we can show that our additive Schwarz block preconditioner is spectrally equivalent
to the system matrix also for nearly incompressible materials, and thus the corresponding
PCG algorithm is an optimal choice for solving the discrete system.

In Section 5.1, we are concerned with hybridization methods in general and their ap-
plication to the TD-NNS method. We verify stability estimates for the hybridized method
and address implementational issues. Section 5.2 deals with the construction of a block pre-
conditioner, which is well suited in a PCG method applied to the hybrid Schur complement
problem. Finally, we apply these techniques to nearly incompressible materials in Section 5.3,
which are confirmed by the examples in Section 5.4.

5.1 Hybridization of the TD-NNS method

In this section, we give a short introduction into hybridization methods, and apply this
technique to the TD-NNS problem. We provide stability and error estimates for the hybridized
system.

5.1.1 Hybridization basics

The main idea of hybridization is replacing a globally continuous finite element space by
local spaces, which are associated to a prescribed, non-overlapping domain decomposition.
As the continuity across interfaces of the domain decomposition is broken in this process, it
is re-enforced by Lagrangian multipliers. These methods are closely related to discontinuous
Galerkin (DG) methods. In context of the TD-NNS method, we cut the inter-elemental,
normal-normal continuity of the stresses, and re-enforce it by Lagrangian multipliers. These
multipliers resemble normal displacements on element facets.

Originally, hybridization methods were introduced as a technique of implementing mixed
finite elements, first done in [dV65]. In this setting, the domain decomposition mentioned
above is simply the finite element triangulation Th of Ω. In [AB85], hybridization of Raviart-
Thomas elements in the mixed method for the Poisson equation, as well as hybridization for
a fourth order problem are discussed. There, it is shown that the solution of the mixed and
the hybridized problem coincide, and an a-priori error bound for the Lagrangian parameter
is given. We refer to [CG04], where hybridization of Raviart-Thomas and Brezzi-Douglas-
Marini finite element methods are analyzed, and to [CG05c], where the authors provide error
analysis for the Lagrangian multiplier in variable degree spaces. In [BF91], a more extensive
introduction to hybrid methods can be found.

Hybridization has also been used for the discretization of the Stokes problem. There, one
uses these techniques to find finite element functions which are incompressible, i.e. divergence
free. We mention [CG05b, CG05a, CCS06], where this goal is achieved in both two and three
space dimensions.

A major advantage of hybridization is, that we regain a symmetric, positive definite system
matrix, as is characteristic for the primal problem. This property is usually lost when mixed
formulations are considered. In the following, we want to sketch this issue in a little more
detail. The primal problem (the pure displacement formulation in our case) corresponds to a
problem of energy minimization, whereas mixed formulations (e.g. the primal mixed method,
the Hellinger-Reissner formulation, or the TD-NNS method) are equivalent to saddle point
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problems. The corresponding system matrix for the discretized problem is thus indefinite; in
general, one ends up with an operator equation of the form

(
Ah B∗

h

Bh 0

)(
σh
uh

)
=

(
F1

F2

)
, (5.1)

where the asterisk denotes the adjoint operator. In this formulation, the required continuity
properties of the flux variable σh is enforced directly by a conforming choice of the solu-
tion space Σh. In hybridization methods, this continuity is broken, and re-enforced via a
Lagrangian multiplier λh, which lives on the facets of the triangulation. The structure of
equation (5.1) changes to




Ah B∗
1,h B∗

2,h

B1,h 0 0
B2,h 0 0






σh
uh
λh


 =




F1

F2

0


 . (5.2)

Due to the fact that the flux σh is left discontinuous, the upper left block Ah is block-diagonal,
where each block corresponds to the element matrix of one single element. Therefore, Ah can
be inverted in optimal complexity, and thus σh is eliminated from system (5.2). We arrive at
the Schur complement system

Sh

(
uh
λh

)
= Hh, (5.3)

where

Sh :=

(
Bh,1
Bh,2

)
A−1
h

(
B∗
h,1, B

∗
h,2

)
, and Hh :=

(
Bh,1
Bh,2

)
A−1
h F1 −

(
F2

0

)
.

This remaining system is then symmetric positive definite, which is feasible when using it-
erative solvers, such as preconditioned conjugate gradient (PCG) methods. The additional
information supplied by the Lagrangian multipliers can even be used for local post-processing,
thereby enhancing the solution [AB85, BDM85].

Hybridization methods are closely linked to discontinuous Galerkin (DG) methods. There,
one usually starts not from a mixed formulation, but from the primal one, as e.g. the pure
displacement formulation. Then, one chooses a piecewise defined, infinite-dimensional but dis-
continuous space and a corresponding variational formulation, and applies a Galerkin method
with respect to some finite-dimensional subspaces (hence the name DG method). The cou-
pling between elements can then occur in various ways, and is usually imposed via jump and
stabilization terms. An overview and analysis on stabilization mechanisms in DG can be found
in [BCMS06] For a detailed overview and comprehensive analysis on discontinuous Galerkin
methods, we refer to [ABCM02]. DG methods are very flexible when it comes to the choice
of approximation spaces, as they can be defined totally local to each element. However, one
usually ends up with a high number of globally coupling degrees of freedom. In [CGL07], it
was shown that a certain class of DG methods can be hybridized, i.e. be embedded in the
framework presented above. This leads to much sparser system matrices with fewer globally
coupling dofs.

5.1.2 The hybrid TD-NNS method

So far, we used conforming approximation spaces Σk
h, V

k
h , as defined in (4.13) and (4.14),

satisfying certain continuity conditions. For the stress space, normal-normal continuity of
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τh ∈ Σk
h was enforced directly. In the spirit of hybridization, we break this continuity, which

results in the discontinuous space Σ̃k
h

Σ̃k
h :=

{
τh ∈ L2

SYM (Ω) : τh ∈ P kSYM (Th)
}
. (5.4)

Implementing this space in a computational method is much easier than for the original
space Σk

h, where one has to take care of normal-normal continuity. Now, for the Lagrangian
multipliers, we introduce the facet space

Λkh :=
{
µh ∈ L2(Fh) : µh ∈ P k(Fh), µh|ΓD

= 0
}
. (5.5)

The realization of this facet space in practice is straightforward: on each facet F , one needs to
provide a basis for P k(F ), which can be done using the families of Legendre/Jacobi polyno-
mials described in Section 4.4.1. We comment on these issues in more detail in Section 5.1.4.

Notation We already mentioned that λh ∈ Λkh plays the role of a flux approximation to the
normal displacement un. Let F ∈ Fh be an arbitrary interior facet, with neighboring elements
T1, T2. Without restriction of generality, we assume that the normal nF of the oriented facet
F coincides with the outward normal of T1, i.e. nF = nT1 = −nT2. We note that the normal
flux un changes its sign when switching from T1 to T2,

unT1
= −unT2

,

as then also the outer normal changes its direction. If suitable, we also equip µh ∈ Λkh with
an index for the direction of the normal vector, such that

µh = µh,nT1
= −µh,nT2

.

This means, we identify the space Λkh with the space of facet-wise two-valued functions, where
the two values are equal up to their sign.

Note that the space Λkh has exactly as many linearly independent basis functions associated
to each facet, as there are degrees of freedom for the normal-normal continuous space Σk

h. It
is therefore well-suited as space for the Lagrangian multipliers: we observe that the condition
“σh,nn is continuous and vanishes on ΓN” for σh ∈ Σ̃k

h is equivalent to

0 =
∑

F∈Fh

∫

F
[[σh,nn]]µh ds =

∑

T∈Th

∫

∂T
σh,nnµh,n ds ∀µh ∈ Λkh. (5.6)

Reordering the facet terms, we obtain an equivalent to Problem 4.11.

Problem 5.1. Find (σh, uh, λh) ∈ Σ̃k
h × V k

h × Λkh such that

a(σh, τh) + b(τh;uh, λh) = 〈F1, τh〉Σ ∀τh ∈ Σ̃k
h,

b(σh; vh, µh) = 〈F2, vh〉V ∀vh ∈ V k
h , µh ∈ Λkh.

(5.7)

Here, a(·, ·), F1 and F2 were defined previously in equations (3.37), (3.39) and (3.40), whereas
b : Σk

h × (V k
h × Λkh) → R is given by

b(τh; vh, µh) := 〈div τh, vh〉V −
∑

T∈Th

∫

∂T
τh,nnµh,n ds (5.8)

=
∑

T∈Th

[
−

∫

T
τh : ε(vh) dx+

∫

∂T
τh,nn(vh,n − µh,n) ds

]
. (5.9)
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We immediately see that the original mixed Problem 4.11 and the hybridized version
Problem 5.1 are equivalent: for any solution (σh, uh, λh) ∈ Σ̃k

h × V k
h × Λkh, equation (5.6)

ensures that σh is normal-normal continuous and therefore σh ∈ Σk
h. The second equation in

system (5.7) reduces to the original equation b(σh, vh) = 〈F2, vh〉 from system (4.3). When
testing the first line for conforming τh ∈ Σk

h, we see, that again the facet terms containing λh
cancel out, and we are left with the first equation of the original system (4.3). Thus, (σh, uh)
is a solution to Problem 4.11.

We observe that λh,n approximates the normal displacement un: after element-wise re-
ordering, the first equation of system (5.7) reads

∑

T∈Th

[∫

T

(
Aσh − ε(uh)

)
: τh dx+

∫

∂T
(uh,n − λh,n) τh,nn ds

]
= 0.

There the first term corresponds to an element-wise weak enforcement of Hooke’s law, while
the second term corresponds to a facet-wise weak identification of uh,n and λh,n. Similarly,
after a facet-wise reordering of the surface integrals, we see from the second equation in (5.7),
that ∑

T∈Th

∫

T
(div σh + f) · vh dx−

∑

F∈Fh

∫

F

(
[[σh,nτ ]] · vh,τ + [[σh,nn]]µh

)
ds = 0.

Here, the first term corresponds to the equilibrium equation. The latter sum ensures a weak
enforcement of continuity of σnτ , and continuity of σh,nn, due to the matching number of
facet-based degrees of freedom for the stresses and for the Lagrangian multipliers.

5.1.3 Analysis of the hybrid problem

We derive properties of the hybrid method, such as existence and uniqueness of a solution,
and a priori error estimates, using the analysis provided for the original formulation of the
TD-NNS method in Chapter 4.

We propose to use the following discrete norms for the analysis of the hybrid problem

‖τh‖eΣh
:= ‖τh‖Ω, (5.10)

‖vh, µh‖Vh×Λh
:=

(
∑

T∈Th

[
‖ε(vh)‖

2
T + h−1

T ‖vh,n − µh,n‖
2
∂T

])1/2

. (5.11)

These norms are directly induced by ‖.‖Σh
and ‖.‖Vh

, as were introduced for the mixed
problem (see equations (4.27), (4.28)). In this definition, we assume that the triangulation is
shape-regular, and thus hF ≃ hT . Otherwise, the surface terms h−1

T ‖vh,n − µh,n‖
2
∂T have to

be split first element- and then facet-wise, such that the correct factor h−1
F can be used for

each facet. Note that ‖.‖Vh×Λh
is really a norm on V k

h × Λkh: if, for some (vh, µh) ∈ V k
h × Λkh,

we have ‖vh, µh‖Vh×Λh
= 0, we can conclude that

• vh is continuous, i.e. vh ∈ H1(Ω)

• vh,n = µh,n, thus vh,n = 0 on ΓD and

• ε(vh) = 0 in Ω.
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Korn’s and Friedrichs’ inequalities (Theorem 3.14 and Theorem 3.16) ensure then vh = 0,
which then implies µh = 0. One can even show that, for vh ∈ V k

h ,

1

2
‖vh‖

2
Vh

≤ inf
µh∈Λk

h

‖vh, µh‖
2
Vh×Λh

≤ ‖vh‖
2
Vh
.

Similar to Lemma 4.13, we can show that the norm for the displacement quantities is
equivalent to the usual, broken H1 norm. We also observe that it is sufficient to use only the
piecewise linear projection of the jump of the normal component.

Lemma 5.2. Let Th be a shape-regular, quasi-uniform triangulation of the domain Ω. We
have the following norm equivalences on V k

h × Λkh:

‖vh, µh‖
2
Vh×Λh

≃
∑

T∈Th

[
‖∇vh‖

2
T + h−1

T ‖vh,n − µh,n‖
2
∂T

]
, (5.12)

‖vh, µh‖
2
Vh×Λh

≃
∑

T∈Th

[
‖ε(vh)‖

2
T + h−1

T ‖Π1(vh,n − µh,n)‖
2
∂T

]
, (5.13)

where Π1 denotes the facet-wise projection onto P 1(Fh). The constants of equivalence do not
depend on the mesh parameter h.

Proof. Follows directly from Lemma 4.13.

Lemma 5.3. Let Th be a shape-regular, quasi-uniform triangulation of the domain Ω. Prob-
lem 5.1 is well-posed, there exists a unique solution (σh, uh, λh) ∈ Σ̃k

h × V k
h × Λkh.

Proof. We apply Brezzi’s theory once more, and prove the conditions of Assumption 4.2 in
the hybridized setting. We observe that all estimates work along the same lines as in the
proofs of Lemma 4.15, Lemma 4.16 and Lemma 4.17. The only difference is that the jump
term [[vh]]n across a facet is replaced by the two-sided difference vh,nTi

− µh,nTi
, i = 1, 2 on

the boundaries of the neighboring elements T1, T2.

In Chapter 4, we provided a-priori bounds for the error in the stress and displacement
fields. These estimates can be transferred directly to the hybrid setup, as the discrete solutions
coincide. Moreover, we state a bound for the error in the Lagrangian multiplier.

Lemma 5.4. Let Th be a shape-regular, quasi-uniform triangulation of the domain Ω. Let
(σh, uh, λh) ∈ Σ̃k

h×V
k
h ×Λkh be the solution to the hybrid problem (Problem 5.1), and let (σ, u)

be the solution to the classical problem (Problem 3.1). Assuming (σ, u) lies in Hm
SYM(Ω) ×

[Hm+1(Ω)]d for integer 1 ≤ m ≤ k, the discretization error is bounded by

‖σ − σh‖Σh
+ ‖u− uh‖Vh

≤ chm
(
|σ|Hm(Ω) + |u|Hm+1(Ω)

)
(5.14)

(
∑

T∈Th

h−1
T ‖un − λh,n‖

2
∂T

)1/2

≤ chm
(
|σ|Hm(Ω) + |u|Hm+1(Ω)

)
. (5.15)

Proof. The proof relies on techniques from [AB85], where a similar estimate was shown for
the hybridized, mixed formulation of Poisson’s equation. The estimate (5.14) for σh and uh
follows directly from the error estimate in the mixed setting (Theorem 4.25), as the discrete
solutions coincide. Thus, we are left with proving the error bound (5.15) for the Lagrangian
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multiplier. We treat this estimate facet-wise. Let T ∈ Th be an arbitrary element, and
F ∈ F(T ) one of its facets. Let Πk

F be the L2 projection onto P k(F ), then we may split the
discretization error

∥∥un − λh,n
∥∥
F
≤
∥∥un − Πk

Fun
∥∥
F

+
∥∥λh,n − Πk

Fun
∥∥
F
. (5.16)

The approximation error on the facet is bounded by standard error estimates,
∥∥un − Πk

Fun
∥∥
F
≤ chm+1/2|u|Hm+1 . (5.17)

To estimate the contribution of the second term in (5.16), we construct a special test function
τh ∈ Σ̃k

h to use in the discrete hybrid variational formulation (5.7). There exists a tensor-

valued finite element function τF,Th ∈ Σk(T ) with support only on element T satisfying

τF,Th,nn = λh,nT
− Πk

FunT
on F,

τF,Th,nn = 0 on F̃ ∈ F(T ), F̃ 6= F.

A construction of this function can be done using the facet space Σk,f
h (T ), as done in the

proof of Lemma 4.17. This tensor is bounded by
∥∥τF,Th

∥∥
T
≤ ch

1/2
T

∥∥λh,n − Πk
Fun

∥∥
F
, (5.18)

which follows from the equivalence of norms shown in Lemma 4.14. We build the desired test
function

τh :=
∑

T∈Th

∑

F∈F(T )

τF,Th ∈ Σ̃k
h.

For this τh, the first line of system (5.7) reads

a(σh, τh) + 〈div τh, uh〉V −
∑

T∈Th

∑

F∈F(T )

∫

F
(λh,n − Πk

Fun)λh,n ds = 〈F1, τh〉Σ. (5.19)

For the smooth solution (σ, u), we can deduce that

a(σ, τh) + 〈div τh, u〉V −
∑

T∈Th

∑

F∈F(T )

∫

F
(λh,n − Πk

Fun)un ds = 〈F1, τh〉Σ. (5.20)

using Green’s formula element-wise. Subtracting equation (5.19) from (5.20), yields the equiv-
alence ∑

T∈Th

∑

F∈F(T )

∥∥λh,n − Πk
Fun

∥∥2

F
= −a(σ − σh, τh) − 〈div τh, u− uh〉V .

There we used the defining property of the orthogonal projection on facet F ,

∥∥λh,n − Πk
Fun

∥∥2

F
=

∫

F

(
λh,n − Πk

Fun
)(
un − λh,n

)
ds.

Continuity of a(·, ·) and the divergence operator in the discrete setting together with (5.18)
then ensure

∑

T∈Th

h
−1/2
T

∑

F∈F(T )

∥∥λh,n − Πk
Fun

∥∥
F
≤ c

(
‖σ − σh‖Σh

+ ‖u− uh‖Vh

)
.

This concludes the proof, as we already bounded the discretization error for the stresses and
displacements according to (5.14).
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Similarly to Corollary 4.18, we see that the order associated to the facets can be reduced
for the stress and Lagrange parameter space.

Corollary 5.5. The results of Lemma 5.3 and Lemma 5.4 still hold true when using the

approximation spaces Σ̃
k,kf

h × V k
h × Λ

kf

h , where kf := max(1, k − 1). There, Σ̃
k,kf

h is defined

as the discontinuous equivalent of Σ
k,kf

h of overall order k, where the polynomial order of the
facet contributions is set to kf .

So far, we have seen that the hybridized problem Problem 5.1 has the same properties
as the original mixed TD-NNS formulation in Problem 4.11. One of the main benefits of
the hybridization process is the fact that, when the stress unknowns are eliminated locally,
one ends up with a symmetric, positive definite system matrix. As all degrees of freedom
stemming from the stresses are local to an element, this elimination process can be done
totally local, and is of globally optimal computational complexity. Throughout the following,
we denote Ah, Bh as the linear operators induced by the bilinear forms a(·, ·) and b(·, ·) on
the discrete spaces Σ̃k

h and V k
h × Λkh,

〈Ahσh, τh〉 = a(σh, τh) for σh, τh ∈ Σ̃k
h,

〈Bhτh; vh, µh〉 = b(τh; vh, µh) for τh ∈ Σ̃k
h, vh ∈ V k

h , µh ∈ Λkh.

The Schur complement operator Sh is defined as

Sh := BhA
−1
h B∗

h. (5.21)

The Schur operator induces then again a bilinear form s(·, ·) on the discrete space V k
h × Λkh

via

s(uh, λh; vh, µh) := 〈Sh(uh, λh); vh, µh〉 for (uh, λh), (vh, µh) ∈ V k
h × Λkh.

The following Schur complement problem is equivalent to Problems 4.11 and 5.1.

Problem 5.6. Find uh ∈ V k
h , λh ∈ Λkh such that

s(uh, λh; vh, µh) = Hh(vh, µh) ∀vh ∈ V k
h , µh ∈ Λkh, (5.22)

where the Schur bilinear-form stems from the Schur complement defined in (5.21), and the
right hand side Hh ∈ (V k

h × Λkh)
∗ is given by

Hh := BhA
−1
h F1 − F2.

The stress field σh ∈ Σ̃k
h is determined uniquely by

a(σh, τh) = F1(τh) − b(τh;uh, λh) ∀τh ∈ Σ̃k
h.

We note that, due to the stability analysis provided for the mixed system (5.7), the Schur
complement operator is bounded and coercive with respect to the norm ‖ · ‖Vh×Λh

, i.e. there
exist constants c̃s,1, c̃s,2 > 0 such that

c̃s,1‖vh, µh‖
2
Vh×Λh

≤ sh(vh, µh; vh, µh) ≤ c̃s,2‖vh, µh‖
2
Vh×Λh

for all vh ∈ V k
h , µh ∈ Λkh.

(5.23)
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5.1.4 Implementational issues

We shortly outline how the implementation of the TD-NNS method can be simplified by the
hybridization procedure. We discuss a possible nodal basis for the Lagrange parameter space
Λkh, and a realization of the finite element basis functions.

5.1.4.1 Finite elements for the discontinuous stress space

In Section 4.4, we provided basis functions for triangular and tetrahedral elements of arbi-
trary order for the stress space Σk

h. In the hybridized setting, the global finite element basis
functions do not need to satisfy normal-normal continuity. Therefore, one can use any basis
of P k(T ) for the local space Σ̃k(T ). A possible choice are the bases {qij : 0 ≤ i + j ≤
k}, {qijl : 0 ≤ i+ j + l ≤ k} given in Section 4.4.1 in two or three space dimensions respec-

tively. However, when one wants to restrict the method to the subspace Σ
k,kf

h as proposed
in Corollary 4.18, one has to keep the basis ΨΣ

k proposed for the conforming method. The
degrees of freedom living on a facet are then split, such that they are then associated to the
interiors of the two adjacent elements.

5.1.4.2 Finite elements for the Lagrangian multiplier space

Finite elements for the Lagrange parameters are not assigned to elements in the mesh, but
to facets. We propose to use the triplet (F,Λk(F ),NΛ

k (F )) on facet F ∈ Fh. There, we
define the local space Λk(F ) := P k(F ). Given a basis {qi} for P k(F ), the set of nodal values
corresponding to F is NΛ

k (F ) = {NΛ
F,i} , where

NΛ
F,i(µ) :=

∫

F
µ qi ds. (5.24)

On the reference facet F̂ , we now propose a specific basis ΨΛ
F̂ ,k

, such that Λk(F̂ ) =

spanΨΛ
F̂ ,k

. In two space dimensions, let F̂ = [Vα, Vβ ] be the oriented reference segment

between vertices Vα, Vβ, as described in Section 4.4. We define the basis ΨΛ
F̂ ,k

= {ψΛ
F̂ ,i

: i =

0, . . . , k}, where

ψΛ
F̂ ,i

:= qi(λα, λβ).

In three space dimensions, we need to provide a basis on the oriented triangular facet F̂ =
[Vα, Vβ, Vγ ]. We set ΨΛ

F̂ ,k
= {ψΛ

F̂ ,ij
: 0 ≤ i+ j ≤ k}, where

ψΛ
F̂ ,ij

:= qij(λα, λβ, λγ).

Here, the polynomials qi, qij are taken from Section 4.4.1, equations (4.41) and (4.42). Note
that, due to its construction, the basis is orthogonal in the L2 sense, both in two and three
space dimensions.

The functions are transformed to any facet F ∈ Fh without further computational effort.
For x ∈ T , let x̂ ∈ T̂ be the corresponding point on the reference element; we transform µ̂h
on the reference element to µh := ΦΛ

F µ̂h, where

(
ΦΛ
F µ̂h

)
(x) := µ̂(x̂).
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The global finite element space is composed from the local ones without further continuity
assumptions:

Λkh =
⊕

F∈Fh

Λkh(F ).

5.1.4.3 A decomposition for the Lagrange parameter space

We decomposed the Nédélec space V k
h into a global, low-order space Vh,0 and local, high-

order spaces Ṽ k
X for edges, facets and elements X ∈ Xh. We similarly do so for the Lagrange

parameter space Λkh. Here, the low-order space Λh,0 shall consist of the piecewise linear
contributions. The high-order spaces Λ̃kF each correspond to a facet F ∈ Fh, and contain the
facet basis functions of orders two and higher. Precisely, we set

Λh,0 := span
( ⋃

F∈Fh

{
ψΛ
F ∈ ΨΛ

F,k : deg(ψΛ
F ) ≤ 1

})
, (5.25)

Λ̃k :=
⊕

F∈Fh

Λ̃kF , (5.26)

Λ̃kF := span
{
ψΛ
F ∈ ΨΛ

F,k : deg(ψΛ
F ) ≥ 2

}
. (5.27)

Due to the construction of the basis, this decomposition is orthogonal in the L2 sense. We
will heavily use this fact when treating almost incompressible materials.

5.2 Preconditioning

In this section, we propose a suitable preconditioner C−1
h for the Schur complement equation

(5.22). We define and analyze an additive Schwarz block preconditioner, where the finite
element spaces are split into a global, low-order part, and local high-order contributions
associated to one edge, facet or element. We show that its inverse Ch is spectrally equivalent
to Sh, where the constants of equivalence do not depend on the mesh size h,

〈
Sh(vh, µh); vh, µh

〉
≃
〈
Ch(vh, µh); vh, µh

〉
∀vh ∈ V k

h , µh ∈ Λkh.

To do so, we first introduce the notion of additive Schwarz preconditioners formally in the
subsequent section.

5.2.1 Additive Schwarz block preconditioners

The theory of additive Schwarz preconditioners goes back to the historic work of [Sch70]. To
define the preconditioner, the finite element spaces are divided in sub-blocks, which may be
overlapping. Well-known examples of additive Schwarz preconditioners are standard multi-
level preconditioners, or preconditioners stemming from domain decomposition (DD) meth-
ods. For the multilevel methods, the sub-blocks usually correspond to finite element spaces
on coarser grids. In DD, one considers a splitting of the finite element space, which is in-
duced by a splitting of the domain in, possibly overlapping, patches. Concerning theory on
multilevel and multigrid methods, we refer to [Hac85, BPX90, Bra93, BZ00], where basic
techniques also used in our approach are derived. Multigrid methods have also been devel-
oped for the dual mixed Hellinger-Reissner formulation, we refer to [PW06], where techniques
for H(div) conforming problems developed in [AFW97b, AFW98, AFW00] are applied. In
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[Sch99, Wie00], multigrid methods for the displacement-pressure formulation of elasticity are
provided. For an extensive introduction on DD methods, we point the reader to the mono-
graph [TW05]. For high-order methods, it is common to see each edge, facet or element, or
patches consisting of several such entities, as sub-domain. Theory for p- and hp-methods for
elliptic, H1 conforming problems can be found e.g. in [Man90, Ain96a, Ain96b, SMPZ08].
For problems in H(curl), as the different formulations of Maxwell’s equations, we refer to
[AFW00, HT00, PZ02].

In our approach, we divide the system matrix into sub-blocks, where one block corresponds
to the low-order degrees of freedom, and is global. The high-order nodal values are organized
into face, edge and element blocks, and are local. The preconditioner then consists of the
sum of the inverses of the respective sub-blocks.

We now introduce the notion of an additive Schwarz block preconditioner formally.

Definition 5.7. Let Sh be a symmetric, positive definite operator on the finite element space
Qh. Let moreover {Qi : i = 1, . . . , s} be a not necessarily unique splitting of Qh, such that
Qh =

∑s
i=1Qi. Let Ei : Qh → Qi be corresponding restriction operators. Then the additive

Schwarz preconditioner C−1
h for Sh is defined by its application via

C−1
h q :=

s∑

i=1

E∗
i C

−1
i Eiq, where Ci = EiShE

∗
i . (5.28)

There, C−1
i is the inverse of Ci on the subspace Qi.

5.2.2 A preconditioner for hybridized elasticity

We define an additive Schwarz block preconditioner for the Schur complement equation
in Problem 5.6. We decompose the finite element spaces V k

h ,Λ
k
h, as was proposed in Sec-

tions 4.2.2.6 and 5.1.4.3, namely

V k
h = Vh,0 +

∑

X∈Xh

Ṽ k
X , Λkh = Λh,0 +

∑

F∈Fh

Λ̃kF . (5.29)

Remember Xh = Eh ∪Fh ∪ Th is the set of all edges, facets and elements in the mesh. There,
we set Vh,0 as the lowest-order Nédélec type I space, and Λh,0 as the space containing the
piecewise linear facet fields. The high-order spaces are local; for an edge, facet or element
X ∈ Xh, the space Ṽ k

X is spanned by the high-order shape basis functions connected to X,
and has support on only a few elements surrounding X. Similarly, for F ∈ Fh, the space Λ̃kF
consists of the shape basis functions of degree two and higher on facet F . The supports of the
different high-order subspaces are even disjoint. Any vh ∈ V k

h , µ
k
h ∈ Λkh can be decomposed

uniquely such that

vh = v0 +
∑

X∈Xh

vX , where v0 ∈ Vh,0, vX ∈ Ṽ k
X , (5.30)

µh = µ0 +
∑

F∈Fh

µF , where µ0 ∈ Λh,0, µF ∈ Λ̃kF . (5.31)

Let, for an edge, facet or element X ∈ Xh and a facet F ∈ Fh

E0 : V k
h × Λkh → Vh,0 × Λh,0, EVX : V k

h × Λkh → Ṽ k
X × {0}, EΛ

F : V k
h × Λkh → {0} × Λ̃kF

(5.32)
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be the respective restriction operators for the finite element subspaces. There the operator
E0 is consists of the nodal Nédélec interpolation operator, and an L2 projection onto the
piecewise linear functions for Λkh. Note that we thereby put the low-order subspaces Vh,0 and
Λh,0 into one sub-block. The different blocks of the Schur operator Sh with respect to this
splitting read for X ∈ Xh, F ∈ Fh

S0 := E∗
0ShE0, SVX :=

(
EVX
)∗
ShE

V
X , SΛ

F :=
(
EΛ
F

)∗
ShE

Λ
F . (5.33)

Using the splittings (5.30) and (5.31) for vh ∈ V k
h , µh ∈ Λkh, the preconditioner C−1

h is
defined by

C−1
h (vh, µh) := S−1

0 (v0, µ0) +
∑

X∈Xh

(
SVX
)−1

(vX , 0) +
∑

F∈Fh

(
SΛ
F

)−1
(0, µF ), (5.34)

where all inverses are defined on the respective subspaces.

We state the main theorem of this section, which assures that Ch is spectrally equivalent
to the Schur complement operator Sh.

Theorem 5.8. For a domain Ω ⊂ R
d, d = 2, 3 satisfying Assumption 3.2, let Th be a shape-

regular, quasi-uniform triangulation. Let Sh denote the Schur complement operator from
Problem 5.6, and C−1

h be the corresponding additive Schwarz block preconditioner defined by
equation (5.34). Then Sh and Ch are spectrally equivalent,

〈Sh(vh, µh); vh, µh〉 ≃ 〈Ch(vh, µh); vh, µh〉 ∀vh ∈ V k
h , µh ∈ Λkh. (5.35)

The constants of equivalence do not depend on the mesh size h.

Proof. Postponed to Section 5.2.3.

5.2.3 Condition number estimates

In the following, we proof two lemmas, which allow us to bound the different components
(v0, µ0), (vX , 0) and (0, µF ) by (vh, µh) in the discrete norm ‖ · ‖Vh×Λh

. Together with an
estimate, which allows to bound (vh, µh) from above by the different contributions, they are
employed in the subsequent proof of Theorem 5.8.

In the following, we assume that the conditions from Theorem 5.8 hold, i.e that Ω satisfies
Assumption 3.2, its triangulation Th is simplicial, quasi-uniform, and shape-regular, and that
Sh and C−1

h are the Schur complement operator and corresponding additive Schwarz block
preconditioner.

Lemma 5.9. For (vh, µh) ∈ V k
h × Λkh, let (v0, µ0) ∈ Vh,0 × Λh,0 be the projection onto the

low-order spaces. Then there exists some c > 0 independent of the mesh size h, such that

‖v0, µ0‖Vh×Λh
≤ c‖vh, µh‖Vh×Λh

.

Proof. Let vh ∈ V k
h , µh ∈ Λkh be arbitrary, and v0, µ0 their respective low-order components.

Moreover, ṽh := vh − v0 and µ̃h := µh − µ0 shall denote the high-order contributions. In the
following estimate, we use that ε(v0) = 0 to obtain the second equality, and that the operator
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norm of the L2 projection is less or equal to one as well as the triangle inequality in the third
line.

‖v0, µ0‖
2
Vh×Λh

=
∑

T∈Th

[
‖ε(v0)‖

2
T + h−1

T ‖v0,n − µ0,n‖
2
∂T

]

=
∑

T∈Th

h−1
T

∥∥Π1
(
(IVh,0vh)n − µh,n

)∥∥2

∂T

≤
∑

T∈Th

2h−1
T

(
‖
(
IVh,0vh − vh︸ ︷︷ ︸

=:ṽh∈Ṽ
k
h

)
n
‖2
∂T + ‖vh,n − µh,n‖

2
∂T

)
.

Corollary 4.29 (piecewise Korn inequality for the high order space Ṽ k) now ensures

‖v0, µ0‖
2
Vh×Λh

≤ c
∑

T∈Th

[
‖ε(ṽh)‖

2
T + h−1

T ‖vh,n − µh,n‖
2
∂T

]
.

As ε(ṽh) = ε(vh), this is the required result.

Lemma 5.10. For (vh, µh) ∈ V
k
h ×Λkh, let vX ∈ Ṽ k

X and µF ∈ Λ̃kF be the sub-blocks matching
some X ∈ Xh, F ∈ Fh respectively. Then there exists some c > 0 independent of h such that

∑

X∈Xh

‖vX , 0‖Vh×Λh
+
∑

F∈Fh

‖0, µF ‖Vh×Λh
≤ c‖vh, µh‖Vh×Λh

.

Proof. We split the proof into two parts, one for the estimation of the contributions stemming
from vX , X ∈ Xh, and one for the respective contributions from µF , F ∈ Fh.

1. For vh ∈ V k
h decomposed according to (5.30), we see, employing Corollary 4.29 to

estimate the boundary terms by the strain tensor for the high-order contributions vX ,
∑

X∈Xh

‖vX , 0‖Vh×Λh
=

∑

X∈Xh

∑

T∈∆X

[
‖ε(vX )‖2

T + h−1
T ‖vX,n‖

2
∂T

]

≤
∑

X∈Xh

∑

T∈∆X

‖ε(vX )‖2
T ≤

∑

T∈Th

‖ε(vh)‖
2
T .

We moreover used that the number of components vX with support on an element T is
bounded.

2. In order to estimate the contributions stemming from µh, we once more need the split-
ting vh = v0 + ṽh into the low- and high-order contributions. We utilize Lemma 5.9 and
Corollary 4.29 to obtain
∑

F∈Fh

‖0, µF ‖Vh×Λh
= 2

∑

F∈Fh

h−1
T ‖µF ‖

2
F

=
∑

T∈Th

h−1
T ‖µh,n − µ0,n − vh,n + v0,n + ṽh,n‖

2
∂T

≤ 3
∑

T∈Th

h−1
T

(
‖µh,n − vh,n‖

2
∂T + ‖µ0,n − v0,n‖

2
∂T + ‖ṽh,n‖

2
∂T

)

C. 4.29
≤ c

∑

T∈Th

[
‖ε(ṽh)‖

2
T + h−1

T

(
‖µh,n − vh,n‖

2
∂T + ‖µ0,n − v0,n‖

2
∂T

)]

L. 5.9
≤ c ‖vh, µh‖Vh×Λh

.
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This concludes our proof.

Lemma 5.11. Let (vh, µh) be decomposed according to (5.30), (5.31). Then there exists a
constant c > 0 independent of the mesh size h such that

‖vh, µh‖
2
Vh×Λh

≤ c
[
‖v0, µ0‖

2
Vh×Λh

+
∑

X∈Xh

‖vX , 0‖
2
Vh×Λh

+
∑

F∈Fh

‖0, µF ‖
2
Vh×Λh

]
.

Proof. The triangle inequality ensures

‖vh, µh‖Vh×Λh
≤ ‖v0, µ0‖Vh×Λh

+

∥∥∥∥
∑

X∈Xh

(vX , 0)

∥∥∥∥
Vh×Λh

+

∥∥∥∥
∑

F∈Fh

(0, µF )

∥∥∥∥
Vh×Λh

.

As only a globally limited number of blocks have support on an element T or facet F , and the
supports of the respective blocks for the Lagrangian multipliers are even disjoint, one directly
obtains the required result.

Proof of Theorem 5.8. We show the spectral equivalence of the inverse of the additive Schwarz
block preconditioner Ch, and the Schur complement operator Sh. In our case, the different
blocks are non-overlapping, thus

Ch(vh, µh) = Sh,0(v0, µ0) +
∑

X∈Xh

SVh,X(vX , 0) +
∑

F∈Fh

SΛ
h,F (0, µF )

for any vh ∈ V k
h , µh ∈ Λkh. As the Schur operator Sh is bounded and coercive with respect to

the discrete norm ‖ · ‖Vh×Λh
(see (5.23)), it suffices to show

‖vh, µh‖
2
Vh×Λh

≃ ‖v0, µ0‖
2
Vh×Λh

+
∑

X∈Xh

‖vX , 0‖
2
Vh×Λh

+
∑

F∈Fh

‖0, µF ‖
2
Vh×Λh

.

This follows from Lemmas 5.9, 5.10 and 5.11.

5.3 Application to nearly incompressible elasticity

In the following, we treat the case of almost incompressible materials. So far, we discussed a
hybrid formulation of the TD-NNS method, and its positive implications, when it comes to
implementational issues: much simpler elements can be used, and, after local elimination of
the stress degrees of freedom, one ends up with a symmetric positive definite system matrix.
However, we did not improve the behavior of the method for nearly incompressible materials.

Throughout this section, we will assume that the material is homogenous, isotropic, and
linearly elastic. Thus, the compliance tensor is uniquely determined by the Lamé constants
µ̄, λ̄. The bilinear form a(·, ·) as defined in (3.37) then reads

a(σ, τ) :=

∫

Ω

1

2µ̄
dev σh : dev τh +

1

dλ̄+ 2µ̄
tr(σh) tr(τh) dx. (5.36)

We see, that in the incompressible limit of λ̄ → ∞, the strain depends only on the deviator
of the stress. Due to this, the bilinear form is not coercive on the whole space Σ̃k

h. In the
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following, we stabilize a(·, ·) by adding element-wise divergence terms. To stay consistent, we
modify the right hand side accordingly. For σh, τh ∈ Σ̃k

h, we set

aS(σh, τh) := a(σh, τh) +
∑

T∈T

h2
T

∫

T
div σh · div τh dx, (5.37)

〈FS1 , τh〉Σ := 〈F1, τh〉Σ −
∑

T∈T

h2
T

∫

T
f · div τh dx. (5.38)

As the balance equation reads − div σ = f , replacing a(·, ·) by aS(·, ·) and F1 by FS1 in
Problem 5.1 yields another consistent approximation of the problem of mixed elasticity.

Problem 5.12. Given a regular, quasi-uniform triangulation Th, find (σh, uh, λh) ∈ Σ̃k
h ×

V k
h × Λkh such that

aS(σh, τh) + b(τh;uh, λh) = 〈FS1 , τh〉Σ ∀τh ∈ Σ̃k
h,

b(σh; vh, µh) = 〈F2, vh〉V ∀vh ∈ V k
h , µh ∈ Λkh.

(5.39)

Here, aS(·, ·), F s1 are defined by the relations (5.37), (5.38), whereas b(·, ·) is given by (5.8),
(5.9), and F2 is defined by (3.40).

When analyzing the stabilized hybrid problem above, we use different, parameter depen-
dent norms. We introduce these norms subsequently. In the end, we show that the additive
Schwarz block preconditioner proposed in Section 5.2.2 is also suitable in the almost incom-
pressible case.

5.3.1 Discrete norms

We define broken norms for estimating τh ∈ Σ̃k
h and (vh, µh) ∈ V k

h × Λkh. They are similar to
the original choices (5.10) and (5.11), but additionally contain the Lamé parameter λ̄.

‖τh‖
2
eΣh,S

:= inf
p̄∈P 0(Th)

‖τh − p̄I‖2
Ω +

1

λ̄
‖p̄I‖2

Ω +
∑

T∈T

h2
T ‖div τh‖

2
T , (5.40)

‖vh, µh‖
2
Vh×Λh,S

:=
∑

T∈Th

[
‖ε(vh)‖

2
T + h−1

T ‖vh,n − µh,n‖
2
∂T +

λ̄

|T |

∣∣∣
∫

T
µh,nds

∣∣∣
2
]
. (5.41)

For the stresses, the first term corresponds to an element-wise deviatoric part of τh. In the
limiting case of λ̄ = ∞, only this deviatoric part is taken into account. The scaling of hT in
the last term is chosen appropriately to match with the L2 norm. We note that we added the
same kind of element-wise divergence to the bilinear form a(·, ·) to stabilize the hybridized
system.

For the displacements, we already encountered the first two terms in the definition of
‖.‖Vh×Λh

in the broken norm (5.11) for the hybrid formulation. The last term
∫
T µh,nds

reflects the change of volume of an element T . As the material becomes incompressible, i.e.
λ̄→ ∞, such changes are penalized.

Before we come to stability analysis, we take a closer look to the parameter-dependent
norm defined for the stress field. On the triangulation Th, we can divide any τh ∈ Σ̃k

h into a
deviatoric and a trace part:

τh = devT τh + 1
d trT (τh)I.
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There, devT τh and trT (τh) are defined element-wise; we set for T ∈ Th

trT (τh)
∣∣
T

:=
1

|T |

∫

T
tr(τh)ds, devT τh

∣∣
T

:= τh −
1
d trT (τh)I. (5.42)

The trace part trT (τh) is therefore the element-wise average of the trace of τh. One can easily
see that, independently of λ̄ > 0,

‖devT τh‖
2
Ω = inf

p̄∈P 0(Th)
‖τh − p̄I‖2

Ω +
1

λ̄
‖p̄I‖2

Ω.

Thus, for any τh ∈ Σ̃h, we can evaluate ‖devT τh‖eΣh,S
by

‖devT τh‖
2
eΣh,S

= ‖devT τh‖
2
Ω +

∑

T∈Th

h2
T ‖div τh‖

2
T . (5.43)

This follows trivially, as the element-wise divergence of the constant trace part trT (τh)I
vanishes. On the other hand, we see for a piecewise constant function q ∈ P 0(Th)

‖qI‖2
eΣh,S

= inf
p̄∈P 0(Th)

‖(q − p̄)I‖2
Ω +

1

λ̄
‖p̄‖2

Ω =
1

1 + λ̄
‖qI‖2

Ω. (5.44)

We can easily prove a lemma on the additive splitting of some τh ∈ Σ̃k
h into a deviatoric and

a piecewise constant part, using only algebraic manipulations.

Lemma 5.13. Let τh ∈ Σ̃k
h be arbitrary, and let τ̄h ∈ Σ̃k

h and p ∈ P 0(Th) be such that
τh = τ̄h + pI. Then

‖τh‖eΣh,S
≤ 2‖τ̄h‖

2
Ω +

∑

T∈Th

h2
T ‖div τ̄h‖

2
T +

4

1 + 2λ̄
‖pI‖2

Ω. (5.45)

The splitting τh = devT τh + 1
d trT (τh)I is orthogonal with respect to the discrete norm,

‖τh‖
2
eΣh,S

= ‖devT τh‖
2
eΣh,S

+ ‖1
d trT (τh)I‖eΣh,S

. (5.46)

5.3.2 Stability

We verify the conditions of Brezzi’s theorem, as summarized in Assumption 4.2. First, bound-
edness of the bilinear forms aS(·, ·), b(·, ·) with respect to the discrete, parameter-dependent
norms has to be proven. We see that this is straightforward for aS(·, ·), and also holds, but
less trivially, for b(·, ·).

Lemma 5.14. Let Th be a shape-regular, quasi-uniform triangulation of Ω, and let aS(·, ·),
b(·, ·) be defined as in (5.37), (5.8). These bilinear forms are bounded on Σ̃k

h, Σ̃k
h× (V k

h ×Λkh),
respectively; the constants of boundedness c̃a,2, c̃b,2 > 0 are independent of λ̄→ ∞ or h→ 0.

Proof. Continuity of aS(·, ·) follows directly, as

aS(τh, τh) ≤ c(d, µ̄)

[∥∥τh − 1
d tr(τh)I

∥∥2

Ω
+

1

λ̄

∥∥1
d tr(τh)I

∥∥2

Ω
+
∑

T∈Th

h2
T ‖div τh‖

2
T

]

= c(d, µ̄)

[
inf

p∈L2(Th)

∥∥τh − pI
∥∥2

Ω
+

1

λ̄
‖pI‖2

Ω +
∑

T∈Th

h2
T ‖div τh‖

2
T

]

≤ c(d, µ̄)‖τh‖
2
eΣh,S

.
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We proceed to showing continuity for b(·, ·). Due to the orthogonality of the splitting
τh = devT τh + 1

d trT (τh)I, it is sufficient to prove boundedness of b(·, ·) with respect to
both parts separately. We first concentrate on the deviatoric part. There we see, using
representation (5.9) of b(·, ·), the Cauchy-Schwarz inequality and the norm equivalence from
Lemma 4.14 applied on Σ̃k

h

b(devT τh; vh, µh) =
∑

T∈Th

[
−

∫

T
devT τh : ε(vh) dx+

∫

∂T
(devT τh)nn(vh,n − µh,n)ds

]

≤
∑

T∈Th

[
‖devT τh‖T ‖ε(vh)‖T + ‖(devT τh)nn‖∂T ‖vh,n − µh,n‖∂T

]

≤ c ‖devT τh‖eΣh,S
‖vh, µh‖Vh×Λh,S .

Next, we consider the trace part p := 1
d trT (τh). In the estimate below, we use Green’s

formula (3.12), the trivial scaling inequality ‖q‖∂T ≤ c h
−1/2
T ‖q‖T for q ∈ P 0(Th), and the

Cauchy-Schwarz inequality again. We deduce

b(pI; vh, µh) = −
∑

T∈Th

∫

∂T
p µh dx

= inf
p̄∈P 0(Th)

∑

T∈Th

[ ∫

T
∇(p− p̄)︸ ︷︷ ︸

=0

·v dx−

∫

∂T
p µh,nds

]

= inf
p̄∈P 0(Th)

∑

T∈Th

[
−

∫

T
(p− p̄)I : ε(vh)dx+

∫

∂T
(p− p̄)(vh,n − µh,n) − p̄µh,nds

]

≤ c inf
p̄∈P 0(Th)

∑

T∈Th

[
‖(p− p̄)I‖T ‖ε(vh)‖T + h

−1/2
T ‖p − p̄‖T ‖vh,n − µh,n‖∂T +

√
1
λ̄
‖p̄I‖T

√
λ̄
|T |

∣∣∣∣
∫

∂T
µh,n ds

∣∣∣∣
]

≤ c ‖pI‖eΣh,S
‖vh, µh‖Vh×Λh,S.

From the two estimates above, we can conclude the continuity of b(·, ·).

We now proceed to showing the respective lower bounds, i.e. items 2. (the inf-sup con-
dition) and 3. (coercivity) of Assumption 4.2. We use the following lemma, which bounds
the difference between the trace tr(τh) and its element-wise mean value trT (τh) in terms of
deviator and divergence of the finite element function τh.

Lemma 5.15. On a shape-regular, quasi-uniform triangulation Th of Ω, let Σ̃k
h be the cor-

responding discontinuous stress finite element space. Then, the difference between tr(τh) and
trT (τh) for τh ∈ Σ̃k

h is bounded element-wise by

‖ tr(τh) − trT (τh)‖T ≤ c‖dev τh‖T + hT ‖div τh‖T for T ∈ Th, (5.47)

where c > 0 is independent of the local mesh size hT .

Proof. Let T ∈ Th, we note that the difference tr(τh) − trT (τh) has vanishing mean value on
T . Thus, Stokes theory (Lemma 3.39) guarantees the existence of pT ∈ H1

0 (T ) such that

div pT = tr(τh) − trT (τh) in T
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holds in weak sense, and
‖∇pT ‖T ≤ c‖ tr(τh) − trT (τh)‖T .

We deduce, using that the divergence of the constant function trT (τh)I vanishes, as well as
the zero boundary conditions for pT ∈ H1

0 (T ), when doing integration by parts,

‖ tr(τh) − trT (τh)‖
2
T =

∫

T
div pT

(
tr(τh) − trT (τh)

)
dx

= −

∫

T
pT · div(tr(τh)I) dx

= −d

∫

T
pT · div(τh − dev τh) dx

= −d

∫

T
pT · div τh dx+ d

∫

T
∇pT : dev τh dx.

Last, we use a scaled Friedrichs inequality for pT ∈ H1
0 (T ) (Theorem 3.14), and obtain

1
d‖ tr(τh) − trT (τh)‖

2
T ≤ ‖pT ‖T ‖div τh‖T + ‖∇pT ‖T ‖dev τh‖T

≤ (1 + cF )‖∇pT ‖T
(
‖dev τh‖T + hT ‖div τh‖T

)
.

Lemma 5.16. Let Th be a shape-regular, quasi-uniform triangulation of Ω. Then, aS(·, ·) as
defined in (5.37) is coercive on Σ̃k

h with respect to ‖ · ‖eΣh,S
, there exists a constant c̃a,1 > 0

independent of the mesh size h or the Lamé parameter λ̄→ ∞ such that

aS(τh, τh) ≥ c̃a,1‖τh‖
2
eΣh,S

∀τh ∈ Σ̃k
h. (5.48)

Proof. Coercivity of aS(·, ·) can easily be shown using Lemma 5.15. To estimate ‖τh‖eΣh,S
for

some τh ∈ Σ̃k
h, we bound the infimum in the definition of the norm by setting p̄ = 1

d trT (τh).
We obtain

‖τh‖
2
eΣh,S

≤ ‖τh −
1
d trT (τh)I‖

2
Ω +

1

dλ̄
‖ trT (τh)‖

2
Ω +

∑

T∈Th

h2
T ‖div τh‖

2
T .

The first term can be estimated, inserting tr(τh) and using estimate (5.47) in Lemma 5.15

1

2

∥∥τh − 1
d trT (τh)I

∥∥2

Ω
≤

∥∥ τh − 1
d tr(τh)I︸ ︷︷ ︸

=dev τh

∥∥2

Ω
+

1

d

∥∥ tr(τh) − trT (τh)
∥∥2

Ω

≤ c

(
‖dev τh‖

2
Ω +

∑

T∈Th

h2
T ‖div τh‖

2
T

)
.

Inserting this into the first estimate yields

‖τh‖
2
eΣh,S

≤ c

(
‖dev τh‖

2
Ω +

∑

T∈Th

h2
T ‖div τh‖

2
T +

1

λ̄
‖ trT (τh)‖

2
Ω

)

≤ c aS(τh, τh).

Here we used that ‖ trT (τh)‖Ω ≤ c‖ tr(τh)‖Ω. The constant c does not depend on h → 0 or
λ̄→ ∞.
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Lemma 5.17. Let Th be a shape-regular, quasi-uniform triangulation of Ω. Then, b(·, ·)
as defined as in (5.8) satisfies an inf-sup condition with respect to the parameter-dependent
norms ‖ · ‖eΣh,S

, ‖ · ‖Vh×Λh,S. The constant c̃b,1 > 0 is independent of the mesh size h or the

Lamé parameter λ̄→ ∞, such that

inf
τh∈eΣk

h

sup
vh∈V k

h
µh∈Λk

h

b(τh; vh, µh)

‖τh‖eΣh,S
‖vh, µh‖Vh×Λh,S

≥ c̃b,1. (5.49)

Proof. The proof of the inf-sup condition in the almost incompressible setting relies on the
one in case of compressible materials, Lemma 4.17. For given (vh, µh) ∈ V k

h × Λkh, one can

find τ̄h ∈ Σ̃k
h such that

b(τ̄h; vh, µh) ≥ c ‖τh‖Ω

(
∑

T∈Th

[
‖ε(vh)‖

2
T + h−1

T ‖vh,n − µh,n‖
2
∂T

])1/2

,

and
‖τ̄h‖

2
Ω ≤ c

∑

T∈Th

[
‖ε(vh)‖

2
T + h−1

T ‖vh,n − µh,n‖
2
∂T

]
. (5.50)

Now, we define the piecewise constant function p ∈ P 0(Th) element-wise via

p|T := −
λ̄

|T |

∫

∂T
µh,n ds.

This choice implies

b(pI; vh, µh) = −
∑

T∈Th

∫

∂T
pµh,n ds =

∑

T∈Th

λ̄

|T |

∣∣∣∣
∫

∂T
µh,n ds

∣∣∣∣
2

. (5.51)

We choose τh := τ̄h + pI, and see

b(τh; vh, µh) = b(τ̄h; vh, µh) + b(pI; vh, µh) ≥ c ‖vh, µh‖
2
Vh×Λh,S

.

Therefore, bounding ‖τh‖eΣh,S
by ‖vh, µh‖Vh×Λh,S from above concludes the proof. We use

estimate (5.45) in Lemma 5.13 and the bound (5.50) together with an inverse inequality for
div τ̄h, and obtain

‖τ̄h + pI‖eΣh,S

(5.45)

≤ 2‖τ̄h‖
2
Ω +

∑

T∈Th

h2
T ‖div τ̄h‖

2
T +

4

1 + 2λ̄
‖pI‖2

Ω

= 2‖τ̄h‖
2
Ω +

∑

T∈Th

[
h2
T ‖div τ̄h‖

2
T +

4dλ̄2

|T |(1 + 2λ̄)

∣∣∣∣
∫

∂T
µh,n ds

∣∣∣∣
2
]

(5.50)

≤ c
∑

T∈Th

[
‖ε(vh)‖

2
T + h−1

T ‖vh,n − µh,n‖
2
∂T +

λ̄

|T |

∣∣∣∣
∫

∂T
µh,n ds

∣∣∣∣
2
]

= ‖vh, µh‖Vh×Λh,S.

This implies the stability estimate (5.49).
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Summarizing our results, we see that Lemmas 5.14, 5.16 and 5.17 ensure that all conditions
for the application of Brezzi’s theory (i.e. of Assumption 4.2) are satisfied. This implies an
a-priori bound for the discretization error in the discrete norms. In the following, we use
this bound to estimate the error by quantities, which are independent of λ̄, and contain only
derivatives of the solution (σ, u).

Theorem 5.18. Let (σ, u) be a solution to the equations of elasticity, as posed in Problem 3.1,
and let λ denote the normal displacement on the set of interfaces Fh, i.e. λ|F := unF

. Let
(σh, uh, λh) be a solution to the hybridized set of discrete equations in Problem 5.1. Let m ≤ k
be a positive integer, such that σ ∈ Hm

SYM(Ω), and u ∈ [Hm+1(Ω)]d. Then

‖σ − σh‖eΣh,S
+ ‖u− uh, λ− λh‖Vh×Λh,S ≤ c hm

(
‖∇mσ‖Ω + ‖∇mε(u)‖Ω

)
, (5.52)

where the constant c is independent of the mesh size h, and does not deteriorate for almost
incompressible materials, i.e. for λ̄→ ∞.

Proof. Due to the basic error estimate for mixed problems provided in Lemma 4.3, we may
estimate

‖σ − σh‖
2
eΣh,S

+ ‖u− uh, λ− λh‖
2
Vh×Λh,S

≤ c

(
inf

τh∈eΣk
h

‖σ − τh‖
2
eΣh,S

+ (5.53)

inf
vh∈V k

h
µh∈Λk

h

∑

T∈Th

[
‖ε(u− vh)‖

2
T + h−1

T ‖vh,n − µh,n‖
2
∂T +

λ̄

|T |

∣∣∣∣
∫

∂T
(un − µh,n)ds

∣∣∣∣
2
])

. (5.54)

The first term containing the best-approximation error for the stress space can be estimated
by standard arguments, as Σ̃k

h is piecewise polynomial and discontinuous. For bounding
the second infimum, i.e. line (5.54), we employ special choices of vh, µh. We set vh to the
nodal Nédélec interpolant of u, i.e. vh := IVh,ku. For the Lagrangian multiplier, we choose

µh := Πkλ = Πkun as the facet-wise L2 projection onto P k(Fh). We obtain

(5.54) ≤
∑

T∈Th

[
‖ε(u− IVh,ku)‖

2
T + 2h−1

T

(
‖un − IVh,kun‖

2
∂T + ‖un − Πkun‖

2
∂T

)

+
λ̄

|T |

∣∣∣∣
∫

∂T
(un − Πkun)ds

∣∣∣∣
2

︸ ︷︷ ︸
=0

]
.

Here, we used that the mean value of un − Πkun vanishes on each facet of the triangula-
tion. Now, employing the approximation properties of the interpolation operator IVh,k (The-

orem 4.21) and the L2 projection Πk, we obtain

(5.54) ≤ c h2m ‖∇mε(u)‖2
Ω.

This estimate then completes the proof.

Similar to the compressible case, the stability estimates ensure the existence of a Schur
complement operator SSh = Bh(A

S
h)−1B∗

h, where ASh is the discrete linear operator corre-
sponding to the stabilized bilinear form aS(·, ·). Then, sS(·, ·) shall denote the corresponding
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bilinear form on the discrete space V k
h ×Λkh. For the right hand side HS

h := Bh(A
S
h)−1FS1 −F2,

the stabilized hybrid system (5.39) is equivalent to finding

sS(uh, λh; vh, µh) = 〈HS
h ; vh, µh〉V k

h ×Λk
h

∀vh ∈ V k
h , µh ∈ Λkh, (5.55)

and setting σh ∈ Σ̃k
h such that

aS(σh, τh) = 〈FS1 ; τh〉Σ − b(τh;uh, λh) ∀τh ∈ Σ̃k
h.

The Schur complement SSh is symmetric and positive definite on V k
h × Λkh, and spectrally

equivalent to the stabilized norm,

sS(vh, µh; vh, µh) ≃ ‖vh, µh‖
2
Vh×Λh,S

. (5.56)

One can therefore solve system (5.39) by a preconditioned CG method. We propose to use
the additive Schwarz block preconditioner constructed in Section 5.2. Subsequently, we will
show that it is also suitable in case of nearly incompressible materials.

5.3.3 A preconditioner for nearly incompressible materials

In Section 5.2, we proposed an additive Schwarz block preconditioner to use in a precondi-
tioned CG method in order to solve Problem 5.1. We will now show that this choice also
works fine in case of nearly incompressible materials, provided the basis for the Lagrangian
multiplier space Λkh is orthogonal with respect to the L2 inner product. To this end, we
assume that Th is a shape-regular triangulation of Ω. For vh ∈ V k

h , µh ∈ Λkh, let

vh = v0 +
∑

X∈Xh

vX , µh = µ0 +
∑

F∈Fh

µF

be the corresponding decompositions, as given in (5.30), (5.31). Let E0, E
V
X , E

Λ
F be the

respective restriction operators, as defined in equation (5.32). We denote the sub-blocks of
the stabilized Schur complement SSh from equation (5.55) by

SS0 := E∗
0S

S
hE0, SS,VX :=

(
EVX
)∗
SShE

V
X , SS,ΛF :=

(
EΛ
F

)∗
SShE

Λ
F .

This allows to introduce the preconditioner

(
CSh
)−1

(vh, µh) :=
(
SS0
)−1

(vh,0, µh,0)+
∑

X∈Xh

(
SS,VX

)−1
(vX , 0)+

∑

F∈Fh

(
SS,ΛF

)−1
(0, µF ). (5.57)

The stabilized Schur complement is spectrally equivalent to CSh , as the next theorem states.

Theorem 5.19. On a shape-regular, quasi-uniform triangulation Th of Ω, let SSh denote the
Schur complement operator from equation (5.55), and let (CSh )−1 be the corresponding additive
Schwarz block preconditioner defined by equation (5.57). Then SSh and CSh are spectrally
equivalent, provided the finite element basis for Λkh is orthogonal with respect to the L2 inner
product, 〈

SSh (vh, µh); vh, µh
〉
≃
〈
CSh (vh, µh); vh, µh

〉
∀vh ∈ V k

h , µh ∈ Λkh. (5.58)

The constants of equivalence do not depend on the mesh size h.
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Proof. The proof is similar to the proof of Theorem 5.8, which stated the same relation
between Sh and Ch in the compressible setting. There, we argued, that it is sufficient to show

‖vh, µh‖Vh×Λh,S ≃ ‖v0, µ0‖Vh×Λh,S +
∑

X∈Xh

‖vX , 0‖Vh×Λh,S +
∑

F∈Fh

‖0, µF ‖Vh×Λh,S . (5.59)

We observe that the squared norms ‖ · ‖2
Vh×Λh

and ‖ · ‖2
Vh×Λh,S

differ by the additive term

∑

T∈Th

∣∣∣∣
∫

∂T
µh,n ds

∣∣∣∣
2

.

When using an L2 orthogonal basis for Λkh, the mean value of high-order components of µh
on a facet F ∈ Fh vanishes, and thus

∣∣∣∣
∫

F
µh,n ds

∣∣∣∣ =
∣∣∣∣
∫

F
µ0,n ds

∣∣∣∣.

We first bound the different contributions on the right hand side of (5.59) by ‖vh, µh‖
2
Vh×Λh,S

.
Using Lemma 5.9, we may estimate the low-order contribution

‖v0, µ0‖
2
Vh×Λh,S

= ‖v0, µ0‖Vh×Λh
+
∑

T∈Th

∣∣∣∣
∫

∂T
µ0,n ds

∣∣∣∣
2

≤ c‖vh, µh‖Vh×Λh
+
∑

T∈Th

∣∣∣∣
∫

∂T
µh,n ds

∣∣∣∣
2

= c ‖vh, µh‖
2
Vh×Λh,S

.

Due to the fact that µF is orthogonal to the piecewise constant functions,
∫
F µF,n ds van-

ishes. Therefore, for the high-order parts (vX , 0) and (0, µF ), the original and stabilized norm
coincide. Thus, Lemma 5.10 ensures

∑

X∈Xh

‖vX , 0‖Vh×Λh,S +
∑

F∈Fh

‖0, µF ‖Vh×Λh,S ≤ c‖vh, µh‖Vh×Λh
≤ c‖vh, µh‖Vh×Λh,S.

From these observations we conclude, that the sum of all block contributions is bounded
from above by ‖vh, µh‖Vh×Λh,S . For the lower bound, we employ, similar to Lemma 5.11,
the argument of finite overlap of support for the blocks of vh, and disjoint supports of the
facet-blocks of µh. Collecting our results, we arrive at the statement of the theorem.

5.4 Numerical Results

We present some results obtained using the hybridized TD-NNS method. Again, all com-
putations were done using the finite element package Netgen/NgSolve, [Sch97]. As a first
example, we consider the unit square, which is fixed on the left hand side (u = 0), and where
surface tractions σn = (1, 1)T are applied on the right hand side. We assume that the ma-
terial is close to the incompressible limit, and set Young’s modulus Ē = 1, and Poisson’s
ratio ν̄ = 0.499 999. We use a triangulation consisting of 114 elements. We compute the
error ‖σ − σh‖Ω for polynomial orders k = 1, 2, 4, doing adaptive mesh refinement using a
Zienkiewicz-Zhu type error estimator [ZZ87]. In Figure 5.1, we plot the obtained results. We
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Figure 5.1: Coupling degrees of freedom vs. error ‖σ− σh‖Ω, almost incompressible material
(Young’s modulus Ē = 1, Poisson ratio ν̄ = 0.499 999): We observe an optimal rate of
convergence for methods of orders k = 1, 2, 4 and adaptive refinement.

orthogonal non-orthogonal
ǫ k = 2 k = 5 k = 2 k = 5

10−1 38 60 61 169
10−2 43 77 88 239
10−3 45 82 164 294
10−4 45 83 240 796
10−7 45 83 398 2 777
10−10 45 83 – –

Table 5.1: Multiplicative Schwarz block preconditioner, number of iterations in PCG method
for almost incompressible material (Young’s modulus Ē = 1, Poisson ratio ν̄ = 0.5 − ǫ) on
the unit square, using orthogonal and non-orthogonal basis functions for Λkh

see an optimal rate of convergence of the error ‖σ− σh‖Ω. Note that in the analysis, we were
only able to provide the corresponding bound for ‖σ − σh‖eΣh,S

.

Next, we investigate on the number of iterations needed in the preconditioned CG it-
eration, where we use a multiplicative version of the additive Schwarz block preconditioner
provided in Section 5.2. In our computations, we keep the mesh fixed to 114 elements, and
choose polynomial orders k = 2, 5. This results in 1 134 versus 2 268 coupling degrees of
freedom. We set Poisson’s ratio to ν̄ = 0.5 − ǫ, where ǫ ranges between 0.1 and 10−10. In
Section 5.3.3, we required the basis for Λkh to be orthogonal with respect to the L2 inner
product. We now do computations using orthogonal and non-orthogonal bases. We see that
the number of iterations is only independent of ǫ, if the basis is chosen orthogonally. If not,
the PCG solver needs more steps as the Poisson ratio tends to 1/2. In Table 5.1, we list the
numbers of iterations needed to reduce the error by a factor of 10−12. The PCG solver does
not converge within 3 000 iterations, when using non-orthogonal basis functions.

In Figure 5.2, we plot the dependence of the block preconditioner on the mesh size h. We
start from a grid consisting of 114 triangles, and do uniform refinement. We use methods of
orders k = 2, 5, and obtain numbers of iterations which are independent of the decreasing
mesh size.
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Figure 5.2: Coupling degrees of freedom vs. number of iterations, almost incompressible
material, (Young’s modulus Ē = 1, Poisson ratio ν̄ = 0.499 999), uniform mesh refinement;
left two space dimensions, right three space dimensions.

orthogonal non-orthogonal
ǫ k = 3 k = 5 k = 3 k = 5

10−1 123 187 200 271
10−2 141 221 296 413
10−3 148 236 521 784
10−4 149 235 905 1497
10−7 149 236 2971 –
10−10 159 234 – –

Table 5.2: Multiplicative Schwarz block preconditioner, number of iterations in PCG method
for almost incompressible material (Young’s modulus Ē = 1, Poisson ratio ν̄ = 0.5 − ǫ) on
the unit cube, using orthogonal and non-orthogonal basis functions for Λkh

We provide results for a similar example in three space dimensions: We consider the unit
cube, one side fixed, constant surface tractions acting on the opposite side. We assume to be
given a Young’s modulus Ē = 1, and varying Poisson ratio ν̄ = 0.5−ǫ. We study the behavior
of the preconditioner with respect to mesh refinement and near incompressibility. We use a
coarse mesh consisting of 12 tetrahedral elements. The PCG method is terminated, when
an error reduction of 10−12 is achieved. In Table 5.2, numbers of iterations for methods of
orders k = 3, 5 and ǫ varying between 0.1 and 10−10 are listed. We use both orthogonal and
non-orthogonal basis functions for the facet space. For a non-orthogonal basis, the method
does not converge within 3 000 iterations for ǫ sufficiently small. In Figure 5.2 on the right
hand side, we plot the number of iterations needed after doing uniform mesh refinement.



Chapter 6

Anisotropic elements

This chapter is devoted to the application of the TD-NNS method on anisotropic domains.
Examples for such domains are thin plates or shells. Discretizing thin structures with shape-
regular elements leads to an enormous amount of degrees of freedom, as then the mesh size
has to be of the order of the thickness of the domain. It seems more natural to use meshes
consisting of flat tensor product elements, such as quadrilaterals, prisms or hexahedrons.
However, many standard methods, such as the pure displacement formulation, break down
in such a setting. One can trace these effects back to the constant of stability, which directly
depends on the constant in Korn’s inequality. It deteriorates, when the aspect ratio of the
elements becomes large. In the engineering literature, this effect is referred to as “shear
locking”.

A possible remedy to this problem are plate and shell models. In these methods, the
full, three-dimensional problem is reduced to a 2D model on the mid-surface of the domain.
Well known models for plates are the Reissner-Mindlin [Rei45, Min51] or the Kirchhhoff plate
models [TW59]. For shells, a widely used model for discretization is the Koiter model [Koi60].

A generalization of such plate or shell models is the idea of hierarchical modeling. There,
a polynomial dependence of the quantities of interest on the thickness direction is assumed.
Thereby, one obtains a family of models, as one increases the polynomial order. This may
be seen as a p-version of a related, three-dimensional finite element method. Such models
were introduced in variational form by [VB81]. An overview over the different discretization
techniques within a unified framework is provided in [DFY04]. Analysis for the approach by
hierarchical models can be found in [AAFM99, BL91, DBR01], a-posteriori error estimates in
[Ain98, Sch96, SO97].

In our approach, we do not aim at reducing the dimension of the problem. We rather
want to use anisotropic, flat, quadrilateral or prismatic finite elements for slim domains in
two- or three-dimensional space. This way, we can save a considerable amount of degrees of
freedom when compared to standard methods, and have more freedom in choosing the order
of approximation with respect to in-plane and thickness discretizations element-wise.

In the following, we assume our body to be of tensor product structure, such as a beam,
plate or disc. We use a triangulation consisting of quadrilateral or prismatic elements, which is
aligned with the structure of the body. We show that the constant of stability for the TD-NNS
method is independent of the aspect ratio of the domain or the finite elements. Moreover,
we provide interpolation operators, which then imply an optimal order of convergence of the
discrete solution. We emphasize that our estimates do not deteriorate, as the aspect ratio of

109
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the domain or the finite elements grows.
Section 6.1 deals with setup and application of the TD-NNS method on an anisotropic

domain. Finite elements for prisms and quadrilaterals are provided, stability of the method
independently of the anisotropic mesh sizes hx, hz and their ratio hx/hz is shown. In Sec-
tion 6.2, a family of quasi-interpolation operators for tensor product spaces is introduced.
Their approximation properties are investigated. Finally, numerical results are provided in
Section 6.3. These calculations imply the applicability of the method also on curved domains.

6.1 The TD-NNS method on an anisotropic domain

In this section, we are concerned with the setup of the TD-NNS method on a geometrically
anisotropic domain and its stability properties. We consider domains of tensor product struc-
ture, such as thin plates or discs. We adapt our notation to this setting, where in-plane and
transversal components are of different quality. We use a tensor product mesh of quadrilateral
or prismatic elements, which is a natural choice given the structure of the domain. We derive
stability estimates and provide finite elements for these element types.

6.1.1 Anisotropic setting

We first specify the notion of a tensor product domain.

Definition 6.1. We call Ω ⊂ R
d, d = 2, 3 of tensor product structure, if it is of the form

Ω = Ωx × Ωz. There Ωx ⊂ R
d−1 corresponds to the cross section. It is a bounded, connected

domain of size dx := diam(Ωx). The second component, Ωz ⊂ R, then describes the thickness
direction, and is an interval of length dz. In three dimensions, we assume that Ωx is a
polygonal Lipschitz domain satisfying Assumption 3.2.

Let Γx = ∂Ωx, Γz = ∂Ωz be the respective boundaries of cross section and thickness. For
simplicity of notation, we restrict ourselves to the Dirichlet problem throughout this chapter.
Then all finite element spaces can be designed as tensor products of spaces on the line or in
the plane. The case of mixed boundary conditions can be deduced easily, but one needs to
impose the different types of conditions additionally.

In many applications, dz is much smaller than dx. To emphasize the different qualities of
the directions, we use coordinates (x, z) = (x1, z) in two or (x, z) = (x1, x2, z) in three space
dimensions. For a vector-valued function v, we refer to its components by

(
vx

vz

)
=

{
(vx1 , vz)

T if d = 2,
(vx1 , vx2 , vz)

T if d = 3.

A tensor-valued symmetric function τ can be divided into four sub-blocks

τ =

(
τx τxz
τTxz τz

)
.

The lower right block τz is always scalar-valued, whereas τx, τxz are of the form

τx =





τx1x1 if d = 2,(
τx1x1 τx1x2

τx1x2 τx2x2

)
if d = 3,

τxz =

{
τx1z if d = 2,

(τx1z, τx2z)
T if d = 3.

Similarly, εx(v), εz(v) and εxz(v) denote the respective sub-blocks of the strain tensor ε(v)
of a vector-valued function v.
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6.1.1.1 Anisotropic triangulation

In order to exploit the tensor product nature of the domain Ω, we introduce a matching
triangulation. Let therefore

T x
hx

= {Tx}, T z
hz

= {T z}

be simplicial, uniform and shape regular triangulations of Ωx,Ωz, respectively. Thus, T x
hx

is
a triangular mesh in three dimensions, or a subdivision in two dimensions. In both cases T z

hz

is a subdivision of the line segment Ωz. The parameters hx, hz denote the respective mesh
sizes. For both triangulations, we define the set of element interfaces

Fx
hx

= {Fx}, Fz
hz

= {F z}.

In two space dimensions, both sets correspond to the sets of points defining the respective
subdivisions, in three dimensions Fx

hx
consists of triangle edges in the plane.

Using these quantities, we define a tensor product mesh

Th = {T = Tx × T z : Tx ∈ T x
hx
, T z ∈ T z

hz
}.

This is now a quadrilateral mesh in two, or a prismatic mesh in three space dimensions by
definition. Let Fh be the set of element interfaces for the triangulation Th. This set can be
split into an in-plane part F‖ and a vertical part F⊥,

Fh := F‖ ∪ F⊥,

F‖ := {Tx × F z : Tx ∈ T x
hx
, F z ∈ Fz

hz
},

F⊥ := {Fx × T z : Fx ∈ Fx
hx
, T z ∈ T z

hz
}.

Thus, the in-plane part F‖ consists of all horizontal edges in two dimensions, and of in-plane,
triangular facets in three dimensions. The subset F⊥ contains all vertical facets, which are
edges in two and quadrilateral faces in three dimensions.

In Chapter 4, we defined the local mesh size for a facet F by

hF :=
(
|T1| + |T2|

)
/|F |,

where T1, T2 were the elements adjacent to F . We note, that in the anisotropic setting, where
both triangulations T x

hx
and T z

hz
are assumed to be uniform and shape regular, this parameter

is either of size hx or hz. There holds

hF ≃

{
hx if F ∈ F⊥,
hz if F ∈ F‖.

6.1.2 Finite element spaces

In the following, we propose finite element spaces V k
h ,Σ

k
h based on the tensor product mesh

Th. For the construction, we use the finite element spaces for H1, H(curl), H(div div) and
L2 from Chapter 4 on the simplicial triangulations T x

hx
and T z

hz
. The way the finite element

spaces are defined indicates how to choose the corresponding shape functions. This will then
be done in Section 6.1.3.
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6.1.2.1 In-plane and transversal finite element spaces

In Chapter 4, we introduced finite element spaces with different continuity conditions on a
triangular mesh. We now define these spaces for the triangulation T x

hx
of the cross section

Ωx. We use x as an index, to indicate that the spaces correspond to Ωx and T x
hx

. In case of
three space dimensions, we define

W k
x :=

{
wh ∈ C(Ωx) : wh ∈ P k(T x

hx
), wh = 0 on Γx

}
, (6.1)

V k
x :=

{
vh ∈ [L2(Ωx)]2 : vh ∈ [P k(T x

hx
)]d, vh,τ cont., vh,τ = 0 on Γx

}
, (6.2)

Σk
x :=

{
τh ∈ L2

SYM (Ωx) : τh ∈ P kSYM (T x
hx

), τh,nn cont.
}
, (6.3)

Pk
x :=

{
qh ∈ L2(Ωx) : qh ∈ P k(T x

hx
)
}
. (6.4)

On the line segment Ωz, we also define the respective spaces, now indexed with z. Due
to the one-dimensionality of Ωz, the different continuity conditions reduce to continuous and
non-continuous spaces,

W k
z :=

{
wh ∈ C(Ωz) : wh ∈ P k(T z

hz
), wh = 0 on Γz

}
, (6.5)

Σk
z :=

{
τh ∈ C(Ωz) : τh ∈ P k(T z

hz
)
}
, (6.6)

Pk
z := V k

z :=
{
vh ∈ L2(Ωz) : vh ∈ P k(T z

hz
)
}
. (6.7)

For d = 2, Ωx is a line segment. In this case, the finite element spaces W k
x, Σk

x, V k
x = Pk

x

are defined as the spaces of piecewise polynomial, continuous and non-continuous functions,
as done above for W k

z , Σk
z , and V k

z = Pk
z . Degrees of freedom and shape functions for the

different spaces in two space dimensions were provided in Chapter 4, the definition of similar
finite elements on the line segment are straightforward and not given in detail in this thesis.

6.1.2.2 Tensor product spaces

The global finite element spaces are now defined using the in-plane and transversal spaces
from above. For the displacements, we use the standard Nédélec space on a tensor product
mesh, as one can find e.g. in [Mon03],

V k
h := {vh ∈ [L2(Ω)]3 : vh,x ∈ V k

x ⊗W k+1
z , vh,z ∈W k+1

x ⊗ V k
z }. (6.8)

For the stresses, the definition of Σk
h differs slightly for two and three space dimensions. This

is implied by the different nature of shape functions for the two- and one-dimensional spaces,
as we will see in the proof of Lemma 6.5. We propose to use the following finite element
spaces on a quadrilateral or prismatic mesh Th

Σk
h :=





{
τh ∈ L2

SYM(Ω) : τh,x ∈ Σk+1
x ⊗ Pk+1

z ,
τh,xz ∈ Pk

x ⊗ Pk
z , τh,z ∈ Pk+1

x ⊗ Σk+1
z

} if d = 2,
{
τh ∈ L2

SYM(Ω) : τh,x ∈ Σk
x ⊗ Pk+1

z ,
τh,xz ∈ Pk

x ⊗ Pk
z , τh,z ∈ Pk+1

x ⊗ Σk+1
z

} if d = 3.
(6.9)

We note that continuity of vh,τ and τh,nn are satisfied for any vh ∈ V k
h and τh ∈ Σk

h. Also the
Dirichlet boundary conditions vh,τ = 0 on Γ are already included in this definition.
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Figure 6.1: Reference quadrilateral and prism

6.1.3 Anisotropic finite elements

In this section, we provide finite element basis functions for quadrilateral and prismatic finite
elements. We first define the respective reference elements, and recall some details concerning
the mapping ΦT , which maps the reference element to an element in the mesh. Then, shape
functions on the reference elements are given. For the displacements, high order H(curl)
conforming shapes as defined in [Zag06] are used. For the stresses, we construct finite element
bases using the ones on simplicial elements, which are given in Chapter 4.

6.1.3.1 Reference elements

In the following, let T̂1 be the unit line segment, and T̂2 the triangular reference element,
as given in Section 4.4.1. We index these simplices with x, z, to demonstrate if they are
considered with respect to coordinates x or z, respectively. Thus, in two space dimensions,
T̂x

1 , T̂
z
1 are the reference segments in x, z direction, whereas in three dimensions, we use T̂x

2 , T̂
z
1

for the in-plane triangular element and the vertical segment.

Then, the quadrilateral reference element shall be defined as the tensor product of two
line segments, T̂x,z

2 := T̂x
1 × T̂ z1 . Analogously, the prismatic reference element is the product

of an in-plane triangular element, and a line segment, T̂x,z
3 := T̂x

2 × T̂ z1 . We drop the lower
index giving the dimension of the respective simplices, in order to unify notation for the two
and three dimensional case.

As for the tensor product mesh, we can split the set of facets F(T̂ ) into two parts, the
in-plane facets F‖(T̂ ) = {F̂‖,1, F̂‖,2} and the vertical ones F⊥(T̂ ) = {F̂⊥,i : i = 1, . . . , d}. In
Figure 6.1, we provide a sketch of the quadrilateral and prismatic reference elements.

We first define the notion of polynomial spaces of mixed order on tensor product elements.
Let α1, α2 be variables of dimensions d1, d2 = 1, 2. We consider two simplices Tα1

d1
, Tα2

d2
of

dimensions d1, d2. Let T = Tα1
d1

× Tα2
d2

be their tensor product domain, and let k1, k2 ≥ 0 be
integers. Then we define the space of mixed polynomial order (k1, k2) with respect to (α1, α2)
by

Qk1,k2α1,α2
(T ) := P k1α1

(Tα1
d1

) ⊗ P k2α2
(Tα2
d2

).

Mainly, we will set α1 = x, α2 = z. Other choices may occur, for example when describing a
quadrilateral facet of the reference prism.

We keep the notion of barycentric coordinates, as they were defined in Section 4.4.1. We
use λx

i , λ
z
i on T̂x, T̂ z, respectively. There, λx

i depends only on x̂, is linear, vanishes on facet
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F̂⊥,i and is one in the edge opposite this facet. This means we set

λx
1 = 1 − x̂1, λx

2 = x̂1, if d = 2,

λx
1 = 1 − x̂1 − x̂2, λx

2 = x̂1, λx
3 = x̂2, if d = 3.

Also λzi is a linear function only in ẑ, vanishing on the in-plane facet F̂i,‖ and taking value
one in the opposite facet,

λz1 = 1 − ẑ, λz2 = ẑ.

In Section 4.4.1, we also defined families of polynomials on the reference segment and triangle.
In the anisotropic setting, we reuse these families. We shortly recall that

• {qi(λ1, λ2) : 0 ≤ i ≤ k} span P k(T̂1),

• {ui(λ1, λ2) : 2 ≤ i ≤ k} span P k0 (T̂1),

• {qij(λ1, λ2, λ3) : 0 ≤ i+ j ≤ k} span P k(T̂2),

• {ui(λ1, λ2)vj(λ1, λ2, λ3) : 3 ≤ i+ j ≤ k} span P k0 (T̂2).

We may use indices such as qx
i or qzi to make clear that the corresponding simplex is T̂x or

T̂ z.

Transformation The mapping ΦT : T̂ → T , which maps the reference element to an ele-
ment in the mesh, can also be composed by the respective in-plane and transversal mappings.
Let now T = Tx × T z be an element in the tensor product mesh. Let ΦTx , ΦT z be the
respective mappings from the reference elements T̂x, T̂ z to Tx, T z. Then, the compound
transformation reads

ΦT (x̂, ẑ) =

(
ΦTx(x̂)

ΦT z(ẑ)

)
.

The Jacobian FT of this map is constant. It is moreover block diagonal,

FT =

(
FTx 0
0 FT z

)
.

The Jacobians forming the sub-blocks stem from shape-regular transformations, thus

|FTx |−1 ≃ |F−1
Tx | ≃ h−1

x , |FT z |−1 ≃ |F−1
T z | ≃ h−1

z .

This allows to introduce

F̃T :=

(
hxI 0
0 hzI

)
≃ FT , (6.10)

where I denotes the identity matrix of dimensions one or two. We use these similarities when
proving stability and error estimates.

In the following, we construct shape functions for quadrilateral and prismatic elements.
In both cases, we proceed in a similar way as for triangular or tetrahedral elements in Sec-
tions 4.4.2 and 4.4.3. We define constant tensor fields Ŝx, Ŝz and Ŝxz which resemble the
fields ŜFi in the simplicial case. Using these, and corresponding bubble fields B̂x, B̂z and B̂xz,
we can then construct a finite element basis in a straightforward manner. These constant and
bubble fields will play an important role in the stability analysis in Section 6.1.4.
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6.1.3.2 On the quadrilateral

In the following, we provide shape functions for the stresses on the quadrilateral reference
finite element T̂ . For the displacements, we refer the interested reader to [Zag06] for a detailed
discussion.

We first provide a family of constant tensor fields {Ŝx, Ŝz , Ŝxz}, which span the space of
piecewise constant functions. By multiplication with scalar bubble functions bx := λx

1λ
x
2 and

bz := λz1λ
z
2, we then obtain stress bubble tensors {B̂x, B̂z, B̂xz}.

The first pair of fields (Ŝx, B̂x) is associated with the vertical facets F ∈ F⊥(T̂ ).

Ŝx :=

(
1 0
0 0

)
, B̂x := bxŜx.

The unit normal of such a facet is n = ±ex1 , therefore Ŝx
nn takes value one there, and vanishes

on in-plane facets from F‖(T̂ ).
Similarly to this field, we define

Ŝz :=

(
0 0
0 1

)
, B̂z := bzŜz.

They correspond to in-plane facets, as Ŝznn equals one there.
The third constant tensor field, Ŝxz is already a stress bubble function, as its normal-

normal component vanishes on all facets

Ŝxz := B̂xz :=

(
0 1
1 0

)
.

Now, we provide a finite element basis Ψ̂Σ
k for Σ̂k. As for the simplicial element types, we

organize it in facet- and cell-based functions,

Ψ̂Σ
k :=

(
⋃

F̂‖∈F‖(T̂ )

Ψ̂Σ
F̂‖,k

)
∪

(
⋃

F̂⊥∈F⊥(T̂ )

Ψ̂Σ
F̂⊥,k

)
∪ Ψ̂Σ

T̂ ,k
.

We use

• the set of shapes corresponding to an in-plane facet F̂‖,m, Ψ̂Σ
F̂‖,m,k

:= {ψΣ
F̂‖,m,i

}

ψΣ
F̂‖,m,i

:= qx
i Ŝ

zλzm+1, 0 ≤ i ≤ k + 1,

• the set of shapes corresponding to a vertical facet F̂⊥,m, Ψ̂Σ
F̂⊥,m,k

:= {ψΣ
F̂⊥,m,i

}

ψΣ
F̂⊥,m,i

:= qzi Ŝ
xλx

m+1, 0 ≤ i ≤ k + 1,

• the set of cell-based shapes Ψ̂Σ
T̂ ,k

:= {ψΣ
T̂ ,x,ij

, ψΣ
T̂ ,z,ij

, ψΣ
T̂ ,xz,ij

}

ψΣ
T̂ ,x,ij

:= qx
i q

z
j B̂

x 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k + 1,

ψΣ
T̂ ,z,ij

:= qx
i q

z
j B̂

z 0 ≤ i ≤ k + 1, 0 ≤ j ≤ k − 1,

ψΣ
T̂ ,xz,ij

:= qx
i q

z
j B̂

xz 0 ≤ i ≤ k, 0 ≤ j ≤ k.
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Here, the index of the barycentric coordinates is to be seen modulo 2. The construction
ensures that the normal-normal component of a shape from Ψ̂Σ

F̂ ,k
takes values only on facet F̂

and not on the other facets. We observe that the normal-normal components of the facet-based
shapes span P k+1(F̂ ) for all facets F̂ ∈ F(T̂ ). One can easily check the linear independence
of the basis functions. By counting the degrees of freedom for the respective components, one
can see that the proposed shape functions span the local polynomial space suggested in the
definition of the quadrilateral finite element space (6.9).

6.1.3.3 On the prism

On the prismatic reference element T̂ , we proceed in a similar manner as for the quadrilateral
element. To define the family of constant tensor fields, we recall the two-by-two symmetric

tensor fields ŜF̂i defined on the triangle, see equation (4.46). We set, using the scalar function
bxi := λx

i

Ŝx
i :=

(
ŜF̂i 0
0 0

)
, B̂x

i := bxi Ŝ
x
i , i = 1, 2, 3.

Then, Ŝx
i,nn vanishes on all facets but F̂⊥,i. As bxi it is zero on facet F⊥,i, the tensor field

B̂x
i,nn takes zero values on the whole boundary ∂T̂ . For the upper and lower triangular facet,

we define a constant field Ŝz whose normal-normal component takes value one there, and
vanishes on all other facets. Then we obtain a bubble by multiplication with bz = λz1λ

z
2,

Ŝz :=

(
0 0
0 1

)
, B̂z := bzŜz.

There remain two more fields, which are needed to span the space of constant, symmetric
tensor fields on the prism. We define these fields Ŝxz

i , i = 1, 2 such that they are already a
stress bubble function, as we did in the two-dimensional case

Ŝxz
i := B̂xz

i :=

(
0 exi

eTxi
0

)
, i = 1, 2.

From this framework, we can again define a finite element basis Ψ̂Σ
k for Σ̂k on the reference

prism. It is again divided into facet- and cell-based functions,

Ψ̂Σ
k :=

(
⋃

F̂‖∈F‖(T̂ )

Ψ̂Σ
F̂‖,k

)
∪

(
⋃

F̂⊥∈F⊥(T̂ )

Ψ̂Σ
F̂⊥,k

)
∪ Ψ̂Σ

T̂ ,k
.

Here we use

• the set of shapes corresponding to an in-plane facet F̂‖,m, Ψ̂Σ
F̂‖,m,k

:= {ψΣ
F̂‖,m,ij

}

ψΣ
F̂‖,m,ij

:= qx
ijŜ

zλzm+1, 0 ≤ i+ j ≤ k + 1,

• the set of shapes corresponding to a vertical facet F̂⊥,m, Ψ̂Σ
F̂⊥,m,k

:= {ψΣ
F̂⊥,m,ij

}

ψΣ
F̂⊥,m,ij

:= qx
i0q

z
j Ŝ

x
m, 0 ≤ i ≤ k, 0 ≤ j ≤ k + 1,
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• the set of cell-based shapes Ψ̂Σ
T̂ ,k

:= {ψΣ
T̂ ,x,ijl

, ψΣ
,̂z,ijl, ψ

Σ
T̂ ,xz,ijl

}

ψΣ
T̂ ,x,ijl

:= qx
ijq

z
l B̂

x 0 ≤ i+ j ≤ k − 1, 0 ≤ l ≤ k + 1,

ψΣ
T̂ ,z,ijl

:= qx
ijq

z
l B̂

z 0 ≤ i+ j ≤ k + 1, 0 ≤ l ≤ k − 1,

ψΣ
T̂ ,xz,ijl

:= qx
ijq

z
l B̂

xz 0 ≤ i+ j ≤ k, 0 ≤ l ≤ k.

As for the case of quadrilaterals, one can see that the normal-normal component of a facet-
based shape from Ψ̂Σ

F̂ ,k
vanishes on all facets but F̂ . On a triangular facet F̂‖ ∈ F‖(T̂ ), the

normal-normal components of Ψ̂Σ
F̂‖

span P k+1(F̂‖). For a quadrilateral facet F̂⊥ ∈ F⊥(T̂ ),

we obtain Qk,k+1(F̂⊥) instead. Linear independence of the basis can be seen directly. The
proposed set of shape functions spans the local polynomial space suggested in (6.9) for a finite
element space on a prismatic mesh.

6.1.3.4 Global finite element spaces

The basis functions given on the reference quadrilateral or prismatic element are transformed
to any element T ∈ Th by the conforming transformation ΦΣ

T , which is given in Section 4.2.2.5.
Then, one obtains the global finite element space Σk

h. As for simplicial elements, the local

space can be split into a facet- and a cell-bound part, Σk(T̂ ) = Σk,f(T̂ )+ Σk,b(T̂ ). There, the
subspaces are spanned by the facet and inner basis functions, respectively. This splitting can
analogously be performed for the global finite element space, Σk

h = Σk,f
h + Σk,b

h .

6.1.4 Stability for tensor-product elements

In this section, we concentrate on stability estimates for the discrete mixed problem in the
anisotropic setup.

Problem 6.2 (Elasticity on a tensor product domain). Let Ω be a tensor product domain ac-
cording to Definition 6.1. Let Th be the corresponding quadrilateral or prismatic triangulation.
Find (σh, uh) ∈ Σk

h × V k
h such that

a(σh, τh) + b(τh, uh) = 〈F1, τh〉Σ ∀τh ∈ Σk
h,

b(σh, vh) = 〈F2, vh〉V ∀vh ∈ V k
h .

(6.11)

We emphasize that all stability estimates derived in the following do neither depend on
the anisotropic mesh sizes hx, hz nor their ratio hx/hz. In our analysis, we use the discrete
norms ‖.‖Σh

and ‖.‖Vh
proposed in Chapter 4,

‖vh‖
2
Vh

:=
∑

T∈Th

‖ε(vh)‖
2
T +

∑

F∈Fh

h−1
F ‖[[vh]]n‖

2
F ,

‖τh‖Σh
:= ‖τh‖Ω.

Our theory relies on the fact that only piecewise strains, and not gradients are used for the
displacement norm. Beforehand, we show a norm equivalence on the discrete stress space. In
Lemma 4.14, we already proved such an estimate for shape-regular meshes. Now we need to
take the anisotropic structure into account.
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Lemma 6.3. Let T ∈ Th be a quadrilateral or prismatic element in the triangulation Th.

1. For τh ∈ Σk(T ), there holds the trace inequality

∑

F∈F(T )

hF ‖τh,nn‖
2
F ≤ c‖τh‖

2
T . (6.12)

2. Let g be in the normal-normal trace space of Σk(T ), i.e. g ∈ P k+1
x (F‖) for an in-plane

facet F‖, g ∈ P k+1(F⊥) for a vertical facet and d = 2, or g ∈ Qk,k+1(F⊥) for a vertical

facet and d = 3. Then there exists an extension τh ∈ Σk(T ) such that τh,nn = g on ∂T ,
and

‖τh‖
2
T ≤ c

∑

F∈F(T )

hF ‖g‖
2
F . (6.13)

The constants are independent of the anisotropic mesh sizes hx, hz, and their ratio hx/hz.

Proof. 1. We decompose the finite element function into a facet- and a cell-based part,

τh = τ fh + τ bh,

where τ fh ∈ Σk,f(T ) and τ bh ∈ Σk,b(T ). There, the facet-based function τ fh can be further
split into the contributions coming from the different facets,

τ fh =
∑

F‖∈F‖(T )

τ
F‖

h +
∑

F⊥∈F⊥(T )

τF⊥
h ,

where τFh is built from shape functions matching facet F . As the basis functions are
linearly independent, and the local space is of finite, bounded dimensions, we may
estimate

‖τh‖T ≥ c

(
∑

F∈F(T )

‖τFh ‖2
T + ‖τ bh‖

2
T

)
.

Let now F‖,m ∈ F‖(T ) be an in-plane facet, and F⊥ ∈ F⊥,m(T ) be a facet in transversal
direction. From the construction of the shape functions in Section 6.1.3, we know that

τ
F‖

h , τF⊥
h are of the special form

τ
F‖,m

h =
1

J2
T

FT τ̂
F‖,m

h F TT , τ̂
F‖,m

h = qx
mλ

z
m+1Ŝ

z,

τF⊥,m
h =

1

J2
T

FT τ̂
F⊥,m

h F TT , τ̂
F⊥,m

h =

{
qzmλ

x
m+1Ŝ

x if d = 2,

qzmŜ
x
m if d = 3.

.

where qx
m, q

z
m are scalar polynomials with respect to x, z. Using the tensor product

structure of Ŝx, Ŝz, and the fact that the Jacobian FT is equivalent to the block-
diagonal matrix F̃T from equation (6.10) we see, for the in-plane facet case

∣∣∣∣∣

2∑

m=1

τ
F‖,m

h

∣∣∣∣∣

2

≃

∣∣∣∣∣

2∑

m=1

qx
mλ

z
m+1

J2
T

F̃T Ŝ
zF̃ TT

∣∣∣∣∣

2

≃
h4
z

J4
T

∣∣∣∣∣

2∑

m=1

qx
mλ

z
m+1

∣∣∣∣∣

2

≃
h4
z

J4
T

∣∣∣∣∣

2∑

m=1

τ̂F‖,m

∣∣∣∣∣

2

.
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For the transversal direction, we differ between two and three space dimensions. In two
dimensions, we obtain

∣∣∣∣∣

2∑

m=1

τ
F⊥,m

h

∣∣∣∣∣

2

≃
h4

x

J4
T

∣∣∣∣∣

2∑

m=1

τ̂
F⊥,m

h

∣∣∣∣∣

2

by exchanging z with x and ‖ with ⊥ in the estimate above. For the case of three
dimensions, we see

∣∣∣∣∣

3∑

m=1

τ
F⊥,m

h

∣∣∣∣∣

2

≃

∣∣∣∣∣

3∑

m=1

qx
m

J2
T

F̃T Ŝ
x
mF̃

T
T

∣∣∣∣∣

2

≃
h4

x

J4
T

∣∣∣∣∣

3∑

m=1

qx
mŜ

x
m

∣∣∣∣∣

2

=
h4

x

J4
T

∣∣∣∣∣

3∑

m=1

τ̂
F⊥,m

h

∣∣∣∣∣

2

,

where we have used that the Ŝx
i are linearly independent. These estimates together

imply that ∣∣∣∣∣
∑

F∈F(T )

τFh

∣∣∣∣∣

2

≃
h4
F

J4
T

∣∣∣∣∣
∑

F∈F(T )

τ̂Fh

∣∣∣∣∣

2

.

Note that we have used the shape-regularity of the in-plane and transversal meshes,
from which follows hx ≃ hF⊥

and hz ≃ hF‖
. We proceed, using hF ≃ JT /JF ,

‖τ fh ‖
2
T =

∫

T

∣∣∣∣∣
∑

F∈F(T )

τFh

∣∣∣∣∣

2

dx

≃

∫

T̂

h4
F

J4
T

∣∣∣∣∣
∑

F∈F(T )

τ̂Fh

∣∣∣∣∣

2

JT dx̂

≃
∑

F∈F(T )

∫

F̂

h4
F

J3
T

∣∣τ̂Fh,nn
∣∣2 dŝ

=
∑

F∈F(T )

∫

F

h4
F

J3
T

J4
F

∣∣τ̂Fh,nn
∣∣2 1

JF
ds

≃
∑

F∈F(T )

hF ‖τ
F
h,nn‖

2
F =

∑

F∈F(T )

hF ‖τh,nn‖
2
F .

This estimate implies the trace inequality (6.12). We will moreover use it in the second
part of the proof.

2. Due to the construction of the subspace Σk,f
h , it is possible to find a unique extension

τ fh ∈ Σk,f
h (T ) of g. The equivalence

‖τ fh ‖
2
T ≃

∑

F∈F(T )

h−1
F ‖τh,nn‖

2
F .

ensures, that τ fh is the required extension.
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Corollary 6.4. There exists a constant c > 0 independent of hx, hz or their ratio hx/hz,
such that for τh ∈ Σk

h

‖τh‖
2
Σh

≤ ‖τh‖
2
Ω +

∑

F∈Fh

hF ‖τh,nn‖
2
F ≤ c‖τh‖

2
Σh
.

We finally show inf-sup stability of b(·, ·) on Σk
h × V k

h with respect to the discrete norms.
The proof for the following lemma runs along the same lines as the one for Lemma 4.17.
Therefore, we do not repeat it in detail, but only comment on the independence of the
stability constant of the anisotropic mesh sizes hx, hz or their ratio hx/hz .

Lemma 6.5. Let Ω be a tensor product domain according to Definition 6.1. Let Th be the
corresponding tensor-product triangulation, stemming from shape-regular, quasi-uniform tri-
angulations T x

hx
,T z
hz

. There holds the stability estimate

inf
vh∈V

k
h

sup
τh∈Σk

h

b(τh, vh)

‖τh‖Σh
‖vh‖Vh

≥ c̃b,1,

where c̃b,1 > 0 is independent of the anisotropic mesh sizes hx, hz or their ratio hx/hz.

Proof. We recall the proof of the inf-sup condition on simplicial, shape-regular meshes (see

Lemma 4.17). We reuse these ideas, and construct a finite element function τh = cf τ
f
h + cbτ

b
h,

which consists of a facet part τ fh ∈ Σk,f
h , and a bubble part τ bh ∈ Σk,b

h . There, τ fh can still be
chosen such that

τ fh,nn|F = h−1
F [[vh]]n,F ∀F ∈ Fh,

as one can check comparing the respective polynomial orders.

We define the bubble part τ bh element-wise, such that τ bh|T := ΦT τ̂
b
h. Here, we set τ̂ bh on

the reference element,

τ̂ bh := J2
T

∑

m

(
ε̂(v̂h) : F̃−T

T ŜmF̃
−1
T

)
F̃−T
T B̂mF̃

−1
T ,

where {Ŝm}, {B̂m} are the respective unions of the fields Ŝx
m, Ŝ

xz
n , Ŝz and B̂x

m, B̂
xz
n , B̂z, and

F̃T ≃ FT is taken from equation (6.10). Due to the diagonal block structure of F̃ , this tensor
is a bubble function. For these choices, all estimates from the proof of Lemma 4.17 work the
same way, but the equivalence |F−1

T |s ≃ hT is replaced by |F−1
T |s ≃ |F̃−1

T |s. As this holds
independently of the aspect ratio of the finite elements, we arrive at the required results.

6.2 Interpolation operators

In this section, we provide interpolation operators for the spaces Σk
h, V

k
h on the tensor product

mesh Th. For the displacement space, we use a Clément-type interpolation operator QV
h,k,

which is built from quasi-interpolation operators for one and two dimensions proposed in
[Sch01]. We provide an interpolation error estimate in the discrete norm ‖ · ‖Vh

, which does
not depend on the aspect ratio hx/hz of the elements. There, we use the commuting diagram
property of the family of operators from [Sch01], and their L2 stability. For the stresses, we
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propose to use a tensor product operator IΣ
h,k built from nodal interpolation operators for the

normal-normal continuous and non-continuous spaces in the plane and on the line.
We first recall basic properties of the nodal interpolation operators

IΣ
x,k :H(div div;Ωx) → Σk

x, IΣ
z,k :H(div div;Ωz) → Σk

z , (6.14)

IP
x,k :L2(Ωx) → Pk

x, IP
z,k :L2(Ωz) → Pk

z . (6.15)

The interpolation operator IΣ
x,k was defined and analyzed in the scope of Section 4.3.2.3. As

space Σk
z coincides with the Lagrange space W k

z , we use the nodal interpolation operator
for H1 for IΣ

z,k. For the non-continuous spaces, the interpolators IP
x,k,I

P
z,k are element-wise

L2 projections onto P k. Thus, estimates for the interpolation error in the L2 norm for the
different operators may be given straight away, we collect them in the following lemma.

Lemma 6.6. Let T α
hα

be a shape-regular, quasi-uniform triangulation of Ωα, α = x, z. For
τ ∈ Hm

SYM(Ωα) and q ∈ Hm(Ωα), where 1 ≤ m ≤ k + 1, the interpolation error for the nodal
interpolation operators IΣ

α,k and IP
α,k satisfies

‖τ − IΣ
α,kτ‖Ω ≤ chmα |τ |Hm(Ωα), (6.16)

‖q − IP
α,kq‖Ω ≤ chmα |q|Hm(Ωα). (6.17)

The generic constant c > 0 does not depend on the mesh size hα, but only on the shape
regularity of T α

hα
.

6.2.1 Commuting diagram quasi-interpolation operators

In [Sch01], a family of quasi-interpolation operators for H1, H(curl), H(div) and L2 were
introduced. In our analysis, we need these operators for the H1- and H(curl)-conforming
spaces,

QW
x,k :L2(Ωx) →W k

x, QW
z,k :L2(Ωz) →W k

z , (6.18)

QV
x,k :L2(Ωx) → V k

x , QV
z,k :L2(Ωz) → V k

z . (6.19)

The theory presented in [Sch01] is restricted to three space dimensions, and the lowest order
case, i.e. the space of piecewise linear, continuous functions W 1

h and the Nédélec type I space
Vh,0. Corresponding operators for the one-dimensional case can be derived straightforward,
we will not dwell on their construction. From the construction of the low-order operators,
one can directly see how to extend these ideas to the high-order case in two and three space
dimensions. Basically, the degrees of freedom of the finite elements are replaced by weighted
local averages, where the weighting functions are chosen such that these averages coincide
with the nodal values for polynomials.

6.2.1.1 Commuting diagram quasi-interpolation operators in two dimensions

In the following, we provide a sound definition of the interpolation operators QW
x,k and QV

x,k,
given the dimension of x is two. To this end, we assume that T = [V1, V2, V3] is a triangle in
the two-dimensional mesh T x

hx
. We will drop x as an index in this section, well aware that

the theory below will be applied to the x-component within the tensor-product setup. Note
that, in two space dimensions, the sets of facets and edges coincide.
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To define the quasi-interpolation operators QW
x,k,Q

V
x,k, we first recall the respective nodal

operators, as introduced in Section 4.3.2. Therefore, we need the finite elements (T,W k(T ),
NW
k (T )) for H1 and (T, V k(T ),N V

k (T )) for H(curl) introduced in Section 4.2.2.1 and Sec-
tion 4.2.2.2. There, the sets of degrees of freedom were composed by

NW
k (T ) :=

(
⋃

V ∈V(T )

NW
V

)
∪

(
⋃

F∈F(T )

NW
F,k

)
∪ NW

T,k, (6.20)

N V
k (T ) :=

(
⋃

F∈F(T )

N V
F,k

)
∪ N V

T,k. (6.21)

We assume now that the sets

ΨW
k :=

{
ψWV : V ∈ V(T )

}
∪
{
ψWF,i : F ∈ F(T )

}
∪
{
ψWT,i

}
, (6.22)

ΨV
k :=

{
ψWF,i : F ∈ F(T )

}
∪
{
ψWT,i

}
, (6.23)

are the corresponding nodal bases, such that the nodal interpolation operators are defined by

IWk w :=
∑

V ∈Vx
hx

NW
V (w)ψWV +

∑

F∈Fx
hx

∑

i

NW
F,i(w)ψWF,i +

∑

T∈T x
hx

∑

i

NW
T,i(w)ψWT,i,

IVk v :=
∑

F∈Fx
hx

∑

i

NV
F,i(v)ψ

V
F,i +

∑

T∈T x
hx

NV
T,i(v)ψ

V
T,i.

We recall that the major drawback of these operators is the fact that they are only defined
for sufficiently smooth functions, and not stable with respect to the L2 norm.

The quasi-interpolation operators are derived from the nodal ones, where point evaluations
are replaced by local smoothing operators. Facet- and domain-integrals are adapted in a
similar way. Following [Sch01], we define for each vertex V ∈ Vx

hx
a set of non-zero measure

ωV ⊂ Ωx ∩ ∆V . Next, we define functions fV ∈ L∞(ωV ) such that
∫

ωV

fV q dx = q(V ) ∀ q ∈ P 2k+2(Ωx), ∀V ∈ Vx
hx
, (6.24)

‖fV ‖L∞ ≃ h−2
x . (6.25)

We now define sets of functionals QW
k (T ) := {QWV , Q

W
F,i, Q

W
T,i} resembling NW

k (T ), which are

well defined on L2. Similarly, we introduce degrees of freedom QV
k (T ) := {QVF,i, Q

V
T,i} for

H(curl). We set

• for V ∈ V(T ),

QWV (w) :=

∫

ωV

fV (y)w(y) dy,

• for a facet F ∈ F(T ), F = [V1, V2],

QWF,i(w) :=

∫

ωV1

∫

ωV2

fV1(y1)fV2(y2)

∫

[y1,y2]

∂w

∂s

∂qi
∂s

ds dy2dy1

with {qi : 2 ≤ i ≤ k} a basis for P k0 (E), which is transformed to the facet [y1, y2] such
that ∂qi/∂s is preserved,
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• for T = [V1, V2, V3],

QWT,i(w) :=

∫

ωV1

∫

ωV2

∫

ωV3

fV1(y1)fV2(y2)fV3(y3)

∫

[y1,y2,y3]

∇w · ∇qi dx dy3dy2dy1,

where {qi} form a basis for P k0 (T ), which is transformed to the triangle [y1, y2, y3] such
that ∇qi is preserved.

For the H(curl) conforming space, we define

• for a facet F ∈ F(T ), F = [V1, V2],

QVF,i(v) :=

∫

ωV1

∫

ωV2

fV1(y1)fV2(y2)

∫

[y1,y2]

vτ qi ds dy2dy1

with {qi : 0 ≤ i ≤ k} a basis for P k(E), which is transformed to the facet [y1, y2] such
that qi is preserved,

• for T = [V1, V2, V3]

QVT,i(v) :=

∫

ωV1

∫

ωV2

∫

ωV3

fV1(y1)fV2(y2)fV3(y3)

∫

[y1,y2,y3]

curl(v) · curl(qi) dx dy3dy2dy1,

QVT,j(v) :=

∫

ωV1

∫

ωV2

∫

ωV3

fV1(y1)fV2(y2)fV3(y3)

∫

[y1,y2,y3]

v · rj dx dy3dy2dy1

where {qi} are such that {curl qi} form a basis for curl(P k0,τ (T )), and {rj} are a basis

for ∇(P k+1
0 (T )), which are transformed to the triangle [y1, y2, y3] such that curl qi, rj

are preserved.

Using these smoothed nodal values, the quasi-interpolation operators QW
x,k,Q

V
x,k are de-

fined by

QW
x,kw :=

∑

QW
i ∈QW

k

QWi (w)ψWi , (6.26)

QV
x,kv :=

∑

QV
i ∈QV

k

QVi (v)ψVi , (6.27)

where the shape functions ψWi , ψ
V
i are matching the respective degrees of freedom. These

operators are consistent in the sense that they preserve polynomials on patches.

Lemma 6.7. Let the functions fV satisfy (6.24). The quasi-interpolation operators QW
x,k,Q

V
x,k

preserve polynomials up to order k on a patch ∆T , i.e. for w ∈ P k(∆T ), v ∈ [P k(∆T )]2

w = QW
x,kw and v = QV

x,kv on T. (6.28)
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Proof. We show that for polynomial w, v, the quasi-interpolation operators coincide with the
nodal ones, which preserve polynomials by definition. This means, we have to ensure that, for
all matching pairs of degrees of freedom (NW , QW ) ∈ NW

k ×QW
k and (NV , QV ) ∈ N V

k ×QV
k ,

NW (w) = QW (w), and NV (v) = QV (v).

This was done for the vertex degrees of freedom NW
V and the lowest order edge degrees of

freedom NV
F,0 in [Sch01]. The respective equivalences for high-order facet degrees of freedom

for both H1 and H(curl) follow along the same line. We present the proof on facet F =
[V1, V2] for the H(curl) case. We use a transformation of the facet [y1, y2] to the reference
facet F̂ = [0, 1], and the fact that fV preserves point values for polynomials according to
equation (6.24). We set s := y1 + ŝ(y2 − y1), and v̂τ̂ (ŝ) := vτ (s), q̂i(ŝ) := qi(s). Note that
v̂τ̂ (ŝ)q̂i(ŝ)J[y1,y2] lies in P 2k+1 with respect to both y1, y2 separately.

QVF,i(v) =

∫

ωV1

∫

ωV2

fV1(y1)fV2(y2)

∫

[y1,y2]

vτ · qi ds dy2dy1

=

∫

F̂

∫

ωV1

fV1(y1)

∫

ωV2

fV2(y2) v̂τ̂ (ŝ) · q̂i(ŝ)J[y1,y2]︸ ︷︷ ︸
∈P 2k+1

y2

dy2dy1 dŝ

=

∫

F̂

∫

ωV1

fV1(y1) v̂τ̂ (ŝ) · q̂i(ŝ)J[y1,V2]︸ ︷︷ ︸
∈P 2k+1

y1

dy1 dŝ

=

∫

F̂
v̂τ̂ · q̂iJF dŝ =

∫

F
vτ · qi ds.

It remains to prove the equality for the cell-based degrees of freedom. We first show

NV
T,j(v) = QVT,j(v),

a similar proof holds then for the cell-based H1 conforming degrees of freedom. Again, we
perform a transformation to the reference element, such that x̂ corresponds to the point x in
the triangle [y1, y2, y3]. Then, setting v̂(x̂) := v(x), r̂j(x̂) := rj(x), we see that the polynomial
v̂(x̂) · r̂j(x̂)J[y1,y2,y3] lies in P 2k+2 with respect to the yi. This ensures

QVT,i(v) =

∫

ωV1

∫

ωV2

∫

ωV3

fV1(y1)fV2(y2)fV3(y3)

∫

[y1,y2,y3]

v · rj dx dy3dy2dy1

=

∫

T̂

∫

ωV1

ff1(y1)

∫

ωV2

fV2(y2)

∫

ωV3

fV3(y3) v̂(x̂) · r̂j(x̂)J[y1,y2,y3]︸ ︷︷ ︸
∈P 2k+2

dy3dy2dy1 dx̂

=

∫

T̂
v̂(x̂) · r̂j(x̂)JT dx̂ =

∫

T
v · rj dx.

Last, we show the equality NV
T,i(v) = QVT,i(v). Transformation to the reference element

T̂ is again the main contribution. We transform, such that curl v̂(x̂) = curl v(x), curl q̂i(x̂) =
curl qi(x). Then, curl v(x̂) curl qi(x̂)J[y1,y2,y3] lies in P 2k with respect to the yi. The proof
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works the same way as the one above,

QVT,i(v) =

∫

ωV1

∫

ωV2

∫

ωV3

fV1(y1)fV2(y2)fV3(y3)

∫

[y1,y2,y3]

curl v · curl qi dx dy3dy2dy1

=

∫

T̂

∫

ωV1

fV1(y1)

∫

ωV2

fV2(y2)

∫

ωV3

fV3(y3) curl v̂(x̂) · curl q̂i(x̂)J[y1,y2,y3]︸ ︷︷ ︸
∈P 2k

dy3dy2dy1 dx̂

=

∫

T̂
curl v̂ · curl q̂iJT dx̂ =

∫

T
curl v · curl qi dx.

6.2.1.2 Fundamental properties of QW
α,k,Q

V
α,k

We now concentrate on fundamental properties of the quasi-interpolation operators. Some
of these were proven for the low-order case in [Sch01]. Extensions to the high-order case are
lengthy and require much notation, but work quite straightforward; they can be done in a
similar way as for the proof of Lemma 6.7. A key tool in our analysis will be the commuting
diagram property, which means that interpolation and differentiation operators commute. In
fact, for any w ∈ H1(Ωα), α = x, z, we have

QV
α,k∇αw = ∇αQ

W
α,k+1w. (6.29)

This property was shown for the low-order operators QW
α,1 and QV

α,0 in [Sch01], one verifies

NV (QV
α,k∇αw) = NV (∇αQ

W
α,k+1w),

for all degrees of freedom NV ∈ N V
α,k. This can be shown using basic calculus.

The following two lemmas state L2 stability and optimal order approximation properties
of the quasi-interpolation operators.

Lemma 6.8. Let T α
hα

be a shape-regular, quasi-uniform triangulation of Ωα, α = x, z. The

quasi-interpolation operators QW
α,k, QV

α,k are stable with respect to L2, there exist constants
c1, c2 independent of hα such that

‖QW
α,kw‖L2(Ωα) ≤ c ‖w‖L2(Ωα), (6.30)

‖QV
α,kv‖L2(Ωα) ≤ c ‖v‖L2(Ωα). (6.31)

Lemma 6.9. On a shape-regular triangulation T α
hα

of Ωα, α = x, z, let QW
α,k, QV

α,k be the
quasi-interpolation operators defined by relations (6.26), (6.27). For integers l = 0, 1 and
l < m ≤ k + 1, let w ∈ Hm(Ωα) and v ∈ [Hm(Ωα)]dim(α). Then, there exist constants
cQW , cQV > 0 independent of hα such that, for any element Tα ∈ T α

hα

‖w −QW
α,kw‖Hl(Tα) ≤ cQW hm−l

α |w|Hm(∆Tα ), (6.32)

‖v −QV
α,kv‖Hl(Tα) ≤ cQV hm−l

α |v|Hm(∆Tα ). (6.33)
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One can show the statement of Lemma 6.8 using scaling arguments for the smoothed
degrees of freedom, which are well-defined on L2. The consistency of the operators with
respect to polynomials up to order k ensures the approximation properties given in Lemma 6.9.

When defining the discrete norm ‖ · ‖Vh
, we used element-wise strains and normal-jumps

across facets. We now show that these two quantities are approximated by the interpolation
operator QV

α,k.

Lemma 6.10. Let T α
hα

be a shape-regular, quasi-uniform triangulation of Ωα, α = x, z. Let
Tα be an arbitrary element, and 1 ≤ m ≤ k. If v lies in Hm+1(∆Tα), the quasi-interpolation
operator QV

α,k for the Nédélec space satisfies the local error estimate

‖εα(v −QV
α,kv)‖Tα ≤ chmα ‖∇

m
α εα(v)‖∆Tα . (6.34)

The generic constant c > 0 only depends on the shape-regularity of T α
hα

, but not on its mesh
size hα.

Proof. Let Tα be fixed. In Lemma 6.7, it is shown that the quasi-interpolation operator
QV
α,k preserves polynomials up to order k on patches. Thus we may write, abbreviating

P k = [P k(∆Tα)]dim(α),

‖εα(v −QV
α,kv)‖Tα = inf

q∈P k
‖εα
(
(id−QV

α,k)(v − q)
)
‖Tα

≤ inf
q∈P k

[
‖εα(v − q)‖Tα + ‖εα

(
QV
α,k(v − q)

)
‖Tα

]
.

Next, we apply an inverse inequality on the finite-dimensional local space V k
α . To do so, we

have to verify, that Korn’s inequality holds for both v−q and QV
α,k(v−q) on Tα. As the interpo-

lation operator preserves rigid body motions, and RM(∆Tα) is contained in [P k(∆Tα)]dim(α),
this is true, and we may estimate

‖εα(v −QV
α,kv)‖Tα ≤ ch−1

α inf
q∈P k

[
‖v − q‖Tα + ‖QV

α,k(v − q)‖Tα

]

≤ ch−1
α inf

q∈P k
‖v − q‖Tα .

In the last line, we employed the L2 stability of QV
α,k (Lemma 6.8). Next, we apply the Lemma

of Bramble and Hilbert, and see that, for 0 ≤ m ≤ k

‖εα(v −QV
α,kv)‖Tα ≤ chmα ‖∇

m+1
α v‖∆Tα .

For α = x, one can show ‖∇m
x εx(v)‖∆Tx ≃ ‖∇m+1

x v‖∆Tx for m ≥ 1 by a direct evaluation
of the respective terms. For α = z, the strain and gradient operator coincide. Putting all
estimates together, we obtain

‖εα(v −QV
α,kv)‖Tα ≤ chmα ‖∇

m
α εα(v)‖∆Tα ,

which concludes the proof of the lemma.
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Lemma 6.11. Let T α
hα

be a shape-regular, quasi-uniform triangulation of Ωα, α = x, z. Let
Fα be an arbitrary facet with neighbors Tα1 , T

α
2 , and 1 ≤ m ≤ k. If v lies in Hm+1(Ωα), the

quasi-interpolation operator QV
α,k for the Nédélec space satisfies the error estimate

‖[[v −QV
α,kv]]‖Fα ≤ chm+1/2

α

2∑

i=1

‖∇m
α εα(v)‖∆Tα

i
. (6.35)

The generic constant c > 0 only depends on the shape-regularity of T α
hα

, but not on its mesh
size hα.

Proof. In Lemma 4.27, we proved a Korn-type inequality of the form

‖∇αvα‖
2
Tα ≤ c

(
‖εα(vα)‖2

Tα + h−2
α ‖IVα,0vα‖

2
Tα

)

(cf. equation (4.36)), for an element Tα in the shape-regular triangulation T α
hα

. Recalling the

proof, one can see that a similar estimate holds, where the nodal interpolation operator IVα,0
is replaced by QV

α,0:

‖∇αvα‖
2
Tα ≤ c

(
‖εα(vα)‖2

Tα + h−2
α ‖QV

α,0vα‖
2
Tα

)
. (6.36)

Using this inequality and a scaled trace inequality we proceed

h−1
α ‖[[(id −QV

α,k)v]]‖
2
Fα ≤

2∑

i=1

‖∇α(v −QV
α,kv)‖

2
Tα

i

≤
2∑

i=1

[
‖εα(v −QV

α,kv)‖
2
Tα

i
+ h−2

α ‖QV
0,h(vα −QV

α,kvα)‖2
Tα

i

]

=

2∑

i=1

‖εα(v −QV
α,kv)‖

2
Tα

i
.

Note that the last equality can be derived from the hierarchical definition of the quasi-
interpolation operator, which ensures that QV

α,0 = QV
α,0Q

V
α,k. Now, the approximation of

the strain (see Lemma 6.10) implies

h−1
α ‖[[(id −QV

α,k)v]]‖
2
Fα ≤ c h2m

α

2∑

i=1

‖∇m
α εα(v)‖2

∆Tα
i

,

which completes the proof.

6.2.2 Tensor product interpolation

In this section, we derive interpolation operators QV
h,k and IΣ

h,k for the spaces V k
h and Σk

h on
the tensor product mesh Th. We propose to use tensor products of the respective operators in
one and two dimensions, as the finite element spaces are of this structure. In order to define
them, we assume that all functions are square integrable with respect to x and z separately,
and that Fubini’s theorem is applicable. Then, we define the quasi-interpolation operator for
the displacement space by

QV
h,k(v) :=

(
QV

x,k ⊗QW
z,k+1vx

QW
x,k+1 ⊗QV

z,kvz

)
for v = (vx, vz)

T ∈ [L2(Ω)]d. (6.37)
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Thus, the in-plane deformation vx is interpolated by the quasi-interpolation operator for
the Nédélec space in the plane, and continuously in thickness direction. For the transversal
displacement vz, the setting is vice versa: in-plane, it is interpolated continuously, whereas
we perform an L2 projection in thickness direction. For the stress space in three dimensions,
we define

IΣ
h,k(τ) :=

(
(IΣ

x,k ⊗ IP
z,k+1)τx (IP

x,k ⊗ IP
z,k+1)τxz

sym (IP
x,k+1 ⊗ IΣ

z,k+1)τz

)
for τ ∈ H(div div;Ω). (6.38)

For planar problems, i.e. d = 2, one needs to modify the order of the upper-left operator to
IΣ

x,k+1 ⊗ IP
z,k+1, such that it matches the finite element space.

Our goal is to obtain anisotropic interpolation error estimates

‖v −QV
h,kv‖Vh

≤ c
(
hmx ‖∇m

x ε(v)‖Ω + hmz ‖∇
m
z ε(v)‖Ω

)
, (6.39)

‖τ − IΣ
h,kτ‖Σh

≤ c
(
hm+1

x ‖∇m+1
x τ‖Ω + hm+1

z ‖∇m+1
z τ‖Ω

)
(6.40)

for m ≤ k and τ, v m times weakly differentiable. Note that we have an additional power
of hx, hz for the stresses, as the differential order of the stress norm is one less than for the
displacement norm.

We split the proof for the first estimate (6.39) into two parts. As the norm ‖ · ‖Vh
consists

of contributions from the piecewise defined strain operator, as well as jump terms, we do these
estimates separately. First, we derive an interpolation error estimate for the strain. Then, we
concentrate on the jump of the normal displacements. In both cases, we obtain the desired
estimates, which then imply the bound (6.39).

Lemma 6.12. Let T = Tx × T z be an element of Th. Let, for integer m ≤ k, be v ∈
[Hm+1(∆T )]d. Then the quasi-interpolation operator QV

h,k according to definition (6.37) sat-
isfies the local anisotropic error estimate

‖ε(v −QV
h,kv)‖T ≤ c

(
hmx ‖∇m

x ε(v)‖∆T
+ hmz ‖∇

m
z ε(v)‖∆T

)
. (6.41)

Proof. Let v ∈ Hm+1(∆T ) be fixed. We bound the different blocks εx(v), εz(v), and εxz(v)
separately. For the diagonal blocks εx(v), εz(v), the estimates are obtained in a similar man-
ner, therefore we treat them together. We choose α, β = x, z, with α 6= β. We note that the
diagonal sub-blocks of the strain depend only on the respective component of the displace-
ment, and so we may write εα(vα) and εβ(vβ). We use that interpolation and differentiation
with respect to different variables commute, i.e.

QV
α,k∇βvβ = ∇βQ

V
α,kvβ.

We estimate, using moreover L2 boundedness (Lemma 6.8) and approximation properties
(Lemma 6.9) of QL

β,k+1, and the approximation of the strain by QV
α,k (Lemma 6.10),

1

2
‖εα(v −QV

h,kv)‖
2
T =

1

2
‖εα(vα −QV

α,kQ
W
β,k+1vα)‖

2
T

≤ ‖(id−QW
β,k+1)εα(vα)‖2

T + ‖QW
β,k+1εα(vα −QV

α,kvα)‖
2
T

≤ c
(
h2m
β ‖∇m

β εα(vα)‖2
∆T

+ ‖εα(v −QV
α,kvα)‖2

T

)

≤ c
(
h2m
β ‖∇m

β εα(vα)‖2
∆T

+ h2m
α ‖∇m

α εα(vα)‖2
∆T

)
.
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Next, we concentrate on the off-diagonal block εxz(v). In the following calculation, we use
the commuting diagram property of the quasi-interpolation operators (6.29), and again their
L2 continuity and approximation properties.

1

2
‖εxz(v −QV

h,kv)‖
2
T =

1

8
‖∇x(vz −QV

z,kQ
W
x,k+1vz) + ∇z(vx −QW

z,k+1Q
V
x,kvx)‖2

T

=
1

8
‖(id −QV

z,kQ
V
x,k) (∇xvx + ∇zvz)︸ ︷︷ ︸

2εxz(v)

‖2
T

≤ ‖(id −QV
x,k)εxz(v)‖

2
T + ‖QV

x,k(id −QV
z,k)εxz(v)‖

2
T

≤ c
(
h2m

x ‖∇m
x εxz(v)‖

2
∆T

+ h2m
z ‖∇m

z εxz(v)‖
2
∆T

)
.

Thereby, we conclude the proof.

Lemma 6.13. Let α = x, z, and let F ∈ Fh be a facet with normal n in direction α, i.e. an
in-plane facet for α = z and a transversal one for α = x. For m ≤ k, and v ∈ [Hm+1(Ω)]d,
the jump of the normal component [[v]]n across F is approximated by QV

h,k at an optimal order,
i.e.

‖[[v −QV
h,kv]]n‖F ≤ c

∑

T∈∆F

hm+1/2
α ‖∇m

α εα(v)‖∆T
. (6.42)

Proof. Let β = x, z denote the direction orthogonal to α, i.e. β 6= α. As F is orthogonal to
α, we have that hF = hα, and that the normal jump [[w]]n,F of a piecewise smooth function
w depends only on the component wα. Thus, we have, for any such function

‖[[w]]n‖F ≤ ‖[[wα]]‖F .

We apply this to v−QV
h,kv, and obtain, using the definition of the quasi-interpolation operator

and the triangle inequality,

‖[[v −QV
h,kv]]n‖F ≤ ‖[[vα −QW

β,k+1Q
V
α,kvα]]‖F

≤ ‖[[(id −QW
β,k+1)v]]‖F + ‖[[QW

β,k+1(id −QV
α,k)vα]]‖2

F .

We treat the two terms separately. We first show that the first term vanishes, as vα is
continuous across F . Let therefore T1, T2 be the elements neighboring F , then

‖[[(id −QW
β,k+1)vα]]‖F = ‖(vα −QW

β,k+1vα)|T1 − (vα −QW
β,k+1vα)|T2‖F

= ‖(vα|T1 − vα|T2) −QW
β,k+1(vα|T1 − vα|T2)‖F = 0

We concentrate on the second term in the estimate above. Boundedness of QW
β,k+1 in L2

implies

‖[[QW
β,k+1(id−QV

α,k)vα]]‖2
F ≤ c‖[[(id −QV

α,k)vα]]‖2
F .

Now, we note that the facet F is the tensor product of a simplicial element T β and a facet Fα.
We assume v to be sufficiently smooth such that Fubini’s theorem is applicable. Lemma 6.11
bounds the interpolation error of the jump across facet Fα in terms of the α block of the
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strain. We use this estimate and obtain

‖[[(id −QV
α,k)vα]]‖2

F =

∫

Tβ

∫

Fα

[[(id−QV
α,k)vα]] dsαdβ

≤ h2m+1
∑

Tα∈∆F α

∫

Tβ

∫

Tα

∇m
α εα(v) dα dβ

= h2m+1
∑

T∈∆F

‖∇m
α εα(v)‖2

T .

Together, Lemmas 6.12 and 6.13 imply an interpolation error estimate with respect to the
discrete norm ‖ · ‖Vh

.

Theorem 6.14. Let Ω be a tensor product domain according to Definition 6.1, and Th the
corresponding triangulation. Then, for integers 1 ≤ m ≤ k, and v ∈ Hm(Ω), the interpolation
error can be bounded by

‖v −QV
h,kv‖Vh

≤ c
(
hmx ‖∇m

x ε(v)‖Ω + hmz ‖∇
m
z ε(v)‖Ω

)
. (6.43)

The generic constant c > 0 does not depend on the mesh sizes hx, hz or their ratio hx/hz.

Thus, we have shown the desired inequality (6.39), which gives an optimal order of con-
vergence for the interpolation error with respect to the displacement norm ‖ · ‖Vh

. We now
concentrate on verifying estimate (6.40), which concerns the approximation properties of the
stress space.

Theorem 6.15. Let Ω be a tensor product domain as in Definition 6.1, with corresponding
triangulation Th. Let 1 ≤ m ≤ k + 1, and τ ∈ Hm

SYM(Ω). The interpolation operator IΣ
h,k

satisfies the approximation property

‖τ − IΣ
h,kτ‖Σh

≤ c
(
hmx ‖∇m

x τ‖Ω + hmz ‖∇
m
z τ‖Ω

)
, (6.44)

where c is independent of hx, hz and hx/hz.

Proof. We bound the different sub-blocks τx, τz and τxz. As the three estimates are obtained
in a similar way, we do the calculations for the block τx, and d = 3. The tensor product
definition and the triangle inequality yield

‖τx − IΣ
h,kτx‖Σh

= ‖τx − IΣ
x,kI

P
z,k+1τx‖Σh

≤ ‖τx − IP
z,k+1τx‖Σh

+ ‖IP
z,k+1(τx − IΣ

x,kτx)‖Σh
.

Next, we use the L2 continuity of the projection operator IP
z,k+1 and approximation properties

of both operators, and obtain

‖τx − IΣ
h,kτx‖Σh

≤ c
(
hmz ‖∇

m
z τx‖Ω + hmx ‖∇m

x τx‖Ω

)
.

This estimate, together with the respective ones for τz, τxz, completes the proof.
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6.2.3 Anisotropic error estimates

We will now collect all results on the TD-NNS method in anisotropic domains, and provide
an a-priori error estimate for the finite element solution (σh, uh).

Theorem 6.16. Let Ω be a tensor product domain as in Definition 6.1, with matching trian-
gulation Th. Let k,m be positive integers such that m ≤ k. Let (σ, u) ∈ Hm

SYM(Ω)×[Hm+1(Ω)]d

be the solution to the elasticity problem (Problem 3.1). Then, the finite element solution
(σh, uh) ∈ Σk

h × V k
h to Problem 6.2 satisfies the a-priori error bound

‖σ − σh‖Σh
+ ‖u− uh‖Vh

≤ c
(
hmx ‖∇m

x τ‖Ω + hmz ‖∇
m
z τ‖Ω +

hmx ‖∇m
x ε(v)‖Ω + hmz ‖∇

m
z ε(v)‖Ω

)
.

The constant c > 0 is independent of hx, hz and hx/hz.

Proof. The theorem is a consequence of the basic error estimate for mixed problems, see
Lemma 4.3. We use that all conditions of Brezzi’s theorem (Assumption 4.2) are satisfied
in the discrete setting, and the interpolation error estimates from the previous section. As
we ensured in all manipulations, the constant is independent as well of the anisotropic mesh
sizes, as of their aspect ratio.

6.3 Numerical results

We present some numerical results obtained using the tensor product elements described
above. We first consider a plate of unit size, where the thickness is 0.01. We assume that the
plate is clamped on one side, and pulled horizontally on the opposite boundary. We discretize
it in-plane with a triangular mesh consisting of 46 elements. We use one layer of elements
in thickness direction. We do computations using methods of order k = 1, 2. In Figure 6.2,
we plot the results obtained when doing adaptive refinement in x direction. For the error
estimation, we use a Zienkiewicz-Zhu type estimator [ZZ87]. We see that the convergence is
not completely of optimal order, which is due to the constant mesh size hz in vertical direction.
Moreover, we use the hp-version of the finite element method. Therefore, we do one level of
geometric refinement towards the sides of the plate, and then increase the polynomial order
of the method. We see the expected exponential convergence in Figure 6.2. In Figure 6.3, we
display the stress component σh,x1x2 obtained for the method of order 4, and zoom into the
vicinity of a corner, where a singularity arises.

As a second example, we do computations on a plate with hole, which is of thickness
dz = 0.005. We assume that the plate is clamped along one side, and a constant surface
traction in normal direction is acting on the opposite direction. We use two levels of geometric
refinement In Figure 6.4, we plot the absolute value of the stress. We use a finite element
method of order k = 3.

Next, we apply the TD-NNS method to non-tensor product domains. We consider a
cylindrical shell, which is fixed along three sides, and where a volume force f = (0, 0, xyz) is
acting in vertical direction. The thickness of the shell is set to dz = 0.005. We use both the
pure displacement formulation with standard high-order H1 elements, and our method. In
Figure 6.5, we plot the absolute value of the stress |σh|, which we obtain for the two methods,
where we choose k = 3 for the TD-NNS elements, and order k = 5 for the standard method.
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Figure 6.2: Plate, aspect ratio 1:100, methods of order k = 1, 2 and p-FEM. We plot coupling
degrees of freedom vs. estimated error ‖σ − σh‖Σh

.

Figure 6.3: Plate, aspect ratio 1:100, method of order k = 4. We plot the stress component
σh,x1x2, and zoom into the vicinity of a singularity.

Figure 6.4: Plate with hole, aspect ratio 1:200, two levels of geometric refinement. We plot
the absolute value of the stress |σh|.
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Figure 6.5: Cylindrical shell, aspect ratio 1:200, one level of geometric refinement. We plot
|σh|. Left: TD-NNS method for k = 3, 46 949 coupling dofs. Right: standard H1 method for
k = 5, 54 918 coupling dofs.

This results in 46 949 globally coupling dofs for the TD-NNS, and 54918 dofs for the standard
method. We see the far better quality of the TD-NNS solution, as it does not suffer from
shear locking. Again, we use geometric mesh refinement to resolve the singularities expected
at the corners of the shell. The two lower plots show the computed solution close to the
corner point.

In our last example, we couple the TD-NNS method for anisotropic domains to the stan-
dard TD-NNS method on a shape-regular mesh. We consider a geometry consisting of a
cylinder, which is partly coated by a different material. The inner cylinder is of unit size,
while the coating is of thickness dz = 0.01. We assume that the inner cylinder is characterized
by a Young’s modulus Ē = 1, while its Poisson ratio is set to ν̄ = 0.4999. For the coating, we
choose Ē = 1000, ν̄ = 0.4. The body is fixed on the left end, and a volume force in vertical
direction is acting. We discretize the inner domain by a shape-regular, tetrahedral mesh, and
the coating by a prismatic one. In total, we use 924 elements. Then, we apply the hybridized
TD-NNS method from Chapter 5, where we use the tensor product elements derived above for
the prismatic elements. For a method of order k = 3, we obtain 209 849 degrees of freedom,
of which 55 457 are coupling. We apply a preconditioned CG method, which needs 174 steps
for an error reduction of 10−8. Here, we used the additive Schwarz block preconditioner from
Chapter 5, enhanced by blocks containing all degrees of freedom of a flat prism, and those
of the neighboring tetrahedral element. This was done to avoid a slow-down of convergence
due to the anisotropic nature of the prismatic elements. In Figure 6.6, we display geometry,
mesh, and stresses in the deformed geometry.
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Figure 6.6: Coated cylinder, upper left: geometry, upper right: hybrid mesh, lower left:
stress component σh,yz, lower right: absolute value of stress |σh| on deformed configuration
for method of order k = 3.
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[BD81] I. Babuška and M. R. Dorr. Error estimates for the combined h and p versions of
the finite element method. Numer. Math., 37(2):257–277, 1981.

[BDM85] F. Brezzi, J. Douglas, and L.D. Marini. Two families of mixed finite elements for
second order elliptic problems. Numer. Math., 24:217–235, 1985.

[BF91] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-
Verlag, New-York, 1991.
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Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde
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