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Abstract

In this paper, we study the mathematical program with equilibrium constraints (MPEC)
formulated as a mathematical program with a parametric generalized equation involving
the regular normal cone. Compared with the usual way of formulating MPEC through a
KKT condition, this formulation has the advantage that it does not involve extra multi-
pliers as new variables, and it usually requires weaker assumptions on the problem data.
Using the so-called first order sufficient condition for metric subregularity, we derive veri-
fiable sufficient conditions for the metric subregularity of the involved set-valued mapping,
or equivalently the calmness of the perturbed generalized equation mapping.
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1 Introduction

A mathematical program with equilibrium constraints (MPEC) usually refers to an opti-
mization problem in which the essential constraints are defined by a parametric variational
inequality or complementarity system. Since many equilibrium phenomena that arise from
engineering and economics are characterized by either an optimization problem or a varia-
tional inequality, this justifies the name mathematical program with equilibrium constraints
([27, 30]). During the last two decades, more and more applications for MPECs have been
found and there has been much progress made in both theories and algorithms for solving
MPECs.

For easy discussion, consider the following mathematical program with a variational in-
equality constraint

(MPVIC) min
(x,y)∈C

F (x, y)

s.t. 〈φ(x, y), y′ − y〉 ≥ 0 ∀y′ ∈ Γ, (1)

where C ⊆ Rn × Rm, Γ := {y ∈ Rm|g(y) ≤ 0}, F : Rn × Rm → R, φ : Rn × Rm → Rm, and
g : Rm → Rq are sufficiently smooth. If the set Γ is convex, then MPVIC can be equivalently
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written as a mathematical program with a generalized equation constraint

(MPGE) min
(x,y)∈C

F (x, y)

s.t. 0 ∈ φ(x, y) +NΓ(y),

where NΓ(y) is the normal cone to set Γ at y in the sense of convex analysis. If g is affine or
certain constraint qualification such as the Slater condition holds for the constraint g(y) ≤ 0,
then it is known that NΓ(y) = ∇g(y)TNRq

−
(g(y)). Consequently

0 ∈ φ(x, y) +NΓ(y)⇐⇒ ∃λ : 0 ∈
(
φ(x, y) +∇g(y)Tλ, g(y)

)
+NRm×Rq

+
(y, λ), (2)

where λ is referred to as a multiplier. This suggests to consider the mathematical program
with a complementarity constraint

(MPCC) min
(x,y)∈C,λ∈Rq

F (x, y)

s.t. 0 ∈
(
φ(x, y) +∇g(y)Tλ, g(y)

)
+NRm×Rq

+
(y, λ).

In the case where the equivalence (2) holds for a unique multiplier λ for each y, (MPGE) and
(MPCC) are obviously equivalent, while in the case where the multipliers are not unique, the
two problems are not necessarily equivalent if the local optimal solutions are considered (see
Dempe and Dutta [8] in the context of bilevel programs). Precisely, it may be possible that for
a local solution (x̄, ȳ, λ̄) of (MPCC), the pair (x̄, ȳ) is not a local solution of (MPGE). This is
a serious drawback for using the MPCC reformulation, since a numerical method computing
a stationary point for (MPCC) may not have anything to do with the solution to the original
MPEC. This shows that whenever possible, one should consider solving problem (MPGE)
instead of problem (MPCC). Another fact we want to mention is that in many equilibrium
problems, the constraint set Γ or the function g may not be convex. In this case, if y solves
the variational inequality (1), then y′ = y is a global minimizer of the optimization problem:
min
y′
〈φ(x, y), y′〉 s.t. y′ ∈ Γ, and hence by Fermat’s rule (see, e.g., [34, Theorem 10.1]) it is

a solution of the generalized equation

0 ∈ φ(x, y) + N̂Γ(y), (3)

where N̂Γ(y) is the regular normal cone to Γ at y (see Definition 1). In the nonconvex case,
by replacing the original variational inequality constraint (1) by the generalized equation (3),
the feasible region is enlarged and the resulting MPGE may not be equivalent to the original
MPVIC. However, if the solution (x̄, ȳ) of MPGE is feasible for the original MPVIC, then it
must be a solution of the original MPVIC; see [2] for this approach in the context of bilevel
programs.

Based on the above discussion, in this paper we consider MPECs in the form

(MPEC) min F (x, y)

s.t. 0 ∈ φ(x, y) + N̂Γ(y),

G(x, y) ≤ 0,

where Γ is possibly non-convex and G : Rn × Rm → Rp is smooth.
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Besides of the issue of equivalent problem formulations, one has to consider constraint qual-
ifications as well. This task is of particular importance for deriving optimality conditions. For
the problem (MPCC), there exist a lot of constraint qualifications from the MPEC-literature
ensuring the Mordukhovich (M-)stationarity of locally optimal solutions. The weakest one of
these constraint qualifications appears to be MPEC-GCQ (Guignard constraint qualification)
as introduced by Flegel and Kanzow [11], see [12] for a proof of M-stationarity of locally
optimal solutions under MPEC-GCQ. For the problem (MPEC), it was shown by Ye and Ye
[37] that calmness of the perturbation mapping associated with the constraints of (MPEC)
(called pseudo upper-Lipschitz continuity in [37]) guarantees M-stationarity of solutions. [1]
has compared the two formulations (MPEC) and (MPCC) in terms of calmness. The authors
pointed out there that, very often, the calmness condition related to (MPEC) is satisfied at
some (x̄, ȳ) while the one for (MPCC) is not fulfilled at (x̄, ȳ, λ) for certain multiplier λ. In
particular, [1, Example 6] shows that it may be possible that the constraint for (MPEC)
satisfies the calmness condition at (x̄, ȳ, 0) while the one for the corresponding (MPCC) does
not satisfy the calmness condition at (x̄, ȳ, λ, 0) for any multiplier λ. In this paper, we first
show that if multipliers are not unique, then the MPEC Mangasarian-Fromovitz constraint
qualification (MFCQ) never holds for problem (MPCC). Then we present an example for
which MPEC-GCQ is violated at (x̄, ȳ, λ, 0) for any multiplier λ while the calmness holds for
the corresponding (MPEC) at (x̄, ȳ, 0). Note that in contrast to [1, Example 6], Γ in our
example is even convex. However, very little is known about how to verify the calmness for
(MPEC) when the multiplier λ is not unique. When φ, g and G are affine, calmness follows
simply by Robinson’s result on polyhedral multifunctions [33]. Another approach is to verify
calmness by showing the stronger Aubin property (also called pseudo Lipschitz continuity
or Lipschitz-like property) via the so-called Mordukhovich criterion, cf. [29]. However, the
Mordukhovich criterion involves the limiting coderivate of N̂Γ(·), which is very difficult to
compute in the case of nonunique λ; see [20].

The main goal of this paper is to derive a simply verifiable criterion for the so-called
metric subregularity constraint qualification (MSCQ); see Definition 5, which is equivalent
to calmness. Our sufficient condition for MSCQ involves only first-order derivatives of φ and
G and derivatives up to the second-order of g at (x̄, ȳ), and is therefore efficiently checkable.
Our approach is mainly based on the sufficient conditions for metric subregularity as recently
developed in [13, 14, 15, 16], and some implications of metric subregularity which can be
found in [18, 21]. A special feature is that the imposed constraint qualification on both the
lower level system g(y) ≤ 0 and the upper level system G(x, y) ≤ 0 is only MSCQ, which is
much weaker than MFCQ usually required.

We organize our paper as follows. Section 2 contains the preliminaries and preliminary
results. In section 3, we discuss the difficulties involved in formulating MPECs as (MPCC).
Section 4 gives new verifiable sufficient conditions for MSCQ.

The following notation will be used throughout the paper. We denote by BRq the closed
unit ball in Rq while when no confusion arises we denote it by B. By B(z̄; r) we denote the
closed ball centered at z̄ with radius r. SRq is the unit sphere in Rq. For a matrix A, we
denote by AT its transpose. The inner product of two vectors x, y is denoted by xT y or 〈x, y〉
and by x ⊥ y we mean 〈x, y〉 = 0. For Ω ⊆ Rd and z ∈ Rd, we denote by d(z,Ω) the distance
from z to set Ω. The polar cone of a set Ω is Ω◦ = {x|xT v ≤ 0 ∀v ∈ Ω} and Ω⊥ denotes
the orthogonal complement to Ω. For a set Ω, we denote by conv Ω and cl Ω the convex hull
and the closure of Ω, respectively. For a differentiable mapping P : Rd → Rs, we denote
by ∇P (z) the Jacobian matrix of P at z if s > 1 and the gradient vector if s = 1. For a
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function f : Rd → R, we denote by ∇2f(z̄) the Hessian matrix of f at z̄. Let M : Rd ⇒ Rs
be an arbitrary set-valued mapping. We denote its graph by gphM := {(z, w)|w ∈ M(z)}.
o : R+ → R denotes a function with the property that o(λ)/λ→ 0 when λ ↓ 0.

2 Basic definitions and preliminary results

In this section, we gather some preliminaries and preliminary results in variational analysis
that will be needed in the paper. The reader may find more details in the monographs
[7, 29, 34] and in the papers we refer to.

Definition 1. Given a set Ω ⊆ Rd and a point z̄ ∈ Ω, the (Bouligand-Severi) tangent/contingent
cone to Ω at z̄ is a closed cone defined by

TΩ(z̄) :=
{
u ∈ Rd

∣∣∣ ∃ tk ↓ 0, uk → u with z̄ + tkuk ∈ Ω ∀ k}.

The (Fréchet) regular normal cone and the (Mordukhovich) limiting/basic normal cone to Ω
at z̄ ∈ Ω are defined by

N̂Ω(z̄) :=
{
v∗ ∈ Rd

∣∣∣ lim sup
z

Ω→z̄

〈v∗, z − z̄〉
‖z − z̄‖

≤ 0
}

and NΩ(z̄) :=
{
z∗ | ∃zk

Ω→ z̄ and z∗k → z∗ such that z∗k ∈ N̂Ω(zk) ∀k
}
,

respectively.

Note that N̂Ω(z̄) = (TΩ(z̄))◦, and when the set Ω is convex, the tangent/contingent cone
and the regular/limiting normal cone reduce to the classical tangent cone and normal cone of
convex analysis, respectively.

It is easy to see that u ∈ TΩ(z̄) if and only if lim inft↓0 t
−1d(z̄ + tu,Ω) = 0. Recall that a

set Ω is said to be geometrically derivable at a point z̄ ∈ Ω if the tangent cone coincides with
the derivable cone at x̄, i.e., u ∈ TΩ(z̄) if and only if limt↓0 t

−1d(z̄ + tu,Ω) = 0; see e.g., [34].
From the definitions of various tangent cones, it is easy to see that if a set Ω is Clarke regular
in the sense of [7, Definition 2.4.6], then it must be geometrically derivable and the converse
relation is in general false. The following proposition therefore improves the rule of tangents
to product sets given in [34, Proposition 6.41]. The proof is omitted since it follows from the
definitions of the tangent cone and the geometrical derivability of the set.

Proposition 1 (Rule of Tangents to Product Sets). Let Ω = Ω1×Ω2 with Ω1 ⊆ Rd1 ,Ω2 ⊆ Rd2

closed. Then at any z̄ = (z̄1, z̄2) with z̄1 ∈ Ω1, z̄2 ∈ Ω2, one has

TΩ(z̄) ⊆ TΩ1(z̄1)× TΩ2(z̄2).

Furthermore equality holds if at least one of sets Ω1,Ω2 is geometrically derivable.

The following directional version of the limiting normal cone was introduced in [14].

Definition 2. Given a set Ω ⊆ Rd, a point z̄ ∈ Ω and a direction w ∈ Rd, the limiting normal
cone to Ω in direction w at z̄ is defined by

NΩ(z̄;w) :=
{
z∗|∃tk ↓ 0, wk → w, z∗k → z∗ : z∗k ∈ N̂Ω(z̄ + tkwk) ∀k

}
.
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By definition, it is easy to see that NΩ(z̄; 0) = NΩ(z̄) and NΩ(z̄;u) = ∅ if u 6∈ TΩ(z̄).
Further by [15, Lemma 2.1], if Ω is the union of finitely many closed convex sets, then one
has the following relationship between the limiting normal cone and its directional version.

Proposition 2. [15, Lemma 2.1] Let Ω ⊆ Rd be the union of finitely many closed convex
sets, z̄ ∈ Ω, u ∈ Rd. Then NΩ(z̄;u) ⊆ NΩ(z̄) ∩ {u}⊥ and equality holds if the set Ω is convex
and u ∈ TΩ(z̄).

Next we consider constraint qualifications for a constraint system of the form

z ∈ Ω := {z |P (z) ∈ D}, (4)

where P : Rd → Rs and D ⊆ Rs is closed.

Definition 3 (cf. [12]). Let z̄ ∈ Ω where Ω is defined as in (4) with P smooth, and T lin
Ω (z̄)

be the linearized cone of Ω at z̄ defined by

T lin
Ω (z̄) := {w|∇P (z̄)w ∈ TD(P (z̄))}. (5)

We say that the generalized Abadie constraint qualification (GACQ) and the generalized
Guignard constraint qualification (GGCQ) hold at z̄, if

TΩ(z̄) = T lin
Ω (z̄) and (TΩ(z̄))◦ = (T lin

Ω (z̄))◦,

respectively.

It is obvious that GACQ implies GGCQ which is considered as the weakest constraint
qualification. In the case of a standard nonlinear program, GACQ and GGCQ reduce to the
standard definitions of Abadie and Guignard constraint qualification, respectively. Under
GGCQ, any locally optimal solution to a disjunctive problem, i.e., an optimization problem
where the constraint has the form (4) with the set D equal to the union of finitely many
polyhedral convex sets, must be M-stationary (see e.g., [12, Theorem 7]).

GACQ and GGCQ are weak constraint qualifications, but they are usually difficult to
verify. Hence, we are interested in constraint qualifications that are effectively verifiable, and
yet not too strong. The following notion of metric subregularity is the base of the constraint
qualification, which plays a central role in this paper.

Definition 4. Let M : Rd ⇒ Rs be a set-valued mapping and let (z̄, w̄) ∈ gphM . We say
that M is metrically subregular at (z̄, w̄) if there exist a neighborhood W of z̄ and a positive
number κ > 0 such that

d(z,M−1(w̄)) ≤ κd(w̄,M(z)) ∀z ∈W. (6)

The metric subregularity property was introduced in [26] for single-valued maps under the
terminology “regularity at a point”, and the name of “metric subregularity” was suggested in
[9]. Note that the metrical subregularity at (z̄, 0) ∈ gphM is also referred to as the existence
of a local error bound at z̄. It is easy to see that M is metrically subregular at (z̄, w̄) if
and only if its inverse set-valued map M−1 is calm at (w̄, z̄) ∈ gphM−1, i.e., there exist a
neighborhood W of z̄, a neighborhood V of w̄ and a positive number κ > 0 such that

M−1(w) ∩ V ⊆M−1(w̄) + κ‖w − w̄‖B ∀z ∈W.
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While the term for the calmness of a set-valued map was first coined in [34], it was introduced
as the pseudo-upper Lipschitz continuity in [37], taking into account that it is weaker than
both the pseudo Lipschitz continuity of Aubin [5] and the upper Lipschitz continuity of
Robinson [31, 32] .

More general constraints can be easily written in the form P (z) ∈ D. For instance, a set
Ω = {z |P1(z) ∈ D1, 0 ∈ P2(z) +Q(z)}, where Pi : Rd → Rsi , i = 1, 2 and Q : Rd ⇒ Rs2 is a
set-valued map, can also be written as

Ω = {z |P (z) ∈ D} with P (z) :=

(
P1(z)

(z,−P2(z))

)
, D := D1 × gphQ.

We now show that for both representations of Ω, the properties of metric subregularity for
the maps describing the constraints are equivalent.

Proposition 3. Let Pi : Rd → Rsi, i = 1, 2, D1 ⊆ Rs1 be closed and Q : Rd ⇒ Rs2 be a
set-valued map with a closed graph. Further assume that P1 and P2 are Lipschitz near z̄.
Then the set-valued map

M1(z) :=

(
P1(z)−D1

P2(z) +Q(z)

)
is metrically subregular at (z̄, (0, 0)) if and only if the set-valued map

M2(z) :=

(
P1(z)

(z,−P2(z))

)
−D1 × gphQ

is metrically subregular at (z̄, (0, 0, 0)).

Proof. Assume without loss of generality that the image space Rs1×Rs2 ofM1 is equipped with
the norm ‖(y1, y2)‖ = ‖y1‖+ ‖y2‖, whereas we use the norm ‖(y1, z, y2)‖ = ‖y1‖+ ‖z‖+ ‖y2‖
for the image space Rs1 ×Rd×Rs2 of M2. If M2 is metrically subregular at (z̄, (0, 0, 0)), then
there are a neighborhood W of z̄ and a constant κ such that for all z ∈W , we have

d(z,Ω) ≤ κd
(
(0, 0, 0),M2(z)

)
= κ

(
d(P1(z), D1) + inf{‖z − z̃‖+ ‖ − P2(z)− ỹ‖ | (z̃, ỹ) ∈ gphQ}

)
≤ κ

(
d(P1(z), D1) + inf{‖ − P2(z)− ỹ‖ | ỹ ∈ Q(z)}

)
= κd

(
(0, 0),M1(z)

)
,

which shows the metric subregularity of M1. Now assume that M1 is metrically subregular
at (z̄, (0, 0)), and hence we can find a radius r > 0 and a real κ such that

d(z,Ω) ≤ κd
(
(0, 0),M1(z)

)
∀z ∈ B(z̄; r).

Further, assume that P1, P2 are Lipschitz with modulus L on B(z̄; r), and consider z ∈
B(z̄; r/(2 + L)). Since gphQ is closed, there are (z̃, ỹ) ∈ gphQ with

‖z − z̃‖+ ‖ − P2(z)− ỹ‖ = d
(
(z,−P2(z)), gphQ

)
.

Then

‖z − z̃‖ ≤ d
(
(z,−P2(z)), gphQ

)
≤ ‖z − z̄‖+ ‖ − P2(z) + P2(z̄)‖ ≤ (1 + L)‖z − z̄‖,
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implying ‖z̄ − z̃‖ ≤ ‖z̄ − z‖+ ‖z − z̃‖ ≤ (2 + L)‖z − z̄‖ ≤ r and

d(z̃,Ω) ≤ κd
(
(0, 0),M1(z̃)

)
= κ

(
d(P1(z̃), D1) + d

(
− P2(z̃), Q(z̃)

))
≤ κ

(
d(P1(z̃), D1) + ‖ − P2(z̃)− ỹ‖

)
≤ κ

(
2L‖z − z̃‖+ d(P1(z), D1) + ‖ − P2(z)− ỹ‖

)
.

Taking into account d(z,Ω) ≤ d(z̃,Ω) + ‖z − z̃‖, we arrive at

d(z,Ω) ≤ κmax{2L+
1

κ
, 1}
(
d(P1(z), D1) + ‖z − z̃‖+ ‖ − P2(z)− ỹ‖

)
= κmax{2L+

1

κ
, 1}d

(
(0, 0, 0),M2(z)

)
,

establishing metric subregularity of M2 at (z̄, (0, 0, 0)).

Since the metric subregularity of the set-valued map M(z) := P (z) −D at (z̄, 0) implies
GACQ holding at z̄ (see e.g., [23, Proposition 1]), it can serve as a constraint qualification.
Following [17, Definition 3.2], we define it as a constraint qualification below.

Definition 5 (metric subregularity constraint qualification). Let P (z̄) ∈ D. We say
that the metric subregularity constraint qualification (MSCQ) holds at z̄ for the
system P (z) ∈ D if the set-valued map M(z) := P (z) −D is metrically subregular at (z̄, 0),
or equivalently the perturbed set-valued map M−1(w) := {z|w ∈ P (z)−D} is calm at (0, z̄).

There exist several sufficient conditions for MSCQ in the literature. Here are the two
most frequently used ones. The first case is when the linear CQ holds, i.e., when P is affine
and D is the union of finitely many polyhedral convex sets. The second case is when the no
nonzero abnormal multiplier constraint qualification (NNAMCQ) holds at z̄ (see e.g., [36]):

∇P (z̄)Tλ = 0, λ ∈ ND(P (z̄)) =⇒ λ = 0. (7)

It is known that NNAMCQ is equivalent to MFCQ in the case of standard nonlinear pro-
gramming. Condition (7) appears under different terminologies in the literature; e.g., while
it is called NNAMCQ in [36], it is referred to as generalized MFCQ (GMFCQ) in [12].

The linear CQ and NNAMCQ may be still too strong for some problems to hold. Re-
cently, some new constraint qualifications for standard nonlinear programs that are stronger
than MSCQ and weaker than the linear CQ and/or NNAMCQ have been introduced in the
literature; see e.g., [3, 4]. These CQs include the relaxed constant positive linear dependence
condition (RCPLD) (see [25, Theorem 4.2]), the constant rank of the subspace component
condition (CRSC) (see [25, Corollary 4.1]), and the quasinormality [24, Theorem 5.2].

In this paper, we will use the following sufficient conditions.

Theorem 1. Let z̄ ∈ Ω where Ω is defined as in (4). MSCQ holds at z̄ if one of the following
conditions is fulfilled:

• First-order sufficient condition for metric subregularity (FOSCMS) for the system P (z) ∈
D with P smooth, cf. [16, Corollary 1] : for every 0 6= w ∈ T lin

Ω (z̄), one has

∇P (z̄)Tλ = 0, λ ∈ ND(P (z̄);∇P (z̄)w) =⇒ λ = 0.
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• Second-order sufficient condition for metric subregularity (SOSCMS) for the inequality
system P (z) ∈ Rs− with P twice Fréchet differentiable at z̄, cf. [13, Theorem 6.1]: For
every 0 6= w ∈ T lin

Ω (z̄), one has

∇P (z̄)Tλ = 0, λ ∈ NRs
−

(P (z̄)), wT∇2(λTP )(z̄)w ≥ 0 =⇒ λ = 0.

In the case T lin
Ω (z̄) = {0}, FOSCMS is satisfied automatically. By definition of the lin-

earized cone (5), T lin
Ω (z̄) = {0} means that

∇P (z̄)w = ξ, ξ ∈ TD(P (z̄)) =⇒ w = 0.

By the graphical derivative criterion for strong metric subregularity [10, Theorem 4E.1], this
is equivalent to saying that the set-valued map M(z) = P (z) − D is strongly metrically
subregular (or equivalently, its inverse is isolated calm) at (z̄, 0). When the set D is convex,
by the relationship between the limiting normal cone and its directional version in Proposition
2,

ND(P (z̄);∇P (z̄)w) = ND(P (z̄)) ∩ {∇P (z̄)w}⊥.

Consequently, in the case where T lin
Ω (z̄) 6= {0} andD is convex, FOSCMS reduces to NNAMCQ.

Indeed, suppose that ∇P (z̄)Tλ = 0 and λ ∈ ND(P (z̄)). Then λT (∇P (z̄)w) = 0. Hence
λ ∈ ND(P (z̄);∇P (z̄)w), which implies from FOSCMS that λ = 0. Hence for convex D,
FOSCMS is equivalent to saying that either the strong metric subregularity or the NNAMCQ
(7) holds at (z̄, 0). In the case of an inequality system P (z) ≤ 0 and T lin

Ω (z̄) 6= {0}, SOSCMS
is obviously weaker than NNAMCQ.

In many situations, the constraint system P (z) ∈ D can be splitted into two parts such
that one part can be easily verified to satisfy MSCQ. For example,

P (z) = (P1(z), P2(z)) ∈ D = D1 ×D2, (8)

where Pi : Rd → Rsi are smooth and Di ⊆ Rsi , i = 1, 2 are closed, and for one part, let us
say P2(z) ∈ D2, it is known in advance that the map P2(·) −D2 is metrically subregular at
(z̄, 0). In this case, the following theorem is useful.

Theorem 2. Let P (z̄) ∈ D with P smooth and D closed, and assume that P and D can be
written in the form (8) such that the set-valued map P2(z) − D2 is metrically subregular at
(z̄, 0). Further assume for every 0 6= w ∈ T lin

Ω (z̄), one has

∇P1(z̄)Tλ1 +∇P2(z̄)Tλ2 = 0, λi ∈ NDi(Pi(z̄);∇Pi(z̄)w) i = 1, 2 =⇒ λ1 = 0.

Then MSCQ holds at z̄ for the system P (z) ∈ D.

Proof. Let the set-valued maps M , Mi(i = 1, 2) be given by M(z) := P (z) − D and
Mi(z) = Pi(z) − Di(i = 1, 2), respectively. Since P1 is assumed to be smooth, it is also
Lipschitz near z̄ and thus M1 has the Aubin property around (z̄, 0). Consider any direction
0 6= w ∈ T lin

Ω (z̄). By [14, Definition 2(3.)], the limit set critical for directional metric reg-
ularity CrRs1M((z̄, 0);w) with respect to w and Rs1 at (z̄, 0) is defined as the collection of
all elements (v, z∗) ∈ Rs × Rd such that there are sequences tk ↓ 0, (wk, vk, z

∗
k) → (w, v, z∗),

λk ∈ SRs and a real β > 0 such that (−z∗k, λk) ∈ N̂gphM (z̄ + tkwk, tkvk) and ‖λ1
k‖ ≥ β for

all k, where λk = (λ1
k, λ

2
k) ∈ Rs1 × Rs2 . We claim that (0, 0) 6∈ CrRs1M((z̄, 0);w). Assume
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on the contrary that (0, 0) ∈ CrRs1M((z̄, 0);w) and consider the corresponding sequences
(tk, wk, vk, z

∗
k, λk). The sequence λk is bounded and by passing to a subsequence we can as-

sume that λk converges to some λ = (λ1, λ2) satisfying ‖λ1‖ ≥ β > 0. Since (−z∗k, λk) ∈
N̂gphM (z̄ + tkwk, tkvk), it follows from [34, Exercise 6.7] that −λk ∈ N̂D(P (z̄ + tkwk)− tkvk)
and −z∗k = ∇P (z̄ + tkwk)

T (−λk) which implies that −λ ∈ ND(P (z̄);∇P (z̄)w) and 0 =
∇P (z̄)T (−λ) = ∇P1(z̄)T (−λ1) + ∇P2(z̄)T (−λ2). From [16, Lemma 1], we also conclude
−λi ∈ NDi(Pi(z̄);∇Pi(z̄)w), resulting in a contradiction to the assumption of the theorem.
Hence our claim (0, 0) 6∈ CrRs1M((z̄, 0);w) holds true, and by [14, Lemmas 2, 3, Theorem 6],
it follows that M is metrically subregular in direction w at (z̄, 0), where directional metric
subregularity is defined in [14, Definition 1]. Since by definition, M is metrically subregu-
lar in every direction w 6∈ T lin

Ω (z̄), we conclude from [15, Lemma 2.7] that M is metrically
subregular at (z̄, 0).

We now discuss some consequences of MSCQ. First, we have the following change of
coordinate formula for normal cones.

Proposition 4. Let z̄ ∈ Ω := {z|P (z) ∈ D} with P smooth and D closed. Then

N̂Ω(z̄) ⊇ ∇P (z̄)T N̂D(P (z̄)). (9)

Further, if MSCQ holds at z̄ for the system P (z) ∈ D, then

N̂Ω(z̄) ⊆ NΩ(z̄) ⊆ ∇P (z̄)TND(P (z̄)). (10)

In particular, if MSCQ holds at z̄ for the system P (z) ∈ D with convex D, then

N̂Ω(z̄) = NΩ(z̄) = ∇P (z̄)TND(P (z̄)). (11)

Proof. The inclusion (9) follows from [34, Theorem 6.14]. The first inclusion in (10) follows
immediately from the definitions of the regular/limiting normal cone, whereas the second one
follows from [22, Theorem 4.1]. When D is convex, the regular normal cone coincides with
the limiting normal cone, and hence (11) follows by combining (9) and (10).

In the case where D = Rs1− ×{0}s2 , it is well-known in nonlinear programming theory that
MFCQ or equivalently NNAMCQ is a necessary and sufficient condition for compactness of
the set of Lagrange multipliers. In the case where D 6= Rs1− × {0}s2 , NNAMCQ also implies
the boundedness of the multipliers. However MSCQ is weaker than NNAMCQ, and hence the
set of Lagrange multipliers may be unbounded if MSCQ holds but NNAMCQ fails. However,
Theorem 3 shows that under MSCQ one can extract some uniformly compact subset of the
multipliers.

Definition 6 (cf. [18]). Let z̄ ∈ Ω := {z|P (z) ∈ D} with P smooth and D closed. We say
that the bounded multiplier property (BMP) holds at z̄ for the system P (z) ∈ D, if there are
some modulus κ ≥ 0 and some neighborhood W of z̄ such that for every z ∈W ∩Ω and every
z∗ ∈ NΩ(z), there is some λ ∈ κ‖z∗‖BRs ∩ND(P (z)) satisfying

z∗ = ∇P (z)Tλ.

The following theorem gives a sharper upper estimate for the normal cone than (10).
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Theorem 3. Let z̄ ∈ Ω := {z |P (z) ∈ D}, and assume that MSCQ holds at the point z̄ for
the system P (z) ∈ D. Let W denote an open neighborhood of z̄, and let κ ≥ 0 be a real such
that

d(z,Ω) ≤ κd(P (z), D) ∀z ∈W.

Then

NΩ(z) ⊆
{
z∗ ∈ Rd | ∃λ ∈ κ‖z∗‖BRs ∩ND(P (z)) with z∗ = ∇P (z)Tλ

}
∀z ∈W.

In particular BMP holds at z̄ for the system P (z) ∈ D.

Proof. Under the assumption, the set-valued map M(z) := P (z)−D is metrically subregular
at (z̄, 0). The definition of the metric subregularity justifies the existence of the open neigh-
borhood W and the number κ in the assumption. Hence for each z ∈M−1(0)∩W = Ω∩W ,
the map M is also metrically subregular at (z, 0), and by applying [21, Proposition 4.1] we
obtain

NΩ(z) = NM−1(0)(z; 0) ⊆ {z∗ | ∃λ ∈ κ‖z∗‖BRs : (z∗, λ) ∈ NgphM ((z, 0); (0, 0))}.

It follows from [34, Exercise 6.7] that

NgphM ((z, 0); (0, 0)) = NgphM ((z, 0)) = {(z∗, λ) | − λ ∈ ND(P (z)), z∗ = ∇P (z)T (−λ)}.

Hence the assertion follows.

3 Failure of MPCC-tailored constraint qualifications for prob-
lem (MPCC)

In this section, we discuss difficulties involved in MPCC-tailored constraint qualifications
for the problem (MPCC) by considering the constraint system for problem (MPCC) in the
following form

Ω̃ :=

(x, y, λ) :
0 = h(x, y, λ) := φ(x, y) +∇g(y)Tλ,
0 ≥ g(y) ⊥ −λ ≤ 0
G(x, y) ≤ 0

 ,

where φ : Rn × Rm → Rm and G : Rn × Rm → Rp are continuously differentiable and
g : Rm → Rq is twice continuously differentiable.

Given a triple (x̄, ȳ, λ̄) ∈ Ω̃ we define the following index sets of active constraints:

Ig := Ig(ȳ, λ̄) := {i∈ {1, . . . , q} | gi(ȳ) = 0, λ̄i > 0},
Iλ := Iλ(ȳ, λ̄) := {i∈ {1, . . . , q} | gi(ȳ) < 0, λ̄i = 0},
I0 := I0(ȳ, λ̄) := {i∈ {1, . . . , q} | gi(ȳ) = 0, λ̄i = 0},
IG := IG(x̄, ȳ) := {i∈ {1, . . . , p} |Gi(x̄, ȳ) = 0}.

Definition 7 ([35]). We say that MPCC-MFCQ holds at (x̄, ȳ, λ̄) if the gradient vectors

∇hi(x̄, ȳ, λ̄), i = 1, . . . ,m, (0,∇gi(ȳ), 0), i ∈ Ig ∪ I0, (0, 0, ei), i ∈ Iλ ∪ I0, (12)
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where ei denotes the unit vector with the ith component equal to 1, are linearly independent,
and there exists a vector (dx, dy, dλ) ∈ Rn × Rm × Rq orthogonal to the vectors in (12) and
such that

∇Gi(x̄, ȳ)(dx, dy) < 0, i ∈ IG.
We say that MPCC-LICQ holds at (x̄, ȳ, λ̄) if the gradient vectors

∇hi(x̄, ȳ, λ̄), i = 1, . . . ,m, (0,∇gi(ȳ), 0), i ∈ Ig∪I0, (0, 0, ei), i ∈ Iλ∪I0, (∇Gi(x̄, ȳ), 0), i ∈ IG

are linearly independent.

MPCC-MFCQ implies that for every partition (β1, β2) of I0, the branch
φ(x, y) +∇g(y)Tλ = 0,
gi(y) = 0, λi ≥ 0, i ∈ Ig, λi = 0, gi(y) ≤ 0, i ∈ Iλ,
gi(y) = 0, λi ≥ 0, i ∈ β1, gi(y) ≤ 0, λi = 0, i ∈ β2,
G(x, y) ≤ 0

(13)

satisfies MFCQ at (x̄, ȳ, λ̄).
We now show that MPCC-MFCQ never holds for (MPCC) if the lower level program has

more than one multiplier.

Proposition 5. Let (x̄, ȳ, λ̄) ∈ Ω̃, and assume that there exists a second multiplier λ̂ 6= λ̄
such that (x̄, ȳ, λ̂) ∈ Ω̃. Then for every partition (β1, β2) of I0, the branch (13) does not fulfill
MFCQ at (x̄, ȳ, λ̄).

Proof. Since ∇g(ȳ)T (λ̂− λ̄) = 0, (λ̂− λ̄)i ≥ 0, i ∈ Iλ ∪ β2 and λ̂− λ̄ 6= 0, the assertion follows
immediately.

Since MPCC-MFCQ is stronger than the MPCC-LICQ, we have the following corollary
immediately.

Corollary 1. Let (x̄, ȳ, λ̄) ∈ Ω̃, and assume that there exists a second multiplier λ̂ 6= λ̄ such
that (x̄, ȳ, λ̂) ∈ Ω̃. Then MPCC-LICQ fails at (x̄, ȳ, λ̄).

It is worth noting that our result in Proposition 5 is only valid under the assumption that
g(y) is independent of x. In the case of bilevel programming where the lower level problem
has a constraint dependent of the upper level variable, an example given in [28, Example 4.10]
shows that if the multiplier is not unique, then the corresponding MPCC-MFCQ may hold
at some of the multipliers and fail to hold at others.

Definition 8 (see e.g., [12]). Let (x̄, ȳ, λ̄) be feasible for (MPCC). We say MPCC-ACQ and
MPCC-GCQ hold if

T
Ω̃

(x̄, ȳ, λ̄) = T lin
MPCC(x̄, ȳ, λ̄) and N̂

Ω̃
(x̄, ȳ, λ̄) = (T lin

MPCC(x̄, ȳ, λ̄))◦,

respectively, where

T lin
MPCC(x̄, ȳ, λ̄)

:=

(u, v, µ) ∈ Rn × Rm × Rq |

∇xφ(x̄, ȳ)u+∇y(φ+∇y(λT g))(x̄, ȳ)v +∇g(ȳ)Tµ = 0,
∇gi(ȳ)v = 0, i ∈ Ig, µi = 0, i ∈ Iλ,
∇gi(ȳ)v ≤ 0, µi ≥ 0, µi∇gi(ȳ)v = 0, i ∈ I0,
∇Gi(x̄, ȳ)(u, v) ≤ 0, i ∈ IG


is the MPEC linearized cone at (x̄, ȳ, λ̄).
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Note that MPCC-ACQ and MPCC-GCQ are the GACQ and GGCQ for the equivalent for-
mulation of the set Ω̃ in the form of P (z) ∈ D, with D involving the complementarity set

Dcc := {(a, b) ∈ Rq− × Rq−|aT b = 0},

respectively. MPCC-MFCQ implies MPCC-ACQ (cf. [11]) and from definition, it is easy
to see that MPCC-ACQ is stronger than MPCC-GCQ. Under MPCC-GCQ, it is known
that a local optimal solution of (MPCC) must be a M-stationary point ([12, Theorem 14]).
Although MPCC-GCQ is weaker than most of other MPCC-tailored constraint qualifications,
the following example shows that the constraint qualification MPCC-GCQ still can be violated
when the multiplier for the lower level is not unique. In contrast to [1, Example 6], all the
constraints are convex .

Example 1. Consider the MPEC

min
x,y

F (x, y) := x1 −
3

2
y1 + x2 −

3

2
y2 − y3

s.t. 0 ∈ φ(x, y) +NΓ(y), (14)

G1(x, y) = G1(x) := −x1 − 2x2 ≤ 0,

G2(x, y) = G2(x) := −2x1 − x2 ≤ 0,

where

φ(x, y) :=

 y1 − x1

y2 − x2

−1

 , Γ :=

{
y ∈ R3|g1(y) := y3 +

1

2
y2

1 ≤ 0, g2(y) := y3 +
1

2
y2

2 ≤ 0

}
.

Let x̄ = (0, 0) and ȳ = (0, 0, 0). The lower level inequality system g(y) ≤ 0 is convex satisfying
the Slater condition, and therefore y is a solution to the parametric generalized equation (14) if
and only if y′ = y is a global minimizer of the optimization problem: min

y′
〈φ(x, y), y′〉 s.t. y′ ∈

Γ, and if and only if there is a multiplier λ fulfilling KKT-conditions y1 − x1 + λ1y1

y2 − x2 + λ2y2

−1 + λ1 + λ2

 =

 0
0
0

 , (15)

0 ≥ y3 +
1

2
y2

1 ⊥ −λ1 ≤ 0,

0 ≥ y3 +
1

2
y2

2 ⊥ −λ2 ≤ 0.

Let F := {x |G1(x) ≤ 0, G2(x) ≤ 0}. Then F = F1 ∪ F2 ∪ F3 where

F1 :=
{

(x1, x2) ∈ R2 | 2|x2| ≤ x1

}
,

F2 :=
{

(x1, x2) ∈ R2 | x1

2
≤ x2 ≤ 2x1

}
,

F3 :=
{

(x1, x2) ∈ R2 | 2|x1| ≤ x2

}
.

Straightforward calculations yield that for each x ∈ F , there exists a unique solution y(x),
which is given by

y(x) =


(x1

2 , x2,−1
8x

2
1) if x ∈ F1,

(x1+x2
3 , x1+x2

3 ,− 1
18(x1 + x2)2) if x ∈ F2,

(x1,
x2
2 ,−

1
8x

2
2) if x ∈ F3.
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Further, at x̄ = (0, 0) we have y(x̄) = (0, 0, 0) and the set of the multipliers is

Λ :={λ ∈ R2
+|λ1 + λ2 = 1},

while for all x 6= (0, 0) the gradients of the lower level constraints active at y(x) are linearly
independent and the unique multiplier is given by

λ(x) =


(1, 0) if x ∈ F1,

(2x1−x2
x1+x2

, 2x2−x1
x1+x2

) if x ∈ F2,

(0, 1) if x ∈ F3.

(16)

Since

F (x, y(x)) =


1
4x1 − 1

2x2 + 1
8x

2
1 if x ∈ F1,

1
18(x1 + x2)2 if x ∈ F2,
1
4x2 − 1

2x1 + 1
8x

2
2 if x ∈ F3,

and F = F1 ∪ F2 ∪ F3, we see that (x̄, ȳ) is a globally optimal solution of the MPEC.
The original problem is equivalent to the following MPCC:

min
x,y,λ

x1 −
3

2
y1 + x2 −

3

2
y2 − y3

s.t. x, y, λ fulfill (15),

−2x1 − x2 ≤ 0,

−x1 − 2x2 ≤ 0.

The feasible region of this problem is

Ω̃ =
⋃

x̄ 6=x∈F
{(x, y(x), λ(x))}∪({(x̄, ȳ)} × Λ).

Any (x̄, ȳ, λ) where λ ∈ Λ is a globally optimal solution. However it is easy to verify that unless
λ1 = λ2 = 0.5, any (x̄, ȳ, λ) is not even a weak stationary point, implying by [12, Theorem 7]
that MPCC-GCQ and consequently MPCC-ACQ fails to hold. Now consider λ = (0.5, 0.5).
The MPEC linearized cone T lin

MPCC(x̄, ȳ, λ) is the collection of all (u, v, µ) such that 1.5v1 − u1

1.5v2 − u2

µ1 + µ2

 =

 0
0
0

 ,
v3 = 0,
−2u1 − u2 ≤ 0, −u1 − 2u2 ≤ 0.

(17)

Next, we compute the actual tangent cone T
Ω̃

(x̄, ȳ, λ). Consider sequences tk ↓ 0, (uk, vk, µk)→
(u, v, µ) such that (x̄, ȳ, λ) + tk(u

k, vk, µk) ∈ Ω̃. If uk 6= 0 for infinitely many k, then
x̄ + tku

k 6= 0, and hence (ȳ + tkv
k, λ + tkµ

k) = (y(x̄ + tku
k), λ(x̄ + tku

k)) for those k. Since
λ = (0.5, 0.5), it follows from (16) that x̄ + tku

k ∈ F2 for infinitely many k, implying, by
passing to a subsequence if necessary,

v = lim
k→∞

y(x̄+ tku
k)− ȳ

tk
=

1

3
(u1 + u2, u1 + u2, 0)
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and

µ = lim
k→∞

λ(x̄+ tku
k)− λ

tk
= lim

k→∞

(
2uk1−uk2
uk1+uk2

,
2uk2−uk1
uk1+uk2

)− (0.5, 0.5)

tk

= lim
k→∞

1.5
(
uk1−uk2
uk1+uk2

,
uk2−uk1
uk1+uk2

)

tk
.

Hence, v1 = v2 = 1
3(u1 + u2), v3 = 0 and µ1 + µ2 = 0. Also from (17), we have u1 = u2

since v1 = v2 and the tangent cone T
Ω̃

(x̄, ȳ, λ) is always a subset of the MPEC linearized
cone T lin

MPCC(x̄, ȳ, λ) (see e.g., [11, Lemma 3.2]). Further, since x̄+ tku
k ∈ F2, we must have

u1 ≥ 0. If uk = 0 for all but finitely many k, then we have vk = 0 and λ+ tkµ
k ∈ Λ, implying

µ1 + µ2 = 0. Putting all together, we obtain that the actual tangent cone T
Ω̃

(x̄, ȳ, λ) to the
feasible set is the collection of all (u, v, µ) satisfying

u1 = u2 ≥ 0, v1 = v2 =
2

3
u1,

v3 = 0, µ1 + µ2 = 0.

Now it is easy to see that T
Ω̃

(x̄, ȳ, λ) 6= T lin
MPCC(x̄, ȳ, λ). Moreover, since both T

Ω̃
(x̄, ȳ, λ) and

T lin
MPCC(x̄, ȳ, λ) are convex polyhedral sets, one also has (T

Ω̃
(x̄, ȳ, λ))◦ 6= (T lin

MPCC(x̄, ȳ, λ))◦,
and thus MPEC-GCQ does not hold for λ = (0.5, 0.5) as well.

4 Sufficient condition for MSCQ

As we discussed in the introduction and section 3, there are much difficulties involved in
formulating an MPEC as (MPCC). In this section, we turn our attention to problem (MPEC)
with the constraint system defined in the following form

Ω :=

{
(x, y) :

0 ∈ φ(x, y) + N̂Γ(y)
G(x, y) ≤ 0

}
, (18)

where Γ := {y ∈ Rm|g(y) ≤ 0}, φ : Rn × Rm → Rm and G : Rn × Rm → Rp are continuously
differentiable, and g : Rm → Rq is twice continuously differentiable. Let (x̄, ȳ) be a feasible
solution of problem (MPEC). We assume that MSCQ is fulfilled for the constraint g(y) ≤ 0
at ȳ. Then by definition, MSCQ also holds for all points y ∈ Γ near ȳ, and by Proposition 4
the following equations hold for such y:

NΓ(y) = N̂Γ(y) = ∇g(y)TNRq
−

(g(y)),

where NRq
−

(g(y)) = {λ ∈ Rq+ |λi = 0, i 6∈ I(y)} and I(y) := {i ∈ {1, . . . , q} | gi(y) = 0} is the

index set of active inequality constraints.
For the sake of simplicity, we do not include equality constraints in either the upper or

the lower level constraints. We are using MSCQ as the basic constraint qualification for both
the upper and the lower level constraints, and this allows us to write an equality constraint
h(x) = 0 equivalently as two inequality constraints h(x) ≤ 0, −h(x) ≤ 0 without affecting
MSCQ.

In the case where Γ is convex, MSCQ is proposed in [37] as a constraint qualification for
the M-stationary condition. Two types of sufficient conditions were given for MSCQ. One is
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the case when all involved functions are affine, and the other is when metric regularity holds.
In this section, by making use of FOSCMS for the split system in Theorem 2, we derive
some new sufficient condition for MSCQ for the constraint system (18). Applying the new
constraint qualification to the problem in Example 1, we show that in contrast to the MPCC
reformulation, under which even the weakest constraint qualification MPEC-GCQ fails at
(x̄, ȳ, λ) for all multipliers λ, the MSCQ holds at (x̄, ȳ) for the original formulation.

In order to apply FOSCMS in Theorem 2, we need to calculate the linearized cone T lin
Ω (z̄),

and consequently we need to calculate the tangent cone T
gphN̂Γ

(ȳ,−φ(x̄, ȳ)). We now perform
this task. First we introduce some notations. Given vectors y ∈ Γ, y∗ ∈ Rm, consider the set
of multipliers

Λ(y, y∗) :=
{
λ ∈ Rq+

∣∣ ∇g(y)Tλ = y∗, λi = 0, i 6∈ I(y)
}
. (19)

For a multiplier λ, the corresponding collection of strict complementarity indexes is denoted
by

I+(λ) :=
{
i ∈ {1, . . . , q}

∣∣ λi > 0
}

for λ = (λ1, . . . , λq) ∈ Rq+. (20)

Denote by E(y, y∗) the collection of all the extreme points of the closed and convex set of
multipliers Λ(y, y∗), and recall that λ ∈ Λ(y, y∗) belongs to E(y, y∗) if and only if the family
of gradients {∇gi(y) | i ∈ I+(λ)} is linearly independent. Further E(y, y∗) 6= ∅ if and only if
Λ(y, y∗) 6= ∅. To proceed further, recall the notion of the critical cone to Γ at (y, y∗) ∈ gph N̂Γ

given by K(y, y∗) := TΓ(y) ∩ {y∗}⊥, and define the multiplier set in a direction v ∈ K(y, y∗)
by

Λ(y, y∗; v) := arg max
{
vT∇2(λT g)(y)v |λ ∈ Λ(y, y∗)

}
. (21)

Note that Λ(y, y∗; v) is the solution set of a linear optimization problem, and therefore
Λ(y, y∗; v) ∩ E(y, y∗) 6= ∅ whenever Λ(y, y∗; v) 6= ∅. Further, we denote the corresponding
optimal function value by

θ(y, y∗; v) := max
{
vT∇2(λT g)(y)v |λ ∈ Λ(y, y∗)

}
. (22)

The critical cone to Γ has the following two expressions.

Proposition 6. (see e.g., [17, Proposition 4.3]) Suppose that MSCQ holds for the system
g(y) ∈ Rq− at y. Then the critical cone to Γ at (y, y∗) ∈ gph N̂Γ is a convex polyhedron that
can be explicitly expressed as

K(y, y∗) = {v|∇g(y)v ∈ TRq
−

(g(y)), vT y∗ = 0}.

Moreover, for any λ ∈ Λ(y, y∗),

K(y, y∗) =

{
v |∇g(y)v

{
= 0 if λi > 0
≤ 0 if λi = 0

}
.

Based on the expression for the critical cone, it is easy to see that the normal cone to the
critical cone has the following expression.

Lemma 1. [19, Lemma 1] Assume MSCQ holds at y for the system g(y) ∈ Rq−. Let v ∈
K(y, y∗), λ ∈ Λ(y, y∗). Then

NK(y,y∗)(v) = {∇g(y)Tµ|µT∇g(y)v = 0, µ ∈ TNRq−
(g(y))(λ)}.
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We are now ready to calculate the tangent cone to the graph of N̂Γ. This result will
be needed in the sufficient condition for MSCQ, and it is also of an independent interest.
The first equation in the formula (23) was first shown in [19, Theorem 1] under the extra
assumption that the metric regularity holds locally uniformly except for ȳ, whereas in [6] this
extra assumption was removed.

Theorem 4. Given ȳ ∈ Γ, assume that MSCQ holds at ȳ for the system g(y) ∈ Rq−. Then
there are a real κ > 0 and a neighorhood V of ȳ such that for any y ∈ Γ ∩ V and any
y∗ ∈ N̂Γ(y), the tangent cone to the graph of N̂Γ at (y, y∗) can be calculated by

T
gph N̂Γ

(y, y∗) (23)

=
{

(v, v∗) ∈ R2m
∣∣ ∃λ ∈ Λ(y, y∗; v) with v∗ ∈ ∇2(λT g)(y)v +NK(y,y∗)(v)

}
=

{
(v, v∗) ∈ R2m

∣∣ ∃λ ∈ Λ(y, y∗; v) ∩ κ‖y∗‖BRq with v∗ ∈ ∇2(λT g)(y)v +NK(y,y∗)(v)
}
,

where the critical cone K(y, y∗) and the normal cone NK(y,y∗)(v) can be calculated as in

Proposition 6 and Lemma 1, respectively, and the set gph N̂Γ is geometrically derivable at
(y, y∗).

Proof. Since MSCQ holds at ȳ for the system g(y) ∈ Rq−, we can find an open neighborhood
V of ȳ and and a real κ > 0 such that

d(y,Γ) ≤ κd(g(y),Rq−) ∀y ∈ V, (24)

which means that MSCQ holds at every y ∈ Γ ∩ V . Therefore K(y, y∗) and NK(y,y∗)(v) can
be calculated as in Proposition 6 and Lemma 1, respectively. By the proof of the first part
of [19, Theorem 1], we obtain that for every y∗ ∈ N̂Γ(y),{

(v, v∗) ∈ R2m
∣∣ ∃λ ∈ Λ(y, y∗; v) ∩ κ‖y∗‖BRq with v∗ ∈ ∇2(λT g)(y)v +NK(y,y∗)(v)

}
⊆

{
(v, v∗) ∈ R2m

∣∣ ∃λ ∈ Λ(y, y∗; v) with v∗ ∈ ∇2(λT g)(y)v +NK(y,y∗)(v)
}

⊆
{

(v, v∗) ∈ R2m
∣∣ lim
t↓0

t−1d
(
(y + tv, y∗ + tv∗), gph N̂Γ

)
= 0}

⊆ T
gph N̂Γ

(y, y∗).

We now show the reversed inclusion

T
gph N̂Γ

(y, y∗) (25)

⊆
{

(v, v∗) ∈ R2m
∣∣ ∃λ ∈ Λ(y, y∗; v) ∩ κ‖y∗‖BRq with v∗ ∈ ∇2(λT g)(y)v +NK(y,y∗)(v)

}
.

Although the proof technique is essentially the same as [19, Theorem 1], for completeness we
provide the detailed proof. Consider y ∈ Γ ∩ V , y∗ ∈ N̂Γ(y) and let (v, v∗) ∈ T

gph N̂Γ
(y, y∗).

Then by definition of the tangent cone, there exist sequences tk ↓ 0, vk → v, v∗k → v∗ such

that y∗k := y∗+ tkv
∗
k ∈ N̂Γ(yk), where yk := y+ tkvk. By passing to a subsequence if necessary

we can assume that yk ∈ V ∀k and that there is some index set Ĩ ⊆ I(y) such that I(yk) = Ĩ
hold for all k. For every i ∈ I(y), we have

gi(yk) = gi(y) + tk∇gi(y)vk + o(tk) = tk∇gi(y)vk + o(tk)

{
= 0 if i ∈ Ĩ,
≤ 0 if i ∈ I(y) \ Ĩ.

(26)
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Dividing by tk and passing to the limit we obtain

∇gi(y)v

{
= 0 if i ∈ Ĩ,
≤ 0 if i ∈ I(y) \ Ĩ,

(27)

which means v ∈ T lin
Γ (y). Since MSCQ holds at every y ∈ Γ ∩ V , we have that the GACQ

holds at y as well, and hence v ∈ TΓ(y).
Since (24) holds and yk ∈ V , y∗k ∈ N̂Γ(yk) = NΓ(yk), by Theorem 3, there exists a sequence

of multipliers λk ∈ Λ(yk, y
∗
k)∩ κ‖y∗k‖BRq as k ∈ N. Consequently, we assume that there exists

c1 ≥ 0 such that ‖λk‖ ≤ c1 for all k. Let

ΨĨ(y
∗) := {λ ∈ Rq|∇g(y)Tλ = y∗, λi ≥ 0, i ∈ Ĩ, λi = 0, i 6∈ Ĩ}. (28)

By Hoffman’s Lemma, there is some constant β such that for every y∗ ∈ Rm with ΨĨ(y
∗) 6= ∅,

one has

d(λ,ΨĨ(y
∗)) ≤ β(‖∇g(y)Tλ− y∗‖+

∑
i∈Ĩ

max{−λi, 0}+
∑
i 6∈Ĩ

|λi|) ∀λ ∈ Rq. (29)

Since
∇g(y)Tλk − y∗ = tkv

∗
k + (∇g(y)−∇g(yk))

Tλk

and ‖∇g(y)−∇g(yk)‖ ≤ c2‖yk−y‖ = c2tk‖vk‖ for some c2 ≥ 0, by (29) we can find for each k
some λ̃k ∈ ΨĨ(y

∗) ⊆ Λ(y, y∗) with ‖λ̃k−λk‖ ≤ βtk(‖v∗k‖+c1c2‖vk‖). Taking µk := (λk−λ̃k)/tk
we have that (µk) is uniformly bounded. By passing to subsequence if necessary, we assume
that (λk) and (µk) are convergent to some λ ∈ Λ(y, y∗)∩κ‖y∗‖BRq , and some µ, respectively.
Obviously the sequence (λ̃k) converges to λ as well. Since λki = λ̃ki = 0, i 6∈ Ĩ, by virtue of

(27) we have µk
T∇g(y)v = 0 ∀k, implying

µ ∈ (∇g(y)v)⊥. (30)

Taking into account λk
T
g(yk) = 0 and (26), we obtain

0 = lim
k→∞

λk
T
g(yk)

tk
= lim

k→∞
λk

T∇g(y)vk = y∗T v.

Therefore combining the above with v ∈ TΓ(y), we have

v ∈ K(y, y∗). (31)

Further, we have for all λ′ ∈ Λ(y, y∗), since λ̃k ∈ Λ(y, y∗),

0 ≤ (λ̃k − λ′)T g(yk) = (λ̃k − λ′)T (g(y) + tk∇g(y)vk +
1

2
t2kv

T
k∇2g(y)vk + o(t2k))

= (λ̃k − λ′)T (
1

2
t2kv

T
k∇2g(y)vk + o(t2k)).

Dividing by t2k and passing to the limit, we obtain (λ− λ′)T vT∇2g(y)v ≥ 0 ∀λ′ ∈ Λ(y, y∗),
and hence λ ∈ Λ(y, y∗; v).

Since
y∗k = ∇g(y)T λ̃k + tkv

∗
k = ∇g(yk)

Tλk,
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we obtain

v∗ = lim
k→∞

v∗k = lim
k→∞

∇g(yk)
Tλk −∇g(y)T λ̃k

tk

= lim
k→∞

(∇g(yk)−∇g(y))Tλk +∇g(y)T (λk − λ̃k)
tk

= ∇2(λT g)(y)v +∇g(y)Tµ.

If µ ∈ TNRq−
(g(y))(λ), since (30) holds, by using Lemma 1 we have ∇g(y)Tµ ∈ NK(y,y∗)(v), and

hence the inclusion (25) is proved. Otherwise, by taking into account

TNRq−
(g(y))(λ) =

{
µ ∈ Rq | µi ≥ 0 if λi = 0 and i ∈ I(y)

µi = 0 if i 6∈ I(y)

}
,

and µi = 0, i 6∈ Ĩ, the set J := {i ∈ Ĩ |λi = 0, µi < 0} is not empty. Since µk converges to µ, we
can choose some index k̄ such that µk̄i = (λk̄i −λ̃k̄i )/tk̄ ≤ µi/2 ∀i ∈ J . Set µ̃ := µ+2(λ̃k̄−λ)/tk̄.
Then for all i with λi = 0, we have µ̃i ≥ µi and for all i ∈ J , we have

µ̃i = µi + 2(λ̃k̄i − λi)/tk̄ ≥ µi + 2(λ̃k̄i − λ̃k̄i )/tk̄ ≥ 0,

and therefore µ̃ ∈ TNRq−(g(y))
(λ). Observing that ∇g(y)T µ̃ = ∇g(y)Tµ because of λ, λ̃k̄ ∈

Λ(y, y∗), and taking into account Lemma 1 we have ∇g(y)T µ̃ ∈ NK(y,y∗)(v), and hence the
inclusion (25) is proved. This finishes the proof of the theorem.

Since the regular normal cone is the polar of the tangent cone, the following characteri-
zation of the regular normal cone of gph N̂Γ follows from the formula for the tangent cone in
Theorem 4.

Corollary 2. Assume that MSCQ is satisfied for the system g(y) ≤ 0 at ȳ ∈ Γ. Then, there is
a neighborhood V of ȳ such that for every (y, y∗) ∈ gph N̂Γ with y ∈ V the following assertion
holds: given any pair (w∗, w) ∈ N̂

gph N̂Γ
(y, y∗) we have w ∈ K(y, y∗) and

〈w∗, w〉+ wT∇2(λT g)(y)w ≤ 0 whenever λ ∈ Λ(y, y∗;w). (32)

Proof. Choose V such that (23) holds true for every y ∈ Γ ∩ V , and consider any (y, y∗) ∈
gph N̂Γ with y ∈ V and (w∗, w) ∈ N̂

gph N̂Γ
(y, y∗). By the definition of the regular normal

cone, we have N̂
gph N̂Γ

(y, y∗) =
(
T

gph N̂Γ
(y, y∗)

)◦
and, since {0}×NK(y,y∗)(0) ⊆ T

gph N̂Γ
(y, y∗),

we obtain
〈w∗, 0〉+ 〈w, v∗〉 ≤ 0 ∀v∗ ∈ NK(y,y∗)(0) = K(y, y∗)◦,

implying w ∈ cl convK(y, y∗) = K(y, y∗). By (23), we have (w,∇2(λT g)(y)w) ∈ T
gph N̂Γ

(y, y∗)

for every λ ∈ Λ(y, y∗;w), and therefore the claimed inequality

〈w∗, w〉+ 〈w,∇2(λT g)(y)w〉 = 〈w∗, w〉+ wT∇2(λT g)(y)w ≤ 0

follows.

The following result will be needed in the proof of Theorem 5.
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Lemma 2. Given ȳ ∈ Γ, assume that MSCQ holds at ȳ. Then there is a real κ′ > 0 such that
for any y ∈ Γ sufficiently close to ȳ, any normal vector y∗ ∈ N̂Γ(y) and any critical direction
v ∈ K(y, y∗) one has

Λ(y, y∗; v) ∩ E(y, y∗) ∩ κ′‖y∗‖BRq 6= ∅. (33)

Proof. Let κ > 0 be chosen according to Theorem 4, and consider y ∈ Γ as close to ȳ such
that MSCQ holds at y and (23) is valid for every y∗ ∈ N̂Γ(y). Consider y∗ ∈ N̂Γ(y) and
a critical direction v ∈ K(y, y∗). By [17, Proposition 4.3] we have Λ(y, y∗; v) 6= ∅ and, by
taking any λ ∈ Λ(y, y∗; v), we obtain from Theorem 4 that (v, v∗) ∈ T

gph N̂Γ
(y, y∗) with v∗ =

∇2(λT g)(y)v. Applying Theorem 4 once more, we see that v∗ ∈ ∇2(λ̃T g)(y)v + NK(y,y∗)(v)

with λ̃ ∈ Λ(y, y∗; v) ∩ κ‖y∗‖BRq , showing that Λ(y, y∗; v) ∩ κ‖y∗‖BRq 6= ∅. Next consider a
solution λ̄ of the linear optimization problem

min

q∑
i=1

λi subject to λ ∈ Λ(y, y∗; v).

We can choose λ̄ as an extreme point of the polyhedron Λ(y, y∗; v), implying λ̄ ∈ E(y, y∗).
Since Λ(y, y∗; v) ⊆ Rq+, we obtain

‖λ̄‖ ≤
q∑
i=1

|λ̄i| =
q∑
i=1

λ̄i ≤
q∑
i=1

λ̃i ≤
√
q‖λ̃‖ ≤ √qκ‖y∗‖,

and hence (33) follows with κ′ = κ
√
q.

We are now in position to state a verifiable sufficient condition for MSCQ to hold for
problem (MPEC).

Theorem 5. Given (x̄, ȳ) ∈ Ω defined as in (18), assume that MSCQ holds both for the
lower level problem constraints g(y) ≤ 0 at ȳ and for the upper level constraints G(x, y) ≤ 0
at (x̄, ȳ). Further assume that

∇xG(x̄, ȳ)T η = 0, η ∈ NRp
−

(G(x̄, ȳ)) =⇒ ∇yG(x̄, ȳ)T η = 0, (34)

and assume that there do not exist (u, v) 6= 0, λ ∈ Λ(ȳ,−φ(x̄, ȳ); v) ∩ E(ȳ,−φ(x̄, ȳ)), η ∈ Rp+
and w 6= 0 satisfying

∇G(x̄, ȳ)(u, v) ∈ TRp
−

(G(x̄, ȳ)), (35)

(v,−∇xφ(x̄, ȳ)u−∇yφ(x̄, ȳ)v) ∈ T
gph N̂Γ

(ȳ,−φ(x̄, ȳ)), (36)

−∇xφ(x̄, ȳ)Tw +∇xG(x̄, ȳ)T η = 0, η ∈ NRp
−

(G(x̄, ȳ)), ηT∇G(x̄, ȳ)(u, v) = 0, (37)

∇gi(ȳ)w = 0, i ∈ I+(λ), wT
(
∇yφ(x̄, ȳ) +∇2(λT g(ȳ)

)
w − ηT∇yG(x̄, ȳ)w ≤ 0, (38)

where the tangent cone T
gph N̂Γ

(ȳ,−φ(x̄, ȳ)) can be calculated as in Theorem 4. Then the
multifunction MMPEC defined by

MMPEC(x, y) :=

(
φ(x, y) + N̂Γ(y)
G(x, y)− Rp−

)
(39)

is metrically subregular at
(
(x̄, ȳ), 0

)
.
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Proof. By Proposition 3, it suffices to show that the multifunction P (x, y) −D with P and
D given by

P (x, y) :=

(
y,−φ(x, y)
G(x, y)

)
and D := gph N̂Γ × Rp−

is metrically subregular at
(
(x̄, ȳ), 0

)
. We now invoke Theorem 2 with

P1(x, y) := (y,−φ(x, y)), P2(x, y) := G(x, y), D1 := gph N̂Γ, D2 := Rp−.

By the assumption, P2(x, y) − D2 is metrically subregular at
(
(x̄, ȳ), 0

)
. Assume to the

contrary that P (·, ·) − D is not metrically subregular at
(
(x̄, ȳ), 0

)
. Then by Theorem 2,

there exist 0 6= z = (u, v) ∈ T lin
Ω (x̄, ȳ) and a directional limiting normal z∗ = (w∗, w, η) ∈

Rm × Rm × Rp such that ∇P (x̄, ȳ)T z∗ = 0, (w∗, w) ∈ N
gph N̂Γ

(P1(x̄, ȳ);∇P1(x̄, ȳ)z), η ∈
NRp
−

(
G(x̄, ȳ);∇G(x̄, ȳ)(u, v)

)
and (w∗, w) 6= 0.

Hence

0 = ∇P (x̄, ȳ)T z∗ =

(
−∇xφ(x̄, ȳ)Tw +∇xG(x̄, ȳ)T η

w∗ −∇yφ(x̄, ȳ)Tw +∇yG(x̄, ȳ)T η

)
. (40)

Since z = (u, v) ∈ T lin
Ω (x̄, ȳ), by the rule of tangents to product sets from Proposition 1, we

obtain

∇P (x̄, ȳ)z =

(
(v,−∇xφ(x̄, ȳ)u−∇yφ(x̄, ȳ)v)

∇G(x̄, ȳ)(u, v)

)
∈ T

gph N̂Γ
(ȳ, ȳ∗)× TRp

−

(
G(x̄, ȳ)

)
,

where ȳ∗ := −φ(x̄, ȳ). It follows that (v,−∇xφ(x̄, ȳ)u − ∇yφ(x̄, ȳ)v) ∈ T
gph N̂Γ

(ȳ, ȳ∗), and

consequently by Theorem 4 we have v ∈ K(ȳ, ȳ∗). Further we deduce from Proposition 2 that

η ∈ NRp
−

(G(x̄, ȳ)), ηT∇G(x̄, ȳ)(u, v) = 0.

So far we have shown that u, v, η, w fulfill (35)-(37). Further we have w 6= 0, because if
w = 0, then by virtue of (34) and (40) we would obtain ∇xG(x̄, ȳ)T η = 0, ∇yG(x̄, ȳ)T η = 0
and consequently w∗ = 0, contradicting (w∗, w) 6= 0. If we can show the existence of λ ∈
Λ(ȳ, ȳ∗; v)∩E(ȳ, ȳ∗) such that (38) holds, then we have obtained the desired contradiction to
our assumptions, and this would complete the proof.

Since (w∗, w) ∈ N
gph N̂Γ

(P1(x̄, ȳ);∇P1(x̄, ȳ)z), by the definition of the directional limiting

normal cone, there are sequences tk ↓ 0, dk = (vk, v
∗
k) ∈ Rm × Rm and (w∗k, wk) ∈ Rm × Rm

satisfying (w∗k, wk) ∈ N̂
gph N̂Γ

(P1(x̄, ȳ) + tkdk) ∀k and (dk, w
∗
k, wk) → (∇P1(x̄, ȳ)z, w∗, w).

That is, (yk, y
∗
k) := (ȳ, ȳ∗) + tk(vk, v

∗
k) ∈ gph N̂Γ, (w∗k, wk) ∈ N̂gph N̂Γ

(yk, y
∗
k) and (vk, v

∗
k) →

(v,−∇xφ(x̄, ȳ)u−∇yφ(x̄, ȳ)v). By passing to a subsequence if necessary, we can assume that
MSCQ holds for g(y) ≤ 0 at yk for all k, and by invoking Corollary 2 we obtain wk ∈ K(yk, y

∗
k),

and
w∗k

Twk + wTk∇2(λT g)(yk)wk ≤ 0 whenever λ ∈ Λ(yk, y
∗
k;wk). (41)

By Lemma 2, we can find a uniformly bounded sequence λk ∈ Λ(yk, y
∗
k;wk) ∩ E(yk, y

∗
k). In

particular, following from the proof of Lemma 2, we can choose λk as an optimal solution of
the linear optimization problem

min

q∑
i=1

λi subject to λ ∈ Λ(yk, y
∗
k;wk). (42)

20



By passing once more to a subsequence if necessary, we can assume that λk converges to λ̄,
and we easily conclude λ̄ ∈ Λ(ȳ, ȳ∗) and w∗Tw + wT∇2(λ̄T g)(ȳ)w ≤ 0, which together with
w∗ −∇yφ(x̄, ȳ)Tw +∇yG(x̄, ȳ)T η = 0 (see (40)) results in

wT
(
∇yφ(x̄, ȳ) +∇2(λ̄T g)(ȳ)

)
w − ηT∇yG(x̄, ȳ)w ≤ 0. (43)

Further, we can assume that I+(λ̄) ⊆ I+(λk) and therefore, because of λk ∈ NRq
−

(g(yk)),

λ̄T g(yk) = λk
T
g(yk) = 0. Hence for every λ ∈ Λ(ȳ, ȳ∗) we obtain

0 ≥ (λ− λ̄)T g(yk)

= (λ− λ̄)T g(ȳ) +∇((λ− λ̄)T g)(ȳ)(yk − ȳ)

+
1

2
(yk − ȳ)T∇2((λ− λ̄)T g)(ȳ)(yk − ȳ) + o(‖yk − ȳ‖2)

=
t2k
2
vTk∇2((λ− λ̄)T g)(ȳ)vk + o(t2k‖vk‖2).

Dividing by t2k/2 and passing to the limit yields 0 ≥ vT∇2((λ − λ̄)T g)(ȳ)v, and thus λ̄ ∈
Λ(ȳ, ȳ∗; v). Since wk ∈ K(yk, y

∗
k), by Proposition 6, we have ∇gi(yk)wk = 0, i ∈ I+(λk), from

which ∇gi(ȳ)w = 0, i ∈ I+(λ̄) follows.
It is known that the polyhedron Λ(ȳ, ȳ∗) can be represented as the sum of the convex

hull of its extreme points E(ȳ, ȳ∗) and its recession cone R := {λ ∈ NRq
−

(g(ȳ))|∇g(ȳ)Tλ =

0}. We show by contradiction that λ̄ ∈ conv E(ȳ, ȳ∗). Assuming on the contrary that λ̄ 6∈
conv E(ȳ, ȳ∗), then λ̄ has the representation λ̄ = λc + λr with λc ∈ conv E(ȳ, ȳ∗) and λr 6= 0
belongs to the recession cone R, i.e.

λr ∈ NRq
−

(g(ȳ)), ∇g(ȳ)Tλr = 0. (44)

Since λk ∈ Λ(yk, y
∗
k;wk), it is a solution to the linear program:

max
λ≥0

wTk∇2(λT g)(yk)(wk)

s.t. ∇g(yk)
Tλ = y∗k,

λT g(yk) = 0.

By the duality theory of linear programming, for each k there is some rk ∈ Rm verifying

∇gi(yk)rk + wTk∇2gi(yk)wk ≤ 0, λki (∇gi(yk)rk + wTk∇2gi(yk)wk) = 0, i ∈ I(yk).

Since Λ(yk, y
∗
k;wk) = {λ ∈ Λ(yk, y

∗
k) |wTk∇2(λT g)(yk)wk ≥ θ(yk, y

∗
k;wk)} and λk solves (42),

again by the duality theory of linear programming we can find for each k some sk ∈ Rm and
βk ∈ R+ such that

∇gi(yk)sk + βkw
T
k∇2gi(yk)wk ≤ 1, λki (∇gi(yk)sk + βkw

T
k∇2gi(yk)wk − 1) = 0, i ∈ I(yk).

Next we define for every k the elements λ̃k ∈ Rq+, ξ∗k ∈ Rm by

λ̃ki :=


λri if i ∈ I+(λr),
1
k if i ∈ I+(λk) \ I+(λr),

0 else,

ξ∗k := ∇g(yk)
T λ̃k. (45)
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Since I+(λr) ⊆ I+(λ̄) ⊆ I+(λk), we obtain I+(λ̃k) = I+(λk), λ̃k ∈ NRq
−

(g(yk)) and ξ∗k ∈
NΓ(yk). Thus wk ∈ K(yk, ξ

∗
k) by Proposition 6 and

∇gi(yk)rk + wTk∇2gi(yk)wk ≤ 0, λ̃ki (∇gi(yk)rk + wTk∇2gi(yk)wk) = 0, i ∈ I(yk),

implying λ̃k ∈ Λ(yk, ξ
∗
k;wk) by duality theory of linear programming. Moreover, because of

I+(λ̃k) = I+(λk) we also have

∇gi(yk)sk + βkw
T
k∇2gi(yk)wk ≤ 1, λ̃ki (∇gi(yk)sk + βkw

T
k∇2gi(yk)wk − 1) = 0, i ∈ I(yk),

implying that λ̃k is solution of the linear program

min

q∑
i=1

λi subject to λ ∈ Λ(yk, ξ
∗
k;wk),

and, together with Λ(yk, ξ
∗
k;wk) ⊆ Rq+,

min{‖λ‖ |λ ∈ Λ(yk, ξ
∗
k;wk)} ≥

1
√
q

min{
q∑
i=1

λi |λ ∈ Λ(yk, ξ
∗
k;wk)}≥

∑q
i=1 λ

r
i√

q
:= β > 0.

Taking into account that limk→∞ λ̃
k = λr and (44), (45), we conclude limk→∞ ‖ξ∗k‖ = 0,

showing that for every real κ′ we have

Λ(yk, ξ
∗
k;wk) ∩ E(yk, ξ

∗
k) ∩ κ′‖ξ∗k‖BRq ⊆ Λ(yk, ξ

∗
k;wk) ∩ κ′‖ξ∗k‖BRq = ∅

for all k sufficiently large contradicting the statement of Lemma 2. Hence λ̄ ∈ conv E(ȳ, ȳ∗)
and thus λ̄ admits a representation as convex combination

λ̄ =
N∑
j=1

αj λ̂
j with

N∑
j=1

αj = 1, 0 < αj ≤ 1, λ̂j ∈ E(ȳ, ȳ∗), j = 1, . . . , N.

Since λ̄ ∈ Λ(ȳ, ȳ∗; v), we have θ(ȳ, ȳ∗; v) = vT∇2(λ̄T g)(ȳ)v =
∑N

j=1 αjv
T∇2(λ̂j

T
g)(ȳ)v imply-

ing, together with vT∇2(λ̂j
T
g)(ȳ)v ≤ θ(ȳ, ȳ∗; v), that vT∇2(λ̂j

T
g)(ȳ)v = θ(ȳ, ȳ∗; v). Conse-

quently λ̂j ∈ Λ(ȳ, ȳ∗; v). It follows from (43) that

N∑
j=1

αj

(
wT
(
∇yφ(x̄, ȳ) +∇2(λ̂j

T
g)(ȳ)

)
w − ηT∇yG(x̄, ȳ)w

)
= wT

(
∇yφ(x̄, ȳ) +∇2(λ̄T g)(ȳ)

)
w − ηT∇yG(x̄, ȳ)w ≤ 0,

and hence there exists some index j̄ with

wT
(
∇yφ(x̄, ȳ) +∇2(λ̂j̄

T
g)(ȳ)

)
w − ηT∇yG(x̄, ȳ)w ≤ 0.

Further, by Proposition 6, we have ∇gi(ȳ)w = 0 ∀i ∈ I+(λ̄) ⊇ I+(λ̂j̄), and we see that (38)
is fulfilled with λ = λ̂j̄ .
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Example 2 (Example 1 revisited). Instead of reformulating the MPEC as a (MPCC), we
consider the MPEC in the original form (MPEC). Since for the constraints g(y) ≤ 0 of the
lower level problem, MFCQ is fulfilled at ȳ and the gradients of the upper level constraints
G(x, y) ≤ 0 are linearly independent, MSCQ holds for both constraint systems. Condition
(34) is obviously fulfilled due to ∇yG(x, y) = 0. Setting ȳ∗ := −φ(x̄, ȳ) = (0, 0, 1), as in
Example 1 we obtain

Λ(ȳ, ȳ∗) = {(λ1, λ2) ∈ R2
+ |λ1 + λ2 = 1}.

Since ∇g1(ȳ) = ∇g2(ȳ) = (0, 0, 1) and for every λ ∈ Λ(ȳ, ȳ∗) either λ1 > 0 or λ2 > 0, we
deduce

W (λ) := {w ∈ R3 | ∇gi(ȳ)w = 0, i ∈ I+(λ)} = R2 × {0} ∀λ ∈ Λ(ȳ, ȳ∗).

Since

wT
(
∇yφ(x̄, ȳ) +∇2(λT g)(ȳ)

)
w − ηT∇yG(x̄, ȳ)w = (1 + λ1)w2

1 + (1 + λ2)w2
2 ≥ 0,

there cannot exist 0 6= w ∈W (λ) and λ ∈ Λ(ȳ, ȳ∗) fulfilling (38). Hence by virtue of Theorem
5, MSCQ holds at (x̄, ȳ).
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