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There are di�erent approaches for the construction of e�cient parallel solvers. The�rst one is the application of Domain Decomposition (DD) preconditioners within thepreconditioned conjugate gradient (PCG) method. For example, the non-overlapping DD(NODD) methods, the main ideas of which are presented, e.g., in [3, 7, 8, 14, 13, 18,28], have been applied successfully. Here, one has to de�ne preconditioning matrices forthe sti�ness matrices of the corresponding problems in the subdomains, a preconditionerfor the Schur complement, and a basis transformation (for more details see, e.g., [14,13, 11, 8, 27, 28]). The appropriate de�nition of these preconditioners and of the basistransformation leads to (almost) optimal PCG methods, i.e. the number of iterations forgetting an approximate solution with a relative accuracy " is of the order O(lnh�1q ln "�1)or O(ln "�1) (hq denotes the dicretization parameter).A second possibility for getting parallel solvers is the implementation of well-knownglobal optimal iterative solvers, as e.g. multigrid methods or PCG methods with BPXpreconditioners, on parallel machines. Using a NODD data structure, these solvers need,just as the DD-PCG method, a communication cost per iteration step which is one orderlower than the FE problem itself.In particular, a global multigrid process has been implemented in such a way thatthe multigrid interpolation and restriction operators can be performed without any com-munication [24]. Thus, communication is needed in the smoother and the coarse{gridsolver only. The ideas presented in [24] enable us to implement the Gauss{Seidel smootherwith the same communication e�ort as it is required by the Jacobi smoother. Further, aSchur complement solver with preconditioning, originating from the local DD methods, isemployed as coarse{grid solver.A comparison of the CG method with DD preconditioner (DD-PCG) and the globalmultigrid (GMG) method as linear problem solvers in a nested Newton framework (i.e.an inexact Newton method [5, 6], see [17, 19, 20, 21]) can be found in [22]. Therein, wepresent parallel e�ciency results, too. We discovered that the Newton-GMG method canbe faster than the Newton-DD-PCG method for model problems and a practical problemwith low nonlinearity, whereas Newton-DD-PCG shows the better scalability. We observeda scaled e�ciency of 0.9 for the Newton-DD-PCG method and of 0.7 for the Newton-GMGmethod.In addition to the solvers mentioned above, we implemented a parallel CG algorithmwith global BPX preconditioner (GBPX-PCG) [4] which uses the NODD data structure.Further, the GMG method can serve as a preconditioner (GMG-PCG) in the parallel CGalgorithm (cf. [25]), too.The aim of the present paper is to compare the performance and robustness of thedi�erent parallel algorithms for di�cult nonlinear practical problems. This includes testsfor the magnetic �eld computation in electric machines with complicated interior geometryand strong nonlinearity, i.e., high saturation of the iron parts. The latter causes a localanisotropy of the linear Jacobi operator. Further, we present test calculations for anothernonlinear test problem originating from a shape design problem (see [9, 26]) that had beenalready examined in [17, 21].The rest of the paper is organized as follows. In Section 2, we formulate the elec-tromagnetic �eld problem as a nonlinear boundary value problem. We apply the nestedNewton-DD method for linearization. We discuss some properties of the discrete Jacobioperators involved in the Newton method. In Section 3, we describe the di�erent methodsfor solving the arising linear problems. Section 4 is devoted to the numerical results. Wepresent performance results of the magnetostatic �eld simulation for a direct current motor(DC motor) and an induction machine as well as for the nonlinear shape design problem.Finally, we add some concluding remarks in Section 5.2



2 The nonlinear problem and its linearizationA two{dimensional stationary magnetic �eld problem involving the saturation e�ects offerromagnetic materials can be written as a nonlinear boundary value problem in its vari-ational formulation as follows:Find u 2 V = H10 (
) such thata(u; v) = hf; vi 8v 2 V; (1)where a(u; v) = Z
 �(x; jruj) r>u rv dx ;and hf; vi = Z
 (Sv �H0y@v@x + H0x@v@y) dx :Here, 
 � R2 denotes a bounded domain. The physical model has been developed fromMaxwell's equations, see [18] for details. We assume that 
 representing the cross{sectionof some electromagnetic device lies in the x{y{plane of R3. Then, the solution u is thez{component of some vector potential ~A. The z{component of the current density is repre-sented by S, and the vector ~H0 = (H0x;H0y; 0)> describes the magnetization of permanentmagnets. The nonlinearity of the problem is represented by the dependence of � on theabsolute value of the magnetic induction, B = jrot~Aj = jruj.We assume that �
 consists of subdomains�
 = NM[j=1 �̂
j; with 
̂i \ 
̂k = ; 8i 6= k:The 
̂j's represent materials with di�erent magnetic properties (iron, copper, air, perma-nentmagnetic materials) in the cross{section of an electromagnetic device. We assume thatthe function � depends on the position x 2 
, but � becomes independent of x inside eachsubdomain 
̂j , i.e. �(x;B) = �(j)(B) if x 2 
̂j; j = 1; : : : ; NM : (2)The function �(j)(B) is a constant, �(j)(B) � �(j)1 , if the material in 
̂j is not ferromagnetic(e.g., copper, air, vacuum). Assuming certain monotonicity and boundedness conditionson the functions �(j)(:) we can prove the existence and uniqueness of the solution of thevariational problem (1) [17, 18]. Standard FE discretization with linear triangular elementshas been discussed in [18]. Therein, the algorithm for monotonicity preserving splineinterpolation of a pointwise given material function �(j)(:) is described, error estimates aregiven, too.The parallel nested Newton (PNN) method for solving the discrete problems combininga Newton-like method with the nested iteration and a suitable parallel solver, is describedin detail, e.g., in [21, 19, 20, 22]. Therefore, we recall the main de�nitions only.The substructuring into non-overlapping subdomains 
i; i 2 I? := f1; : : : ; pg, whichare assigned to p processors of the MIMD computer can be de�ned as follows�
 = [i2I? �
i; where �̂
j = [i2Ij �
i 8j = 1; : : : ; NM (3)with index sets ful�llingIj � I? := f1; : : : ; pg ; NM[j=1 Ij = I?; Ij \ Ik = ; 8j 6= k;3



i.e., the subdomains 
̂j determined by the materials may be decomposed further (cf. [13,14]). We further assume that in each subdomain �
i there is a multilevel sequence oflinear �nite element discretizations such that this discretization process results in conformtriangulations Tq; q = 1; : : : ; l; of 
 creating a nested sequenceV1 � V2 � � � � � Vq � � � � � Vl � V = H10 (
) (4)of spaces of linear �nite elements. The FE isomorphism is denoted by �q : RNq �! Vq.We obtain a sequence of variational problems for q = 1; : : : ; l:Find uq 2 Vq � V such that aq(uq; vq) = hfq; vqi 8vq 2 Vq; (5)and a sequence of equivalent nonlinear �nite element equationsKquq = fq; q = 1; : : : ; l; (6)with nonlinear operators Kq : RNq �! RNq ;solution vectors uq 2 RNq and vectors fq 2 RNq .In the Newton method, we have to solve linear systems of the formK 0q[vq]wq = dq (7)with the Fr�echet derivative of Kq at a vector vq,K 0q[vq] : RNq ! RNq q = 1; : : : ; l;which can be represented by the Jacobi matrix.The analysis shows that this operator can be strongly anisotropic. We recall from [17]that the Jacobian can be rewritten as(K 0q[vq]wq; zq)q = XK2Tqmeas (K) r>�qwq Qj(K)(r�qvq) r�qzq 8wq; zq 2 RNq ; (8)with Qj(t) = �(j)(jtj)I2 + �(j)0(jtj)jtj t t>; (9)where t = (t1; t2)> 2 R2, the matrix I2 2 R2�2 denotes the identity matrix, and j(K) isthe corresponding material index, i.e., j(K) is de�ned by K � �̂
j(K) 8K 2 Tq, cf. (2).The matrix Qj 2 R2�2 can be rewritten asQj = 0@ �(j)(jtj) + �(j)0(jtj)jtj t21 �(j)0(jtj)jtj t1t2�(j)0(jtj)jtj t1t2 �(j)(jtj) + �(j)0(jtj)jtj t22 1A : (10)Obviously, we have Qj = diag(�(j)1 ; �(j)1 ) for not ferromagnetic materials. For ferromag-netic materials, there are values of the magnetic induction B = jtj for which �(j)0 is large,in particular for intermediate values between the linear part�(j)(B) � �(j)1 8B � B14



and the asymptotic behaviour�(j)(B) �! �1 = 1=�0 for B !1;since �(j)(B) is a monotone increasing function [18]. Then the relationjtj�(j)0(jtj)� �(j)(jtj) (11)holds, and the Jacobi operator becomes the discretization of an anisotropic operator.For the example t = (t1; 0)>, we get from (10) that Qj = diag(q11; q22) with q22 =�(j)(jtj) and q11 = q22 + jtj�(j)0(jtj) � q22 holds, and the anisotropy is obvious. Theanisotropy is, of course, not restricted to that direction of t = r�qvq.3 Parallel solvers for linear problemsThe standard NODD data structure and the parallelization strategy are presented, e.g., in[13]. The linear equations (7) can be rewritten in the standard block form [13]J  wCwI! =  JC JCIJIC JI !  wCwI! =  dCdI! (12)where indices "I" and "C" correspond to the nodes belonging to the interior of subdomains
i and to the coupling boundaries, respectively, and dim(wI) = NI;q; dim(wC) = NC;q.Note that JI = diag (JI;i)i=1;2;:::;p is a block-diagonal matrix.DD preconditioned conjugate gradient method:The parallel CG algorithm with DD preconditioning for solving the systems (12) can beimplemented in a standard way, see [13, 23]. It runs completely in parallel with theexception of the two scalar products, and the preconditioning. The DD preconditioner forJ , i.e. the matrix C withC =  IC JCIB�TIO II ! CC OO CI! IC OB�1I JIC II! (13)contains three components, i.e., the preconditioners CC and CI = diag (CI;i)i=1;2;:::;p, andthe regular matrix BI = diag (BI;i)i=1;2;:::;p de�ning the basis transformation, which canbe adapted to the matrix J in a suitable way [13].Here, we choose a multigrid V -cycle with one pre- and one postsmoothing step ofGauss-Seidel type in the symmetric Multiplicative Schwarz Method [13] for CI , and BIis implicitly de�ned by hierarchical extension (formally EIC = �B�1I JIC) [15]. We applya Schur complement preconditioner CC following Bramble/Pasciak/Schatz [3], which usesthe idea of Dryja [7] on the coupling boundaries and a global crosspoint system (BPS-D),or a Bramble/Pasciak/Xu [29, 4] type Schur complement preconditioner together with aglobal crosspoint system (S-BPX).Spectral equivalence between J and C has been proved in [13]. Together with the resultsof [3, 4, 15, 17, 29] we can prove that the numerical e�ort spent for one Newton step ongrid q is at most of order O(Nq ln lnh�1q ln"�1lin ) in the (S-BPX) case, i.e. almost optimal.In the (BPS-D) case we have to add a factor lnh�1q . Here hq denotes the discretizationparameter, such that Nq = O(h�2q ). We refer to [23, 21] for details.Global multigrid method:In the NODD data structure, the interpolation and restriction procedures do not need anycommunication. Further, we developed parallel Gauss-Seidel type smoothers and Jacobi5



smoothers. Both types of smoothers require the same communication e�ort, i.e., one so-called vector type conversion per iteration step. This procedure requires a data exchangeof the order O(N0:5q ) between the processors [1, 24]. The Gauss-Seidel smoother executesthe smoothing �rst for the coupling nodes ("C"), and then for the inner nodes ("I"), i.e.,"forward", or in the reverse order, "backward" (see [24]).We utilize parallelized preconditioned conjugate gradient methods with a (BPS-D) pre-conditioner applied to the corresponding Schur complement system as coarse grid solvers.Here, communication is required in the two scalar products and in the preconditioner,whereas all other operations are completely parallel. The parallel multigrid algorithm isdescribed in detail in [24, 22].Obviously, the GMG method can serve as a preconditioner in the CG algorithm,too [25].Parallel global BPX method:We realize the parallel CG method with BPX preconditioner [4] in a similar manner. In ourimplementation, the data of di�erent levels is exchanged together, i.e., the number of dataexchange steps (the startup time) is independent of the number of levels. Additionally, weneed a coarse-grid solver which coincides completely with that of the GMG method.4 Numerical results4.1 ImplementationThe complete algorithms are implemented in the parallel code FEMBEM [11, 24]. Thus,all parts of the parallel nested Newton algorithm, such as the grid generation, the matrixgeneration and representation, and the defect computation, are identical for all solvingmethods. We tested the algorithms on the parallel system GC-Power Plus (with maximal64 processors Power PC 601) with the operating system Parix. In the following we describeour choice of components and parameters in the solvers for linear problems.Initially, the linear problems arising in the Newton method are solved with a relativeaccuracy of "lin = 0:01. This parameter "lin can be adapted to the quadratic convergencespeed of the Newton method in later Newton iterations [17].In the (GMG) solver, we used a V -cycle with 2 pre- and 2 postsmoothing steps of theparallelized Gauss-Seidel type, and we restrict the maximal number of multigrid iterationsinitially to 2. This number is doubled if the multigrid convergence rate a�ects the Newtonrate essentially, see [17]. With respect to the coarse grid solver, a preconditioned Schurcomplement CG solver turned out to be su�cient where best results have been obtainedwith a relative accuracy of 0:1 in the multilevel case (q � 2).In the GMG-PCG method, we apply one V -cycle as a preconditioner. In the GBPX-PCG method, we scale the restricted right-hand side by the diagonal elements of the Jacobimatrix.To be sure, we demand an error reduction by the relative accuracy " = 10�6 on the�nest grid, therefore, we apply 4 or 5 Newton iterations on the �nest grid. From the nestediteration we can expect that for obtaining an approximate solution which di�ers from theexact solution in the order of the discretization error, two Newton iterations are su�cient,i.e., we can nearly halve the processing time presented in the tables.6



Figure 1: Domain decomposition and level lines for the DC machine4.2 Direct current motorA technical direct current (DC) motor which is excited by permanent magnets serves asan example of practical interest. The machine has a diameter of 50 mm, it is described indetail in [17]. The motor contains two di�erent ferromagnetic materials; the rotor consistsof dynamo sheet, the case is made from rolled steel. In Figure 1, we present the decom-position of the domain 
 into 32 subdomains and the level lines of the magnetic vectorpotential. This decomposition is generated automatically by means of the preprocessingtool ADDPRE (Adaptive DD Preprozessor, see [10, 12]). The performance of the di�erentalgorithms is compared in Table 1.Table 1: Performance for the DC machineSolver DD-PCG GMG GMG GBPX(S-BPX) -PCG -PCGNewton iterations 1st grid 6 6 6 6Newton iterations 2nd grid 2 2 2 2CG/MG iterations 2nd grid 19,21 2,2 2,3 12,11Newton iterations 3rd grid 2 2 2 2CG/MG iterations 3rd grid 16,17 2,2 2,3 12,12Newton iterations 4th grid 2 2 2 2CG/MG iterations 4th grid 16,17 2,2 2,2 11,12Newton iterations 5th grid 4 4 4 4CG/MG iterations 5th grid 16,22,16,22 2,2,2,2 2,3,2,3 11,17,16,20Time (system generation) 28.0 27.2 27.2 27.2Time (solver) 137.9 36.4 49.8 87.4Total time 165.9 63.6 77.0 114.6Time in seconds, GC-Power Plus, 32 processors (subdomains); 5 grids, 409 948 unknowns,relative accuracy " = 10�6We �nd that the GMG method has the best performance. This is due to the excellentconvergence properties of the multigrid iteration that keep the number of iterations small,whereas DD-PCG and GBPX-PCG need more iterations to achieve the relative accuracy"lin = 0:01. 7



Although the ratio of anisotropy, i.e. the quotient of the eigenvalues of the matrixQj (cf.(10)), is about 10 in some �nite elements, the anisotropy does not a�ect the convergenceof the GMG method in this example.4.3 Induction machineThe second example of technical interest, an induction machine (asynchronous motor), isa more challenging one due to its very complicated interior geometry and the strongerinuence of saturation (i.e., a stronger nonlinearity). Indeed, we have an air gap of 0.2 mmwhere the coe�cient has a jump by a factor of more than 1000, whereas the machine hasa diameter of 45 mm. The electro-magnetic �eld is simulated for a state with currents inthe stator, but no rotor currents. We present the automatically generated decompositionof the cross-section of the machine into 64 subdomains [10, 12] and level lines in Figure 2,performance results in Table 2.
Figure 2: Domain decomposition and level lines for the induction machineNote that in Table 2 for the (GMG) with 2 Gauss-Seidel "backward" pre-smoothingand 2 "backward" post-smoothing steps, (2b,2b), we achieved the best performance of allsolvers. But, for the same number of "forward" Gauss-Seidel steps, (2f,2f), the multigridsolver on the levels q = 3; 4; 5 even did not converge.We discovered that in large areas of the machine the ratio of anisotropy, i.e. the quo-tient of the eigenvalues of the matrix Qj (cf. (10)), is between 17 and 18. Therefore, theGauss-Seidel iteration may be a poor smoother [16]. We conclude from (10) that the dom-inance direction of the anisotropy is determined by the direction of t. Thus, it dependson the direction of rujq for the current approximate solution ujq. The direction of rujq isperpendicular to the direction of the magnetic induction ~Bjq. It di�ers for di�erent partsof a machine, and it cannot be predicted a priori for other than model problems.For Table 3, the current density is reduced by a factor 0:1. Consequently, the magneticinduction is lower. Various combinations of Gauss-Seidel smoothers perform well. Here,we have 4 Newton iterations on level 1, and 2 Newton iterations with 2 multigrid cycleson the levels 2, 3, and 4 for all 4 columns. The abbreviation "fb" denotes a "forward"followed by a "backward" step.The application of the MG algorithm for de�ning a preconditioner in the PCG methodgives a more robust solver. We observed that (GMG-PCG) does converge for severalvariants of Gauss-Seidel smoothers, see Table 4.8



Table 2: Performance for the induction machineSolver DD-PCG GMG GMG-PCG GBPX(BPS-D) (2b,2b) (2b,2b) -PCGNewton iterations 1st grid 11 11 11 11Newton iterations 2nd grid 2 2 2 2CG/MG iterations 2nd grid 43,55 2,2 2,2 13,11Newton iterations 3rd grid 2 2 2 2CG/MG iterations 3rd grid 42,30 2,2 3,3 15,18Newton iterations 4th grid 2 2 2 2CG/MG iterations 4th grid 13,81 2,2 3,3 16,21Newton iterations 5th grid 5 5 5 5CG/MG iterations 5th grid 36,61,60,74,61 2,2,4,8,8 3,4,3,4,5 17,29,35,39,34Time (system generation) 49.5 48.2 48.3 50.2Time (solver) 550.2 295.9 347.2 848.8Total time 599.7 344.1 395.5 899.0Time in seconds, GC-Power Plus, 64 processors (subdomains); 5 grids, 549 091 unknowns,relative accuracy " = 10�6, current density J (cf. Table 3)Table 3: Performance for the induction machine with reduced current density (GMG)Smoother (2f,2f) (2b,2b) (fb,fb) (2f,2b)Newton iterations 5th grid 4 4 5 5MG iterations 5th grid 2,2,4,8 2,2,4,8 2,2,4,8,8 2,2,4,8,8GC-Power Plus, 64 processors (subdomains); 5 grids, 549 091 unknowns,relative accuracy " = 10�6, current density 0:1 � JTable 4: Performance for the induction machine (GMG-PCG)Smoother (2f,2b) (fb,fb) (2b,2b) (2f,2f)Newton iterations 1st grid 11 11 11 11Newton iterations 2nd grid 2 2 2 2CG iterations 2nd grid 3,3 3,3 2,2 2,2Newton iterations 3rd grid 2 2 2 2CG iterations 3rd grid 3,3 3,3 3,3 3,3Newton iterations 4th grid 2 2 2 2CG iterations 4th grid 3,3 3,4 3,3 3,3Newton iterations 5th grid 5 5 5 5CG iterations 5th grid 3,4,4,5,3 3,4,5,5,5 3,4,3,4,5 3,4,3,4,4GC-Power Plus, 64 processors (subdomains); 5 grids, 549 091 unknowns,relative accuracy " = 10�6, current density J (cf. Table 3)9



4.4 Another nonlinear test problemThis example demonstrates the application of the algorithms to a quite di�erent nonlinearproblem.Consider the problem in 
 = (0; 1) � (0; 1) � R2:Find u 2 V = H10 (
) such thatZ
  (jruj) r>u rv dx = Z
 v dx 8v 2 V (14)where  (z) = 8><>: 2 if z2 � 0:0081 if z2 � 0:032p0:032=z else. (15)The problem arises in the theory of elasticity (see [26] and [9]). We want to constructan in�nitely long elastic bar of given cross{section 
 with maximal torsional rigidity fromtwo di�erent linearly elastic materials of given shear moduli. The proportions of thesematerials are prescribed. The problem has nearly the same form as (1) but it is notstrongly monotone. Further,  0 is not continuous.The problem served as a test example for the Full Multigrid Newton Technique usingthe program FEMGP on a personal computer, see [17], and for the nested Newton-DD-PCG method in [21]. Our �rst aim is to demonstrate the performance of the algorithms.Further, we want to check whether in the "homogenized region", i.e., the region where0:008 � jrulj2 � 0:032 (here the two materials have to be "mixed"), the level lines arecircular sectors with identical radius, as it has been predicted theoretically for the solution uin [26].We present the performance in Table 5, the "homogenized region" on the left-hand sideof Figure 3 and the level lines on the right-hand side.Table 5: Performance for the shape design problemSolver DD-PCG DD-PCG GMG-PCG GBPX(BPS-D) (S-BPX) (fb,fb) -PCGNewton iterations 1st grid 44 44 38 38CG iterations 1st grid 5 � � � 23 5 � � � 23 5 � � � 23 5 � � � 23Newton iterations 2nd grid 2 2 2 2CG iterations 2nd grid 11,16 18,11 5,5 15,16Newton iterations 3rd grid 2 2 2 2CG iterations 3rd grid 14,11 26,23 8,6 36,20Newton iterations 4th grid 2 2 2 2CG iterations 4th grid 14,23 28,17 9,9 41,29Newton iterations 5th grid 7 6 5 5CG iterations 5th grid 18,29,57, 42,53,63, 13,9, 55,29,70,24,40,74 61,93,51 26,23,27 125,91,97Time (system generation) 32.5 27.0 24.9 24.9Time (solver) 391.3 483.1 219.9 348.3Total time 423.8 510.1 244.8 373.2Time in seconds, GC-Power Plus, 64 processors (subdomains); 5 grids, 1 530 657unknowns, relative accuracy " = 10�610



Figure 3: Homogenized region and level lines for the shape design problemWe note that for this example the Newton-GMG method does not converge, nor forGauss-Seidel smoothers, nor for Jacobi smoothers with up to 8 smoothing steps. On theother hand, the combination of multigrid with a CG method leads to a quite robust solver.We observe that the "homogenized region" has the typical shape, and the level lines inthat region can be recognized as circular sectors.5 ConclusionsWe have tested several parallel iterative solvers for the linearized problems arising in anested Newton method for real-life nonlinear problems. We have found that the DD-PCGmethod is able to solve the problems, but the convergence can be slow.The GMG method can converge faster, but its components have to be adapted wellto the actual problem. Indeed, for anisotropic linear problems, we have to apply othersmoothers than Gauss-Seidel ones, e.g. ILU smoothers [16, 2], but it seems to be not yetclear how to construct them for the complicated interior geometry of an electric machine.For the shape-design problem, a multigrid method had been successfully applied in a quitecoarse discretization [17]. For a �ne discretization, the di�culties with multigrid algorithmscould be overcome in [26] by nonstandard "tricks" only. So we are not surprised that ourstandard GMG method does not converge.In [25, 17], we had already found that the use of multigrid as a preconditioner essentiallyimproves the convergence, in particular if the multigrid method converges slowly. Ourparallel computations demonstrate that the combination with the PCG algorithm makesmultigrid much more robust, even in that cases in which the pure multigrid method doesnot converge.The global BPX preconditioner yields a robust method. It may be a good choice if ablack-box solver is required, i.e., the components of the solver cannot be adapted well tothe problem.All the algorithms mentioned above are parallelized using the NODD data structure,they apply a parallel preconditioned Schur complement CG method as coarse grid solver.The communication overhead may di�er between the solver types, but it is in the sameorder of magnitude for all of them, namely one order lower than the problem itself. Thelatter makes the NODD data structure attractive for implementing robust multilevel solversin three dimensions, too. 11
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