BEM-based Finite Element Approaches on Polytopal Meshes-Anisotropic Case

Rainer Schneckenleitner

JKU Linz

November 13, 2018

1 Characterization of Anisotropy and Regularity

- 2 Approximation Space
- 3 Anisotropic Trace Inequality and Best Approximation
- Quasi-Interpolation of Anisotropic Non-smooth Functions
- 5 Interpolation of Anisotropic Smooth Functions

1 Characterization of Anisotropy and Regularity

- 2 Approximation Space
- 3 Anisotropic Trace Inequality and Best Approximation
- Quasi-Interpolation of Anisotropic Non-smooth Functions
- 5 Interpolation of Anisotropic Smooth Functions

Let

- $\mathcal{K} \subset \mathbb{R}^d, d \in \{2,3\}$ be a polytopal or polyhedral element
- $|K| = meas_d(K) > 0$
- $\bullet \ {\mathcal K}_h$ be the set of polytopal or polyhedral elements in the mesh
- \mathcal{N}_h be the set of all nodes
- $\mathcal{N}_{h,D}$ be the set of all nodes on the Dirichlet boundary Γ_D
- V_h^k be the approximation space over polytopal mesh of order k, $V_h^1 = V_h$
- ω_z be the neighbourhood of all elements adjacent to the node z
- ω_F be the neighbourhood of all elements adjacent to the face F
- ω_K be the neighbourhood of all elements adjacent to the element K
- $H^{s}(\Omega)$ be the Sobolev space of order $s \in \mathbb{R}$ over Ω

Definition (Center (Mean) of K)

The center or mean of K is defined as

$$\bar{x}_{\mathcal{K}}=\frac{1}{|\mathcal{K}|}\int_{\mathcal{K}}x\ dx.$$

Definition (Covariance matrix of K)

The covariance matrix of K is defined by

$$M_{Cov}(K) = rac{1}{|K|} \int_K (x - ar{x}_K) (x - ar{x}_K)^{ op} \ dx \in \mathbb{R}^{d imes d}.$$

• $M_{Cov}(K)$ admits an eigenvalue decomposition

$$M_{Cov}(K) = U_K \Lambda_K U_K^\top$$

with
$$U_{\mathcal{K}}^{\top} = U_{\mathcal{K}}^{-1}$$
 and $\Lambda_{\mathcal{K}} = diag(\lambda_{\mathcal{K},1} \dots \lambda_{\mathcal{K}_d})$ where w.l.o.g.
 $\lambda_{\mathcal{K},1} \geq \dots \geq \lambda_{\mathcal{K},d}$.

- Eigenvectors $u_{K,1}, \ldots u_{K,d} \in U_K$ give the characteristic directions of K
- Eigenvalues $\lambda_{K,j}, j = 1, ..., d$ is the variance in direction of the corresponding eigenvector $u_{K,j}$

Definition (Isotropy, Anisotropy)

An element is called

• isotropic if

$$rac{\lambda_{K,1}}{\lambda_{K,d}} pprox 1$$

• and anisotropic if

$$\frac{\lambda_{K,1}}{\lambda_{K,d}} \gg 1.$$

Definition (Reference configuration)

For each $x \in K$ we define the mapping

$$x\mapsto \hat{x}=\mathscr{F}(x)=A_{K}x$$

with
$$A_{\mathcal{K}} x = \alpha_{\mathcal{K}} \Lambda_{\mathcal{K}}^{-1/2} U_{\mathcal{K}}^{\top} x$$
, $\alpha_{\mathcal{K}} > 0$.

 $\hat{K} = \mathscr{F}(K)$ is called reference configuration.

(1)

Theorem

Under the previously defined transformation, it holds

•
$$|\hat{K}| = |K| |det(A_K)| = \alpha_K^d |K| / \sqrt{\prod_{j=1}^d \lambda_{K,j}},$$

•
$$\bar{x}_{\hat{K}} = \mathscr{F}(\bar{x}_{K}),$$

•
$$M_{Cov}(\hat{K}) = \alpha_K^2 \mathcal{I}.$$

Some important properties of ${\mathscr F}$

• Different choices for α_K :

If
$$\alpha_{\mathcal{K}} = \begin{cases} 1, \text{then the variance of } \hat{\mathcal{K}} \text{ is 1 in every direction} \\ \left(\frac{\sqrt{\Pi_{j=1}^d \lambda_{\mathcal{K},j}}}{|\mathcal{K}|}\right)^{1/d}, \text{ then } |\hat{\mathcal{K}}| = 1. \end{cases}$$

Figure: Demonstration of transformation (1), original element (left) and transformed element (right), α_K is such that $|\hat{K}| = 1$

(JKU Linz)

Some further definition

Definition (regular and stable anisotropic mesh)

 \mathcal{K}_h is called a regular and stable anisotropic mesh if:

- The reference configuration \hat{K} for all $K \in \mathcal{K}_h$ is a regular and stable polytopal element according to Seminar 02.
- O Neighbouring elements behave similarly in their anisotropy, i.e., for two neighbouring elements K₁ and K₂, K₁ ∩ K₂ ≠ Ø, covariance matrices

$$\begin{split} & M_{Cov}(K_1) = U_{K_1}\Lambda_{K_1}U_{K_1}^{\dagger} \quad \text{and} \quad M_{Cov}(K_2) = U_{K_2}\Lambda_{K_2}U_{K_2}^{\dagger} \\ & \text{we can write } \Lambda_{K_2} = (\mathcal{I} + \Delta^{K_1,K_2}\Lambda_{K_1}) \text{ and } U_{K_2} = R^{K_1,K_2}U_{K_1} \text{ with} \\ & \Delta^{K_1,K_2} = diag\left(\delta_j^{K_1,K_2}: j = 1, \dots, d\right), \text{ and a rotation matrix} \\ & R^{K_1,K_2} \in \mathbb{R}^{d \times d} \text{ such that for } j = 1, \dots, d \ 0 \leq |\delta_j^{K_1,K_2}| < c_{\delta} < 1 \text{ as} \\ & \text{well as } 0 \leq \|R^{K_1,K_2} - \mathcal{I}\| \left(\frac{\lambda_{K_1}}{\lambda_{K_2}}\right)^{1/2} < c_R \text{ holds uniformly.} \end{split}$$

Mapping of patches

- Elements in regular and stable anisotropic meshes can be mapped onto a reference element
- For quasi-interpolant operators we need mapping properties of \mathscr{F} for patches of elements

Theorem

Let \mathscr{K}_h be a regular and stable anisotropic mesh, ω_z be the patch of elements corresponding to the node $z \in \mathscr{N}_h$, and $K_1, K_2 \in \mathscr{K}_h$ with $K_1, K_2 \subset \omega_z$. Then $\mathscr{F}_{K_1}(K_2)$ is regular and stable in the sense of the definition in Seminar 02 with slightly perturbed regularity and stability parameters $\tilde{\sigma}_{\mathscr{K}}$ and $\tilde{c}_{\mathscr{K}}$ depending only on the regularity and stability of \mathscr{K}_h . Consequently, the mapped patch $\mathscr{F}_K(\omega_z)$ consists of regular and stable polytopal elements for all $K \in \mathscr{K}_h$ with $K \subset \omega_z$.

• The theorem has the consequences that

- the mapped patches $\mathscr{F}(\omega_{\mathcal{K}})$ and $\mathscr{F}(\omega_{\mathcal{F}})$ consist of regular and stable polytopal elements
- ② each node z ∈ N_h of a regular and stable anisotropic mesh belongs to a uniformly bounded number of elements and, vice versa, each element K has a uniformly bounded number of nodes on its boundary.
- S for K₁, K₂ ⊂ ω_z we have for the mapped patch $\tilde{\omega} \in \{\mathscr{F}_{K_1}(\omega_z), \mathscr{F}_{K_1}(\omega_{K_1})\} \text{ and the neighboring elements that}$

$$h_{ ilde{\omega}} \leq c ext{ and } rac{|K_2|}{|K_1|} \leq c$$

where $h_{\tilde{\omega}}$ is the diameter of the patch and *c* depends only on the regularity and stability parameters of the mesh.

D Characterization of Anisotropy and Regularity

2 Approximation Space

3 Anisotropic Trace Inequality and Best Approximation

Quasi-Interpolation of Anisotropic Non-smooth Functions

5 Interpolation of Anisotropic Smooth Functions

- Previous definition of V_h yields harmonic functions $v_h \in V_h$ for each patch
- Now follow the more classical FEM approach
- Define $\hat{\Psi}$ on \hat{K} as in Seminar 03
- Map $\hat{\Psi}$ onto K such that $\Psi^{\mathit{ref}} = \hat{\Psi} \circ \mathscr{F}_K$
- Basis functions Ψ^{ref} are not harmonic in K, but

$$\operatorname{div}\left(\Lambda_{\operatorname{K}}^{-1}\nabla\Psi^{\operatorname{ref}}\right)=0$$

• If $K = \hat{K}$ then the nodal basis functions Ψ_z^{ref} coincide with the former definition of the basis functions

• The approximation space is given by

$$egin{aligned} V^{ref}_h &= \{ v \in H^1(\Omega) : \textit{div} \left(\Lambda_{\mathcal{K}}^{-1}
abla v
ight) |_{\mathcal{K}} = 0 ext{ and } \ v |_{\partial \mathcal{K}} \in \mathscr{P}^1_{pw}(\partial \mathcal{K}) orall \mathcal{K} \in \mathscr{K}_h \} \end{aligned}$$

• The space V_h^{ref} fulfills

$$\mathscr{P}^1({\sf K})\subset V_h^{\it ref}|_{{\sf K}}$$
 and $0\leq \varPsi^{\it ref}\leq 1$

1 Characterization of Anisotropy and Regularity

2 Approximation Space

3 Anisotropic Trace Inequality and Best Approximation

Quasi-Interpolation of Anisotropic Non-smooth Functions

5 Interpolation of Anisotropic Smooth Functions

• Anisotropic trace inequality is extension of trace inequality for the isotropic regime

Theorem

Let $K \in \mathscr{K}_h$ be a polytoplal element of a regular and stable anisotropic mesh \mathscr{K}_h with edge (d=2) or face (d=3) $F \in \mathscr{F}_h, F \subset \partial K$. It holds for $v \in H^1(K)$ that

$$\|v\|_{L_{2}(F)}^{2} \leq c \frac{|F|}{|K|} \left(\|v\|_{L_{2}(K)}^{2} + \|A_{K}^{-\top}\nabla v\|_{L_{2}(K)}^{2} \right)$$

where c depends only on the regularity and stability parameters of the mesh.

Theorem

Let \mathscr{K}_h be a regular and stable anisotropic mesh with node $z \in \mathscr{N}_h$ and element $K \in \mathscr{K}_h$. Furthermore let ω_z and ω_K be the neighborhoods of zand K, respectively. $K \subset \omega_z$. For $\omega \in \{\omega_z, \omega_K\}$ with Π_ω , the L_2 -projection over ω into the space of constants, it holds

$$\|\mathbf{v} - \Pi_{\omega}\mathbf{v}\|_{L_2(\omega)} \leq c \|A_K^{- op}
abla \mathbf{v}\|_{L_2(\omega)},$$

$$\|\mathbf{v} - \Pi_{\omega}\mathbf{v}\|_{L_2(\omega)} \leq c \left(\sum_{\mathbf{K}'\in\mathscr{K}_h:\mathbf{K}'\subset\omega} \|\mathbf{A}_{\mathbf{K}'}^{-\top}\nabla\mathbf{v}\|_{L_2(\mathbf{K}')}^2\right)^{1/2},$$

for $v \in H^1(\omega)$, where c only depends on the regularity and stability of the mesh.

A D > A A P >

- **1** Characterization of Anisotropy and Regularity
- 2 Approximation Space
- 3 Anisotropic Trace Inequality and Best Approximation
- Quasi-Interpolation of Anisotropic Non-smooth Functions
- 5 Interpolation of Anisotropic Smooth Functions

• The general form of quasi interpolators for $v \in H^1(\Omega)$ is

$$\mathcal{J}\mathbf{v} = \sum_{\mathbf{z}\in\mathscr{N}_{*}} \left(\Pi_{\omega(\varPsi_{\mathbf{z}})} \mathbf{v}
ight) \Psi_{\mathbf{z}} \in V_{h}$$

where \mathscr{N}_* and $\omega(\varPsi_z)$ are chosen accordingly.

Note

Here we have V_h instead of $V_h^{\it ref}$, but the following results are valid for $V_h^{\it ref}$

- Denoted by $\mathcal{J}_{\mathcal{C}}$
- The set of nodes is $\mathscr{N}_* = \mathscr{N}_h ackslash \mathscr{N}_{h,D}$
- The quantity $\omega(\Psi) = \omega_z$
- Following results are equivalent to results on anisotropic triangular meshes

Theorem

Let \mathscr{K}_h be a regular and stable anisotropic mesh and $K \in \mathscr{K}_h$. The Clément interpolation operator fulfills for $v \in H^1_D(\Omega)$ the interpolation error estimate

$$\|\mathbf{v} - \mathcal{J}_{C}\mathbf{v}\|_{L_{2}(K)} \leq c \|\mathbf{A}_{K}^{-\top} \nabla \mathbf{v}\|_{L_{2}(\omega_{K})}$$

and for an edge/face $\mathscr{F}(K) ackslash \mathscr{F}_{h,D}$

$$\|v - \mathcal{J}_{C}v\|_{L_{2}(F)} \leq c \frac{|F|^{1/2}}{|K|^{1/2}} \|A_{K}^{-\top} \nabla v\|_{L_{2}(\omega_{F})}$$

where c only depends on the regularity and stability of the mesh.

Scott-Zhang-type interpolation

- Denoted by \mathcal{J}_{SZ}
- The set of nodes is $\mathscr{N}_* = \mathscr{N}_h$
- The quantity $\omega(\Psi) = F_z \in \mathscr{F}_h$ with $z \in \overline{F}_z$ and
 - $F_z \subset \Gamma_D$ if $z \in \overline{\Gamma}_D$
 - $F_z \subset \Omega \cup \Gamma_N$ if $z \in \Omega \cup \Gamma_N$

Lemma

Let \mathscr{K}_h be a regular and stable anisotropic mesh and $K \in \mathscr{K}_h$. The Scott-Zhang interpolation operator fulfills for $v \in H^1(\Omega)$ the local stability

$$\|\mathcal{J}_{SZ} v\|_{L_2(K)} \leq c \left(\|v\|_{L_2(\omega_K)} + \|A_K^{-\top} \nabla v\|_{L_2(\omega_K)} \| \right)$$

where c only depends on the regularity and stability of the mesh.

Lemma

Let \mathscr{K}_h be a regular and stable anisotropic mesh and $K \in \mathscr{K}_h$. The Scott-Zhang interpolation operator fulfills for $v \in H^1(\Omega)$ the interpolation error estimate

$$\|\mathbf{v} - \mathcal{J}_{SZ}\mathbf{v}\|_{L_2(K)} \le c \|\mathbf{A}_K^{-\top} \nabla \mathbf{v}\|_{L_2(\omega_K)}$$

where c only depends on the regularity and stability of the mesh.

- **1** Characterization of Anisotropy and Regularity
- 2 Approximation Space
- 3 Anisotropic Trace Inequality and Best Approximation
- Quasi-Interpolation of Anisotropic Non-smooth Functions
- 5 Interpolation of Anisotropic Smooth Functions

- Classical interpolation valid for sufficiently regular functions, e.g., for $v \in H^2(\Omega)$
- Interpolation operator is given by

$$\mathcal{J}_h v = \sum_{z \in \mathscr{N}_h} v(z) \varPsi_z^{ref} \in V_h^{ref}$$

• We have $\widehat{\mathcal{J}_h v} = \hat{\mathcal{J}}_h \hat{v}$

Lemma (Scaling of H^1 -seminorm)

Let $K \in \mathscr{K}_h$ be a polytopal element of a regular and stable anisotropic mesh \mathscr{K}_h . For $v \in H^1(K)$ it is

$$\sqrt{\frac{\Pi_{j=2}^d \lambda_{\mathcal{K},j}}{\lambda_{\mathcal{K},1}}} |\hat{v}|_{H^1(\hat{\mathcal{K}})}^2 \leq |v|_{H^1(\mathcal{K})}^2 \leq \sqrt{\frac{\Pi_{j=1}^{d-1} \lambda_{\mathcal{K},j}}{\lambda_{\mathcal{K},d}}} |\hat{v}|_{H^1(\hat{\mathcal{K}})}^2$$

Classical interpolation

Theorem (Interpolation error)

Let $K \in \mathscr{K}_h$ be a polytopal element of a regular and stable anisotropic mesh \mathscr{K}_h . For $v \in H^2(\Omega)$ it is

$$|v - \mathcal{J}_h v|_{H^{\ell}(K)}^2 \leq c \alpha_K^{-4} S_{\ell}(K) \sum_{i,j=1}^d \lambda_{K,i} \lambda_{K,j} L_K(u_{K,i}, u_{K,j}; v)$$

with

$$\mathcal{S}_{\ell}(\mathcal{K}) = egin{cases} 1, & ext{for } \ell = 0, \ rac{1}{|\mathcal{K}|} \sqrt{rac{\Pi_{j=1}^{d-1} \lambda_{\mathcal{K},j}}{\lambda_{\mathcal{K},d}}}, & ext{for } \ell = 1 \end{cases}$$

where $L_{K}(u_{K,i}, u_{K,j}, v) = \int_{K} \left(u_{K,i}^{\top} H(v) u_{K,j} \right)^{2} dx$ for i, j = 1, ..., d, H(v)denotes the Hessian of v. The constant c depends only on the regularity and stability of the mesh.