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Generating admissible space-time meshes for moving domains
in d+ 1-dimensions

Elias Karabelas · Martin Neumüller

Abstract In this paper we present a discontinuous Ga-

lerkin finite element method for the solution of the

transient Stokes equations on moving domains. For the

discretization we use an interior penalty Galerkin ap-

proach in space, and an upwind technique in time. The

method is based on a decomposition of the space-time

cylinder into finite elements. Our focus lies on three-

dimensional moving geometries, thus we need to trian-

gulate four dimensional objects. For this we will present

an algorithm to generate d + 1-dimensional simplex

space-time meshes and we show under natural assump-

tions that the resulting space-time meshes are admis-

sible. Further we will show how one can generate a four-

dimensional object resolving the domain movement. First

numerical results for the transient Stokes equations on

triangulations generated with the newly developed mesh-

ing algorithm are presented.
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1 Introduction

The finite element approximation of transient partial

differential equations is in most cases based on explicit

or implicit time discretization schemes. In particular

the simultaneous consideration of different time steps

requires an appropriate interpolation to couple the so-

lutions at different time levels. Especially for spatial do-

mains with a moving boundary one encounters various

numerical difficulties. One usually relies on an arbitrary

Lagrangian-Eulerian formulation. See for example the

recent article [13] and references therein for an overview

of the ongoing discussion. In this paper we consider the

application of finite elements in the whole space-time

cylinder Q. By this we mean a decomposition of Q into

simplical elements. Therefore one replaces the problem

of time discretization by a meshing problem. Having

this, one can resolve the possible movement of the do-

main Ω directly. Simplicial space-time meshes have ad-

vantages over tensor-product meshes, since it is easier

to decompose complex space-time meshes by those ele-

ments.

Space-time finite element methods have been ap-

plied to several parabolic model problems. Least square

methods for convection-diffusion problems are consid-

ered, e.g., in [5,7] and for flow problems, e.g., in [17,

25–28,22]. Discontinuous Galerkin finite element meth-

ods have been applied to solve transient convection-

diffusion problems in [24], for fluid dynamics see [30]

and problems from solid mechanics see [18,2,10,1]. Very

recently a paper concerning the generation of 4D sim-

plicial meshes from a sequence of 3D MRI data has

been considered in [12]. Also rather recently, the X-

FEM method has been considered in the space-time

setting see [14]. In most cases, the time dependent equa-

tion is discretized in the space-time domain on space-
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time slabs. This allows for local mesh refinement in the

space-time domain, see for example [27].

In this paper we consider, similar to [7], a decom-

position of the space-time cylinder into simplicial finite

elements. In particular for spatial domains Ω ( R3 the

space-time cylinder is a four-dimensional object, which

has to be decomposed into finite elements.

In [7], a method based on Delauny’s algorithm is

given to construct a four-dimensional triangulation out

of a given decomposition of the spatial domain Ω. This

method relies on the extension of the given finite el-

ements of the triangulation of Ω to four-dimensional

prisms. Afterwards a random perturbation of the re-

sulting points is made, to ensure the admissibility of

the resulting four dimensional mesh. Here, we present

a different approach using similar ideas. Our method

does not rely on random perturbations. Furthermore we

can ensure and proof that the resulting mesh is admis-

sible and we can also include movements of the domain

boundary. We want to stress out, that our approach is

still limited to a special class of boundary movements

which we will describe in Section 3.4.

We will consider Stokes flow as a motivating model

problem. For the approximation of the transient Stokes

equations in the space-time cylinder we consider a dis-

continuous Galerkin finite element method. In particu-

lar, we apply an interior penalty approach in space [3,

6,23,21], and an upwind technique in time [29,19].

This paper is organized as follows. In Section 2 we

describe the discontinuous Galerkin finite element method

to solve the transient Stokes equations as a model prob-

lem. The core part of this paper and the main results

are given in Section 3 where we describe our algorithm

to generate a four-dimensional triangulation out of a

given three-dimensional one. In Section 4 we present

some numerical results which underline the applicabil-

ity of the proposed approach. We close the paper with

some conclusions and comments on further work.

2 Space-time discontinuous Galerkin Method

For any t ∈ (0, T ) let Ω(t) ( Rd with d = 1, 2, 3 be

a bounded Lipschitz domain with boundary Γ (t) :=

∂Ω(t). We assume that the boundary Γ (t) admits the

following decomposition for every t ∈ (0, T )

Γ (t) = ΓD(t) ∪ ΓR(t). (1)

We assume that the movement of the domain Ω(t) is

known for every t ∈ [0, T ]. We define the space-time

cylinder Q as

Q :=
{

(x, t) ∈ Rd+1 : x ∈ Ω(t) t ∈ (0, T )
}
.

Further we define the space-time mantle Σ as

Σ :=
{

(x, t) ∈ Rd+1 : x ∈ Γ (t) t ∈ (0, T )
}
.

The decomposition (1) induces

Σ = ΣD ∪ΣR.

The model problem we intend to study is governed by

the transient Stokes equations. It reads as find (u, p)

such that

∂

∂t
u− ν∆u+∇p = f in Q,

div(u) = 0 in Q,

u = gD on ΣD,

∇u · n+ αRu− pn = gR on ΣR,

u = u0 on Σ0 := Ω(0).

(2)

Remark 1 In the case of a non-moving domain the def-

inition of Q and Σ simplifies to

Q := Ω × (0, T ),

Σ := ∂Ω × (0, T ).

For deriving a discrete variational formulation we need

to decompose the space-time cylinder Q into simplicial

elements, see [20]. Let Th be a sequence of decomposi-

tions

Q = T h =

N⋃
k=1

τk

into finite elements of mesh size hk. For d = 1 we have

triangles, for d = 2 we use tetrahedrons and for d = 3

pentatopes are chosen. The generation of such triangu-

lations from a given triangulation of Ω(0) is not trivial.

We will address this topic in Section 3.

Definition 1 (Admissible decomposition) A de-

composition Th is called admissible iff the non-empty

intersection of the closure of two finite elements is ei-

ther an edge (for d = 1, 2, 3), a triangle (for d = 2, 3)

or a tetrahedron (for d = 3).

It is worth noting that discontinuous Galerkin methods

are not restricted to admissible decompositions. How-

ever one needs additional technical assumptions, see [9].

Definition 2 (Interior facet) Let Th be a decompo-

sition of Q into finite elements τk. For two neighboring

elements τk, τl ∈ Th we call

Γkl := τk ∩ τ l

an interior facet iff Γkl is a d-dimensional manifold. The

set of all interior facets will be defined as Ih.
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Any interior element Γkl has an exterior normal vector

nkl with a non-unique direction. We fix the direction of

the normal vector such that nkl is the exterior normal

vector of the element τk when k < l. So the direction of

the normal vector nkl depends on the ordering of the

finite elements, but the variational formulation which

we are going to use will be independent of this ordering.

Definition 3 Let Γkl ∈ Ih be an interior facet with

outer normal nk = (nx,k, nt,k)> ∈ Rd+1 for τk and

nl = −nk for τl. For a given function φ smooth enough

restricted to either τk or τl one defines :

– The jump across Γkl as

JφKkl := φ τknk + φ τlnl.

– The space jump across Γkl as

JφKx,kl := φ τknx,k + φ τlnx,l.

– The time jump across Γkl as

JφKt,kl := φ τknt,k + φ τlnt,l.

– The average of φ on Γkl as

〈φ〉kl :=
1

2

(
φ τk + φ τl

)
.

– The upwind in time direction of φ is defined as

{φ}upkl :=


φ τk if nk,t > 0

0 if nk,t = 0

φ τl if nk,t < 0

Let p, q ∈ N0. Then one defines the spaces of piecewise

polynomials

V ph := [Sph(Th)]
d

=
{
vh ∈ [L2(Q)]d : vh τl ∈ [Pp(τl)]

d

for all τl ∈ Th, vh ΣD
= 0

}
,

Qqh :=
{
qh ∈ L2(Q) : qh τl ∈ Pq(τl) for all τl ∈ Th

}
.

Inspired by works in [19,21] we will use the following

bilinear form defined for uh,vh ∈ V ph (Th):

A(uh,vh) := bT (uh,vh) + ah(uh,vh).

The individual components read as

ah(uh,vh) := ν

N∑
l=1

∫
τl

∇xuh : ∇xvh dq

− ν
∑

Γkl∈Ih

∫
Γkl

〈∇xuh〉Γkl
JvhKΓkl,x

dsq

− ν
∑

Γkl∈Ih

∫
Γkl

〈∇xvh〉Γkl
JuhKΓkl,x

dsq,

+
∑

Γkl∈Ih

σu

hkl

∫
Γkl

JuhKΓkl,x
JvhKΓkl,x

dsq

+

∫
ΣR

αR(x, t)uh · vh dsq,

and

bT (uh,vh) :=

N∑
l=1

−
∫
τl

uh ·
∂

∂t
vh dq +

∫
ΣT

uh · vhdsq

+
∑

Γkl∈Ih

∫
Γkl

{uh}upJvhKΓkl,t
dsq

for a given velocity stabilization parameter σu > 0. Fur-

thermore we define the following pressure bilinear forms

for vh ∈ V ph (Th) and (ph, qh) ∈ Qqh(Th)×Qqh(Th) :

bp(vh, ph) :=

N∑
l=1

∫
τl

phdiv(vh) dq

−
∑
Γkl

∫
Γkl

〈ph〉Γkl
JvhKΓkl,x

dsq,

dp(ph, qh) :=
∑

Γkl∈Ih

σphkl

∫
Γkl

JphKΓkl,x
JqhKΓkl,x

dsq

for a given pressure stabilization parameter σp. In all

the bilinear forms defined above we have used hkl :=
1
2 (hk + hl). Hence we have to find u0

h ∈ V ph (Th) and

ph ∈ Qqh(Th) such that

A(u0
h,vh)− bp(vh, ph) = 〈f ,vh〉Q + 〈u0,vh〉 (3)

−A(uhg ,vh), (4)

bp(u
0
h, qh) + dp(ph, qh) = −bp(uhg , qh). (5)

Here we used an discrete extension uhg of the given

Dirichlet data, for example a L2-projection.

3 Triangulations in d+ 1 dimensions

In this section we will introduce an algorithm to de-

compose a hyperprism into simplices to generate a d+1

simplex space-time mesh. Moreover we will show that

the resulting mesh is admissible if the nodes of the sim-

plices from the initial mesh are sorted in a special way.

3.1 Tensor product extensions

A simple idea for constructing a space-time mesh for

a given three-dimensional simplicial spatial mesh is to

extrude the mesh in time direction by a tensor product

extension, see also Figure 1. Afterwards we decompose

the upcoming prisms or so called hyperprisms into sim-

plicial elements.

Before we can start we need a precise definition of

a d-dimensional simplex.
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Fig. 1: Tensor extension of a two-dimensional simplex

Definition 4 (d-dimensional simplex) Let

{p1, . . . ,pd+1} ⊂ Rd,

d ∈ N be a set of nodes, then a d-dimensional simplex

Sd is defined as

Sd := [p1, . . . ,pd+1] := conv({p1, . . . ,pd+1}),

where conv(·) is the convex hull of a set of nodes. Note

that we also fix the ordering of the nodes in the defini-

tion of a d-dimensional simplex.

Now we can extrude one simplex in time direction

and we obtain the following definition.

Definition 5 (Hyperprism) For a given simplex Sd =

[p1, . . . ,pd+1] the tensor product extension in time di-

rection for a given time interval [0, τ ] or the so called

hyperprism Hd+1 is given by

Pd+1 := [p1, . . . ,pd+1; τ ]

:= conv({p′1, . . . ,p′d+1,p
′′
1 , . . . ,p

′′
d+1}) ⊂ Rd+1,

with

p′i := (p>i , 0)>,

p′′i := (p>i , τ)>,

for i = 1, . . . , d+ 1.

3.2 Decomposing Hyperprisms

In this section we will give an algorithm to decompose

the hyperprisms given in Definition 5 into simplices.

Definition 6 (Decomposed hyperprism) Let Sd be

a given simplex and Pd+1 the hyperprism with respect

to the simplex Sd and τ > 0. Then we define the fol-

lowing simplices

S1
d+1 := [p′1,p

′
2,p
′
3, . . . ,p

′
d+1,p

′′
1 ],

S2
d+1 := [p′2,p

′
3, . . . ,p

′
d+1,p

′′
1 ,p
′′
2 ],

S3
d+1 := [p′3, . . . ,p

′
d+1,p

′′
1 ,p
′′
2 ,p
′′
3 ],

...

Sd+1
d+1 := [p′d+1,p

′′
1 ,p
′′
2 ,p
′′
3 , . . . ,p

′′
d+1].

(6)

Furthermore we define the set of simplices TP (Sd, τ) :=

{S1
d+1, . . . , S

d+1
d+1}.

Note, that the ordering of the nodes of a hyperpism

Pd+1 is essential for the resulting decomposition (6).

In order to ensure that the simplices S1
d+1, . . . , S

d+1
d+1

defined in (6) decompose the hyperpism Pd+1 we need

the following lemma.

Lemma 1 Let Pd+1 be some given hyperprism with re-

spect to the simplex Sd and τ > 0. Then the set of sim-

plices

TP (Sd, τ) = {S1
d+1, . . . , S

d+1
d+1}

defined in (6) is an admissible decomposition of the hy-

perprism Pd+1.

Proof By construction the set of simplices TP (Sd, τ) =

{S1
d+1, . . . , S

d+1
d+1} is admissible. Furthermore, every sim-

plex Sid+1 for i = 1, . . . , d+ 1 is contained in the hyper-

prism Pd+1 since Pd+1 is convex. It remains to show,

that the union of all simplices TP (Sd, τ) is equal to the

hyperprism, i.e. we have to show, that the volume of

the union of all simplices TP (Sd, τ) coincides with the

volume of the hyperprism. To do so, we transform the

hyperprism Pd+1 to a reference hyperprism P̂d+1 where

we easily can compute all the volume terms. For this,

we define the reference Simplex Ŝd ⊂ Rd as

Ŝd := [e0, e1, . . . , ed] = conv({e0, e1, . . . , ed}),

with

e0 := (0, 0, . . . , 0, 0)>,

e1 := (1, 0, . . . , 0, 0)>,

e2 := (0, 1, . . . , 0, 0)>,

...

ed := (0, 0, . . . , 0, 1)>.

Then we define the reference hyperprism P̂d+1 as

P̂d+1 := [e0, . . . , ed+1; 1].

With the standard affine transformation we have a bi-

jective mapping between the reference hyperprism P̂d+1

and the hyperprism Pd+1. This affine transformation

consists of the standard transformation for d-dimensional

simplices and a scaling in time direction. So we only

have to compare the volume for the reference hyper-

prism. Now the volume of the reference simplex Ŝd is

given by
∣∣∣Ŝd∣∣∣ = 1

d! . Hence the volume of the reference

hyperprism is∣∣∣P̂d+1

∣∣∣ =
1

d!
.
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The simplices of our decomposition in the reference do-

main are given by

Ŝ1
d+1 := [e′0, e

′
1, e
′
2, . . . , e

′
d, e
′′
0 ],

Ŝ2
d+1 := [e′1, e

′
2, . . . , e

′
d, e
′′
0 , e
′′
1 ],

Ŝ3
d+1 := [e′2, . . . , e

′
d, e
′′
0 , e
′′
1 , e
′′
2 ],

...

Ŝd+1
d+1 := [e′d, e

′′
0 , e
′′
1 , e
′′
2 , . . . , e

′′
d ].

It is easy to see, that these simplices have the same

volume, i.e.∣∣∣Ŝid+1

∣∣∣ =
1

(d+ 1)!
, for i = 1, . . . , d+ 1.

Hence we have∣∣∣∣∣
d+1⋃
i=1

Ŝid+1

∣∣∣∣∣ = (d+ 1)
1

(d+ 1)!
=

1

d!
=
∣∣∣P̂d+1

∣∣∣ ,
which completes the proof.

3.3 Admissible tensor product triangulations

For a given d-dimensional triangulation Th we now want

to construct a tensor product extension by applying the

algorithm (6) for every simplex of the simplicial mesh

Th. With Lemma 1 we know, that every hyperprism

can be decomposed admissible into simplex elements.

In this section we want to formulate conditions such

that the overall space-time mesh is admissible. For this

we need that the nodes of the simplices are ordered in

a special way.

Definition 7 (Consistently numbered) Let

Th = {Sid : Sid = [pi1, . . . ,p
i
d+1]},

be an admissible d-dimensional simplex mesh. Then Th
is called consistently numbered, iff for any two simplices

Sid, S
j
d ∈ Th with non-empty intersection, i.e. Sid ∩S

j
d 6=

∅, there exists indicies k1 < . . . < kn and `1 < . . . < `n
with n ∈ N, n ≤ d+ 1, such that

Sid ∩ S
j
d = [pik1 , . . . ,p

i
kn ] ≡ [pj`1 , . . . ,p

j
`n

].

Here “=” means that the two sets are the same and

“≡” means that the two sets are equal and that also

the numbering of the nodes is the same, i.e. pik1 =

pj`1 , . . . ,p
i
kn

= pj`n .

The definition of a consistently numbered triangulation

can also be found in [8] and it is important for the

refinement of d-dimensional simplices, especially for d ≥
4. If an admissible mesh is consistently numbered we

can prove the next Theorem.

Theorem 1 Let Th be an admissible d-dimensional tri-

angulation which is consistently numbered and let τ >

0. Furthermore let

Th,τ := {TP (Sd, τ) : Sd ∈ Th}

be the (d + 1)-dimensional simplex mesh resulting by

decomposing every hyperprism with the algorithm given

in (6). Then the space-time mesh Th,τ is admissible.

Proof With Lemma 1 we know, that every hyperprism

is decomposed admissible into simplices. To obtain a

global admissible mesh we have to prove, that the tensor

product triangulations TP (Sid, τ) and TP (Sjd, τ) for each

neighboring elements Sid, S
j
d ∈ Th are matching. Let

Sid = [pi1, . . . ,p
i
d+1] and Sjd = [pj1, . . . ,p

j
d+1]

with Sid, S
j
d ∈ Th be some neighboring simplices and

Pd := P id+1 ∩ P
j
d+1,

with

P id+1 := [pi1, . . . ,p
i
d+1; τ ] and P jd+1 := [pj1, . . . ,p

j
d+1; τ ]

be the intersecting hyperprism and

T iP := {Sd+1 ∩ Pd : Sd+1 ∈ TP (Sid, τ)},

T jP := {Sd+1 ∩ Pd : Sd+1 ∈ TP (Sjd, τ)},

be the corresponding triangulations of Pd obtained by

TP (Sid, τ) and TP (Sjd, τ). It remains to show, that the

intersecting hyperprism Pd is decomposed in the same

way from both sides, i.e. that T iP = T jP . Since Th is

consistently numbered, there exists indices k1 < . . . <

kn and `1 < . . . < `n with n = d, such that

Sid ∩ S
j
d = Sid−1 := [pik1 , . . . ,p

i
kn ]

≡ Sjd−1 := [pj`1 , . . . ,p
j
`n

]. (7)

Therefore, the intersecting simplex Sid ∩ S
j
d is obtained

by simply removing the nodes from Sid or Sjd which

are not shared together and furthermore they have the

same ordering of the nodes. For the intersecting hyper-

pism Pd the decompositions from both sides T iP and T jP
are given by removing the nodes which are not shared

together from the formula (6) and with (7) we have

T iP = TP (Sid−1, τ) and T jP = TP (Sjd−1, τ).

Since in equation (7) also the node ordering of Sid−1
and Sjd−1 is the same we also obtain

TP (Sid−1, τ) = TP (Sjd−1, τ),

which implies that T iP = T jP .

Remark 2 To obtain an admissible space-time mesh Th,τ
we only have to ensure, that the nodes of the spatial

mesh Th are consistently numbered. This can be easily

obtained by sorting for each simplex Sd ∈ Th the local

nodes with respect to the global node numbers.
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3.4 Tensor product triangulations for moving domains

If the movement of a computational domain is known in

advance we can generate admissible space-time meshes

by applying the methods from above. The idea is to

move the points at the top of the tensor-product exten-

sion. Assuming that the displacement of points on the

boundary Γ (t) is governed by a function

gmov(X, t) : Γ (0)× (0, T )→ Rd.

Then a point x ∈ Γ (t) can be written as

x = X + gmov(X, t),

where X ∈ Γ (0). Recall the definition of a hyper-

prism in Definition 5. Instead of using p′′i := (p>i , τ)>

on the surface we can apply the displacement and use

p′′i := (p>i +gmov(pi, τ)>, τ)> for all boundary points of

the simplex mesh that are subject to a movement. The

remaining generation of the 4D mesh stays untouched.

For boundary movements that are of small magnitude

and do not change the topology of the initial geometry

this can be sufficient. For stronger yet topology preserv-

ing movements this concept would create degenerating

simplex elements. A remedy to this is to use the move-

ment gmov as Dirichlet datum for a vector Laplacian or

a linear elasticity problem. Then the resulting displace-

ment is applied to all simplex points in the domain. For

more on mesh smoothing we refer to [16,15].

In the case of stronger displacements or even topol-

ogy changes re-meshing would be required and we need

further meshing algorithms to connect different spatial

domains in space and time, especially for four-dimensional

space-time meshes this remains a future research topic.

If the the movement of the computational domain

is not known in advance we can solve the problem on

a coarse spatial grid with coarse time steps to obtain

a coarse approximation for the movement. Afterwards

we can construct the coarse space-time mesh with the

methods given in this work. By using adaptive schemes

in space and time we further can refine the space-time

domain adaptively and move the points in the space

time domain by the computed finer approximations.

Note that the movement of the points has to be only

done in the range of the approximation error, which

is usually small. Of course this is also considered as a

further research topic.

3.5 Visualization

Here we want to address the issue of visualizing results

for four-dimensional triangulations Th. In applications

it is desired to visualize results at given time instances

tk ∈ [0, T ]. The main idea is to cut the decomposition

Th into a finite number of three-dimensional manifolds.

For this we need to have a hyperplane to calculate the

intersections with the decomposition.

Definition 8 (Hyperplane) Let p0 ∈ R4 be arbitrary

and let p1, p2, p3 and p4 ∈ R4 be linear independent.

Then the set

H4 :=
{
x ∈ R4 : x = p0 + µ1p1 + µ2p2 + µ3p3

for µ1, µ2, µ3 ∈ R}

is called a hyperplane.

To cut a given decomposition Th with a hyperplane H4,

we have to cut every element τk ∈ Th with the hy-

perplane. For this we have to calculate for every edge

ei = (xi1 ,xi2), i = 1, . . . , 10 of τk, the intersection with

the hyperplane. A point x ∈ ei can be written as

x = xi1 + λ (xi2 − xi1)

for a given λ ∈ [0, 1]. Hence, an intersection point ξi of

the edge ei with the hyperplane H4 has to satisfy

xi1 + λ (xi2 − xi1) = p0 + µ1p1 + µ2p2 + µ3p3

or in matrix notation

Ai :=
(
p1 p2 p3 xi1 − xi2

)
µ1

µ2

µ3

λ

 = xi1 − p0.

The matrix Ai is invertible iff the vector xi1 − xi2 is

linear independent to the vectors p1, p2, p3. In fact,

the matrix Ai is not invertible if the edge ei is parallel

to the hyperplane H4. In this case there exists either

no intersection point or infinitely many. If the matrix is

invertible we can calculate the coefficients µ1,µ2,µ3 and

λ ∈ R uniquely. Let Dk denote the set of all intersection

points of the element τk ∈ Th with the hyperplane H4.

We distinguish two relevant cases

1. If |Dk| = 4, then the intersection points form a

tetrahedron

2. If |Dk| = 6, then the intersection points for a general

irregular prism.

If we use the special vectors

p0 := t∗et, p1 := ex,p2 := ey,p3 := ez

for a given t∗ ∈ [0, T ] we can now calculate a three-

dimensional object which can be visualized with exist-

ing software tools for example [4].
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4 Numerical Results

In this section we will present first numerical examples.

Starting point is the discrete variational formulation

(3)-(5). This can be equivalently written as the follow-

ing block system(
Kh −B>h
Bh Dh

)(
U

P

)
=

(
F 1

F 2

)
. (8)

It is worth noting, that due to the discretization of the

time derivative we have that Kh 6= K>h . The four dimen-

sional computational geometries as well as the resulting

linear systems in the subsequent numerical examples

were solved with the software package Neshmet devel-

oped by the authors. In particular we used a precondi-

tioned GMRes method. As preconditioner we used the

following:

P :=

(
Kh

Sh

)
(9)

where Kh is chosen as a component-wise algebraic multi-

grid and Sh is chosen as ILU(2)-factorization of Dh +

Bhdiag(Kh)−1B>h . These preconditioners were taken from

the HYPRE library [11].

4.1 Robin Boundary Conditions for Simulating Valves

In the subsequent examples we want to simulate open-

ing and closing valves. This means, that we need to

switch between and inflow and a no-slip condition. To

this end we used the following configuration for (2): We

set gR ≡ 0. Further we use the following Robin coeffi-
cients for outflow

αR(x, t) :=

{
106 if t ∈ [0, 12 )

0 if t ∈ [ 12 , 1]
,

and the following for inflow:

αR(x, t) :=

{
0 if t ∈ [0, 12 )

106 if t ∈ [ 12 , 1]
.

4.2 First Example

In the first example we consider Stokes flow in a di-

aphragm pump. The geometry consists of the intersec-

tion of two cylinders. The first one has its main axis

aligned with the z-axis with a radius of 0.8 and ranges

between z = −0.4 and z = 0.4. The second cylinder has

its main axis aligned with the x-axis with a radius of

0.2 and ranges from x = −1 to x = 1. A front view of

the geometry is depicted in Figure 2. The movement of

Ω(0)

ΓD,m(0)

ΓR,inΓR,out

ΓD

Fig. 2: Front view of the initial geometry Ω(0). Blue

boundaries belong to ΓD.

the boundary Γ (t) was prescribed as follows

gmov(t,X) :=

(
0.4 + sin2(πt)

(
1− X(0)2 +X(1)2

0.752

))
ez

−X

for X ∈ ΓD,m(0) and 0 else. The following boundary

conditions are used:

– u = 0 on ΓD
– u = ∂

∂tgmov on ΓD,m(t)

– On ΓR,in and ΓR,out we used the Robin boundary

conditions discussed in Section 4.1

– The initial condition for u was set to u(0,x) = 0.

The triangulation of the resulting 4D geometry was ac-

complished using the tools described in Section 3. The

resulting mesh consisted of 951360 pentatopes.

(a) (b)

(c) (d)

Fig. 3: Initial Triangulation Ω(0)

Some snapshots of the triangulation of the moving

domain are depicted in Figure 4. This snapshots were

generated by slicing through the 4D mesh along the

time axis as described in Section 3.5. The polynomial
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(a) Ω(0.5) (b) Ω(0.5)

(c) Ω(0.65) (d) Ω(0.8)

Fig. 4: Snapshots of the Triangulations Ω(t)

degree for uh was set to p = 1 and q = 0 for the pressure

variable ph. This resulted in 14270400 degrees of free-

dom for uh and 951360 degrees of freedom for ph. We

needed 95 GMRes-iterations for achieving a relative er-

ror of 1E−5. In Figure 5 one can see the resulting flow

and pressure at given time stamps, which were again

produced by slicing the 4D geometry along the time

axis.

4.3 Second Example

For the second example we considered a Y-shaped pipe.

A schematic view is depicted in Figure 2. We prescribed

the following movement of Γ (t):

gmov(X, t) :=

{
0 for X /∈ ΓD,m ∪ Γ̃D,m
4 |X(2)+3|

7 sin(πt)2ez for X ∈ ΓD,m ∪ Γ̃D,m
.

Some snapshots of the domain movement are depicted

in Figure 8. The boundary conditions were set to

– u = 0 on ΓD ∪ Γ̃D,m(t)

– u = ∂
∂tgmov on ΓD,m(t)

– On ΓR,in and ΓR,out we used the Robin boundary

conditions discussed in Section 4.1

– The initial condition for u was set to u(0,x) = 0.

The resulting 4D mesh consisted of 2618880 pentatopes.

With the same ansatz spaces as used for Example 1 we

have 39283200 degrees of freedom for uh and 2618880

degrees of freedom for ph. We needed 107 GMRes-iterations

for achieving a relative error of 1E − 5. In Figure 9 we

have depicted some results.

Ω(0)

ΓD,m(0)

ΓR,in ΓR,out

ΓD ΓD

Γ̃D,m(0) Γ̃D,m(0)

Fig. 6: Front view of the initial geometry Ω(0). Blue

boundaries belong to ΓD. The dashed line represents

the plane z = −3. The height from top to bottom is 17.

The base of the pipe is located at z = −10. The radius

of the pipe is 3.

(a) (b)

(c) (d)

Fig. 7: Initial Triangulation Ω(0)
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(a) t = 0.1 (b) t = 0.35

(c) t = 0.7 (d) t = 1.0

Fig. 5: Snapshots of the solution. Additionally we have cut along the y-axis.

5 Conclusions

In this paper we have presented a novel approach to

construct four-dimensional triangulations for moving

domains. This was done by extending the elements of

the space triangulation into hyperprisms. Assuming a

consistent numbered spatial triangulation we were able

to proof that our algorithm produces admissible space-

time meshes. We implemented the presented algorithm

and applied it to solve the transient Stokes equations

with a space-time discontinuous Galerkin finite element

method. In the future one could start investigating Navier-

Stokes equations. Furthermore, optimal control prob-

lems with time dependent partial differential equations

render themselves interesting candidates for applying

space-time methods, since one has to solve a forward

and backward problem which are coupled in space and

time. Another attractive aspect of general space-time

meshes is the possibility to apply adaptive refinement

strategies to resolve local behaviors in space and time.

Considering solvers, one could think about domain de-

composition approaches or space-time multigrid meth-

ods for example, which are a future research topic.
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(a) t = 0.05 (b) t = 0.35

(c) t = 0.7 (d) t = 1.0

Fig. 9: Snapshots of the solution. Additionally we have cut along the y-axis.
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