Basic Principles of Virtual Element Methods

D. Jodlbauer

November 20, 2018

(ロ)、(型)、(E)、(E)、 E) の(の)

Continuous Problem

Consider simple Laplace problem:

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \Gamma = \partial \Omega$$

Find $u \in V := H_0^1(\Omega)$, such that

$$a(u,v) = (f,v) \quad \forall v \in V,$$

with $a(u, v) = (\nabla u, \nabla v)$.

✓ Lax-Milgram: Existence & Uniqueness

Discrete Problem: Abstract Framework

• $\{\mathcal{T}_h\}_h \dots$ decomposition of Ω into elements K

- \mathcal{E}_h ... set of edges e of \mathcal{T}_h
- $h \dots$ maximum of diameters of elements in \mathcal{T}_h

Assumption: A0.1

 \mathcal{T}_h is made of a finite number of simple polygons.

More precise:

Open simply connected sets with non-intersecting boundaries made

of a finite number of straight line segments.

Discrete Problem: Definitions

$$a(u,v) = \sum_{K \in \mathcal{T}_h} a^K(u,v) \quad \forall u, v \in V$$

$$|v|_1^2 = \sum_K |v|_{1,K}^2 \qquad \forall v \in V$$

$$|v|_{h,1}^2 := \sum_K |\nabla v|_{0,K}^2 \qquad \forall v \in H^1(\mathcal{T}_h) := \prod_K H^1(K)$$

Discrete Problem: Assumptions

Assumption: A1

For each *h*, we have:

• $V_h \subset V$

• $a_h: V_h \times V_h \to \mathbb{R}$, symmetric bilinear form

►
$$a_h(u_h, v_h) = \sum_K a_h^K(u_h, v_h) \quad \forall u_h, v_h \in V_h$$

with a_h^K a bilinear form on $V_{h|K} \times V_{h|K}$

•
$$f_h \in V'_h$$

Discrete Problem: More Assumptions

Assumption: A2

There exists $k \geq 1$ such that for all h and $K \in \mathcal{T}_h$

•
$$\mathbb{P}_k(K) \subset V_{h|K}$$

► *k*-consistency:

$$a_h^K(p,v_h) = a^K(p,v_h) \quad orall p \in \mathbb{P}_k(K), v_h \in V_{h|K}$$

Stability:

$$lpha_* \mathsf{a}^{\mathsf{K}}(\mathsf{v}_h,\mathsf{v}_h) \leq \mathsf{a}^{\mathsf{K}}_h(\mathsf{v}_h,\mathsf{v}_h) \leq lpha^* \mathsf{a}^{\mathsf{K}}(\mathsf{v}_h,\mathsf{v}_h) \quad \forall \mathsf{v}_h \in V_{h|\mathcal{K}}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Implies continuity of a_h with constant α^* .

Discrete Problem: Error Estimate

Theorem

Under Assumptions **A1-A2**, the discrete problem: Find $u_h \in V_h$ such that

$$a_h(u_h,v_h) = \langle f_h,v_h \rangle \quad \forall v_h \in V_h,$$

has a unique solution.

For every approximation $u_I \in V_h$ and $u_\pi \in \mathbb{P}_k$ piecewise, we have

$$|u-u_h|_1 \leq C(|u-u_I|_1+|u-u_\pi|_{h,1}+\mathcal{F}_h),$$

with $\mathcal{F}_h := \|f - f_h\|_{V'_h}$.

Discretization: Discrete Spaces

- ▶ *K* ... simple polygon with *n* edges
- $x_K \dots$ barycenter of K
- $h_K \ldots$ diameter of K

$$\mathbb{B}_k(\partial K) := \{ v \in C^0(\partial K) : v_{|e} \in \mathbb{P}_k(e) \quad \forall e \subset \partial K \}$$

$$\dim = n + n(k-1) = nk$$

$$V^{K,k} := \{ v \in H^1(K) : v_{|\partial K} \in \mathbb{B}_k(\partial K), \Delta v_{|K} \in \mathbb{P}_{k-2}(K) \}$$

$$dim = nk + k(k-1)/2 =: N^K$$

<ロ> (四) (四) (三) (三) (三)

Discretization: Degrees of Freedom

For $V^{K,k}$ we can chose the following degrees of freedom:

- $\mathcal{V}^{K,k}$: v_h at vertices
- $\mathcal{E}^{K,k}$: v_h at k-1 uniformly spaced points on edges e
- ▶ $\mathcal{P}^{K,k}$: moments $\frac{1}{|K|} \int_K m(x) v_h(x) dx \quad \forall m \in \mathcal{M}_{k-2}(K)$

$$\mathcal{M}^{k-2} := \{ (\frac{x - x_K}{h_K})^s, |s| \le k - 2 \}, \quad dim = (k^2 - k)/2 \}$$

Discretization: Degrees of Freedom

Remark

•
$$\mathcal{V}^{K,k} + \mathcal{E}^{K,k} \Leftrightarrow \text{prescribe } v_h \text{ on } \partial K$$

•
$$\mathcal{P}^{K,k} \Leftrightarrow \text{prescribe } P_{k-2}^{K} v_h \text{ in } K$$

$$P_{k-2}^{K} := L^{2}(K) -$$
projection onto $\mathbb{P}_{k-2}(K)$

Theorem

The degrees of freedom are **unisolvent** for $V^{K,k}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Discretization: Unisolvence

Theorem

The degrees of freedom are **unisolvent** for $V^{K,k}$.

1. Observe:

unisolvence $\Leftrightarrow v_h = 0$ on $\partial K, P_{k-2}^K = 0$ in $K \implies v_h = 0$ in K

2. Show
$$P_{k-2}^{K} = 0 \implies \Delta v_h = 0$$
 in K

2.1 auxiliary problem, define R

- 2.2 show: R is an isomorphism
- 2.3 $\Delta v_h = 0$
- 3. \implies unisolvence

Discretization: Construction of the Discrete Space

$$V_h := \{ v \in V : v_{|\partial K} \in \mathbb{B}_k(\partial K) \text{ and } \Delta v_{|K} \in \mathbb{P}_{k-2}(K) \quad \forall K \in \mathcal{T}_h \}$$

$$dim = N_V + N_E(k-1) + N_P \frac{k(k-1)}{2} =: N^{tot}$$

 \triangleright N_V, N_E, N_P ... number of internal vertices, edges and elements

For V_h we can chose the following degrees of freedom:

- V: v_h at internal vertices
- ▶ \mathcal{E} : v_h at k-1 uniformly spaced points on **internal edges** e

•
$$\mathcal{P}$$
: moments $\frac{1}{|K|} \int_{K} q(x) v_h(x) dx \quad \forall q \in \mathcal{M}_{k-2}(K)$

Discretization: Projection Error

Assumption: A0.2

Assume there exists $\gamma > 0$ such that for all *h*, each $K \in \mathcal{T}_h$ is

star-shaped with respect to a ball of radius $\geq \gamma h_{\mathcal{K}}$.

Theorem: Scott-Dupont

A0.2 implies, that there is a constant $C(\gamma, k)$, such that for every

 $1 \leq s \leq k+1$, $w \in H^s(K)$, there exists $w_\pi \in \mathbb{P}_k(K)$ such that

$$\|w - w_{\pi}\|_{0,K} + h_{K}|w - w_{\pi}|_{1,K} \leq Ch_{K}^{s}|w|_{s,K}.$$

Discretization: Interpolation Error

Theorem: Brenner-Scott

Assume A0.2. Then there is a constant $C(\gamma, k)$, such that for all $2 \leq s \leq k + 1$, $h, K \in \mathcal{T}_h, w \in H^s(K)$, there exists $w_l \in V^{K,k}$ such that

$$\|w - w_I\|_{0,K} + h_K |w - w_I|_{1,K} \le Ch_K^s |w|_{s,K}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Discretization: Construction of a_h

- Did not specify a_h so far!
- Only knowledge: has to satisfy A2 (consistency, stability)

For $p \in \mathbb{P}_k(K)$, $v \in V^{K,k}$, we observe:

$$a^{K}(p,v) = \int_{K} \nabla p \cdot \nabla v dx = -\int_{K} \Delta p \ v dx + \int_{\partial K} \frac{\partial p}{\partial n} v ds$$

•
$$\Delta p \in \mathbb{P}_{k-2}(K)$$
 and $\frac{\partial p}{\partial n} \in \mathbb{P}_{k-1}(e)$

 Can compute without knowing v in the interior of K! (via moments and edge values)

Discretization: Construction of a_h

$$\overline{\varphi} := \frac{1}{n} \sum_{i=1}^{n} \varphi(V_i)$$

$$\Pi_{K}^{K} : V^{K,k} \to \mathbb{P}_{k}(K) \subset V^{K,k}$$

$$\begin{cases} a^{K}(\Pi_{k}^{K}v, q) = a^{K}(v, q) & \forall q \in \mathbb{P}_{k}(K) \\ \\ \overline{\Pi_{k}^{K}v} = \overline{v} \end{cases}$$

• We have
$$\Pi_k^K q = q \quad \forall q \in \mathbb{P}_k(K)$$

• Choice:
$$a_h^K(u, v) := a^K(\prod_h^K u, \prod_k^K v)$$

- ✓ k-consistency
- ✗ stability

Discretization: Construction of a_h

• Chose $S^{\kappa}(u, v)$ symmetric, positiv, bilinear form such that

$$c_0 a^K(v,v) \leq S^K(v,v) \leq c_1 a^K(v,v) \quad \forall v \in V^{K,k} \text{ with } \Pi_k^K v = 0$$

Define

$$a_h^K(u,v) := a^K(\prod_k^K u, \prod_k^K v) + S^K(u - \prod_k^K u, v - \prod_k^K v)$$

Theorem: Discrete Bilinear-Form

✓ k-consistency

✓ stability

Discretization: Choice of S_K

Assumption: A0.3

Assume that there is a $\gamma > 0$ such that for all h and each $K \in \mathcal{T}_h$, the distance between any two vertices of K is $\geq \gamma h_K$.

- In general: S^{K} depends on problem
- S^{K} must scale like a^{K} on the kernel of Π_{k}^{K}

•
$$a^{\kappa}(\varphi_i,\varphi_j)\simeq 1$$

$$S^{K}(\varphi_{i}-\Pi_{k}^{K}\varphi_{i},\varphi_{j}-\Pi_{k}^{K}\varphi_{j}):=\sum_{r=1}^{N^{K}}\mathcal{X}_{r}(\varphi_{i}-\Pi_{k}^{K}\varphi_{i})\mathcal{X}_{r}(\varphi_{j}-\Pi_{k}^{K}\varphi_{j})$$

Discretization: Right-Hand Side

Define right-hand side

$$f_h := P_{k-2}^K f$$
 on each $K \in \mathcal{T}_h$

Then:

$$\langle f_h, v_h \rangle = \sum_{\kappa} \int_{\kappa} f_h v_h dx = \sum_{\kappa} \int_{\kappa} (P_{k-2}^{\kappa} f) v_h dx = \sum_{\kappa} \int_{\kappa} f(P_{k-2}^{\kappa} v_h) dx$$

only need internal moments

Furthermore:

$$\mathcal{F}_h \leq Ch^k \left(\sum_{\mathcal{K}} |f|^2_{k-1,\mathcal{K}}\right)^{rac{1}{2}}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Conclusions

- Optimal order also for L^2 possible
- Complicated geometries
- Higher-order continuity
- Replace Δ in $V^{K,k}$ by second-order elliptic operator

- Even further: just require that
 - $dimV^{K,k} = N^K$
 - ▶ contains polynomials ≤ k on e
 - contains \mathbb{P}_k
 - unisolvent

... to be continued ...

this December: "The Hitchhikers Guide to VEM"

Thank you.

Veiga, L. Beirao da et al. (2013). "Basic Principles of Virtual Element Methods". In: Mathematical Models and Methods in Applied Sciences 23.01, pp. 199–214. DOI: 10.1142/S0218202512500492.