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Continuous Problem

Consider simple Laplace problem:

−∆u = f in Ω

u = 0 on Γ = ∂Ω

Find u ∈ V := H1
0 (Ω), such that

a(u, v) = (f , v) ∀v ∈ V ,

with a(u, v) = (∇u,∇v).

3 Lax-Milgram: Existence & Uniqueness



Discrete Problem: Abstract Framework

I {Th}h . . . decomposition of Ω into elements K

I Eh . . . set of edges e of Th

I h . . . maximum of diameters of elements in Th

Assumption: A0.1

Th is made of a finite number of simple polygons.

More precise:

Open simply connected sets with non-intersecting boundaries made

of a finite number of straight line segments.



Discrete Problem: Definitions

I a(u, v) =
∑

K∈Th a
K (u, v) ∀u, v ∈ V

I |v |21 =
∑

K |v |21,K ∀v ∈ V

I |v |2h,1 :=
∑

K |∇v |20,K ∀v ∈ H1(Th) :=
∏

K H1(K )



Discrete Problem: Assumptions

Assumption: A1

For each h, we have:

I Vh ⊂ V

I ah : Vh × Vh → R, symmetric bilinear form

I ah(uh, vh) =
∑

K aKh (uh, vh) ∀uh, vh ∈ Vh

with aKh a bilinear form on Vh|K × Vh|K

I fh ∈ V ′h



Discrete Problem: More Assumptions

Assumption: A2

There exists k ≥ 1 such that for all h and K ∈ Th

I Pk(K ) ⊂ Vh|K

I k-consistency:

aKh (p, vh) = aK (p, vh) ∀p ∈ Pk(K ), vh ∈ Vh|K

I Stability:

α∗a
K (vh, vh) ≤ aKh (vh, vh) ≤ α∗aK (vh, vh) ∀vh ∈ Vh|K

Implies continuity of ah with constant α∗.



Discrete Problem: Error Estimate

Theorem

Under Assumptions A1-A2, the discrete problem: Find uh ∈ Vh

such that

ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh,

has a unique solution.

For every approximation uI ∈ Vh and uπ ∈ Pk piecewise, we have

|u − uh|1 ≤ C (|u − uI |1 + |u − uπ|h,1 + Fh) ,

with Fh := ‖f − fh‖V ′
h
.



Discretization: Discrete Spaces

I K . . . simple polygon with n edges

I xK . . . barycenter of K

I hK . . . diameter of K

Bk(∂K ) := {v ∈ C 0(∂K ) : v|e ∈ Pk(e) ∀e ⊂ ∂K}

dim = n + n(k − 1) = nk

V K ,k := {v ∈ H1(K ) : v|∂K ∈ Bk(∂K ),∆v|K ∈ Pk−2(K )}

dim = nk + k(k − 1)/2 =: NK



Discretization: Degrees of Freedom

For V K ,k we can chose the following degrees of freedom:

I VK ,k : vh at vertices

I EK ,k : vh at k − 1 uniformly spaced points on edges e

I PK ,k : moments 1
|K |
∫
K
m(x)vh(x)dx ∀m ∈Mk−2(K )

Mk−2 := {( x−xK
hK

)s , |s| ≤ k − 2}, dim = (k2 − k)/2



Discretization: Degrees of Freedom

Remark

I VK ,k + EK ,k ⇔ prescribe vh on ∂K

I PK ,k ⇔ prescribe PK
k−2vh in K

PK
k−2 := L2(K )− projection onto Pk−2(K )

Theorem

The degrees of freedom are unisolvent for V K ,k .



Discretization: Unisolvence

Theorem

The degrees of freedom are unisolvent for V K ,k .

1. Observe:

unisolvence⇔ vh = 0 on ∂K ,PK
k−2 = 0 in K =⇒ vh = 0 in K

2. Show PK
k−2 = 0 =⇒ ∆vh = 0 in K

2.1 auxiliary problem, define R

2.2 show: R is an isomorphism

2.3 ∆vh = 0

3. =⇒ unisolvence



Discretization: Construction of the Discrete Space

Vh := {v ∈ V : v|∂K ∈ Bk(∂K ) and ∆v|K ∈ Pk−2(K ) ∀K ∈ Th}

dim = NV + NE (k − 1) + NP
k(k−1)

2 =: N tot

I NV ,NE ,NP . . . number of internal vertices, edges and elements

For Vh we can chose the following degrees of freedom:

I V: vh at internal vertices

I E : vh at k − 1 uniformly spaced points on internal edges e

I P: moments 1
|K |
∫
K
q(x)vh(x)dx ∀q ∈Mk−2(K )



Discretization: Projection Error

Assumption: A0.2

Assume there exists γ > 0 such that for all h, each K ∈ Th is

star-shaped with respect to a ball of radius ≥ γhK .

Theorem: Scott-Dupont

A0.2 implies, that there is a constant C (γ, k), such that for every

1 ≤ s ≤ k + 1, w ∈ Hs(K ), there exists wπ ∈ Pk(K ) such that

‖w − wπ‖0,K + hK |w − wπ|1,K ≤ ChsK |w |s,K .



Discretization: Interpolation Error

Theorem: Brenner-Scott

Assume A0.2. Then there is a constant C (γ, k), such that for all

2 ≤ s ≤ k + 1, h, K ∈ Th, w ∈ Hs(K ), there exists wI ∈ V K ,k

such that

‖w − wI‖0,K + hK |w − wI |1,K ≤ ChsK |w |s,K .



Discretization: Construction of ah

I Did not specify ah so far!

I Only knowledge: has to satisfy A2 (consistency, stability)

For p ∈ Pk(K ), v ∈ V K ,k , we observe:

aK (p, v) =

∫
K

∇p · ∇vdx = −
∫
K

∆p vdx +

∫
∂K

∂p

∂n
vds

I ∆p ∈ Pk−2(K ) and ∂p
∂n ∈ Pk−1(e)

I Can compute without knowing v in the interior of K !

(via moments and edge values)



Discretization: Construction of ah

I ϕ := 1
n

∑n
i=1 ϕ(Vi )

I ΠK
K : V K ,k → Pk(K ) ⊂ V K ,kaK (ΠK

k v , q) = aK (v , q) ∀q ∈ Pk(K )

ΠK
k v = v

I We have ΠK
k q = q ∀q ∈ Pk(K )

I Choice: aKh (u, v) := aK (ΠK
h u,Π

K
k v)

3 k-consistency

7 stability



Discretization: Construction of ah

I Chose SK (u, v) symmetric, positiv, bilinear form such that

c0a
K (v , v) ≤ SK (v , v) ≤ c1a

K (v , v) ∀v ∈ V K ,k with ΠK
k v = 0

I Define

aKh (u, v) := aK (ΠK
k u,Π

K
k v) + SK (u − ΠK

k u, v − ΠK
k v)

Theorem: Discrete Bilinear-Form

3 k-consistency

3 stability



Discretization: Choice of SK

Assumption: A0.3

Assume that there is a γ > 0 such that for all h and each K ∈ Th,

the distance between any two vertices of K is ≥ γhK .

I In general: SK depends on problem

I SK must scale like aK on the kernel of ΠK
k

I aK (ϕi , ϕj) ' 1

SK (ϕi−ΠK
k ϕi , ϕj−ΠK

k ϕj) :=
∑NK

r=1 Xr (ϕi−ΠK
k ϕi ) Xr (ϕj−ΠK

k ϕj)



Discretization: Right-Hand Side

I Define right-hand side

fh := PK
k−2f on each K ∈ Th

Then:

〈fh, vh〉 =
∑
K

∫
K

fhvhdx =
∑
K

∫
K

(PK
k−2f )vhdx =

∑
K

∫
K

f (PK
k−2vh)dx

I only need internal moments

I Furthermore:

Fh ≤ Chk

(∑
K

|f |2k−1,K

) 1
2



Conclusions

I Optimal order also for L2 possible

I Complicated geometries

I Higher-order continuity

I Replace ∆ in V K ,k by second-order elliptic operator

I Even further: just require that

I dimVK,k = NK

I contains polynomials ≤ k on e

I contains Pk
I unisolvent



. . . to be continued . . .

this December: ”The Hitchhikers Guide to VEM”

Thank you.
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