Basic Principles of Virtual Element Methods

D. Jodlbauer

November 20, 2018

Continuous Problem

Consider simple Laplace problem:

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega \\
u=0 & \text { on } \Gamma=\partial \Omega
\end{aligned}
$$

Find $u \in V:=H_{0}^{1}(\Omega)$, such that

$$
a(u, v)=(f, v) \quad \forall v \in V,
$$

with $a(u, v)=(\nabla u, \nabla v)$.
\checkmark Lax-Milgram: Existence \& Uniqueness

Discrete Problem: Abstract Framework

- $\left\{\mathcal{T}_{h}\right\}_{h} \ldots$ decomposition of Ω into elements K
- $\mathcal{E}_{h} \ldots$ set of edges e of \mathcal{T}_{h}
- h... maximum of diameters of elements in \mathcal{T}_{h}

Assumption: A0.1

\mathcal{T}_{h} is made of a finite number of simple polygons.

More precise:
Open simply connected sets with non-intersecting boundaries made of a finite number of straight line segments.

Discrete Problem: Definitions

$$
\begin{array}{ll}
\text { - } a(u, v)=\sum_{K \in \mathcal{T}_{h}} a^{K}(u, v) & \forall u, v \in V \\
-|v|_{1}^{2}=\sum_{K}|v|_{1, K}^{2} & \forall v \in V \\
-|v|_{h, 1}^{2}:=\sum_{K}|\nabla v|_{0, K}^{2} &
\end{array} \forall v \in H^{1}\left(\mathcal{T}_{h}\right):=\prod_{K} H^{1}(K)
$$

Discrete Problem: Assumptions

Assumption: A1

For each h, we have:

- $V_{h} \subset V$
- $a_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$, symmetric bilinear form
- $a_{h}\left(u_{h}, v_{h}\right)=\sum_{K} a_{h}^{K}\left(u_{h}, v_{h}\right) \quad \forall u_{h}, v_{h} \in V_{h}$
with a_{h}^{K} a bilinear form on $V_{h \mid K} \times V_{h \mid K}$
- $f_{h} \in V_{h}^{\prime}$

Discrete Problem: More Assumptions

Assumption: A2

There exists $k \geq 1$ such that for all h and $K \in \mathcal{T}_{h}$
$-\mathbb{P}_{k}(K) \subset V_{h \mid K}$

- k-consistency:

$$
a_{h}^{K}\left(p, v_{h}\right)=a^{K}\left(p, v_{h}\right) \quad \forall p \in \mathbb{P}_{k}(K), v_{h} \in V_{h \mid K}
$$

- Stability:

$$
\alpha_{*} a^{K}\left(v_{h}, v_{h}\right) \leq a_{h}^{K}\left(v_{h}, v_{h}\right) \leq \alpha^{*} a^{K}\left(v_{h}, v_{h}\right) \quad \forall v_{h} \in V_{h \mid K}
$$

Implies continuity of a_{h} with constant α^{*}.

Discrete Problem: Error Estimate

Theorem

Under Assumptions A1-A2, the discrete problem: Find $u_{h} \in V_{h}$ such that

$$
a_{h}\left(u_{h}, v_{h}\right)=\left\langle f_{h}, v_{h}\right\rangle \quad \forall v_{h} \in V_{h},
$$

has a unique solution.
For every approximation $u_{l} \in V_{h}$ and $u_{\pi} \in \mathbb{P}_{k}$ piecewise, we have

$$
\left|u-u_{h}\right|_{1} \leq C\left(\left|u-u_{l}\right|_{1}+\left|u-u_{\pi}\right|_{h, 1}+\mathcal{F}_{h}\right)
$$

with $\mathcal{F}_{h}:=\left\|f-f_{h}\right\|_{V_{h}^{\prime}}$.

Discretization: Discrete Spaces

- K ...simple polygon with n edges
- x_{K}... barycenter of K
- $h_{K} \ldots$ diameter of K

$$
\begin{aligned}
& \mathbb{B}_{k}(\partial K):=\left\{v \in C^{0}(\partial K): v_{l e} \in \mathbb{P}_{k}(e) \quad \forall e \subset \partial K\right\} \\
& \operatorname{dim}=n+n(k-1)=n k
\end{aligned}
$$

$$
V^{K, k}:=\left\{v \in H^{1}(K): v_{\mid \partial K} \in \mathbb{B}_{k}(\partial K), \Delta v_{\mid K} \in \mathbb{P}_{k-2}(K)\right\}
$$

$$
\operatorname{dim}=n k+k(k-1) / 2=: N^{K}
$$

Discretization: Degrees of Freedom

For $V^{K, k}$ we can chose the following degrees of freedom:

- $\mathcal{V}^{K, k}: v_{h}$ at vertices
- $\mathcal{E}^{K, k}: v_{h}$ at $k-1$ uniformly spaced points on edges e
- $\mathcal{P}^{K, k}:$ moments $\frac{1}{|K|} \int_{K} m(x) v_{h}(x) d x \quad \forall m \in \mathcal{M}_{k-2}(K)$

$$
\mathcal{M}^{k-2}:=\left\{\left(\frac{x-x_{K}}{h_{K}}\right)^{s},|s| \leq k-2\right\}, \quad \operatorname{dim}=\left(k^{2}-k\right) / 2
$$

Discretization: Degrees of Freedom

Remark

- $\mathcal{V}^{K, k}+\mathcal{E}^{K, k} \Leftrightarrow$ prescribe v_{h} on ∂K
- $\mathcal{P}^{K, k} \Leftrightarrow$ prescribe $P_{k-2}^{K} v_{h}$ in K
$P_{k-2}^{K}:=L^{2}(K)-$ projection onto $\mathbb{P}_{k-2}(K)$

Theorem

The degrees of freedom are unisolvent for $V^{K, k}$.

Discretization: Unisolvence

Theorem

The degrees of freedom are unisolvent for $V^{K, k}$.

1. Observe:

$$
\text { unisolvence } \Leftrightarrow v_{h}=0 \text { on } \partial K, P_{k-2}^{K}=0 \text { in } K \Longrightarrow v_{h}=0 \text { in } K
$$

2. Show $P_{k-2}^{K}=0 \Longrightarrow \Delta v_{h}=0$ in K
2.1 auxiliary problem, define R
2.2 show: R is an isomorphism
$2.3 \Delta v_{h}=0$
3. \Longrightarrow unisolvence

Discretization: Construction of the Discrete Space

$$
\begin{aligned}
& V_{h}:=\left\{v \in V: v_{\mid \partial K} \in \mathbb{B}_{k}(\partial K) \text { and } \Delta v_{\mid K} \in \mathbb{P}_{k-2}(K) \quad \forall K \in \mathcal{T}_{h}\right\} \\
& \operatorname{dim}=N_{V}+N_{E}(k-1)+N_{P} \frac{k(k-1)}{2}=: N^{\text {tot }}
\end{aligned}
$$

- $N_{V}, N_{E}, N_{P} \ldots$ number of internal vertices, edges and elements

For V_{h} we can chose the following degrees of freedom:

- $\mathcal{V}: v_{h}$ at internal vertices
- $\mathcal{E}: v_{h}$ at $k-1$ uniformly spaced points on internal edges e
- $\mathcal{P}:$ moments $\frac{1}{|K|} \int_{K} q(x) v_{h}(x) d x \quad \forall q \in \mathcal{M}_{k-2}(K)$

Discretization: Projection Error

Assumption: A0.2

Assume there exists $\gamma>0$ such that for all h, each $K \in \mathcal{T}_{h}$ is star-shaped with respect to a ball of radius $\geq \gamma h_{K}$.

Theorem: Scott-Dupont

A0.2 implies, that there is a constant $C(\gamma, k)$, such that for every
$1 \leq s \leq k+1, w \in H^{s}(K)$, there exists $w_{\pi} \in \mathbb{P}_{k}(K)$ such that

$$
\left\|w-w_{\pi}\right\|_{0, K}+h_{K}\left|w-w_{\pi}\right|_{1, K} \leq C h_{K}^{s}|w|_{s, K} .
$$

Discretization: Interpolation Error

Theorem: Brenner-Scott

Assume A0.2. Then there is a constant $C(\gamma, k)$, such that for all $2 \leq s \leq k+1, h, K \in \mathcal{T}_{h}, w \in H^{s}(K)$, there exists $w_{l} \in V^{K, k}$
such that

$$
\left\|w-w_{l}\right\|_{0, K}+h_{K}\left|w-w_{l}\right|_{1, K} \leq C h_{K}^{s}|w|_{s, K}
$$

Discretization: Construction of a_{h}

- Did not specify a_{h} so far!
- Only knowledge: has to satisfy A2 (consistency, stability)

For $p \in \mathbb{P}_{k}(K), v \in V^{K, k}$, we observe:

$$
a^{K}(p, v)=\int_{K} \nabla p \cdot \nabla v d x=-\int_{K} \Delta p v d x+\int_{\partial K} \frac{\partial p}{\partial n} v d s
$$

- $\Delta p \in \mathbb{P}_{k-2}(K)$ and $\frac{\partial p}{\partial n} \in \mathbb{P}_{k-1}(e)$
- Can compute without knowing v in the interior of K ! (via moments and edge values)

Discretization: Construction of a_{h}

- $\bar{\varphi}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(V_{i}\right)$
- $\Pi_{K}^{K}: V^{K, k} \rightarrow \mathbb{P}_{k}(K) \subset V^{K, k}$

$$
\left\{\begin{array}{l}
a^{K}\left(\Pi_{k}^{K} v, q\right)=a^{K}(v, q) \quad \forall q \in \mathbb{P}_{k}(K) \\
\overline{\Pi_{k}^{K} v}=\bar{v}
\end{array}\right.
$$

- We have $\Pi_{k}^{K} q=q \quad \forall q \in \mathbb{P}_{k}(K)$
- Choice: $a_{h}^{K}(u, v):=a^{K}\left(\Pi_{h}^{K} u, \Pi_{k}^{K} v\right)$
\checkmark k-consistency
X stability

Discretization: Construction of a_{h}

- Chose $S^{K}(u, v)$ symmetric, positiv, bilinear form such that

$$
c_{0} a^{K}(v, v) \leq S^{K}(v, v) \leq c_{1} a^{K}(v, v) \quad \forall v \in V^{K, k} \text { with } \Pi_{k}^{K} v=0
$$

- Define

$$
a_{h}^{K}(u, v):=a^{K}\left(\Pi_{k}^{K} u, \Pi_{k}^{K} v\right)+S^{K}\left(u-\Pi_{k}^{K} u, v-\Pi_{k}^{K} v\right)
$$

Theorem: Discrete Bilinear-Form
\checkmark k-consistency
\checkmark stability

Discretization: Choice of S_{K}

Assumption: A0.3

Assume that there is a $\gamma>0$ such that for all h and each $K \in \mathcal{T}_{h}$, the distance between any two vertices of K is $\geq \gamma h_{K}$.

- In general: S^{K} depends on problem
- S^{K} must scale like a^{K} on the kernel of Π_{k}^{K}
- $a^{K}\left(\varphi_{i}, \varphi_{j}\right) \simeq 1$

$$
S^{K}\left(\varphi_{i}-\Pi_{k}^{K} \varphi_{i}, \varphi_{j}-\Pi_{k}^{K} \varphi_{j}\right):=\sum_{r=1}^{N^{K}} \mathcal{X}_{r}\left(\varphi_{i}-\Pi_{k}^{K} \varphi_{i}\right) \mathcal{X}_{r}\left(\varphi_{j}-\Pi_{k}^{K} \varphi_{j}\right)
$$

Discretization: Right-Hand Side

- Define right-hand side

$$
f_{h}:=P_{k-2}^{K} f \quad \text { on each } K \in \mathcal{T}_{h}
$$

Then:

$$
\left\langle f_{h}, v_{h}\right\rangle=\sum_{K} \int_{K} f_{h} v_{h} d x=\sum_{K} \int_{K}\left(P_{k-2}^{K} f\right) v_{h} d x=\sum_{K} \int_{K} f\left(P_{k-2}^{K} v_{h}\right) d x
$$

- only need internal moments
- Furthermore:

$$
\mathcal{F}_{h} \leq C h^{k}\left(\sum_{K}|f|_{k-1, K}^{2}\right)^{\frac{1}{2}}
$$

Conclusions

- Optimal order also for L^{2} possible
- Complicated geometries
- Higher-order continuity
- Replace Δ in $V^{K, k}$ by second-order elliptic operator
- Even further: just require that
- $\operatorname{dim} V^{K, k}=N^{K}$
- contains polynomials $\leq k$ on e
- contains \mathbb{P}_{k}
- unisolvent
... to be continued ...
this December: "The Hitchhikers Guide to VEM"

Thank you.

Ti
Veiga, L. Beirao da et al. (2013). "Basic Principles of Virtual Element Methods". In: Mathematical Models and Methods in Applied Sciences 23.01, pp. 199-214. DOI: 10.1142/S0218202512500492.

