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Abstract

In this paper we discuss domain decomposition parallel iterative solvers for highly heteroge-
neous problems of flow and transport in porous media. We are particularly interested in highly
unstructured coefficient variation where standard periodic or stochastic homogenisation theory
is not applicable. When the smallest scale at which the coefficient varies is very small it is
often necessary to scale up the equation to a coarser grid to make the problem computationally
feasible. Standard upscaling or multiscale techniques, require the solution of local problems in
each coarse element, leading to a computational complexity that is at least linear in the global
number N of unknowns on the subgrid. Moreover, except for the periodic and the isotropic
random case, a theoretical analysis of the accuracy of the upscaled solution is not yet available.
Multilevel iterative methods for the original problem on the subgrid, such as multigrid or do-
main decomposition, lead to similar computational complexity (i.e. O(N)) and are therefore
a viable alternative. However, previously no theory was available guaranteeing the robustness
of these methods to large coefficient variation. We review a sequence of recent papers where
simple variants of domain decomposition methods, such as overlapping Schwarz and one-level
FETI, are proposed that are robust to strong coefficient variation. Moreover, we extend the
results to other substructuring techniques, such as all-floating FETI and FETI-DP.

Keywords: multiscale PDEs; numerical homogenisation; parallel iterative solvers; additive
Schwarz; FETI; conditioning analysis

AMS Subject Classification: 65N55; 65F10; 35B27; 74Q15; 76S05

1 Introduction

In this paper we discuss the use of domain decomposition parallel iterative solvers for highly
heterogeneous problems of flow and transport in porous media, in both the deterministic
and (Monte-Carlo simulated) stochastic cases. We are particularly interested in the case of
highly unstructured coefficient variation where standard periodic or stochastic homogenisa-
tion theory is not applicable, and where there is no a priori scale separation. We will restrict
attention to the following important model elliptic problem

−∇ · (K∇u) = f , (1)

in a bounded polygonal or polyhedral domain Ω ⊂ Rd, d = 2 or 3 with suitable boundary
data on the boundary ∂Ω. The d×d tensor K(x) is assumed isotropic and symmetric positive
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Figure 1: Typical coefficient distributions: benchmark example of the Society of Petroleum
Engineer, SPE10 (left), and realisation of a lognormal random field (right).

definite, but may vary over many orders of magnitude in an unstructured way on Ω. Many
examples arise in groundwater flow and oil reservoir modelling, e.g. in the context of the
SPE10 benchmark problem [4] in Figure 1 (left) or in the Monte Carlo simulated case of
stochastic models for strong heteoregeneities [5] in Figure 1 (right).

Let T h be a conforming shape-regular simplicial mesh on Ω and let Sh(Ω) denote the
space of continuous piecewise linear finite elements on T h. The finite element discretisation
of (1) in Vh (the N -dimensional subspace of functions in Sh(Ω) which vanish on essential
boundaries), yields the linear system:

Au = f . (2)

It is well-known that the size of this system grows like O(h−d), as T h is refined, and that
the condition number κ(A) of A worsens like O(h−2). Moreover the conditioning of A also
depends on the heterogeneity (characterised by the range and the variability of K). It is of
interest to find solvers for (2) which are robust to changes in the mesh width h as well as to
the heterogeneity in K.

When the smallest scale ε, at which the coefficient tensor K(x) varies, is very small
it may not be feasible to solve (1) on a mesh of size h = O(ε) with standard solvers,
and it may be necessary to scale up the equation to a coarser computational grid of size
H � ε. A large number of computational methods have been suggested over the years in
the engineering literature on how to derive such an upscaled equation numerically (see e.g.
the reviews [35, 29, 11]). More recently this area has also started to attract the attention
of numerical analysts, who have started to try to analyse the approximation properties of
such upscaling or multiscale techniques theoretically. Among the methods that have been
suggested and analysed are the Variational Multiscale Method [15], the Multiscale Finite
Element Method [14], the Heterogeneous Multiscale Method [8], and the Multiscale Finite
Volume Method [16]. However, the existing theory is restricted to periodic fine scale variation
or to certain isotropic random variation. No theory is yet available that gives a comprehensive
analysis of the dependency of the accuracy of the upscaled solution on the coefficient variation
in the general case, and it is well known that the approximation can be arbitrarily bad.

Moreover, if the coefficient varies arbitrarily throughout Ω and there is no scale separation
into a fine O(ε) scale variation and a coarse O(H) scale variation, then all these methods
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require the solution of local ”cell” problems, of size O((H/ε)d), in each cell or element of the
coarse mesh, i.e. O(H−d) problems. Thus, even if we assume that the local problems can
be solved with optimal (linear) complexity, the total computational cost of the method is
O(ε−d). In practice the complexity may actually be worse. A huge advantage is of course the
fact that the cell problems are all completely independent from each other. This means that
they can be solved very efficiently on a modern multiprocessor machine. This makes this
method so attractive to scale up a physical problem,1 especially if the upscaled matrix can
be used for several right hand sides or for several time steps in a time-dependent simulation.

A viable alternative is the use of parallel multilevel iterative solvers, such as multigrid
or domain decomposition, for the original fine scale problem (2) on the “subgrid” T h where
h = O(ε). These are known to lead to a similar overall computational complexityO(ε−d) and,
especially in the case of domain decomposition, are designed to scale optimally on modern
multiprocessor machines. However, previously no theory was available that guarantees the
robustness of these multilevel iterative solvers to heterogeneities in the coefficient, and indeed
most of these methods are not robust when used unmodified. The most successful, completely
robust method for (2) is algebraic multigrid (AMG), originally introduced in [2, 31]. Many
different versions of AMG have emerged since, but unfortunately no theory exists that proves
the (observed) robustness of either of these methods to arbitrary spatial variation of K(x).
The robustness of geometric multigrid for “layered media” in which discontinuities in K are
simple interfaces that can be resolved by the coarsest mesh has recently been proved in [36].
Some ideas towards a theory for more general coefficients can be found in [1]. AMG and the
related BoxMG [6] have also recently been used in the context of numerical homogenisation
in [24, 20, 23], but this is not the topic of this paper.

The situation is different for domain decomposition methods. There are many papers
(with rigorous theory) which solve (2) for “layered media” in which discontinuities in K
are simple interfaces that can be resolved by the subdomain partitioning and the coarse
mesh (see e.g. [3, 33] and the references therein). However, until recently there was no
rigorously justified method for general heterogeneous media. We present here a summary of
some recent papers [12, 13, 32, 27, 28, 34] where a new analysis of domain decomposition
methods for (2) (which have inherent robustness with respect to h) was presented. This
analysis indicates explicitly how subdomains and coarse solves should be designed in order
to achieve robustness also with respect to heterogeneities. In addition, we will give here for
the first time an extension of the theoretical results for one-level FETI methods in [27], to
other substructuring techniques, like all-floating FETI and FETI-DP. The analysis does not
require periodicity and does not appeal to homogenisation theory.

For the remainder of the paper let us assume that we have a finite nonoverlapping par-
titioning of Ω into (open) subdomains {Ωi : i = 1, . . . , s}, with each Ωi assumed to consist
of a union of elements from T h. Let us also define the so-called boundary layer Dη of width
η > 0 for a subdomain D ⊂ Ω, such that Dη consists again of a union of elements from T h

and
dist(x, ∂D) < η, for all x ∈ Dη .

For the purposes of exposition we will only describe the theory for scalar K = α I and for
homogeneous Dirichlet boundary conditions. For most of the paper we will restrict to the
simpler, but still important case of coefficients α that are constant (or varying only mildly)

1In this paper we use the term “scaling up” in the sense of solving larger and larger physical problems,
which is equivalent to letting ε→ 0 on a fixed size domain.
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in the boundary layer Ωi,η, for all i = 1, . . . , s and some η > 0. We will make some remarks
about extensions to more general coefficients in §4. We start by reviewing the analysis for
overlapping methods in §2. We will then review the theory for nonoverlapping methods in
§3 and extend the results for one-level FETI in [27] to all-floating FETI and FETI-DP.

Throughout the paper, the notation C . D (for two quantities C,D) means that C/D
is bounded from above independently of h and α. Additionally, C ∼ D stands for C . D
and D . C.

2 Overlapping Methods

This section is only intended to be a short review of some recent results in a series of papers
[12, 13, 32, 34]. Therefore we restrict ourselves to the two-level overlapping additive Schwarz
method. The extension of the analysis to other two-level overlapping domain decomposition
methods such as multiplicative Schwarz, balancing techniques, or deflation based coarse grid
correction follows as usual (see [12, 13] for details). The one-level method is analysed in
[12]. For theoretical purposes, we shall assume (in this section) that α ≥ 1. This is no
loss of generality, since problem (2) can be scaled by (minx α(x))−1 without changing its
conditioning.

Given the initial nonoverlapping partitioning {Ωi : i = 1, . . . , s} of Ω, we start by ex-
tending each subdomain Ωi to a larger region Ω̂i such that Ω̂i consists again of a union of
elements from T h and that there exists a δi > 0 with

x ∈ Ω̂i,δi
⇒ x ∈ Ω̂j , for some j 6= i,

i.e. δi is the minimum amount of overlap for subdomain Ω̂i. If in addition we are given a
coarse space VH ⊂ Vh, then the two-level additive Schwarz preconditioner can be written as

M−1
AS =

s∑
i=0

RT
i A

−1
i Ri . (3)

Here, for i = 1, . . . , s, Ri denotes the restriction matrix from freedoms in Ω to freedoms in
Ω̂i. R0 is the projection onto the coarse space which will be specified later. The matrices Ai

are defined via the Galerkin product Ai := RiAR
T
i .

The technical assumptions on the coarse space and on the overlapping subdomains made
in the papers [12, 13] and [32, 34] are slightly different. Here we only describe the theory
presented in [12, 13] and for that matter we introduce a (shape regular) coarse grid T H

composed of triangles (d = 2) or tetrahedra (d = 3). A typical element is the (closed) set
K, which again we assume to consist of the union of a set of fine grid elements τ ∈ T h. To
simplify the presentation we assume that {Ωi} = T H , i.e. the nonoverlapping subdomain
partitioning coincides with the coarse grid, and we define a global bound δ > 0 for the
(relative) minimum overlap that is defined as δ := mini=1,...,s

H
Hi
δi, where Hi := diam(Ωi).

To specify our assumptions on the coarse space we start with a linearly independent set
of finite element functions {Φj : j = 1, . . . , NH} ⊂ Sh(Ω), where each of the Φj is associated
with a node xH

j of T H . A subset of this set will form the basis for our coarse space. The
functions have to satsify the following assumptions:

(C1)
∑NH

j=1 Φj(x) = 1, for all x ∈ Ω̄;
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(C2) supp(Φj) ⊂ ωj where ωj :=
⋃
{K : xH

j ∈ K};

(C3) ‖Φj‖L∞(Ω) . 1 ;

i.e. they form a partition of unity on Ω, and each of the functions Φj is bounded and has
local support (restricted to the elements K containing coarse node xH

j ). In particular, this
implies Φj(xH

k ) = δj,k, for all j, k = 1, . . . , NH . If we further assume that the coarse nodes
xH

j are numbered in such a way that xH
j ∈ Ω for all j ≤ N and xH

j ∈ ∂Ω for all j > N ,
then we can finally choose the coarse space VH ⊂ Vh to be span{Φj : j = 1, . . . , N}, i.e.
the space spanned by the functions Φj that satisfy the Dirichlet boundary conditions on
∂Ω. The restriction matrix R0 is given by (R0)j,p = Φj(xh

p), where xh
p , p = 1, . . . , n, are the

interior nodes of T h.
Note that the theory below can be generalised to subdomain partitionings that do not co-

incide with the coarse mesh. It also extends to more general partitions of unity {Φj} ⊂ Sh(Ω),
not necessarily associated with a simplicial coarse mesh, e.g. aggregation-based coarsening
(cf. [32]) or explicit energy minimisation (cf. [34]).

It is well known (see e.g. [33]) that in order to bound κ(M−1
ASA), we need to assume some

upper bounds on |Φj |2H1(Ω) as well. We take a novel approach here and introduce a quantity
which also reflects how the coarse space handles the coefficient heterogeneity:

Definition 2.1 (Coarse space robustness indicator).

γ(α) =
NHmax
j=1

{
diam(ωj)2−d ‖Φj‖2

a

}
where ‖v‖2

a :=
∫

Ω
α|∇v|.

Note that this robustness indicator is well-behaved if the Φj have low energy (indepen-
dently of any possible variations in α), or in other words, if the Φj have small gradient
wherever α is large.

The second quantity which we introduce measures (in a certain sense) the ability of the
overlapping subdomains Ω̂i to handle the coefficient heterogeneity.

Definition 2.2 (Partitioning robustness indicator).

π(α) = inf
{χi}

(
s

max
i=1

{
δ2i

∥∥α|∇χi|2
∥∥

L∞(Ω)

})
where the infimum is taken over all partitions of unity {χi} ⊂ W 1

∞(Ω) subordinate to the
cover {Ω̂i}.

Roughly speaking, π(α) is well-behaved if there is a partition of unity whose members
have small gradient wherever α is large.

Using these two robustness indicators and under the assumptions made above we can
now state one of the main results from [12, Theorem 3.9]:

Theorem 2.3. Assume that (C1)–(C3) hold true. Then

κ
(
M−1

ASA
)

. π(α) γ(1)
(

1 +
H

δ

)
+ γ(α) .
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α̂ κ(M−1
ASA) γ(α)

100 22.0 3.0
102 111 40
104 3870 3750
106 6000 375000

α̂ κ(M−1
ASA) γ(α)

100 22.0 3.0
102 17.7 4.3
104 17.6 4.3
106 17.6 4.3

Table 1: Two-level additive Schwarz with linear (left) and multiscale (right) coarsening for
[12, Example 5.1] with h = 1/256, δ = 2h, H = 8h.

Thus, provided the overlap δ is sufficiently large w.r.t. the coarse grid size H, i.e. δ ∼
H, then the robustness of two-level additive Schwarz can be reduced to bounding the two
robustness indicators in Definitions 2.1 and 2.2.

Let us first discuss the partitioning robustness indicator π(α). To do this we define for
every subdomain Ωi, i = 1, . . . , s, and for ηi > 0,

αi,ηi := max
x∈Ωi,ηi

α(x).

Then we have the following bound on π(α):

Proposition 2.4. π(α) .
s

max
i=1

αi,ηi

(
1 +

δ2i
η2

i

)
Proof. To prove this we construct a particular partition of unity {χi} ⊂W 1

∞(Ω) subordinate
to the cover {Ω̂i}. Let

Ω̂′
i := Ω̂i ∩

⋃
j 6=i

Ωj,ηj ,

i.e. the subset of Ω̂i that intersects only the boundary layers of its neighbouring domains.
Then {Ω̂′

i} is also a cover of Ω with δ′i = min{δi, ηi} and Ω̂′
i ⊂ Ω̂i. Thus, any partition of

unity {χi} subordinate to {Ω̂′
i} is also a partition of unity subordinate to {Ω̂i}.

Let {χi} be the usual partition of unity subordinate to {Ω̂′
i} based on the distance metric

(such as in the proof to [33, Lemma 3.4]). Then ‖∇χi‖L∞(Ω) . 1/δ′i and so the result follows
from the fact that ∇χi(x) = 0 for any x 6∈

⋃
j Ωj,ηj .

Thus π(α) . 1, for example, if there exists ηi ∼ δi such that αi,ηi ∼ 1, for all i = 1, . . . , s,
independent of the variation of α in the interior of each of the subdomains Ωi. However, it
is possible to bound π(α) independent of α also in the case of strong variation of α near the
boundary of any of the Ωi in certain cases (see §4 for more details).

Now let us investigate the coarse space robustness indicator for different choices of {Φj}.
Since we assumed that α ≥ 1, we always have γ(1) ≤ γ(α).

Example 2.5 (Linear Finite Element Coarsening). In the classical case, i.e. when {Φj} is
the standard (nodal) basis for the continuous piecewise linear functions with respect to T H ,
we have via standard estimates γ(α) . maxx∈Ω α(x), and so γ(α) . 1 when α ∼ 1. When
α(x) →∞ for some x ∈ Ω, on the other hand, then this suggests that linear coarsening may
not be robust anymore. The numerical results in Table 1 (left) show that this is indeed the
case and that γ(α) is a good indicator for the loss of robustness. The results in Table 1 are
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for Ω = [0, 1]2 and α(x) = α̂ on an “island” in the interior of each coarse element K ∈ T H

a distance O(H) away from ∂K, with α(x) = 1 otherwise. (For a precise description of this
example see [12, Example 5.1]).

However, our framework leaves open the possibility of choosing {Φj} to depend on α
in such a way that γ(α) is still well-behaved. The next example gives one possible way of
constructing such Φj .

Example 2.6 (Multiscale Finite Element Coarsening). In this example we use multiscale
finite elements on T H to define VH , as proposed in [14].

Let FH denote the set of all (closed) faces of elements in T H and introduce the skeleton
ΓS =

⋃
{f : f ∈ FH}, i.e. the set of all faces of the mesh, including those belonging to

the outer boundary ∂Ω. The coarse space basis functions Φj are obtained by extending
predetermined boundary data into the interior of each element K using a discrete harmonic
extension with respect to the original elliptic operator (1). To introduce boundary data for
each j = 1, . . . , NH , we introduce functions ψj : ΓS → R which are required to be piecewise
linear (with respect to the fine mesh T h on ΓS) and to satisfy the following assumptions:

(M1)
∑NH

j=1 ψj(x) = 1 , for all x ∈ ΓS ;

(M2) ψj(xH
j′ ) = δj,j′ , j, j′ = 1, . . . , NH ;

(M3) 0 ≤ ψj(x) ≤ 1 , for all x ∈ ΓS ;

(M4) ψj ≡ 0 on all faces f ∈ FH such that xH
j 6∈ f .

Using ψj as boundary data, the basis function Φj ∈ Sh(Ω) is then defined by discrete
α−harmonic extension of ψj into the interior of each K ∈ T H . That is, for each K ∈ T H ,
Φj |K ∈ {vh ∈ Sh(K) : vh|∂K = ψj |∂K} is such that∫

K
α∇(Φj |K) · ∇vh = 0 for all vh ∈ Sh(K) with vh|∂K = 0 , (4)

where Sh(K) is the continuous piecewise linear finite element space with respect to T h

restricted to K.
The obvious example of boundary data ψj satisfying (M1)–(M4) are the standard hat

functions on T H restricted to the faces of the element K, and these will be sufficient for the
results in this section. However, they are not so appropriate if α varies strongly near the
boundary ∂K. The “oscillatory” boundary conditions suggested in [14] are more suitable in
this case (see §4 and [12] for details).

This recipe specifies Φj ∈ Sh(Ω) which can immediately be seen to satisfy the assumptions
(C1)–(C3) (see [12] for details). Therefore Theorem 2.3 applies and we have the following
bound on γ(α) (cf. [12, Theorem 4.3]):

Proposition 2.7. γ(α) .
s

max
i=1

αi,ηi

Hi

ηi

Thus again γ(α) . 1, for example, if there exists ηi ∼ Hi such that αi,ηi ∼ 1, for all
i = 1, . . . , s (independent of the variation of α in the interior of each of the subdomains Ωi).

7



Again it is also possible to bound γ(α) independent of α in the case of strong variation of α
near the boundary of any of the Ωi in certain cases (see §4 for details).

The numerical results in Table 1 (right), obtained for the test problem introduced in
Example 2.5 above, show that additive Schwarz with multiscale coarsening can indeed be
robust even when the coarse mesh does not resolve discontinuities in α and that our theory
accurately predicts this. For more numerical results with multiscale coarsening see [12, 13].

We see already from these results that the choice of the supports ωj for the coarse basis
functions Φj is of crucial importance. For highly varying coefficients we will in general require
an adaptive choice of the supports taking into account the geometry of the variation of the
coefficient α. Ideas on how to do this based on strong and weak connections in A (as in
AMG) are given in [32]. In that paper we also study a different type of coarse basis functions
based on aggregation. In [34] we look at a method to construct, given a set of supports {ωj},
a coarse basis that explicitly minimises the energy of the coarse basis functions. In both
cases, using a slightly different analysis than the one above (involving only one robustness
indicator and an additional assumption on the subdomains), we are again able to prove the
robustness of our method, if there exists an ηj ∼ diam(ωj) such that α ∼ 1 for all x ∈ ωj,ηj

and for all j = 1, . . . NH . The advantage of these two methods is that the supports ωj can
be adapted to the specific coefficient variation of α. Numerical results in [32] show that this
leads to a robust method even in the case of random coefficients α.

3 Nonoverlapping Methods/Substructuring Techniques

Finite element tearing and interconnecting (FETI) methods, due to Farhat and Roux [9],
and the more recent dual-primal FETI (FETI-DP) methods [10] are one of the most popular
type of nonoverlapping domain decomposition methods for FE systems such as (2). They
are known to be parallel scalable and quasi-optimal with respect to the number of degrees
of freedom (DOF). For a comprehensive presentation and the classical analysis of FETI and
FETI-DP we refer to the monograph by Toselli and Widlund [33]. A variant of the classical
(or one-level) FETI method, is the all-floating FETI method, also known as total FETI (cf.
[7, 25]). For an analysis see [26]. In §3.1–3.2 we review our results from [27] on one-level
FETI methods for highly heterogeneous coefficients α and extend them to all-floating FETI.
An extension of that theory to FETI-DP is given in §3.3.

3.1 Formulation of one-level and all-floating FETI methods

Recall that {Ωi : i = 1, . . . , s} is a partitioning of Ω into s non-overlapping subdomains,
and denote by Γ :=

∑
i,j(∂Ωi ∩ ∂Ωj) \ ∂Ω the interface. As before ΓS := Γ ∪ ∂Ω will be

the skeleton. Let Hi be again the subdomain diameter, and denote by hi the mesh size on
subdomain Ωi.

To start with, we introduce on each subdomain separate unknowns ui for the solution
including the DOFs on the subdomain interfaces. Let ui denote the function that the co-
efficient vector ui represents. In order to make the solution continuous, constraints of the
form

ui(xh)− uj(xh) = 0 (5)

are introduced for each finite element node xh on the interface Γ and for all possible combi-
nations of i and j, even if this leads to redundancies, cf. [33]. This yields the saddle point
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problem 
A1 0 BT

1
. . .

...
0 As BT

s

B1 · · · Bs 0




u1
...
us

λ

 =


f1
...
fs
0

 , (6)

where the Ai denote the subdomain stiffness matrices, and fi are the corresponding load
vectors. Solving saddle point system (6) is equivalent to solving the original system (2).
The operators Bi are signed Boolean matrices, and each row of the system

∑s
i=1Bi ui = 0

corresponds to one of the constraints in (5). The Lagrange multiplier λ plays the role of a
continuous flux across Γ.

In the all-floating formulation, the Dirichlet boundary conditions are not incorporated in
the finite element spaces, but enforced as additional constraints of the form ui(xh) = 0 for
all nodes xh on ΓD. These can be easily incorporated in (6) leading to additional Lagrange
multipliers.

Introducing a special projection P (see below), the dual problem to (6) can be written
in the form

P TF λ = d , (7)

with F :=
∑s

i=1BiA
†
iB

T
i , where the operator A†i corresponds to the solution of a (possibly)

regularised Neumann problem on subdomain Ωi. For the standard one-level formulation,
subdomains with contributions from the Dirichlet boundary require no regularisation since
the corresponding subdomain stiffness matrix is regular. For the remaining (floating) sub-
domains, the local Neumann problems are not uniquely solvable, and so we need to employ
a standard regularisation of Ai to define the corresponding pseudoinverses A†i . Since in the
all-floating formulation, the Dirichlet boundary conditions are only weakly imposed, all the
subdomain stiffness matrices are singular and can be treated by the same type of regular-
isation. In the following, let Ri denote a full-rank matrix that spans kerAi, and set the
projection P := I − QG(GTQG)−1GT , where G = [B1R1| . . . |BsRs] and Q is a diagonal
scaling matrix.

The FETI method is now a special projected preconditioned conjugate gradient (PCG)
method for (7). For each subdomain let Si denote the Schur complement of Ai eliminating
the interior DOFs in Ωi (which requires the solution of a local Dirichlet problem on Ωi). The
FETI preconditioner is chosen to be

M−1 := P

s∑
i=1

DiBi SiB
T
i Di , (8)

where Di is a diagonal scaling matrix. Here and in the following we implicitly assume (for
ease of notation) that matrices like Si in the formula above are extended with zero rows and
columns to interior DOFs where necessary. Note that the entries of Q and Di need to be
carefully chosen w.r.t. to the coefficient α, cf. [18, 27].

The projection P involves the solution of a coarse problem that corresponds to a sparse
linear system of dimension O(s). Usually, one selects the subdomain partition in a way that
the local subdomain problems and the coarse problem are of a size that can be efficiently
handled by sparse direct solvers. The factorisations of the local system matrices can be
computed in a preprocessing phase and kept in memory during the whole FETI iteration.
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Note that these local, decoupled problems can be parallelised in a straightforward manner,
e.g. treating each subdomain on a different processor. Once problem (7) is solved, the actual
solution u can easily be determined from the Lagrange multiplier λ. The spectral condition
number κ of the preconditioned system can finally be bounded by

κ ≤ C∗(α)
s

max
i=1

(
1 + log(Hi/hi)

)2
, (9)

where the constant C∗(α) is independent of Hi, hi, and s. In a parallel scheme, the total
computational complexity of the FETI-PCG method isO

(
(D(s)+D(Nloc)) log(TOL−1)

√
κ
)
,

where Nloc ∼ maxs
i=1(Hi/hi)d is the maximum number of DOFs per subdomain, D(·) is the

cost of the direct solver, and TOL > 0 is the desired relative error reduction in the energy
norm.

If the heterogeneities in the coefficient α are resolved by the subdomain partition, i.e. α
is constant on each Ωi, then, Klawonn & Widlund [18] proved that C∗(α) ∼ 1. However, in
general, using classical proof techniques, we only get

C∗(α) .
s

max
i=1

max
x,y∈Ωi

α(x)
α(y)

, (10)

i.e. the bound is proportional to the maximum local variation of α in the subdomains, which
can be arbitrarily large. However, as noticed by several authors (e.g. [30, 21]) this asymptotic
bound is in general far too pessimistic, and robustness is observed for many special kinds of
coefficient distributions.

3.2 Robustness results for one-level and all-floating FETI methods

For each subdomain Ωi, let Ωi,ηi denote again the boundary layer of witdh ηi > 0. For
neighbouring subdomains Ωi, Ωj , assume that Hi ∼ Hj , hi ∼ hj , and ηi ∼ ηj . Furthermore
we agree on the standard (technical) assumptions made in [33, Assumption 4.3] for the
partitioning {Ωi}. To be brief, each subdomain needs to be a union of a uniformly bounded
number of simplices, which alltogether form a geometrically conforming and shape-regular
coarse mesh of Ω. Our additional (but not significantly stronger) regularity assumptions on
the subdomain boundary layers Ωi,ηi can be found in [27].

Theorem 3.1 (One-level and all-floating FETI). The condition numbers of the one-level
and the all-floating FETI method (with suitably chosen scaling matrices Di and Q) satisfy
the bound

κ .
{

s
max
j=1

max
x,y∈Ωj,ηj

α(x)
α(y)

}
s

max
i=1

(Hi

ηi

)2 s
max
k=1

(
1 + log(Hk/hk)

)2
.

If, in addition, α(x) & miny∈Ωi,ηi
α(y) for all x ∈ Ωi, then the quadratic dependence on Hi/ηi

is reduced to a linear one.

Thus again κ . 1, for example, if there exists ηi ∼ Hi such that maxx,y∈Ωj,ηj

α(x)
α(y) ∼ 1, for

all i = 1, . . . , s (independent of the variation of α in the interior of each of the subdomains
Ωi). And again it is also possible to bound κ independent of α in the case of strong variation
of α near the boundary of any of the Ωi in certain cases (see §4 for details).
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Sketch of Proof of Theorem 3.1: In the following we sketch how to prove Theorem 3.1
by modifying the theory given in [18]. For details see [27, Theorem 3.3 and Section 4], as
well as [26, Chap. 5] for the all-floating case.

Let us denote by Wi the space of discrete α-harmonic functions on Ωi, and by W the
corresponding product space (functions in W are typically discontinuous across subdomain
interfaces). Furthermore, we introduce the energy (semi)norm |wi|Si = (

∫
Ωi
α|∇wi|2 dx)1/2

on Wi. Besides many algebraic arguments that do not need to be adjusted significantly, the
key ingredient to the FETI condition number bound is the estimate

s∑
i=1

|(PD w)i|2Si
≤ C∗(α)

s
max
j=1

(
1 + log(Hj/hj)

)2
s∑

i=1

|wi|2Si
, (11)

where PD is a projection operator defined by

(PD w)i(xh) =
∑

j∈N
xh

δ†j(x
h)

(
wi(xh)− wj(xh)

)
, (12)

for each node xh ∈ ΓS . Here, Nxh is the index set of subdomains that share the node xh.
For Dirichlet nodes xh we set (PDw)i(xh) = wi(xh). Inequality (11) needs to be shown for
all functions w = [w1| . . . |ws] in a suitable subspace of W , where on all floating subdomains
Ωi the averages of wi are “balanced” with respect to the projection P . (To be more precise,∑s

i=1Biwi ∈ rangeP T , cf. [33, Sect. 6.3].) The values {δ†j(xh)}j∈N
xh

, which are the entries
in the diagonal scaling matrices Di, are chosen as a partition of unity on ΓS . In [27] we
describe suitable choices, among them δ†j(x

h) = α̂j(xh)/maxk∈N
xh
α̂k(xh), where α̂j(xh) is

the maximum of α over all elements τ ∈ T h ∩ Ωj that contain xh. This choice is closely
related to the suggestions made in [30].

Usually, the estimate (11) is shown in two steps. Let zi = |∂Ωi|−1
∫
∂Ωi

wi dx denote the
subdomain boundary averages of wi. First, (11) is shown for w − z, using a decomposition
into subdomain face, edge, and vertex terms, see [33, Sect. 4.6]. This is necessary due to the
nature of PD, so that contributions of neighbouring functions can be estimated separately
and then collected subdomain-wise. This decomposition leads to a logarithmic factor and
an appropriately scaled full H1-norm of each of wi − zi, that can be estimated by the
H1-seminorm using a Poincaré type inequality, or using a discrete Friedrichs/Sobolev type
inequality if Dirichlet boundary conditions are available. Secondly, (11) is shown for z
directly. Here, only a careful choice of the scaling matrix Q leads to the correct estimate.
Previously, the above described decomposition was available only in the H1-seminorm, not
in the energy norm, leading to the suboptimal bound (10).

In [27] we describe how this crude estimate can be circumvented by using cut-off ar-
guments and generalised Poincaré, Friedrichs, and Sobolev type inequalities. Our cut-off
argument reads

|v|2Si
. max

x∈Ωi,ηi

α(x)
{
|v|2H1(Ωi,ηi

) + η−1
i ‖v‖2

L2(∂Ωi)

}
∀v ∈Wi , (13)

cf. [27, Lemma 4.1], and can be easily shown using a cut-off function χ in Ωi that is one on
∂Ωi and zero on Ωi \ Ωi,ηi , and that satisfies ‖∇χ‖L∞ . η−1

i . Using this argument, we can
remove the dependence on α in the interior Ωi \Ωi,ηi of each subdomain: we apply (13), lift
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Figure 2: Estimated condition number of one-level FETI for Example 3.2 for different values
of H/h and β. Fixed discretisation H/h = 512. Left: β ≥ 0. Right: β ≤ 0.

each H1-seminorm to the whole of Ωi, perform the usual arguments there, and apply (13)
once more, formally for α ≡ 1. It then remains to estimate

max
x∈Ωi,ηi

α(x)
{
|wi|2H1(Ωi,ηi

) + η−1
i ‖wi‖2

L2(∂Ωi)

}
in terms of |wi|2Si

. This can be done using a generalised Poincaré inequality

‖v‖L2(∂Ωi) .
H2

i

ηi
|v|2H1(Ωi,ηi

) , (14)

cf. [27, Lemma 4.3], which holds for all functions v ∈ Wi whose average over ∂Ωi vanishes.
For subdomains with Dirichlet boundary conditions we need to use a similar inequality, cf.
[27, Lemma 4.5]. In case the coefficient in each subdomain interior is not significantly smaller
than in the boundary layer, one can replace the last step by a lifting argument and a standard
Poincaré inequality, leading to a better dependence on the ratio Hi/ηi. 2

At the end of this subsection we would like to give a relatively simple numerical example
that confirms the theory above. For more results see [27] and §4.

Example 3.2 (FETI for an “island” coefficient). In this example ([27, Example 1]), we
subdivide the unit square Ω into 25 congruent square-shaped subdomains of width H = 1/5.
We choose the coefficient α to be 10β in a square region that is contained in the interior
of the central subdomain, and separated by a distance η from its boundary. On the rest
of Ω, we choose α = 1. In Fig. 2 we display the condition number of the one-level FETI
method (estimated by the Lanczos method) for different values of the exponent β from −7
to +7, and for different ratios of H/η. The left part of the figure corresponds to the case
where our theory predicts a linear dependence on H/η, which is perfectly reproduced by
the numerical experiments. The case of a negative exponent β does indeed prove to be the
harder case and leads to a worse conditioning, as predicted by our theory. However, the
quadratic dependence in Theorem 3.1 seems to be overly pessimistic.
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3.3 FETI-DP methods

In contrast to the FETI methods discussed before, in dual-primal methods, one keeps certain
DOFs continuous. These DOFs, called primal DOFs, form a coarse problem for the FETI-
DP method, and they are chosen such that each of the local subdomain problems becomes
regular. In two dimensions, it is sufficient to choose individual DOFs of the original problem
(2) associated with vertices xh ∈ ΓS as primal DOFs, whereas in three dimensions one needs
to add at least some (subdomain) edge or face averages in order to get a stable method, cf.
[33, Sect. 6.4.2].

Some notation: we reorder the DOFs in each subdomain stiffness matrix Ai and group
them into a primal block (subscript Π), a dual block (with the remaining DOFs on the
subdomain boundaries, subscript ∆), and the remaining block of interior DOFs (subscript
I). Subassembling the subdomain stiffness matrices only at the primal DOFs (indicated by
a tilde) leads to a global matrix Ã, i.e.

Ai =

 A
(i)
ΠΠ A

(i)
Π∆ A

(i)
ΠI

A
(i)
∆Π A

(i)
∆∆ A

(i)
∆I

A
(i)
IΠ A

(i)
I∆ A

(i)
II

 , Ã =

 ÃΠΠ ÃΠ∆ ÃΠI

Ã∆Π A∆∆ A∆I

ÃIΠ AI∆ AII

 . (15)

With this notation, we can introduce jump operators Bi analogously to §3.1. However,
here the Bi only operate on non-primal DOFs. With B = [B1| . . . |Bs], the resulting saddle
point system reads (

Ã BT

B 0

) (
ũ
λ

)
=

(
f̃
0

)
, (16)

where the vector ũ consists of a primal (global) block, and local blocks that correspond to the
subdomains and are not coupled. The lower right 2×2 block of Ã is block diagonal since the
DOFs are separated subdomain-wise. Using the idea of Cholesky factorisation, the action of
the inverse Ã−1 can be performed by solving local problems in the dual and interior DOFs,
which are all regular now (due to the Dirichlet conditions imposed at the primal DOFs), and
a coarse problem in the primal DOFs, whose system matrix is again sparse, cf. e.g. [33, 22].
The resulting Lagrange multiplier problem reads

FDP λ = dDP , (17)

where FDP := B Ã−1BT . It is solved using conjugate gradients, preconditioned by

M−1
DP :=

s∑
i=1

DiBi S
(i)
∆∆B

T
i Di , (18)

with the Schur complement S(i)
∆∆ := A

(i)
∆∆ − A

(i)
∆I [A

(i)
II ]−1A

(i)
I∆ eliminating the interior DOFs,

and with the diagonal scaling matrices Di chosen as in §3.1, §3.2.
As proved by Klawonn, Widlund, and Dryja [19], the condition number κDP of the pre-

conditioned FETI-DP system fulfils the estimate

κDP ≤ C∗(α)
s

max
i=1

(
1 + log(Hi/hi)

)2
, (19)

where C∗(α) ∼ 1 if α is piecewise constant on the subdomains.
The following theorem extends the results of Theorem 3.1 to FETI-DP methods.
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Theorem 3.3 (FETI-DP). Under the assumptions made in §3.2, the condition number κDP

of the FETI-DP method (with the set of primal DOFs and the Di suitably chosen) satisfies
the bound

κDP .
{

s
max
j=1

max
x,y∈Ωj,ηj

α(x)
α(y)

}
s

max
i=1

(Hi

ηi

)2 s
max
k=1

(
1 + log(Hk/hk)

)2
.

If, in addition, α(x) & miny∈Ωi,ηi
α(y) for all x ∈ Ωi, then the quadratic dependence on Hi/ηi

is reduced to a linear one.

Proof. We give a sketch of the proof in 3D for the case that the set of primal DOFs consists of
the subdomain vertices, edge averages, and face averages (cf. [33, Sect. 6.4.2, Algorithm B]).
However, all of the other usual choices for the primal DOFs in 3D are also admissable. With
the discrete α-harmonic spaces Wi and the product space W defined as in §3.2, let W̃ be the
subspace of W of functions w that are continuous in the primal DOFs. The crucial estimate
to show is again

s∑
i=1

|(P∆w)i|2Si
≤ C∗(α)

s
max
j=1

(
1 + log(Hj/hj)

)2 |wi|2Si
, (20)

for all functions w ∈ W̃ , where P∆ is a projection operator, basically identical to PD from
§3.2. In the standard theory, cf. [33, Sect. 6.4.3], the contributions of faces, edges, and
vertices are again separated, similarly to the analysis of the one-level methods. In order to
estimate the full H1-norm in terms of seminorms, one uses shift invariances by adding face
or edge averages constructively (this can only be done because the corresponding averages
are continuous when working in the space W̃ ). Then, by a Poincaré type inequality any
L2 contribution can be removed. Applying our cut-off argument (13) from §3.2 to each
subdomain, we can again remove the dependence on α in the interiors Ωi \Ωi,ηi at the cost of
a L2-term over the boundary ∂Ωi multiplied by a factor of η−1

i . Applying the decomposition
and the cut-off argument once more, we are left with terms of the form

max
x∈Ωi,ηi

α(x)
(
1 + log(Hi/hi)

)2
{
|wi − wi

Fij |2H1(Ωi,ηi
) + η−1

i ‖wi − wi
Fij‖2

L2(∂Ωi)

}
,

where wi
Fij denotes the face average. For simplicity we only consider face contributions

here. Using our generalised Poincaré inequality [27, Lemma 4.3], we can remove the L2-term
at the cost of a factor (Hi/ηi)2 in front of the H1 norm of wi. Edge and vertex contributions
are treated similarly. Under the stronger assumption on α the last argument can be replaced
by a standard Poincaré type inequality again, which leads to the improved factor Hi/ηi.

4 Interface Variation

As already mentioned several times above, our results are not restricted to the case of
coefficients that are benign in a boundary layer of each subdomain/coarse grid element. In
[12] we were also able to bound the coarse space robustness indicator for overlapping additive
Schwarz in more general situations where the coefficient is allowed to vary strongly along
the interface between two coarse elements. We have also recently managed to obtain similar
results for FETI methods in certain cases of strong interface variation (see the forthcoming
paper [28] for details).
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4.1 Schwarz methods

The numerical results in [12, 13, 32, 34] show robustness of overlapping Schwarz methods
also for coefficients that vary along the boundary of coarse elements or along subdomain
interfaces. To give a flavour of our theoretical results, we focus again on the results in [12]
for multiscale finite element coarsening.

With the notation introduced in §2, piecewise linear boundary data ψj (as used in Exam-
ple 2.6 and in particular in Proposition 2.7) are not sufficient anymore when the coefficient
α varies strongly along the boundary ∂K of a coarse grid element K ∈ T H (cf. [12, Exam-
ple 5.3]). The “oscillatory” boundary conditions suggested in [14] are more suitable in this
case (see [12] for details). Roughly speaking, to find the boundary data ψj in this case, a
projection of the PDE onto each face f ∈ FH is solved. It can be shown that the resulting
ψj satisfy assumptions (M1)–(M4) (cf. [12]). With this choice of ψj we were able to prove
the following result in [12]:

Let each elementK ∈ T H be subdivided intoK =
⋃LK

`=0K`∪K̂, such that dist(K0, ∂K) &

ηK and dist(K`,K`′) & ηK for some ηK > 0, i.e. K0 denotes the interior of K and K̂ the
remainder (see Figure 3, left, for an example). Moreover, let the boundary islands K`,
` = 1, . . . , LK , be polygonal (poyhedral) with side lengths & ηK . The following proposition
is [12, Theorem 4.5].

Proposition 4.1. Suppose that α ≥ 1 is continuous across the interface between two coarse
grid elements, and that on a particular element K ∈ T H we have α(x) = αK,` for all x ∈ K`

and ` = 1, . . . , LK . Then the coarse space robustness indicator for multiscale finite elements
with oscillatory boundary conditions satisfies

γ(α) . max
K∈T H

α̂K

{(
HK

ηK

)2 (
1 + log

(
α̂K

HK

ηK

))
+ α̂K

HK

ηK

}
,

where HK = diam(K) and α̂K := max
x∈ bK α(x).

Thus again γ(α) . 1, provided there exists an ηK ∼ HK such that α̂K ∼ 1, for all
K ∈ T H (independent of the constant values of α on each of the islands K1, . . . ,KLK

and
independent of the variation of α in the interior K0 of each element). The partitioning
robustness indicator π(α) can also be bounded independently of α in this case provided the
overlap δ is suffciently large. For numerical results confirming this see [12, Example 5.3].

4.2 FETI methods

Besides the numerical results in [30, 17, 21] on FETI and FETI-DP methods, our computa-
tions in [27, Sect. 5.3 and 5.4] show that in particular one-level FETI methods with suitably
chosen scalings (Di and Q) can be suprisingly robust even in case of large coefficient vari-
ation along subdomain interfaces. In the forthcoming paper [28] we will demonstrate how
to prove such robustness for certain kinds of coefficient discributions, where the coefficient
along the boundary jumps only a few number of times. The key tool to such an analysis is
the following weighted Poincaré inequality,∫

Ωi,ηi

α|v|2 dx . C

∫
Ωi,ηi

α|∇v|2 dx ,

which holds with a constant C independent of α,
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Figure 3: Left: Typical coefficient distribution admissable for Proposition 4.1 (islands K` in
grey; remainder K̂ in white). Right: Coefficient distribution and subdomain partitioning for
Example 4.2.

• if α takes only two different values in two connected subregions of Ωi,ηi , and

• if v has a vanishing average over the interface between those subregions.

The constant C depends on the relative sizes and shapes of these subregions.

Example 4.2. We finish with an example from nonlinear mangetostatics ([27, Sect. 5.4]),
where the subdomain partition is chosen such that coefficient peaks (that arise due to singu-
larities in the solution) are in the centre of the subdomains, whereas material interfaces are
allowed to cut through subdomain interfaces (cf. Fig. 3). Our theory in [28] gives a condi-
tion number bound of O(102) for an interface variation of O(104). The estimated condition
number of 13.7 is well within this bound, and only 16 FETI-PCG steps are needed for a
residual reduction by 10−6.
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[7] Z. Dostál, D. Horák and R. Kučera, Total FETI: An easier implementable variant of
the FETI method for numerical solution of elliptic PDE, Commun. Numer. Methods
Eng. 22 (2006), pp. 1155–1162.

[8] W. E and B. Engquist, The heterogeneous multi-scale method, Comm. Math. Sci. 1
(2003), pp. 87–132.

[9] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and
its parallel solution algorithm, Int. J. Numer. Meth. Engrg. 32 (1991), pp. 1205–1227.

[10] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen, FETI-DP: a dual-
primal unified FETI method I: A faster alternative to the two-level FETI method, Int.
J. Numer. Meth. Engrg. 50 (2001), pp. 1523–1544.

[11] C.L. Farmer, Upscaling: A review, Int. J. Numer. Meth. Fl. 40 (2002), pp. 63–78.

[12] I.G. Graham, P. Lechner and R. Scheichl. Domain decomposition for multiscale PDEs,
Numer. Math. 106 (2007), pp. 589–626.

[13] I.G. Graham and R. Scheichl, Robust Domain Decomposition Algorithms for Multiscale
PDEs, Numer. Meth. Part. Diff. Eqns. 23 (2007), pp. 859–878.

[14] T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in
composite materials and porous media, J. Comput. Phys. 134 (1997), pp. 169–189.

[15] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput.
Meth. Appl. Mech. Eng. 127 (1995), pp. 387–401.

[16] P. Jenny, S.H. Lee and H.A. Tchelepi, Multi-scale finite-volume method for elliptic prob-
lems in subsurface flow simulation, J. Comput. Phys. 187 (2003), pp. 47–67.

[17] A. Klawonn and O. Rheinbach, Robust FETI-DP methods for heterogeneous three di-
mensional elasticity problems, Comput. Methods Appl. Mech. Engrg. 196 (2007), pp.
1400–1414.

[18] A. Klawonn and O.B. Widlund, FETI and Neumann-Neumann iterative substructuring
methods: connections and new results, Comm. Pure Appl. Math. 54 (2001), pp. 57–90.

[19] A. Klawonn, O.B. Widlund and M. Dryja, Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal.
40 (2002), pp. 159–179.

17



[20] S. Knapek, Matrix-dependent multigrid homogenization for diffusion problems, SIAM J.
Sci. Comput. 20 (1998), pp. 515–533.

[21] U. Langer and C. Pechstein, Coupled finite and boundary element tearing and intercon-
necting solvers for nonlinear potential problems, Z. Angew. Math. Mech. 86 (2006), pp.
915–931.

[22] J. Li and O.B. Widlund, FETI-DP, BDDC, and block Cholesky methods, Int. J. Numer.
Meth. Engrg. 66 (2006), pp. 250–271.

[23] S.P. MacLachlan and J.D. Moulton, Multilevel upscaling through variational coarsening,
Water Resour. Res. 42 (2006), W02418.

[24] J.D. Moulton, J.E. Dendy and J.M. Hyman, The black box multigrid numerical homog-
enization algorithm, J. Comput. Phys. 142 (1998), pp. 80–108.

[25] G. Of, The all-floating BETI method: Numerical results, in Domain Decomposition
Methods in Science and Engineering XVII (U. Langer, M. Discacciati et al., Eds.),
Lecture Notes in Computational Science and Engineering 60, Springer, Berlin, 2008,
pp. 295–302.

[26] C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Methods for
Multiscale Elliptic Partial Differential Equations, PhD Thesis, Johannes Kepler Univer-
sity Linz, Austria, 2008.

[27] C. Pechstein and R. Scheichl, Analysis of FETI Methods for Multiscale PDEs, Nu-
mer. Math. 111(2) (2008), pp. 293–333.

[28] C. Pechstein and R. Scheichl, Analysis of FETI Methods for Multiscale PDEs – Part
II: Interface Variation, in preparation, 2009.

[29] P. Renard and G. de Marsily, Calculating equivalent permeability: A review, Adv. Water.
Resour. 20 (1997), pp. 253–278.

[30] D. Rixen and C. Farhat, A simple and efficient extension of a class of substruc-
ture based preconditioners to heterogeneous structural mechanics problems, Int. J. Nu-
mer. Meth. Engrg. 44 (1999), pp. 489-516.

[31] J.W. Ruge and K. Stüben. Algebraic multigrid, in Multigrid methods, Frontiers Appl.
Math., 3, SIAM, Philadelphia, 1987, pp. 73–130.

[32] R. Scheichl and E. Vainikko, Additive Schwarz and aggregation-based coarsening for
elliptic problems with highly variable coefficients, Computing 80(4) (2007), pp. 319–343.

[33] A. Toselli and O. Widlund, Domain Decomposition Methods Algorithms and Theory,
Springer, New York, 2005.

[34] J. Van lent, R. Scheichl and I.G. Graham, Energy Minimizing Coarse Spaces for Two-
level Schwarz Methods for Multiscale PDEs, submitted, BICS Preprint 12/08, University
of Bath, 2008, pp. 1–25.

18



[35] X.-H. Wen and J.J. Gomez-Hernandez, Upscaling hydraulic conductivities in heteroge-
neous media: An overview, J. Hydrol. 183 (1996), pp. ix–xxxii.

[36] X.J. Xu and Y. Zhu, Uniform convergent multigrid methods for elliptic problems with
strongly discontinuous coefficients, Math. Mod. Meth. Appl. Sci. 18(1) (2008), pp. 77–
105.

19





Latest Reports in this series

2009

2009-01 Clemens Pechstein and Robert Scheichl
Scaling Up through Domain Decomposition January 2009

From 1998 to 2008 reports were published by SFB013. Please see
http://www.sfb013.uni-linz.ac.at/index.php?id=reports

From 2004 on reports were also published by RICAM. Please see
http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see
http://www.numa.uni-linz.ac.at/Publications/List/

http://www.sfb013.uni-linz.ac.at/index.php?id=reports
http://www.ricam.oeaw.ac.at/publications/list/
http://www.numa.uni-linz.ac.at/Publications/List/

