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Abstract. We present the Galerkin boundary element method (BEM)
for the numerical simulation of free-surface water waves in a model basin.
In this work, as a �rst step we consider the linearized model of this time-
dependent three-dimensional problem. After time discretization by an
explicit Runge-Kutta scheme, the problem to be solved at each time step
corresponds to the evaluation of a Dirichlet-to-Neumann map on the free
surface of the domain. We use the Galerkin BEM for the approximate
evaluation of the Dirichlet-to-Neumann map. To solve the resulting large,
dense linear system, we use a data-sparse matrix approximation method
based on hierarchical matrix representations. The proposed algorithm is
quasi-optimal. Finally, some numerical results are given.

1 Introduction

Numerical simulation of free-surface water waves in a model test basin is impor-
tant when maritime structures, such as freight carriers, ferries, and oil rigs are
tested on a model scale. Before the actual construction, the owners and design-
ers need precise information about the hydrodynamic properties of their design.
Several numerical algorithms have been proposed for such problems, see e.g. [8]
(a combination of �nite element method and �nite di�erence method), or [7]
(a complete discontinuous Galerkin �nite element method). For such problems,
only the discretization of the surface is of interest, which is a typical charac-
teristic of the boundary element method (BEM). Unfortunately, the resulting
system of linear equations from BEM is dense. On the other hand, while the
�nite element method (FEM) requires the discretization of the whole domain,
the resulting matrices are sparse, and fast iterative solvers are available for these
discrete systems. Thus, asymptotically, FEM has been considered the favorable
choice as compared to BEM, at least, for three-dimensional problems, see e.g. [4].
However, data-sparse approximations of the dense BEM matrices can overcome
this drawback of the BEM, see [2, 5] and the references wherein.

In this paper, we present the Galerkin BEM for the numerical simulation
of linear free-surface water waves in a model basin. We use a linearized model
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for representing the dynamics of the water, which is introduced in Section 2.
Its basic structure is that of an operator ordinary di�erential equation involving
a Dirichlet-to-Neumann map on its right-hand side. For the evaluation of this
operator, we employ a boundary element method, which is brie�y described in
Section 3. The resulting large, dense matrices are approximated via data-sparse
H-matrix techniques, as outlined in Section 4. Finally, we present numerical
results in Section 5 and conclude our �ndings in Section 6.

2 Modeling

We brie�y outline the mathematical model used to describe the behavior of a
model basin. The detailed derivation can be found in [9].

We start from the Navier-Stokes equations for an ideal, incompressible �uid.
By assuming an irrotational �ow in a simply connected domain, we may intro-
duce a potential φ(x, y, z, t) for the velocity v = ∇φ. If the amplitude of the
waves is small in comparison to the depth of the basin, we may linearize the
problem; our computational domain Ω ⊂ R3 is then time-independent. Without
loss of generality, let Ω be oriented such that gravity applies in negative z direc-
tion with a magnitude g, and the free surface ΓF of Ω is a subset of the plane at
z = 0. The remainder of the surface, ΓN = ∂Ω \ ΓF , represents the walls of the
basin, where we prescribe a given Neumann boundary condition gN , possibly
time-dependent, for the potential φ. We denote the vertical perturbation due to
waves at the free surface by a scalar function ζ(x, y, t) with (x, y, 0) ∈ ΓF ; see
Figure 1 for a sketch.

ζ(x, y, t)
z = 0

Ω

Fig. 1. A sketch of the free surface parametrization ζ.

Under these assumptions, we obtain the following system of equations. The
�rst and the second condition on the free surface are called the kinematic and
the dynamic boundary condition, respectively.

∆φ = 0 in Ω,
∂φ

∂n
= gN (t) on ΓN ,

∂ζ

∂t
=
∂φ

∂n
on ΓF ,

∂φ

∂t
= −gζ on ΓF .

 (1)
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We now introduce the Dirichlet-to-Neumann map or Steklov-Poincaré oper-
ator S(t) : H1/2(ΓF ) → H−1/2(ΓF ). For given Dirichlet data gD ∈ H1/2(ΓF ),
let u ∈ H1(Ω) be the weak solution of the mixed boundary value problem

∆u = 0 in Ω,
∂u

∂n
= gN (t) on ΓN , and u = gD on ΓF . (2)

We then de�ne S(t) to be the Dirichlet-to-Neumann map

S(t) : gD 7→
∂u

∂n


ΓF

.

Using this operator, the behavior of the model problem (1) on the free sur-
face may be speci�ed in the form of a system of two coupled operator ordinary
di�erential equations,

d

dt

(
φF
ζ

)
=
(

0 −g
S(t) 0

)(
φF
ζ

)
, (3)

where φF represents the trace of the potential φ on ΓF .
As initial values, we use constant zero functions for both φF and ζ. In the

context of our model problem, this corresponds to the free surface being undis-
turbed and at rest initially.

For the solution of this ODE system in a time interval [0, T ], we introduce a
discretization of the time axis, 0 = t0 < t1 < . . . < tN = T , with the step sizes
τ (n) := tn+1 − tn. After spatial discretization, the Steklov-Poincaré operator S
exhibits moderate sti�ness with a Lipschitz constant of the order O(h−1). The
use of an explicit scheme for time integration, e.g. a classical fourth-order Runge-
Kutta method, is thus justi�able as long as the time step size is not chosen too
large.

For the discretization of the Steklov-Poincaré operator S, we use a boundary
element method, as motivated in the introduction.

3 The Boundary Element Method

The BEM operates only on the Cauchy data, that is, on the Dirichlet and Neu-
mann traces on the boundary of the computational domain. The Cauchy data
are related to each other via an integral equation on the boundary. This equa-
tion is then solved via e.g. a collocation or Galerkin approach. For a thorough
treatment of the boundary element method, we refer the reader to e.g. [5].

For the remainder of this section, let u refer to the Dirichlet values of the
solution of the PDE on the boundary Γ , and let v := ∂u

∂n |Γ refer to its Neumann
data.

With the help of a fundamental solution E(x, y) = 1
4π

1
|x−y| of the Laplace

equation in 3D, we now de�ne the boundary integral operators

V : H−1/2(Γ )→ H1/2(Γ ), K : H1/2(Γ )→ H1/2(Γ ), D : H1/2(Γ )→ H−1/2(Γ )
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called the single layer potential operator, double layer potential operator and
hypersingular operator, respectively. We have the relation(

u
v

)
= C

(
u
v

)
:=
(

1
2I −K V
D 1

2I +K ′

)(
u
v

)
, (4)

where the two-by-two block operator C is called the Calderón projector.
Consider now the mixed boundary value problem (2) for a �xed t. We de�ne

extensions g̃D ∈ H1/2(Γ ) and g̃N ∈ H−1/2(Γ ) of the given boundary values and
choose the ansatz

u = g̃D + uN , v = g̃N + vD

with uN ∈ H1/2(Γ ), vD ∈ H−1/2(Γ ). Substituting this in (4) and restricting the
equations to suitable parts of the boundary yields

V vD −KuN =
1
2
g̃D +Kg̃D − V g̃N in H1/2(ΓD), (5)

K ′vD +DuN =
1
2
g̃N −Dg̃D −K ′g̃N in H−1/2(ΓN ). (6)

We then choose a trial space Λ := H̃−1/2(ΓD)× H̃1/2(ΓN ), where

H̃1/2(Γ ′) :=
{
v = ṽ|Γ ′ : ṽ ∈ H1/2(Γ ), supp ṽ ⊂ Γ ′

}
,

H̃−1/2(Γ ′) :=
(
H1/2(Γ ′)

)′
for any open subset Γ ′ ⊂ Γ . With an arbitrary test function (s, t) ∈ Λ, we
multiply (5) by s and (6) by t in order to obtain a variational formulation.

We discretize Ω by a quasi-uniform and shape-regular triangulation with
mesh size h. On this mesh, we de�ne the space of piecewise linear and continuous
functions S1

h(ΓN ) ⊂ H̃1/2(ΓN ) on the Neumann boundary, and the space of

piecewise constant functions S0
h(ΓD) ⊂ H̃−1/2(ΓD) on the Dirichlet boundary.

This gives us the natural choice Λh := S0
h(ΓD) × S1

h(ΓN ) ⊂ Λ for a �nite-
dimensional trial space. We thus obtain the Galerkin variational formulation:
Find (vDh, uNh) ∈ Λh such that for all (sh, th) ∈ Λh, there holds

a(vDh, uNh
; sh, th) = F (sh, th), (7)

with the bilinear form

a(v, u; s, t) = 〈V v, s〉ΓD
− 〈Ku, s〉ΓD

+ 〈K ′v, t〉ΓN
+ 〈Du, t〉ΓN

and an analogous abbreviation F (s, t) of the right-hand side. The resulting linear
system may be solved by a suitable Krylov subspace method, e.g. MINRES.

4 Data-sparse approximation

The system matrices obtained from (7) are dense. By discretizing the boundary
only, we obtain NBEM = O(h−2) unknowns, resulting in a fully populated system
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matrix with O(h−4) non-zero entries. Even with an optimally preconditioned
iterative solver, the solution of the corresponding linear system will thus require
at least O(h−4) arithmetical operations.

In contrast to the BEM, the FEM, where we have to discretize the entire
domain, results in a system with NFEM = O(h−3) unknowns. However, the �nite
element sti�ness matrices are sparse, i.e. they have only O(h−3) non-zero entries.
With an optimal preconditioner, a numerical solver with O(h−3) operations is
attainable.

However, it is possible to avoid the di�culties associated with classical BEM
discretization by using data-sparse approximation of the involved system matri-
ces. In particular, we apply hierarchical matrix (or H-matrix ) techniques to rep-
resent the system matrix. This results in a considerable reduction of the memory
demand for matrix coe�cients than the storage of the full matrix would require;
see e.g. Bebendorf [2].

The core idea is to approximate a matrix A ∈ Rm×n by a sum of outer
products of vectors ui ∈ Rm, vi ∈ Rn, i.e. A ≈ Ã =

∑r
i=1 uiv

T
i . We call this a

low-rank approximation of A with rank (at most) r. One way to construct such
approximations is to compute a singular value decomposition of A and then
discard all singular values which are below a certain threshold. This is called
truncated singular value decomposition. While this produces optimal approxima-
tions in the spectral norm [2], it is quite slow. Therefore, faster methods have
been developed in recent years. We only mention here the Adaptive Cross Ap-
proximation (ACA) method. Its concept is to construct Ã from a sum of crosses,
that is, outer products of a column and a row of A. Once a desired error threshold
is reached, the process is stopped. The approximation rank is thus determined
adaptively.

Our BEM system matrices share the common property that they have a near-
singularity along the diagonal. For such matrices, typically no suitable low-rank
approximation with desirable accuracy exists. Thus, the algorithms described
above fail to give useful results if applied to the entire matrix. Instead, it is
required to split the matrix recursively into sub-matrices which may be better
approximated. This is done by clustering the degrees of freedom which are rep-
resented by the matrix rows and columns into so-called cluster trees. Pairs of
clusters are then chosen according to some admissibility condition for low-rank
approximation. By this method, we obtain a so-called H-matrix approximation.
Various matrix operations like addition, factorization or inversion may be gen-
eralized to H-matrices.

We refer the interested reader to the comprehensive monograph [2] for a
detailed discussion of the techniques mentioned above. We also mention that
software libraries which implement the methods sketched above are available,
e.g. HLib [3] and ahmed [1]. The latter was used in our numerical experiments.

Data-sparse approximation is also used for preconditioning. From (7), we get
the system of boundary element equations in the form(

−Vh Kh

KT
h Dh

)(
vDh
uNh

)
=
(
−f

Dh
f
Nh

)
.
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As a preconditioner for this block matrix, we choose

C =
(

I 0
−KT

h V
−1
h I

)(
−Vh Kh

0 Dh

)
,

where hierarchical Cholesky factorizations of Vh and Dh are used to apply this
preconditioner in an approximate way.

5 Numerical results

In the following, we extend a numerical example from [7] into three dimensions.
We assume that we have a test basin with the dimensions Ω = (0, 10)× (0, 1)×
(−1, 0). The free surface at rest is the quadrilateral ΓD = (0, 10)× (0, 1)× {0}.
On the remaining walls ΓN , we prescribe the normal velocity gN (x, y, z, t) that
is (1 + z)a sin(ωt) for all (x, y, z) ∈ {0} × (0, 1)× (−1, 0) and 0 otherwise. That
is, the left wall of the basin is assumed to be equipped with a wave maker
which exhibits periodic oscillations with maximum amplitude a = 0.02 and
frequency ω = 1.8138. The other walls are assumed to be stationary. Note that
the oscillations exhibit maximum amplitude at the top of the basin and vanish
at the bottom.

For time discretization, we use a �xed time step τ = 0.1 over the time interval
[0, T = 80]. This results in 800 time steps, each of which requires four solutions of
the mixed boundary value problem in the domain Ω. The surface Γ is discretized
by triangles using the software package netgen. We use a series of uniformly
re�ned boundary meshes where each re�nement step quadruples the number of
triangles. The computations are performed on a machine with four Opteron-852
processors and 32 GB of RAM.

# triangles (N = O(h−2)) init solve total ratio

704 9 20 29 �
2816 62 370 432 16.78
11264 520 3214 3734 8.78
45056 4162 20473 24635 6.60

Table 1. Performance of the algorithm for T=80

Table 1 summarizes the performance of our data-sparse BEM algorithm.
The �rst column indicates the number of triangles in the boundary mesh. The
second and third columns show the CPU time (in seconds) used for initialization
and solution of the problem, while the fourth column shows total CPU time.
Finally, the �fth column gives the ratio between total time for the current and
the previous smaller problem.

Note that there is a signi�cant cost for the generation and factorization of the
system matrices. This however has to be performed only once at startup. The
scheme is thus better suited for long simulations where many time iterations are
to be performed. Also, parallelization was used for this initialization phase, so
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actual measured times were lower. No appreciable parallelization overhead could
be measured, so the CPU times given above can be taken as wall clock times for
serial execution on one CPU.

As discussed at the beginning of Section 4, a FEM-based implementation
of the Dirichlet-to-Neumann map would have O(h−3) unknowns and thus, if
optimally preconditioned, a time complexity of O(h−3) = O(N3/2). Since eval-
uating the Dirichlet-to-Neumann map is the main bottleneck in the numerical
simulation, we could then expect a constant ratio 4

3
2 = 8 in the last column of

Table 1. The numbers we have obtained here thus suggest that our scheme may
outperform a FEM-based approach for large problems.

(a) Resulting wave pro�le at t = 20.0, t = 38.0, t = 67.0, and t = 120.0 (left to
right).

(b) Asymmetric mesh employed in the computations

Fig. 2. Wave pro�les computed on an asymmetric mesh

To investigate the stability of the proposed scheme over a long period of time,
we performed the simulations up to T = 120 with N = 11264 and N = 45056
triangles, and did not face any stability problems like those reported in [8].
Figure 2(a) shows the computed wave pro�le with 45056 boundary triangles at
times t = 20.0, 38.0, 67.0 and t = 120.0. At t = 20.0 the wave starts approaching
the wall opposite to the wave maker, at t = 38.0 the wave gains full height,
and t = 67.0 the wave re�ected from the wall is a�ecting the pattern in the
basin. The wave is also exhibiting a very nice pattern at t = 120.0, without any
stability problems arising from the numerical scheme. Since no experimental data
is available to validate our results (for a 3-D linear problem), we can rely only on
visual results. However, they are in excellent agreement with a behavior similar
to that of the 2-D problem reported in [7]. It is also important to note here that
for a non-uniform/asymmetric mesh (Figure 2(b) shows the structure of the
mesh employed in our computations) we do not need any arti�cial stabilization
in our numerical scheme. This property is highly desirable for simulations over a
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long period of time. A detailed analysis of the e�ect of mesh-asymmetry in the
numerical computations was carried out in [6], and the resulting mechanism was
used to stabilize the numerical scheme in [6, 7].

6 Conclusion

We have presented a numerical scheme for solving a linearized, time-dependent
potential �ow problem using the fourth-order explicit Runge-Kutta method and
the boundary element method for the time and space discretizations, respec-
tively. Data-sparse approximations of the resulting large-scale, dense matrices
were used to make an e�cient solution feasible. While this technique incurs a
large one-time overhead for setting up the hierarchical matrices, it is worthwhile
when many boundary value problems are to be solved on a �xed geometry, as
the results in Section 5 indicate. For the same reason, however, a direct gen-
eralization to the case of a non-linearized, time-dependent domain seems to be
more problematic at the �rst glance, since the system matrices would have to
be recomputed at every iteration step. This problem may be alleviated by using
the same preconditioner in every iteration and taking advantage of the fact that
the matrix generation step may be trivially parallelized. The numerical scheme
does not require a separate velocity reconstruction, or di�erent order polynomi-
als for velocity �eld and potential to preserve the accuracy in the wave height.
A rigorous analysis of the numerical scheme proposed in this paper is still in
progress.
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