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NON-STANDARD NORMS AND ROBUST ESTIMATES FOR
SADDLE POINT PROBLEMS

WALTER ZULEHNER∗

Abstract. In this paper we discuss how to find norms for parameter-dependent saddle point
problems which lead to robust (i.e.: parameter-independent) estimates of the solution in terms of
the data. In a first step a characterization of such norms is given for a general class of symmetric
saddle point problems. Then, for special cases, explicit formulas for these norms are derived. Finally,
we will apply these results to distributed optimal control problems for elliptic equations and for the
Stokes equations. The norms which lead to robust estimates turn out to differ from the standard
norms typically used for these problems. This will lead to block diagonal preconditioners for the
corresponding discretized problems with mesh-independent and robust convergence rates if used in
preconditioned Krylov subspace methods.

Key words. saddle point problems, PDE-constrained optimization, optimal control, robust
estimates, block diagonal preconditioners

AMS subject classifications. 65F08, 65N22, 65K10, 49K40

1. Introduction. In this paper we consider mixed variational problems of the
following form: Find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v) for all v ∈ V,
b(u, q)− c(p, q) = g(q) for all q ∈ Q,

(1.1)

where V and Q are Hilbert spaces, a, b, and c are bounded bilinear forms on V × V ,
V ×Q, and Q×Q, respectively, and f , g are bounded linear functionals. Additionally,
we will assume throughout the paper that a and c are symmetric, i.e.:

a(w, v) = a(v, w) for all v, w ∈ V, c(r, q) = c(q, r) for all q, r ∈ Q, (1.2)

and a and c are non-negative, i.e.:

a(v, v) ≥ 0 for all v ∈ V, c(q, q) ≥ 0 for all q ∈ Q, (1.3)

by which (1.1) becomes a symmetric and indefinite problem.
Examples of such problems are the Stokes problem in fluid mechanics, mixed

formulations of elliptic boundary value problems and the optimality system of optimal
control problems, where (in all these examples) V and Q are infinite-dimensional
function spaces, as well as discretized versions of theses problems, where V and Q are
finite-dimensional finite element spaces. In particular, we consider problems which
involve some critical model parameter, say α, like the time step size in the time-
discretized Stokes problem, the diffusion coefficient in a diffusion-reaction equation or
a regularization parameter occurring in optimal control problems. In the discretized
version an additional parameter is always involved: the mesh size, say h, of the
underlying subdivision of the computational domain.

A fundamental issue is the question whether (1.1) is well-posed: Does there exist
a unique solution (u, p) in X = V × Q for any data (f, g) from X∗, the dual space
of X, and does the solution depend continuously on the data, or equivalently, is the
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2 WALTER ZULEHNER

norm of the solution (u, p) in X bounded from above by the norm of the data (f, g)
in X∗? Of course, the answer depends on the choice of the norm or better the inner
product in X. We will concentrate on inner products in X of the particular form(

(v, q), (w, r)
)
X

= (v, w)V + (q, r)Q, (1.4)

where (·, ·)V and (·, ·)Q are inner products of the Hilbert spaces V and Q, respectively.
Since we have assumed that the bilinear forms a, b, and c are bounded, the

norm of the solution (u, p) can always be estimated from below by the norm of the
data (f, g). The focus of this paper is the more specific question whether these
estimates from above and from below are independent of the model parameter α
and, for the discretized version, of the discretization parameter h. We will address
this issue by characterizing those inner products in V and Q which lead to robust
estimates. Additionally, for some classes of saddle point problems, we will derive
explicit representations of such inner products.

Knowledge of robust estimates does not only contribute to the question of well-
posedness but also to discretization error estimates and the construction of efficient
solvers for the discretized problem. In the discretized case, having robust estimates
for an inner product of the form (1.4) translates to having a block diagonal pre-
conditioner for the linear operator describing the left-hand side of (1.1) with robust
estimates for the condition number. This would immediately imply that Krylov sub-
space methods like the minimal residual method, see [17], converge with convergence
rates independent of α and h.

Of course, for a wide range of problems robust estimates have been developed
already, see the survey article [14] and the many references contained there. Most of
the norms involved in these estimates were found on a case-by-case basis. Following
the spirit of the survey article [14] the present paper is to be understood as a further
contribution to a more systematic search for the ”right” norms.

Remark 1. Observe that Condition (1.3) characterizes exactly the case that the
functional L (v, q), given by

L (v, q) =
1
2
a(v, v) + b(v, q)− 1

2
c(q, q)− f(v)− g(q),

is a convex function of v ∈ V and a concave function of q ∈ Q. Such a functional L
is called a saddle function, see [20]. If, additionally, Condition (1.2) holds, it is easy
to see that (u, p) solves (1.1) if and only if (u, p) is a saddle point of L , i.e.:

L (u, q) ≤ L (u, p) ≤ L (v, p) for all v ∈ V, q ∈ Q.

A first preliminary version of the contents of this paper was presented in a talk
given by the author at the BIRS Workshop Advances and Perspectives on Numerical
Methods for Saddle Point Problems, April 2009, Banff, Canada. The work of the
author on this topic has been strongly influenced by a series of three lectures given
by R. Winther at the London Society Durham Symposium on Computational Linear
Algebra for Partial Differential Equations, July 2008, see [14] for the corresponding
survey article.

The paper is organized as follows: Section 2 contains the abstract framework. The
main abstract result is presented in Theorem 2.6 describing necessary and sufficient
conditions on the involved inner products for obtaining robust estimates. In Section 3
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several special cases are discussed for which inner products leading to robust estimates
are explicitly known. Section 4 deals with the application to optimal control problems.
The paper ends with a few concluding remarks in Section 5.

2. The abstract theory. Throughout the paper we will use the following no-
tational convention:

Notation 1. Let H be a Hilbert space with inner product (·, ·)H and associated
norm ‖ · ‖H , given by

‖x‖H =
√

(x, x)H .

The dual space of H is denoted by H∗ with norm ‖ · ‖H∗ , given by

‖`‖H∗ = sup
0 6=x∈H

`(x)
‖x‖H

.

The duality pairing 〈·, ·〉H on H∗ ×H is given by

〈`, x〉H = `(x) for all ` ∈ H∗, x ∈ H.

We will usually drop the subscript H and write instead 〈·, ·〉 for a duality pairing.
Let IH : H −→ H∗ be given by

〈IHx, y〉 = (x, y)H .

It is well-known that IH is an isometric isomorphism between H and its dual space
H∗. The inverse RH = I−1

H is called the Riesz-isomorphism, by which functionals in
H∗ can be identified with elements in H and we have:

〈`, x〉 = (RH`, x)H .

The set of all linear and bounded operators from H1 to H2, where H1 and H2 are
normed spaces, is denoted by L(H1, H2).

The mixed variational problem (1.1) in V and Q can also be written as a varia-
tional problem on the product space X = V ×Q: Find x = (u, p) ∈ X such that

B(x, y) = F(y) for all y ∈ X (2.1)

with

B(z, y) = a(w, v) + b(v, r) + b(w, q)− c(r, q), F(y) = f(v) + g(q)

for y = (v, q), z = (w, r).
Since we have assumed that the bilinear forms a, b, and c are bounded, there is

a constant, say cx, such that

sup
06=z∈X

sup
06=y∈X

B(z, y)
‖z‖X ‖y‖X

≤ cx <∞. (2.2)

A classical result due to Babuška, see [2], [3], reads in our symmetric situation: Prob-
lem (2.1) is well-posed if and only if there is a constant, say cx, such that

inf
06=z∈X

sup
0 6=y∈X

B(z, y)
‖z‖X ‖y‖X

≥ cx > 0 (2.3)
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and we have the following estimates from above and from below:

1
cx
‖F‖X∗ ≤ ‖x‖X ≤

1
cx
‖F‖X∗ .

Condition (2.3) is usually referred to as the inf-sup condition or the Babuška-Brezzi
condition.

To each of the three bilinear forms a, b, and c we associate a corresponding linear
operator A ∈ L(V, V ∗), B ∈ L(V,Q∗), and C ∈ L(Q,Q∗), respectively, given by

〈Aw, v〉 = a(w, v), 〈Bw, q〉 = b(w, q), 〈Cr, q〉 = c(r, q).

Additionally, B∗ ∈ L(Q,V ∗) denotes the adjoint of B ∈ L(V,Q∗), given by

〈B∗r, v〉 = 〈Bv, r〉.

The problem (1.1) now reads in operator notation:

Au+B∗p = f,
Bu− Cp = g.

(2.4)

In a similar way, we associate a linear operator A ∈ L(X,X∗) to the bilinear form B,
given by

〈Ax, y〉 = B(x, y).

Then the problem (2.1), which is equivalent to (1.1), reads

Ax = F . (2.5)

In operator notation the important conditions (2.2) and (2.3) can be written in
the following form:

cx ‖z‖X ≤ ‖Az‖X∗ ≤ cx ‖z‖X for all z ∈ X. (2.6)

The aim in this paper is to find inner products in V and Q which lead to such esti-
mates with coefficients cx and cx independent of the model parameter α and, for the
discretized version, also independent of the mesh size h. An immediate consequence
of (2.6) is an estimation of the condition number κ(A):

κ(A) = ‖A‖L(X,X∗)‖A−1‖L(X∗,X) ≤
cx
cx
.

So, robust estimates of the form (2.6) imply a robust estimate for the condition num-
ber, an important property in connection with convergence rates of iterative methods
for solving (2.5).

We start the analysis of (1.1) by a very simple and helpful observation:
Lemma 2.1. Let `1 ∈ V ∗ and `2 ∈ Q∗. Then

‖`‖2X∗ = ‖`1‖2V ∗ + ‖`2‖2Q∗

for ` ∈ X∗, given by `(v, q) = `1(v) + `2(q).
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Proof. By using the Cauchy inequality we obtain

‖`‖2X∗ = sup
06=(v,q)∈X

(〈`1, v〉+ 〈`2, q〉)2

‖(v, q)‖2X

≤ sup
06=(v,q)∈X

(‖`1‖V ∗‖v‖V + ‖`2‖Q∗‖q‖Q)2

‖v‖2V + ‖q‖2Q
≤ ‖`1‖2V ∗ + ‖`2‖2Q∗ .

Equality follows for the choice v = RV `1 and q = RQ`2.
As a consequence of an estimate of the form (2.6) in X we obtain two simple

estimates, one in V and one in Q:
Theorem 2.2. If (2.6) holds for constants cx, cx > 0, then

c2x ‖w‖2V ≤ ‖Aw‖2V ∗ + ‖Bw‖2Q∗ ≤ c2x ‖w‖2V for all w ∈ V (2.7)

and

c2x ‖r‖2Q ≤ ‖Cr‖2Q∗ + ‖B∗r‖2V ∗ ≤ c2x ‖r‖2Q for all r ∈ Q. (2.8)

Proof. For z = (w, r) we have:

‖Az‖X∗ = sup
06=(v,q)∈X

B((w, r), (v, q))
‖(v, q)‖X

= sup
06=(v,q)∈X

a(w, v) + b(v, r) + b(w, q)− c(r, q)
‖(v, q)‖X

= sup
06=(v,q)∈X

`1(v) + `2(q)
‖(v, q)‖X

with

`1(v) = a(w, v) + b(v, r) = 〈Aw +B∗r, v〉,
`2(v) = b(w, q)− c(r, q) = 〈Bw − Cr, q〉.

Therefore, by Lemma 2.1, we obtain

‖Az‖X∗ =
(
‖Aw +B∗r‖2V ∗ + ‖Bw − Cr‖2Q∗

)1/2
.

Then the estimates (2.7) and (2.8) immediately follow from (2.6) for r = 0 and for
w = 0, respectively.

So, (2.7) and (2.8) are necessary conditions for (2.6). Next we will show that (2.7)
and (2.8), not necessarily with the same constants, are also sufficient:

Theorem 2.3. If there are constants cv, cv, cq, cq > 0 such that

c2v ‖w‖2V ≤ ‖Aw‖2V ∗ + ‖Bw‖2Q∗ ≤ c2v ‖w‖2V for all w ∈ V

and

c2q ‖r‖2Q ≤ ‖Cr‖2Q∗ + ‖B∗r‖2V ∗ ≤ c2q ‖r‖2Q for all r ∈ Q,

then there are constants cx, cx > 0 such that

cx ‖z‖X ≤ ‖Az‖X∗ ≤ cx ‖z‖X for all z ∈ X,

where cx and cx depend only on cv, cq, cv, and cq.
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Proof. For z = (w, r) we have:

‖Az‖X∗ =
(
‖Aw +B∗r‖2V ∗ + ‖Bw − Cr‖2Q∗

)1/2
≤
(
2 ‖Aw‖2V ∗ + 2 ‖B∗r‖2V ∗ + 2 ‖Bw‖2Q∗ + 2 ‖Cr‖2Q∗

)1/2
≤
(
2 c2v ‖w‖2V + 2 c2q ‖r‖2Q

)1/2 ≤ √2 max(cv, cq) ‖z‖X ,

which proves the upper bound in (2.6) with cx =
√

2 max(cv, cq).
For showing a lower bound, we start with the following estimate based on the

triangle inequality in X∗:

‖Az‖X∗ =
(
‖Aw +B∗r‖2V ∗ + ‖Bw − Cr‖2Q∗

)1/2
≥
(
‖B∗r‖2V ∗ + ‖Bw‖2Q∗

)1/2 − (‖Aw‖2V ∗ + ‖Cr‖2Q∗

)1/2
= (η − ξ) ‖z‖X

for z = (w, r) with

ξ =

(
‖Aw‖2V ∗ + ‖Cr‖2Q∗

)1/2
‖(w, r)‖X

, η =

(
‖B∗r‖2V ∗ + ‖Bw‖2Q∗

)1/2
‖(w, r)‖X

.

A second lower bound follows from:

‖Az‖X∗ = sup
06=(v,q)∈X

B((w, r), (v, q))
‖(v, q)‖X

≥ B((w, r), (w,−r))
‖(w,−r)‖X

=
a(w,w) + c(r, r)

‖z‖X
.

Since

a(w, v)2 ≤ a(w,w) a(v, v) ≤ a(w,w) ‖Av‖V ∗‖v‖V ≤ cv a(w,w) ‖v‖2V ,

we have

‖Aw‖2V ∗ = sup
06=v∈V

a(w, v)2

‖v‖2V
≤ cv a(w,w).

Analogously, we obtain

‖Cr‖2Q∗ ≤ cq c(r, r).

Hence

a(w,w) + c(r, r) ≥ 1
cv
‖Aw‖2V ∗ +

1
cq
‖Cr‖2Q∗ ≥

1
max(cv, cq)

(
‖Aw‖2V ∗ + ‖Cr‖2Q∗

)
=
√

2
cx

ξ2 ‖(w, r)‖2X .

With this estimate we obtain for the second lower bound:

‖Az‖X∗ ≥
√

2
cx

ξ2 ‖z‖X .

Taking the maximum of the two lower bounds we immediately obtain

‖Az‖X∗ ≥ ϕ(ξ, η) ‖z‖X with ϕ(ξ, η) = max

[
η − ξ,

√
2
cx

ξ2

]
.
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Observe that

ξ2 + η2 ≥ c2v + c2q > 0.

Elementary calculations show that

min
{
ϕ(ξ, η) : ξ2 + η2 ≥ c2v + c2q

}
≥ 3−

√
5

4
c2v + c2q

max(cv, cq)
= cx,

which concludes the proof.
In the following two lemmas it will be shown that the conditions (2.7) and (2.8)

of the last theorem can be replaced by two other conditions which will turn out to be
more easy to work with.

Lemma 2.4. If there are constants γ
v
, γv > 0 such that

γ
v
‖w‖2V ≤ a(w,w) + ‖Bw‖2Q∗ ≤ γv ‖w‖2V for all w ∈ V, (2.9)

then (2.7) is satisfied with constants cv, cv > 0 that depend only on γ
v
, γv.

And, vice versa, if there are constants cv, cv > 0 such that (2.7) is satisfied, then
(2.9) is satisfied with constants γ

v
, γv > 0 that depend only on cv, cv.

Proof. Assume that (2.9) is satisfied. Then we have

a(w, v)2 ≤ a(w,w)a(v, v) ≤ γv a(w,w)‖v‖2V ,

which implies

‖Aw‖2V ∗ ≤ γv a(w,w).

Therefore,

‖Aw‖2V ∗ + ‖Bw‖2Q∗ ≤ γv a(w,w) + ‖Bw‖2Q∗

≤ max(γv, 1)
(
a(w,w) + ‖Bw‖2Q∗

)
≤ max(γv, 1) γv ‖w‖2V .

This shows the upper bound in (2.7) for c2v = max(γv, 1) γv.
For the lower bound observe that, for all ε > 0:

a(w,w) ≤ ‖Aw‖V ∗ ‖w‖V ≤
1
2ε
‖Aw‖2V ∗ +

ε

2
‖w‖2V , (2.10)

which implies

γ
v
‖w‖2V ≤ a(w,w) + ‖Bw‖2Q∗ ≤

1
2ε
‖Aw‖2V ∗ +

ε

2
‖w‖2V + ‖Bw‖2Q∗ ,

and, therefore,(
γ
v
− ε

2

)
‖w‖2V ≤

1
2ε
‖Aw‖2V ∗ + ‖Bw‖2Q∗ ≤ max

(
1
2ε
, 1
)(
‖Aw‖2V ∗ + ‖Bw‖2Q∗

)
.

For ε = γ
v

we obtain the lower bound in (2.7) with cv = min(γ
v
, 1/2)γ

v
.

Now assume that (2.7) is satisfied. Then we have, see the proof of the last theorem:

‖Aw‖2V ∗ ≤ cv a(w,w)
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and, therefore,

a(w,w) + ‖Bw‖2Q∗ ≥ c−1
v ‖Aw‖2V ∗ + ‖Bw‖2Q∗

≥ min(1, c−1
v )

(
‖Aw‖2V ∗ + ‖Bw‖2Q∗

)
≥ min(1, c−1

v ) c2v ‖w‖2V

showing the lower bound in (2.9) for γ
v

= min(1, c−1
v ) c2v.

For the upper bound we use (2.10) for ε = 1/2 and obtain:

a(w,w) + ‖Bw‖2Q∗ ≤ ‖Aw‖2V ∗ +
1
4
‖w‖2V + ‖Bw‖2Q∗ ≤

(
c2v +

1
4

)
‖w‖2V .

So, the upper bound in (2.9) is satisfied for γv = c2v + 1/4.
Completely analogously, we have
Lemma 2.5. If there are constants γ

q
, γq > 0 such that

γ
q
‖r‖2Q ≤ c(r, r) + ‖B∗r‖2V ∗ ≤ γq ‖r‖2Q for all r ∈ Q, (2.11)

then (2.8) is satisfied with constants cq, cq > 0 that depend only on γ
q
, γq.

And, vice versa, if there are constants cq, cq > 0 such that (2.8) is satisfied, then
(2.11) is satisfied with constants γ

q
, γq > 0 that depend only on cq, cq.

By summarizing the results of the last two theorems and lemmas we finally obtain
Theorem 2.6. If there are constants γ

v
, γv, γq, γq > 0 such that

γ
v
‖w‖2V ≤ a(w,w) + ‖Bw‖2Q∗ ≤ γv ‖w‖2V for all w ∈ V (2.12)

and

γ
q
‖r‖2Q ≤ c(r, r) + ‖B∗r‖2V ∗ ≤ γq ‖r‖2Q for all r ∈ Q, (2.13)

then

cx ‖z‖X ≤ ‖Az‖X ≤ cx ‖z‖X for all z ∈ X (2.14)

is satisfied with constants cx, cx > 0 that depend only on γ
v
, γv, γq, γq. And, vice

versa, if the estimates (2.14) are satisfied with constants cx, cx > 0, then the estimates
(2.12) and (2.13) are satisfied with constants γ

v
, γv, γq, γq > 0 that depend only on

cx, cx.
Remark 2. In the case C = 0 (i.e. c(v, v) ≡ 0) the lower estimate in condition

(2.11) has the special form

γ
q
‖r‖2Q ≤ ‖B∗r‖2V ∗ for all r ∈ Q. (2.15)

From the lower estimate in (2.9) it immediately follows that

γ
v
‖w‖2V ≤ a(w,w) for all w ∈ kerB = {v ∈ V : Bv = 0}. (2.16)

On the other hand, from (2.15) and (2.16) the lower estimate in (2.9) easily follows,
using the fact that (2.15) implies

γ
q
‖w‖2V ≤ ‖Bw‖2Q∗ for all w ∈ (kerB)⊥,
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where (kerB)⊥ denotes the orthogonal complement of kerB. So we have recovered a
classical result by Brezzi [7], [8]: Let a and b bounded bilinear forms and c ≡ 0. Then
the problem (2.1) is well-posed if and only if a is coercive on kerB, see (2.16), and
the inf-sup condition for b is satisfied, see (2.15).

Next we want to rewrite (2.12) and (2.13) in a more convenient form. Using the
definition of IQ it follows that

‖Bw‖2Q∗ = sup
06=q∈Q

〈Bw, q〉2

‖q‖2Q
= sup

06=q∈Q

(I−1
Q Bw, q)2

Q

‖q‖2Q
= ‖I−1

Q Bw‖2Q = (I−1
Q Bw, I−1

Q Bw)Q = 〈Bw, I−1
Q Bw〉 = 〈B∗I−1

Q Bw,w〉

and, similarly

‖B∗r‖2V ∗ = 〈BI−1
V B∗r, r〉.

Then the conditions (2.12) and (2.13) read:

γ
v
〈IV w,w〉 ≤ 〈(A+B∗I−1

Q B)w,w〉 ≤ γv 〈IV w,w〉 for all w ∈ V

and

γ
q
〈IQr, r〉 ≤ 〈(C +BI−1

V B∗)r, r〉 ≤ γq 〈IQr, r〉 for all r ∈ Q

or, in short,

IV ∼ A+B∗I−1
Q B and IQ ∼ C +BI−1

V B∗, (2.17)

by using the following notation:
Notation 2. Let M,N ∈ L(H,H∗) be two linear self-adjoint operators. Then
1. M ≤ N , if and only if

〈Mx, x〉 ≤ 〈Nx, x〉 for all x ∈ H.

2. M . N , if and only if there is a constant c ≥ 0 such that M ≤ cN .
3. M ∼ N , if and only if M . N and N . M . In this case we call M and N

spectrally equivalent.
If the operators M and N depend on some parameters (like α and h, see the intro-
duction), then we additionally assume that the involved constants are independent of
those parameters.

It is clear that (2.17) is equivalent to

IV ∼ A+B∗(C +BI−1
V B∗)−1B and IQ ∼ C +BI−1

V B∗ (2.18)

and also to

IQ ∼ C +B(A+B∗I−1
Q B)−1B∗ and IV ∼ A+B∗I−1

Q B. (2.19)

The equivalent pairs of conditions (2.17), (2.18), and (2.19) are conditions for IV and
IQ, or in other words, for the inner products in V and Q. In (2.18) as well as in
(2.19) the first condition involves only one unknown operator (IV in (2.18) and IQ
in (2.19)). The second condition (in (2.18) as well as in (2.19)) serves as a sort of
definition of the second operator in terms of the first one.
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3. Special cases. In this section we will discuss the conditions (2.17) for several
important cases. We will focus on the finite-dimensional case, on the one hand since we
are mainly interested in the construction of preconditioners for discretized problems,
on the other hand to avoid some technical difficulties in the infinite-dimensional case.
Nevertheless, all results for the finite-dimensional case can be carried over to the
infinite-dimensional case under appropriate conditions.

If V and Q are finite-dimensional, then all operators can be represented as ma-
trices acting on vectors of real numbers representing the elements in V and Q with
respect to some chosen bases. In this matrix-vector notation problem (2.5) becomes
a linear system of the following form

A
[
u
p

]
=
[
f
g

]
with A =

[
A BT

B −C

]
, (3.1)

where BT denotes the transposed matrix. For the matrix IX representing the inner
product in X we have the special form

IX =
[
IV 0
0 IQ

]
because of (1.4). Condition (2.6) is satisfied for all constants cx, cx > 0 with

cx ≤ |λmin| and |λmax| ≤ cx,

where λmax and λmin are eigenvalues of the generalized eigenvalue problem

Ax = λ IXx

of maximal and minimal modulus, respectively. For the condition number we then
obtain

κ(A) =
|λmax|
|λmin|

≤ cx
cx
.

In the survey article [4] a wide range of preconditioners for linear systems of the form
(3.1) are discussed, among other topics. Following the notation of [4] our focus is the
case of block diagonal preconditioners P = IX and our particular interest is the issue
of robustness.

We first consider two simple and well-known cases:

3.1. A and S = C + BA−1BT are non-singular. The matrix S is called the
(negative) Schur complement. In this case

IV = A and IQ = S = C +BA−1BT (3.2)

satisfy (2.17): Since

0 ≤ BT (C +BI−1
V BT )−1B ≤ IV for all IV ,

we have for IV = A:

IV = A ≤ A+BTI−1
Q B = A+BT (C +BI−1

V BT )−1B ≤ A+ IV = 2A = 2IV .

So, (2.12) holds for γ
v

= 1 and γv = 2, while (2.13) trivially holds for γ
q

= γq = 1.
Then robust estimates directly follow from Theorem 2.6.
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Remark 3. For C = 0 we have direct access to the constants in (2.6). The
generalized eigenvalue problem[

A BT

B 0

] [
u
p

]
= λ

[
A 0
0 S

] [
u
p

]
has exactly 3 eigenvalues, namely 1 and (1 ±

√
5)/2 (due to, e.g., Yu. Kuznetsov,

1990). Therefore, (2.6) is satisfied for

cx =
√

5− 1
2

and cx =
√

5 + 1
2

.

3.2. C and R = A + BTC−1B are non-singular. Analogous to the first case
one can show that

IV = R = A+BTC−1B and IQ = C (3.3)

satisfy (2.17).

3.3. A and C are non-singular. Then, of course, both solutions, (3.2) and
(3.3), are available. It is easy to conclude from (2.18) and (2.19) that for all possible
choices of IV and IQ satisfying (2.17) we have

A . IV . A+BTC−1B and C . IQ . C +BA−1BT .

So, the solutions (3.2) and (3.3) determine the lower and upper bounds for the range
of all possible solutions.

We will now construct additional solutions to (2.17). With

ÎV = A−1/2IVA−1/2, ÎQ = C−1/2IQC−1/2, and B̂ = C−1/2BA−1/2

condition (2.17) takes the following form:

ÎV ∼ I + B̂T Î−1
Q B̂ and ÎQ ∼ I + B̂Î−1

V B̂T . (3.4)

We first discuss the special case where the equivalence relation ∼ is replaced by
equality:

ÎV = I + B̂T Î−1
Q B̂ and ÎQ = I + B̂Î−1

V B̂T .

Eliminating ÎQ from the first equation with the help of the second equation yields:

ÎV = I + B̂T (I + B̂Î−1
V B̂T )−1B̂. (3.5)

By using the Sherman-Morrison-Woodbury formula, see [9], we have

(I + B̂Î−1
V B̂T )−1 = I − B̂(ÎV + B̂T B̂)−1B̂T .

This allows to rewrite the condition (3.5):

ÎV = I + ÎV − ÎV (ÎV + B̂T B̂)−1ÎV ,
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which simplifies to the quadratic matrix equation(
ÎV
)2

− ÎV − B̂T B̂ = 0.

It is easy to see that

ÎV = f(B̂T B̂) with f(x) =
1
2

+

√
1
4

+ x

solves this equation, see [10] for matrix functions. For IQ we obtain similarly:

ÎQ = f(B̂B̂T ).

We now return from the equality conditions to the original equivalence conditions
(3.4). Obviously, all matrices ÎV and ÎQ which are spectrally equivalent to f(B̂T B̂)
and f(B̂B̂T ), respectively, satisfy the equivalence conditions (3.4). Since

√
1 + x ≤ f(x) ≤ 2√

3

√
1 + x for all x ≥ 0,

we have

f(B̂T B̂) ∼ (I + B̂T B̂)1/2 and f(B̂B̂T ) ∼ (I + B̂B̂T )1/2.

Therefore,

ÎV = (I + B̂T B̂)1/2 and ÎQ = (I + B̂B̂T )1/2

satisfy (3.4). If expressed in terms on the original matrices, we obtain

IV = A1/2
(
A−1/2SA−1/2

)1/2

A1/2 and IQ = C1/2
(
C−1/2RC−1/2

)1/2

C1/2,

or, in short:

IV = [A,S]1/2 and IQ = [C,R]1/2,

using the following notation:
Notation 3. Let M and N be symmetric and positive definite n-by-n matrices.

Then, for all θ ∈ [0, 1], the symmetric and positive definite matrix [M,N ]θ is given by

[M,N ]θ = M1/2
(
M−1/2NM−1/2

)θ
M1/2.

Remark 4. Each of the symmetric and positive definite matrices M and N rep-
resents an inner product and, therefore, a Hilbert space structure on Rn. For each
θ ∈ (0, 1) an intermediate Hilbert space structure on Rn can be defined using the so-
called real method, see [5], whose inner product is represented by the symmetric and
positive definite matrix [M,N ]θ up to a scaling factor.

More generally, we obtain solutions to (3.4) of the form

ÎV = (I + B̂T B̂)θ and ÎQ = (I + B̂B̂T )1−θ
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for each θ ∈ [0, 1]. This is a direct consequence of the inequalities:

(1 + x)θ ≤ 1 +
x

(1 + x)1−θ ≤ 2 (1 + x)θ for all x ≥ 0.

Translating this result to the untransformed quantities leads to the following solutions
to (2.17):

IV = [A,S]θ and IQ = [C,R]1−θ = [R,C]θ. (3.6)

Remark 5. This family of solutions can also be derived from the solutions (3.2)
and (3.3) by using the interpolation theorem, see [5].

Since

1
21−θ (1 + xθ) ≤ (1 + x)θ ≤ 1 + xθ for all x ≥ 0,

it easily follows that

(I + B̂T B̂)θ ∼ I + (B̂T B̂)θ and (I + B̂B̂T )1−θ ∼ I + (B̂B̂T )1−θ,

which implies that

IV = A+ [A,BTC−1B]θ and IQ = C + [C,BA−1BT ]1−θ. (3.7)

also satisfy (2.17). This form of a solution will turn out to be particularly useful for
the optimal control problems in Section 4.

3.4. C = 0. In this case we will formulate a general strategy for constructing
inner products if

A = A1 +A2

with symmetric and positive semi-definite matrices Ai under the assumption that we
already know robust estimates for

Ai =
[
Ai BT

B 0

]
for i = 1, 2.

That is, we assume that IVi and IQi are available such that

IVi
∼ Ai +BTI−1

Qi
B and IQi

∼ BI−1
Vi
BT for i = 1, 2.

Then, by adding the first equivalence conditions, we immediately

IV ∼ A+BTI−1
Q B

for

IV = IV1 + IV2 and IQ =
(
I−1
Q1

+ I−1
Q2

)−1

. (3.8)

So, the first condition in (2.17) holds for this choice of IV and IQ. The second
condition in (2.17) can be split into two parts:

BI−1
V BT . IQ and IQ . BI−1

V BT .
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The first part follows easily: We have

BI−1
Vi
BT . IQi for i = 1, 2,

which is equivalent to

BTI−1
Qi
B . IVi

for i = 1, 2.

By adding these conditions we immediately obtain

BTI−1
Q B . IV ,

which is equivalent to

BI−1
V BT . IQ.

For the second part we need the additional assumption that there is a left inverse T
of BT with

TTIQi
T . I−1

Vi
for i = 1, 2. (3.9)

These conditions are equivalent to

TIVi
TT . I−1

Qi
for i = 1, 2.

By adding we obtain

TIV TT . I−1
Q ,

or, equivalently,

TTIQT . I−1
V .

By multiplying with B from the left and with BT from the right we immediately
obtain

IQ . BI−1
V BT .

The strategy presented here resembles exactly the approach presented in [14] for the
case of the generalized Stokes problem, for which the existence of T satisfying (3.9)
is known.

Summarizing the results in this section, we have identified several pairs (IV , IQ)
of matrices, see (3.2), (3.3), (3.6), (3.7), and (3.8), representing inner products, which
satisfy (2.17) under appropriate assumptions. Which of these pairs are more appro-
priate for preconditioning than others depend on the particular application. Two
applications from optimal control will be discussed next.

4. Applications. Let Ω be an open and bounded domain in Rd for d ∈ {1, 2, 3}
with Lipschitz-continuous boundary Γ and let L2(Ω), H1(Ω), and H1

0 (Ω) be the usual
Lebesgue space and Sobolev spaces of functions on Ω. The inner product and the
norm in L2(Ω) are denoted by (·, ·)L2 and ‖ · ‖L2 , respectively.
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4.1. Distributed optimal control of elliptic equations. We consider the
following optimal control problem: Find the state y ∈ H1

0 (Ω) and the control u ∈
L2(Ω) that minimizes the cost functional

J(y, u) =
1
2
‖y − yd‖2L2 +

α

2
‖u‖2L2

subject to the state equation

−∆y = u in Ω,
y = 0 on Γ,

or, more precisely, subject to the state equation in its weak form, given by

(grad y, grad z)L2 = (u, z)L2 for all z ∈ H1
0 (Ω).

Here yd ∈ L2(Ω) is the given (desired) state and α > 0 is a regularization parameter.
Remark 6. For ease of notation we will use the symbols (·, ·)L2 and ‖ · ‖L2 not

only for the case of scalar functions but also for the case of vector-valued functions
and later on also for the case of matrix-valued functions.

The Lagrangian functional associated to this optimization problem is given by:

L (y, u, p) = J(y, u) + (grad y, grad p)L2 − (u, p)L2 ,

leading to following optimality system

(y, z)L2 + (grad z, grad p)L2 = (yd, z)L2 for all z ∈ H1
0 (Ω),

α (u, v)L2 − (v, p)L2 = 0 for all v ∈ L2(Ω),

(grad y, grad q)L2 − (u, q)L2 = 0 for all q ∈ H1
0 (Ω),

which characterizes the solution (y, u) ∈ H1
0 (Ω)×L2(Ω) of the optimal control problem

with Lagrangian multiplier (or co-state) p ∈ H1
0 (Ω), see, e.g., [11], [23].

From the second equation we learn that u = α−1 p, which allows to eliminate the
control resulting in the reduced optimality system

(y, z)L2 + (grad z, grad p)L2 = (yd, z)L2 for all z ∈ H1
0 (Ω),

(grad y, grad q)L2 − α−1 (p, q)L2 = 0 for all q ∈ H1
0 (Ω).

As an example of a discretization method we discuss the finite element method
on a simplicial subdivision of Ω with continuous and piecewise linear functions for
both the state and the co-state. This leads to the linear system[

M K
K −α−1M

] [
y
p

]
=
[
f
0

]
for the unknown vectors y, p of coefficients of the approximate solutions relative to the
nodal basis. Here M denotes the mass matrix representing the L2 inner product and
K denotes the stiffness matrix representing the elliptic operator of the state equation
on the finite element space.

This linear system fits into the general framework of Sections 2 and 3 with

A = M, B = K, C = α−1M.
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One particular pair of matrices IV and IQ satisfying (2.17) is given by (3.7) with
θ = 1/2:

IV = A+
[
A,BTC−1B

]
1/2

= M + α1/2
[
M,KM−1K

]
1/2

and

IQ = C +
[
C,BA−1BT

]
1/2

= α−1M + α−1/2
[
M,KM−1K

]
1/2

.

Now [
M,KM−1K

]
1/2

= M1/2
(
M−1/2KM−1KM−1/2︸ ︷︷ ︸
=
(
M−1/2KM−1/2

)2
)1/2

M1/2 = K.

Hence we obtain

IV = M + α1/2K and IQ = α−1M + α−1/2K. (4.1)

From the analysis in Sections 2 and 3 it follows that

P =
[
M + α1/2K 0

0 α−1M + α−1/2K

]
is a robust block diagonal preconditioner for

A =
[
M K
K −α−1M

]
. (4.2)

The application of the preconditioner P requires an efficient evaluation of P−1r for
some given vector r. Up to a scaling factor both diagonal blocks of P are of the form
γM + K. This matrix is the stiffness matrix of the second-order elliptic differential
operator of the state equation perturbed by a zero-order term. Multigrid or multilevel
preconditioners which work robustly in γ are well-known, see, e.g., [16], [6]. So, in
practice, the block matrices of the theoretical preconditioner P are replaced by such
efficient preconditioners.

The same analysis can be carried out not only on the discrete level but also on
the continuous level leading to the following inner products in V = H1

0 (Ω) for the
state

(y, z)V = (y, z)L2 + α1/2 (grad y, grad z)L2

and in Q = H1
0 (Ω) for the co-state

(p, q)Q = α−1 (p, q)L2 + α−1/2 (grad p, grad q)L2 .

Well-posedness with robust estimates then follows for the associated norms

‖z‖V =
(
‖z‖2L2 + α1/2 ‖ grad z‖2L2

)1/2
and

‖q‖Q =
(
α−1 ‖q‖2L2 + α−1/2 ‖ grad q‖2L2

)1/2
,
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which differ from the standard H1-norms.
The particular form of the elliptic operator for y in the state equation does not

play an essential role as long as the associated bilinear form of the weak formulation
is symmetric, bounded and coercive. See [22] for a related elliptic optimal control
problem, where robust block-preconditioners have been constructed using the non-
standard inner products and norms from above, and [21], where robust all-at-once
multigrid methods were analyzed based on these non-standard norms. The form of
the control and the cost functional, however, was essential for constructing the inner
products. The results cannot be easily extended to other cases.

Remark 7. If instead of (3.7) one uses the solution (3.2), then one obtains

IV = M and IQ = α−1M +KM−1K,

also leading to a robust block diagonal preconditioner. While IV is here much easier
than before, the matrix IQ requires more work. It can be interpreted as matrix repre-
sentation of a fourth-order differential operator. For preconditioners developed along
this lines see, e.g., [18]. These preconditioners were shown to be robust with respect
to h (but not with respect to the regularization parameter).

Remark 8. More generally, for any 2-by-2 block matrix A of the form (4.2),
the matrix P of the form (4.1) is a robust preconditioner as long as M and K are
symmetric and positive semi-definite with kerM ∩ kerK = {0}. This follows from a
simple analysis of the generalized eigenvalue problem Ax = λPx for which it can be
easily shown that

|λmin| ≥
1√
2

and |λmin| ≤ 1,

resulting in a condition number estimate κ(A) ≤
√

2.

4.2. Distributed optimal control of the Stokes equations. The second
example of an optimal control problem is the so-called velocity tracking problem for
Stokes flow with distributed control: Find the velocity u ∈ H1

0 (Ω)d, the pressure
p ∈ L2

0(Ω) = {q ∈ L2(Ω):
∫

Ω
q dx = 0} and the control f ∈ L2(Ω)d that minimizes

the cost functional

J(u, f) =
1
2
‖u− ud‖2L2 +

α

2
‖f‖2L2

subject to the state equations

−∆u+ grad p = f in Ω,
div u = 0 in Ω,

u = 0 on ∂Ω,

or. more precisely again, subject to the state equations in its weak form:

(gradu, grad v)L2 − (div v, p)L2 = (f, v)L2 for all v ∈ H1
0 (Ω)d,

− (div u, q)L2 = 0 for all q ∈ L2
0(Ω).

Here ud ∈ L2(Ω)d is the desired velocity and α > 0 is a regularization parameter.
The Lagrangian functional associated to this optimization problem is given by:

L (u, p, f, û, p̂)
= J(u, f) + (gradu, grad û)L2 − (div û, p)L2 − (div u, p̂)L2 − (f, û)L2
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leading to following optimality system

(u, v)L2 + (∇v,∇û)L2 − (div v, p̂)L2 = (ud, v)L2 ,

− (div û, q)L2 = 0,
α (f, φ)L2 − (φ, û)L2 = 0,

(∇u,∇v̂)L2 − (div v̂, p)L2 − (f, v̂)L2 = 0,
− (div u, q̂)L2 = 0

for all test functions v, v̂ ∈ H1
0 (Ω)d, q, q̂ ∈ L2

0(Ω), and φ ∈ L2(Ω)d. This system
characterizes the solution (y, p, f) ∈ H1

0 (Ω)d×L2
0(Ω)×L2(Ω)d of the optimal control

problem with Lagrangian multipliers (û, p̂) ∈ H1
0 (Ω)d × L2

0(Ω).
As in the elliptic case the control f can be eliminated (using the third equation)

resulting in the reduced optimality system:

(u, v)L2 + (∇v,∇û)L2 − (div v, p̂)L2 = (ud, v)L2 ,

− (div û, q)L2 = 0,

(∇u,∇v̂)L2 − (div v̂, p)L2 − α−1 (û, v̂)L2 = 0,
− (div u, q̂)L2 = 0

for all test functions v, v̂ ∈ H1
0 (Ω)d and q, q̂ ∈ L2

0(Ω).
As an example of a discretization method we discuss the Taylor-Hood element on a

simplicial subdivision of Ω consisting of continuous and piecewise quadratic functions
for u and û and continuous and piecewise linear functions for p and p̂. This leads to
the linear system 

M K −DT

0 D
K −DT −α−1M
−D 0



u
p
û
p̂

 =


Mud

0
0
0


Here M denotes the mass matrix representing the standard inner product in L2(Ω)d

and K denotes the stiffness matrix representing the vector Laplace operator on the
finite element space. Additionally, D denotes the matrix representation of the di-
vergence operator on the involved finite element spaces. Observe that D is of full
rank, since the Taylor-Hood element satisfies a discrete inf-sup condition (under mild
conditions on the underlying mesh).

This linear system fits into the general framework of Section 2 with

A =
[
M

0

]
, B =

[
K −DT

−D

]
, C =

[
α−1M

0

]
= α−1A,

but it does not fit into any of the special cases discussed in Section 3. So we have to
go back to the original conditions (2.17). Because of

C = α−1A and BT = B,

it is natural to make the ansatz

IQ = α−1 IV . (4.3)
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Then both conditions in (2.17) reduce to one condition for IV , namely:

A+ αBI−1
V B ∼ IV . (4.4)

We will now try to find such a matrix IV which is of a block diagonal form:

IV =
[
Iu

Ip

]
.

Then condition (4.4) reads[
M + αKI−1

u K + αDTI−1
p D −αKI−1

u DT

−αDI−1
u K αDI−1

u DT

]
∼
[
Iu

Ip

]
(4.5)

after expanding the matrix expression on the left-hand side. For discussing this equiv-
alence relation the following lemma is very helpful:

Lemma 4.1. Let M be a symmetric and positive definite 2-by-2 block matrix and
D a 2-by-2 block diagonal matrix with symmetric and positive definite diagonal blocks.
Then

M =
[
M11 M12

M21 M22

]
∼
[
D11 0

0 D22

]
= D

if and only if

M11 ∼ D11, and M22 ∼ D22, and M11 . M11 −M12M
−1
22 M21 (4.6)

A proof of this result can be found in [1] in combination with [24].
If Lemma 4.1 is applied to (4.5), the first two conditions in (4.6) read

M + αKI−1
u K + αDTI−1

p DT ∼ Iu and αDI−1
u DT ∼ Ip. (4.7)

The second condition in (4.7) is trivially satisfied for the choice

Ip = αDI−1
u DT . (4.8)

Then the first condition in (4.7) simplifies to

M + αKI−1
u K ∼ Iu, (4.9)

since

0 ≤ αDTI−1
p D = DT

(
DI−1

u DT
)−1

D ≤ Iu.

It is easy to check that

Iu = M + α1/2K (4.10)

satisfies Condition (4.9). It remains to verify the third condition in (4.6), which reads
here:

Iu . Ru (4.11)

with

Ru = M + αKI−1
u K + αDTI−1

p D − αKI−1
u DT

(
DI−1

u DT
)−1

DI−1
u K.
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Theorem 4.2. Condition (4.11) is satisfied for the matrices Iu and Ip, given by
(4.10) and (4.8), respectively.

Proof. We have

Ru = M + αDTI−1
p D + α

[
KI−1

u K −KI−1
u DT

(
DI−1

u DT
)−1

DI−1
u K

]
.

Since

DT
(
DI−1

u DT
)−1

D ≤ Iu, (4.12)

it follows that

KI−1
u K −KI−1

u DT
(
DI−1

u DT
)−1

DI−1
u K ≥ KI−1

u K −KI−1
u IuI−1

u K = 0.

Therefore, we obtain as a first estimate

Ru ≥M + αDTI−1
p D. (4.13)

For deriving a second estimate we start with the following observation:

KI−1
u DT

(
DI−1

u DT
)−1

DI−1
u K = αKI−1

u DTI−1
p DI−1

u K

= (α1/2K)I−1
u DTI−1

p DI−1
u (α1/2K) = (Iu −M)I−1

u DTI−1
p DI−1

u (Iu −M)

= DTI−1
p D −MI−1

u DTI−1
p D −DTI−1

p DI−1
u M +MI−1

u DTI−1
p DI−1

u M.

Therefore,

Ru = M + αKI−1
u K − αMI−1

u DTI−1
p DI−1

u M

+ α
(
MI−1

u DTI−1
p D +DTI−1

p DI−1
u M

)
From (4.12) it follows that

α I−1
u DTI−1

p DI−1
u = I−1

u DT
(
DI−1

u DT
)−1

DIu ≤ I−1
u IuI−1

u = I−1
u .

Hence

M + αKI−1
u K − αMI−1

u DTI−1
p DI−1

u M

≥M + αKI−1
u K −MI−1

u M =
√
αK. (4.14)

Furthermore, we have for all vectors v:

α vT
(
MI−1

u DTI−1
p D +DTI−1

p DI−1
u M

)
v

= 2vTMI−1
u

(
αDTI−1

p D
)
v

= 2vTMI−1/2
u I−1/2

u

(
αDTI−1

p D
)1/2 (

αDTI−1
Q D

)1/2

v

≥ −2
∥∥∥I−1/2

u Mv
∥∥∥ ∥∥∥I−1/2

u

(
αDTI−1

p D
)1/2∥∥∥ ∥∥∥(αDTI−1

p D
)1/2

v
∥∥∥

≥ −2
∥∥∥I−1/2

u Mv
∥∥∥ ∥∥∥(αDTI−1

p D
)1/2

v
∥∥∥ ≥ −∥∥∥I−1/2

u Mv
∥∥∥2

−
∥∥∥(αDTI−1

p D
)1/2

v
∥∥∥2

= −vTMI−1
u Mv − vT

(
αDTI−1

p D
)
v ≥ −vTMv − vT

(
αDTI−1

p D
)
v.
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This shows that

α
(
MI−1

u DTI−1
p D +DTI−1

p DI−1
u M

)
≥ −

(
M + αDTI−1

p D
)
. (4.15)

From (4.14) and (4.15) we obtain the second estimate for Ru:

Ru ≥
√
αK −

(
M + αDTI−1

p D
)
.

Finally, by combining this estimate with (4.13) it follows that

3Ru = 2Ru +Ru ≥ 2
(
M + αDTI−1

p D
)

+
√
αK −

(
M + αDTI−1

p D
)

= M + αDTI−1
p D +

√
αK ≥M +

√
αK = Iu,

which completes the proof.
Therefore, summarizing (4.3), (4.10), and (4.8), we have shown that

P =


Iu

αDI−1
u DT

α−1 Iu
DI−1

u DT

 with Iu = M + α1/2K (4.16)

is a robust block-diagonal preconditioner of

A =


M K −DT

0 D
K −DT −α−1M
−D 0

 .
Up to a scaling factor the diagonal blocks of P are of the form γM +K or D(γM +
K)−1DT . As already mentioned for the elliptic optimal control problem multigrid
or multilevel preconditioners for γM + K are available which work robustly in γ.
This is also the case for the matrix D(γM + K)−1DT , which is the Schur comple-
ment of a discretized generalized Stokes problem, see [15], [12], [13]. So, in practice,
the block matrices of the theoretical preconditioner P are replaced by such efficient
preconditioners.

Remark 9. As for the elliptic problem the same analysis can also be done on the
continuous level leading the corresponding non-standards norms in H1

0 (Ω)×L2
0(Ω) for

u and p as well as for the Lagrangian multipliers û and p̂.
Remark 10. If the objective functional of the optimal control problem for the

Stokes equations contains an additional L2-term for the pressure, then the (1,1) block
of the system matrix becomes non-singular, and, as an alternative, the block precon-
ditioner based on (3.2) could be used as a theoretical preconditioner. As in the elliptic
case the Schur complement S can be interpreted as discretization matrix of a system of
partial differential equations including fourth-order differential operators. For precon-
ditioners developed along this lines see, e.g., [19]. These preconditioners were shown
to be robust with respect to h (but not with respect to the regularization parameter).

5. Concluding Remarks. The equivalence relations in (2.17) are necessary
and sufficient for obtaining robust estimates, or, in the context of iterative methods,
for obtaining robust block diagonal preconditioners. So, they can be used to check
whether a particular preconditioner is robust or not. How to resolve these conditions,
i.e., how to find IV and IQ satisfying (2.17), is a much harder problem. In Section
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3 we have demonstrated how to resolve (2.17) in special cases. These cases cover
the distributed optimal control problem for elliptic equations, but not the distributed
optimal control problem for the Stokes equations. Nevertheless, also for the Stokes
control problem robust preconditioners could be constructed by a specialized analysis
of (2.17). Numerical experiments for elliptic optimal control problem can be found
in [22] and [21]. In a forthcoming paper we will report on numerical results for the
Stokes optimal control problem.
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