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Abstract

The aim of this diploma thesis is to derive an efficient solution strategy for
Signorini’s problem. After introducing into the fields of continuum mechanics
and linear elasticity, general nonlinear contact conditions are derived and lin-
earized. The resulting problem is brought into a variational form and analysed
using abstract results for variational inequalities. In order to solve Signorini’s
problem numerically, a finite element formulation of the problem is derived and
analysed with respect to existence of a unique solution and convergence.

Special attention is paid to the efficient numerical solution of the discrete
problem. Step by step an efficient solution method is derived from a Gauß-Seidel
relaxation by enlarging the space splitting using the multilevel nodal basis. In
order to preserve the optimal order of the implementation, suitable approxi-
mations of the obstacle have to be introduced. The asymptotic convergence
properties are improved even further using truncated base functions.



Zusammenfassung

Das Ziel dieser Diplomarbeit ist die Entwicklung einer effizienten Lösungsstra-
tegie für das Signorini-Problem. Nach einer allgemeinen Einleitung in die Kon-
tinuumsmechanik und die lineare Elastizitätstheorie, werden allgemeine, nicht-
lineare Kontaktbedingungen hergeleitet und linearisiert. Das entstehende Pro-
blem wird in eine Variationsformulierung übergeführt und unter Verwendung
abstrakter Resultate für Variationsungleichungen analysiert. Zur numerischen
Lösung des Problems wird die Finite-Element-Methode verwendet. Eine Ana-
lyse des diskreten Problems hinsichtlich Existenz einer eindeutigen Lösung und
Konvergenz wird präsentiert.

Besonderes Augenmerk wird der effizienten Auflösung des diskreten Pro-
blems geschenkt. Ausgehend von einer Gauß-Seidel Relaxation wird schritt-
weise ein effizientes Lösungsverfahren hergeleitet, indem die Teilraumzerlegung
unter Verwendung der Multilevel-Knotenbasis erweitert wird. Um die optimale
Ordnung des Verfahrens zu erhalten, muß das Hindernis in geeigneter Weise
approximiert werden. Die Konvergenzgeschwindigkeit kann durch Verwendung
abgeschnittener Basisfunktionen weiter erhöht werden.
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1



Contents

Preface 1

1 Introduction 4

2 Derivation of Signorini’s Problem in Elasticity 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Foundation of the Mechanics of Continua . . . . . . . . . . . . . 6
2.3 Derivation of the General Contact Conditions . . . . . . . . . . . 10
2.4 Incremental Contact Conditions . . . . . . . . . . . . . . . . . . . 11
2.5 Linearized Contact Conditions . . . . . . . . . . . . . . . . . . . 12

3 Mathematical Analysis of Signorini’s Problem 14
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Derivation of a Variational Formulation . . . . . . . . . . . . . . 14
3.3 Some abstract Results for Variational Inequalities . . . . . . . . . 19
3.4 Existence of a unique Solution of the Variational Formulation of

Signorini’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Finite Element Analysis of Signorini’s Problem 22
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Derivation of the Discrete Problem . . . . . . . . . . . . . . . . . 22
4.3 Existence and Uniqueness of a Discrete Solution . . . . . . . . . 24
4.4 Convergence of the Discrete Solution . . . . . . . . . . . . . . . . 24

5 Numerical Solution of Signorini’s Problem 26
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Gauß-Seidel Relaxation Methods . . . . . . . . . . . . . . . . . . 27
5.3 Extended Relaxation Methods . . . . . . . . . . . . . . . . . . . 30
5.4 Multilevel Gauß-Seidel Relaxation . . . . . . . . . . . . . . . . . 32
5.5 Restriction of the Obstacle . . . . . . . . . . . . . . . . . . . . . 35

5.5.1 General Considerations . . . . . . . . . . . . . . . . . . . 35
5.5.2 Multilevel Gauß-Seidel Relaxation for Flat Obstacles . . . 36
5.5.3 Multilevel Gauß-Seidel Relaxation for Arbitrary Obstacles 42

5.6 Improvements by Using Truncated Base Functions . . . . . . . . 45

2



6 Numerical Results 49
6.1 Example 1: Rectangle Supported by a Step . . . . . . . . . . . . 49
6.2 Example 2: Smooth Piston . . . . . . . . . . . . . . . . . . . . . 52
6.3 Example 3: Rigid Punch . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion 63

3



Chapter 1

Introduction

In many situations in solid body mechanics the contact between two or more
bodies plays an important role. Hardly any production process in industry
can be thought of without cutting, milling, lathing, drilling, grinding or similar
processes. Typical for each of these production steps is the contact between a
tool and the work piece. In a situation like this several aspects have to be taken
into account:

• The tool should not be strained to much, as otherwise the life time of the
tool is shortened strongly or the tool itself breaks.

• On the other hand the process should need as little time as possible in
order to keep the production costs low.

• In many situations additional requirements have to be met, e. g. the work
piece should not be heated locally or the surface of the work piece has to
stay within certain tolerances.

In other production processes the tool itself does not play such an important
role. The manufacturing of cars for example can not be imagined without deep
drawing of sheet metal nowadays. Therefore the piston and the cast can be
considered as nearly rigid due to their massive construction. The deformation
of the blank sheet is of much greater interest. The metal sheets are pressed into
the form of mudguards, engine bonnets, etc. During the deformation process
the metal sheet becomes thin and may loose its stabiliy at points of very strong
deformation.

The list of examples above could be lengthened by adding many other prob-
lems, in which the contact between several bodies is of major importance.

In the past many of these situations were handled by trail and error during
the development process. In recent years simulation tools entered the develop-
ment departments in order to reduce the costs for building prototypes and to
speed up the development process.

Contact problems were treated rather often in history. First mainly engi-
neers worked on this topic. That is why much stuff on the analysis and simula-
tion of contact problems can be found in engineering literature. Kikuchi and

Oden [19] present many references on articles having this background.
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Later on contact problems entered also the mathematical literature. Du-

vaut and Lions [6] and later Kinderlehrer and Stampacchia [20] laid
cornerstones of the analysis of contact problems using variational inequalities.

The break through in the simulation of problems in structural mechan-
ics and especially contact problems was the development of the finite element
method during the 1970’s. Many well-known persons worked on this topic,
e.g. Zienkiewics [34], Kikuchi [18] or Ciarlet [4].

In the 1980’s efficient solution methods based on multigrid and multilevel
ideas were developed. They were successfully applied to various problems with
unilateral boundary conditions for example by Mandel [28], Brandt and

Cryer [2], Hackbusch and Mittelmann [14], Hoppe [16], Hoppe and

Kornhuber [17] or Kornhuber [24]. Recently Schöberl [31] developed
a very efficient solver for contact problems based on Domain-Decomposition
techniques with multilevel preconditioning.

In this work the requirements and demands of industry or production in-
duced contact problems are downsized to the rather simple situation of an elastic
body undergoing small deformations coming in contact with a rigid foundation.
For this problem an efficient solver based on a multilevel stategy is developed.
Nevertheless its applicability can be generalized to some more complex contact
problems, e. g. the deep drawing of sheet metal described above.

The work is organized as follows:

• In Chapter 2 the mathematical model for an elastic body undergoing
small deformations is presented. Furthermore several contact conditions
are derived for the contact between an elastic body and a rigid foundation.

• Chapter 3 deals with the derivation and analysis of a variational formula-
tion of the problem modelled in Chapter 2, including results for existence
and uniqueness of a solution for the variational formulation.

• In Chapter 4 a finite element approximation of the variational problem of
Chapter 3 is derived and analysed, including existence and uniqueness of
a disrete solution. Furthermore a result is presented giving conditions for
the convergence of the discrete solution to the solution of the continuous
problem.

• Chapter 5 deals with the derivation of an efficient solver for the discrete
problem stated in Chapter 4. The solver itself is based on a multilevel
stategy and can be seen as a generalisation of the classical V-cycle to
contact problems.

• Some numerical results are presented in Chapter 6.

• Last but not least Chapter 7 presents various concluding remarks.
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Chapter 2

Derivation of Signorini’s

Problem in Elasticity

2.1 Introduction

In many practical situations in solid mechanics it is important to model the
situation of two or more bodies coming into contact with each other. The aim
of this chapter is to derive the contact conditions for a classical and rather easy
problem in this context, namely the contact between an elastic body undergoing
small deformations and a rigid, frictionless foundation. In the following this
problem is referenced as Signorini’s problem, which is also the name of this
problem most often used in literature.

An introduction into the mechanics of continua can be found in Ciarlet [5]
or in Engl [8]. A detailed view of linear elasticity is presented by Necas and

Hlavacek [29]. Problems with elastic-plastic or plastic material laws are in-
vestigated by Korneev and Langer [21] or Necas and Hlavacek [29]. The
problem of an elastic body coming in contact with a rigid foundation was first
modelled by Signorini [32] in 1933. The derivation of the contact conditions
presented here is heavily based on the book of Kikuchi and Oden [19]. A
generalization of this approach to two body contact problems can be found in
Hlavacek, Haslinger, Necas and Lovisek [15].

In Section 2.2 an introduction of the foundations of the mechanics of con-
tinua is presented. Section 2.3 deals with the derivation of general contact con-
ditions for Signorini’s problem. These conditions are the basis for the derivation
of incremental contact conditions in Section 2.4 and linearized contact condi-
tions in Section 2.5.

2.2 Foundation of the Mechanics of Continua

Let a domain Ω ⊆ R

3 represent the reference configuration of a material body.
It is usually convenient to think of the reference configuration Ω as the rest or
unstressed configuration of the body, but we will not restrict ourselves to this
case. The material points in Ω are denoted by X. Then, the motion of the
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body is characterized by the mapping

x = P (X, t), X ∈ Ω, t ≥ 0, (2.1)

with the deformation

P : Ω × [0, T ] → R

3 . (2.2)

This kind of representation is often called material representation. We would
like to restrict the deformations to be one-to-one mappings so that the material
does not overlap or interpenetrate when it deforms. However, such a constraint
is hard to treat so it will be ignored. Nevertheless P is assumed to be injective
in Ω, sufficiently smooth and orientation preserving. In most applications the
displacement of a particle X at time t given by

u(X, t) = x − X = P (X, t) − X (2.3)

is of much greater interest than the deformation itself.
As P is assumed to be smooth, the constraint that P preserves orientation,

can be expressed by the pointwise inequality

J(X, t) = det
( ∂Pi

∂Xj

)
(X, t) > 0, X ∈ Ω, t ≥ 0. (2.4)

In the following the deformation gradient
(

∂Pi

∂Xj

)

i,j=1,...,3
will often be designated

by F . (2.1) can be inverted to give

X = p(x, t) = P−1(x, t). (2.5)

This is often called the spatial representation of the deformed body.
The external forces are responsed by stress- and acceleration terms. This

leads to the following equations describing the motion of a body in spatial
coordinates:

divx t̂(x, t) + f(x, t) = ρ(x, t)
D v

D t
(x, t), x ∈ P (Ω, t), t > 0,

t̂(x, t) nx = g(x, t), x ∈ P (ΓN , t),

u(x, t) = u0(x, t), x ∈ P (ΓD, t),

(2.6)

with Cauchy’s stress tensor

t̂(x, t) = t̂T (x, t), (2.7)

the velocity

v(x, t) =
∂P (X, t)

∂t
, (2.8)

the material derivative

D y

D t
(x, t) =

∂y

∂t
(x, t) + 〈gradx y, v〉, (2.9)
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the density ρ(x, t) and the volume force density f(x, t). 〈·, ·〉 denotes the scalar
product in R

3 . ΓN denotes that part of the boundary with given surface trac-
tions g, ΓD that part with prescribed displacements u0. nx is the outer unit
normal to P (Ω, t) at point x(t). The equations (2.6) can be rewritten in material
coordinates resulting in

divX T (X, t) + F̂ (X, t) = ρ0(X)
∂2P

∂t2
(X, t), X ∈ Ω, t ≥ 0,

T (X, t) nX = G(X, t), X ∈ ΓN ,

U(X, t) = U0(X, t), X ∈ ΓD,

(2.10)

with the first Piola-Kirchhoff stress tensor

T (X, t) = J(X, t) t̂(x, t) F (X, t)−T , (2.11)

the density ρ0 of the reference configuration of Ω, the volume force density

F̂ (X, t) = J(X, t) f(x, t) (2.12)

and the surface tractions

G(X, t) = g(x, t) ‖J(X, t) F (x, t)−T nx‖. (2.13)

nX is the outer unit normal to Ω at point X. As t̂ is symmetric, T fulfills the
equation

T (X, t) F (X, t)T = F (X, t) T (X, t)T . (2.14)

In many applications the acceleration term can be neglected. This leads to the
equilibrium equations in spatial coordinates

divx t̂(x, t) + f(x, t) = 0, x ∈ P (Ω, t), t > 0,

t̂(x, t) nx = g(x, t), x ∈ P (ΓN , t),

u(x, t) = u0(x, t), x ∈ P (ΓD, t),

(2.15)

and to the equilibrium equations in material coordinates

divX T (X, t) + F̂ (X, t) = 0, X ∈ Ω, t ≥ 0,

T (X, t) nX = G(X, t), X ∈ ΓN ,

U(X, t) = U0(X, t), X ∈ ΓD.

(2.16)

The equations (2.6), (2.10), (2.15), (2.16) possess 12 variables each. Formally
there are 12 equations (9 symmetry equalities and 3 motion equations) but
only 6 of these are linearly independent. The other 6 equations are given by a
material law linking the stresses and the strains in Ω, respectively in P (Ω, t).

In the following we will restrict ourselves to elastic materials only. In this
case the material law is given by

(F−1T )ij = aijklEkl (2.17)
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with the elasticity tensor aijkl and the Green-St.Venant strain tensor

E =
1

2
(FT F − I). (2.18)

For isotropic materials the elasticity tensor is given by

aijkl = λδijδkl + µ(δikδjl + δilδjk). (2.19)

λ and µ denote Lame’s parameters and are both greater 0. They are connected
with Young’s modulus Y and Poisson’s ration ν by

Y =
µ(3λ + 2µ)

λ + µ

ν =
λ

2(λ + µ)
.

(2.20)

Materials fulfilling the material law (2.17) are called St.Venant-Kirchhoff ma-
terials. (2.17) is linear in E, but not in the displacements U .

Assuming only very small deformations, the equations (2.16) with the ma-
terial law (2.17) can be linearized. Ciarlet [5] showed that the operator

A : u →

(

−div
((

I + grad u
)(

F−1T
)
(E)
)

(
I + grad u

)(
F−1T

)
(E)n|ΓN

)

(2.21)

is Frechet-differentiable at u = 0 and

A′(0)u =

(
−div σ(u)
σ(u)n|ΓN

)

. (2.22)

σ denotes the linearized stress tensor

σij = aijklǫkl (2.23)

with the linearized Green-St.Venant strain tensor

ǫ(u) =
1

2

(
grad u + (grad u)T

)
. (2.24)

The material law (2.23) is named Hooke’s law. Collecting all the results the
following equations can be deduced:

div σ(X, t) + F̂ (X, t) = ρ0(X)
∂2p

∂t2
(X,T ), X ∈ Ω, t > 0,

σ(X, t) nX = G(X), X ∈ ΓN ,

u(X) = 0, X ∈ ΓD,

(2.25)

with σ given by (2.23). It can be seen easily, that (2.25) is a system of partial
differential equations of second order. In the special case of an isotropic body,
in which (2.19) is valid, the left hand side of (2.25) has a relatively simple form
as the following holds:

div σ = (λ + µ) grad div u + µ∆u. (2.26)
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d
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Figure 2.1: Situation before Contact

In situations, in which the acceleration terms can be neglected, (2.25) simplifies
to

div σ(X, t) + F̂ (X, t) = 0, X ∈ Ω, t > 0,

σ(X, t) nX = G(X), X ∈ ΓN ,

u(X) = 0, X ∈ ΓD.

(2.27)

2.3 Derivation of the General Contact Conditions

From now on we will consider the special geometrical situation illustrated in
Figure 2.1. A rigid and fixed body F , called the foundation is located below
the body Ω. That is why the displacements of particles in Ω are restricted by
F . It is assumed, that F is an unbounded, semi-infinite half space in R

3 . We
are interested in the deformation of the body Ω due to the contact between the
body and the foundation. In the following a static or quasi static problem is
looked at and therefore the dependence on t is neglected. Nevertheless most
results hold also for the dynamic problem.

Suppose that the surface of the foundation is given by

s(x) = 0 (2.28)

and that the material surface ΓC of Ω contains that portion of the total surface
Γ of the body which comes in contact with F . Furthermore assume that s is
sufficiently smooth and

s(x) > 0, x ∈ R

3 \ F ,

s(x) < 0, x ∈ F .
(2.29)

Then it is clear that for every X ∈ ΓC

s(X + u(X)) ≥ 0, (2.30)
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where u(X) denotes the displacement of X. We refer to inequality (2.30) as the
kinematical contact condition for a body constrained by a fixed rigid foundation.
This condition must also be compatible with the stresses on the contact surface.
For the stress tensor σ(x) at a particle x on the material surface the normal
and tangential components of σ are defined by

σn(x) = 〈σ(x) n, n〉,

σT (x) = σ(x) n − σn(x) n,

}

x ∈ P (ΓC), (2.31)

where n denotes the outer unit normal at x. If no contact occures at x,
σ(x) n = 0. For those points where contact occures, σ(x) n must be a com-
pressive normal stress, if frictionless contact is assumed. Otherwise special
friction laws connecting the normal and the tangential components of σ and
the displacements have to be considered. This leads to the following equations:

σn(x) = 0 if s(x) > 0,

σn(x) ≤ 0 if s(x) = 0,

σT (x) = 0.







x ∈ P (ΓC). (2.32)

Collecting these results, we arrive at the general contact condition

s(x) ≥ 0

σ(x)n = −λ n, λ ≥ 0,

σn(x)s(x) = 0







x ∈ P (ΓC). (2.33)

2.4 Incremental Contact Conditions

In order to derive an incremental form of the contact condition (2.33), let us
suppose that the body is displaced relative to its current configuration by a
small displacement ∆u. The resulting configuration also has to fulfill the contact
conditions (2.33), i.e.

s(x + ∆u) ≥ 0. (2.34)

As s is sufficiently smooth and ∆u is small, the left hand side of (2.34) can be
linearized, leading to

s(x + ∆u) = s(x) + 〈grad s(x),∆u〉 + o(‖∆u‖). (2.35)

Introducing the inner normal

N(x) = −
grad s(x)

‖ grad s(x)‖
(2.36)

to isosurfaces of s (surfaces, where s(x) = const holds) and neglecting the term
o(‖∆u‖), (2.34) results in

〈∆u,N(x)〉 ≤
s(x)

‖ grad s(x)‖
. (2.37)
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Of course, to complete the descripion of the contact constraint one must add the
corresponding contact conditions (2.32) on stress components to (2.37). The
left hand side of (2.37) can be interpreted as the displacement normal to the
surface of F , the right hand side as the gap between the body and F . We
refer to (2.37) as an incremental contact condition. It is useful in describing the
motion of a body in terms of increments ∆u of a configuration characterized
by the displacement field u(x). This is especially important considering con-
tact problems with finite displacements on the one hand or contact problems
involving friction on the other hand. In both cases the motion of a body is han-
dled as a sequence of displacement increments. If un(X) is the displacement
accumulated after n such increments, ∆un must satisfy the contact condition

〈∆un,N(X + un)〉 ≤
s(X + un)

‖ grad s(X + un)‖
. (2.38)

The only drawback of (2.37) is that it involves the component of u normal to
an isosurface of s and not to the material surface itself.

2.5 Linearized Contact Conditions

In order to withdraw the necessity of evaluating u normal to an isosurface of s
one uses (2.35) as a starting point. Again introducing the inward normal N(x)
to isosurfaces of s as in (2.36) and the outward normal n(x) to the contact
surface of the body Ω, (2.34) can be rewritten in the form

s(x)

‖ grad s(x)‖
− 〈N(x),∆u〉 + 〈n(x),∆u(x)〉 − 〈n(x),∆u(x)〉 + o(‖∆u‖) ≥ 0,

(2.39)

which can be simplified to

〈n(x),∆u(x)〉 + 〈N(x) − n(x),∆u(x)〉 + o(‖∆u‖) ≤
s(x)

‖ grad s(x)‖
. (2.40)

If the body Ω and the foundation F are sufficiently close to each other, the
surfaces of Ω and F are essentially parallel, as both surfaces are assumed to be
sufficiently smooth. That is why the difference N(x)− n(x) is small and tends
to 0 as the restriction becomes active and ∆u tends to 0. Neglecting the term
o(‖∆u‖) and taking the above fact into account, (2.40) results in

〈n(x),∆u(x)〉 ≤
s(x)

‖ grad s(x)‖
. (2.41)

The left hand side of (2.41) is the displacement normal to the material surface of
the body Ω, the right hand side represents the gap between Ω and the foundation
F . Similar to (2.37), (2.41) represents only a nonpenetration condition and the
corresponding contact conditions (2.32) on the stress components have to be
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added in order to complete the description of the contact constraint. Then, the
complete description of the contact conditions looks as follows:

〈u(x), n(x)〉 ≤ d(x)

σ(x)n = −λ n, λ ≥ 0

σn(x)
(
〈u(x), n(x)〉 − g(x)

)
= 0







x ∈ P (ΓC). (2.42)

with the gap function

d(x) =
s(x)

‖ grad s(x)‖
. (2.43)

A detailed derivation with the proofs for the assertions made above can be
found in Eck [7].
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Chapter 3

Mathematical Analysis of

Signorini’s Problem

3.1 Introduction

This chapter deals with the mathematical analysis of Signorini’s problem. First
of all a variational formulation of this contact problem will be derived. This
will result in a variational inequality due to the nonpenetration condition (2.30)
respectively (2.41). The actual surface, on which the body comes in contact with
the foundation, is not known in advance and is therefore part of the solution.
Furthermore the existence of a unique solution will be shown.

Many results on analysing variational problems can be found in Duvaut

and Lions [6]. Dealing with variational inequalities especially the monograph
by Kinderlehrer and Stampacchia [20] must be noted. Kikuchi and

Oden [19] present many results for different kinds of contact problems.
Section 3.2 presents the derivation of a variational formulation of Signorini’s

problem, resulting in a variational inequality due to the nonpenetration condi-
tion. In Section 3.3 some abstract results for variational inequalities are pre-
sented. Using these theorems the existence and uniqueness of a solution of the
variational inequality describing Signorini’s problem is deduced in Section 3.4.

3.2 Derivation of a Variational Formulation

In the following a variational formulation of the equilibrium conditions of a
linear elastic body coming in contact with a frictionless rigid foundation is
derived. From the equations in Chapter 2 it is clear that the displacement field
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u of the body satisfies the following system of equalities and inequalities:

div σ + f = 0 in Ω

u = u0 on ΓD

σ n = g on ΓN

σT = 0 on ΓC

σn ≤ 0 on ΓC

un ≤ d on ΓC

(un − d)σn = 0 on ΓC

σij = aijklǫkl in Ω

ǫ =
1

2

(
grad u + (grad u)T

)
in Ω

(3.1)

σn and σT are defined in (2.31), un stands short for 〈u, n〉. From now on it is
assumed that ΓD ∩ ΓN = ΓD ∩ ΓC = ΓN ∩ ΓC = ∅, ΓD ∪ ΓN ∪ ΓC = ∂Ω. ΓD is
assumed to be closed, ΓN to be open.

In the following a variational formulation for the problem stated in (3.1)
will be derived.

Definition 3.1. Let

K =
{
v ∈ V

∣
∣ vn ≤ d on ΓC , v = u0 on ΓD

}
, (3.2)

where V denotes a vector space, which will be specified later, e.g. H1(Ω). K is
called the set of admissible displacements.

For each function u ∈ K let the set I(u) denote the actual contact surface

I(u) =
{
x ∈ ΓC

∣
∣ un(x) = d(x)

}
, (3.3)

and the set Λ(u)

Λ(u) =
{
x ∈ ΓC

∣
∣ un(x) < d(x)

}
. (3.4)

Furthermore often just I and Λ is written.

For the derivation of a variational formulation, we proceed formally and
assume v ∈ K and Ω to be smooth. Let u denote the solution of Signorini’s
problem (3.1), and v an arbitrary element of K. Then by partial integration
the following holds:

∫

Ω

〈div σ(u), v − u〉dx =

∫

Γ

〈σ(u)n, v − u〉ds −

∫

Ω

σ(u) : grad(v − u) dx, (3.5)

with

A : B =
3∑

i,j=1

aijbij , A = (aij)i,j=1,...,3, B = (bij)i,j=1,...,3. (3.6)
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Due to the symmetry of σ

∫

Ω

σ(u) : grad(v − u) dx =

∫

Ω

σ(u) : ǫ(v − u) dx (3.7)

holds. The surface integral in (3.5) can be simplified in the following way:

∫

Γ

〈σ(u) n, v − u〉ds =

∫

ΓD∪ΓN∪ΓC

〈σ(u) n, v − u〉ds

=

∫

ΓN

〈g, v − u〉ds +

∫

ΓC

〈σ(u) n, v − u〉ds

=

∫

ΓN

〈g, v − u〉ds +

∫

I(u)

〈σ(u) n, v − u〉ds

+

∫

Λ(u)

〈σ(u) n
︸ ︷︷ ︸

=0

, v − u〉ds

=

∫

ΓN

〈g, v − u〉ds +

∫

I(u)

〈 σT
︸︷︷︸

=0

+σn n, v − u〉ds

=

∫

ΓN

〈g, v − u〉ds +

∫

I(u)

σn〈n, v − u〉ds

=

∫

ΓN

〈g, v − u〉ds +

∫

I(u)

σn(vn − d)
︸ ︷︷ ︸

≥0

ds

≥

∫

ΓN

〈g, v − u〉ds.

(3.8)

Thus any classical solution of (3.1) satisfies the variational inequality

∫

Ω

σ(u) : ǫ(v − u) dx ≥

∫

Ω

〈f, v − u〉dx +

∫

ΓN

〈g, v − u〉ds v ∈ K. (3.9)

Now the variational inequality (3.9) is assumed to hold for a function u ∈ K.
It will be shown that u is also a classical solution of (3.1), provided that u is
sufficiently smooth.

For any open set A let

D(A) =
{
f ∈ C∞(A)

∣
∣ f has compact support in A

}
. (3.10)
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Let Φ ∈ D(Ω) be arbitrary, v = u ± Φ. Then with (3.9) the following holds:

0 ≤

∫

Ω

σ(u) : ǫ(v − u) dx −

∫

Ω

〈f, v − u〉dx −

∫

ΓN

〈g, v − u〉ds

=

∫

Ω

σ(u) : ǫ(v − u) dx −

∫

Ω

〈f, v − u〉dx (Φ = 0 on ∂Ω)

=

∫

∂Ω

〈σ(u) n, v − u〉ds −

∫

Ω

〈div σ + f, v − u〉dx
(
by (3.6), (3.7)

)

= ±

∫

Ω

〈div σ + f,Φ〉dx

(3.11)

which implies

div σ + f = 0 in Ω. (3.12)

Using (3.12), (3.9) can be simplified, as

∫

Ω

σ(u) : ǫ(v − u) ds −

∫

Ω

〈f, v − u〉dx =

∫

∂Ω

〈σ(u) n, v − u〉ds

=

∫

ΓN∪ΓC

〈σ(u) n, v − u〉ds,
(3.13)

resulting in the variational inequality
∫

ΓN∪ΓC

〈σ(u) n, v − u〉ds ≥

∫

ΓN

〈g, v − u〉ds. (3.14)

Suppose that Φ ∈ D(Ω ∪ ΓN ), v = u ± Φ. Then (3.14) gives

0 ≤ ±

∫

ΓN

〈σ(u) n − g,Φ〉ds, (3.15)

which implies

σ n = g on ΓN . (3.16)

(3.14) can now again be simplified leading to

∫

ΓC

〈σ(u) n, v − u〉ds ≥ 0. (3.17)

By using similar arguments as above it can be shown that

σ n = 0 on Λ(u), (3.18)
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which simplifies (3.17) to

∫

I(u)

〈σ(u) n, v − u〉ds ≥ 0. (3.19)

Let Φ ∈ D
(
Ω ∪ I(u)

)
be arbitrary with Φn = 〈Φ, n〉 ≤ 0 on I(u). Then

v = u + Φ ∈ K and (3.19) gives

0 ≤

∫

I(u)

〈σ n, v − u〉ds =

∫

I(u)

〈σ n,Φ〉ds =

∫

I(u)

〈σT + σn n,ΦT + Φnn〉ds

=

∫

I(u)

〈σT ,ΦT 〉ds +

∫

I(u)

σnΦn ds

(3.20)

with ΦT = Φ − Φnn. Choosing Φ such that Φn = 0 implies σT = 0 on I(u).
Furthermore as Φn ≤ 0, (3.20) implies that σn ≤ 0 on I(u). Summing up, it
can be said, that u is a classical solution of (3.1).

Definition 3.2. Let

K =
{
v ∈ H1(Ω)

∣
∣ v = u0 on ΓD, vn ≤ d on ΓC

}
, (3.21)

where Hα(Ω) denotes the Sobolev space of order α and the inequality vn ≤ d
on ΓC should hold almost everywhere. If the variational inequality (3.9) holds

for u ∈ K, f ∈ H−1(Ω), g ∈ H− 1
2 (ΓN ), then u is called a weak solution of

Signorini’s problem.

Remark 3.3.

• In the variational inequality (3.9) the contact surface ΓC does not appear
explicitly at the price of solving an inequality instead of the equality (3.1).

• The variational inequality (3.9) can also be derived from a minimization
principle. The potential energy of a body with displacement field u is given
by

Epot(u) =

∫

Ω

σ(u) : ǫ(u) dx −

∫

Ω

〈f, u〉dx −

∫

ΓN

〈g, u〉ds. (3.22)

Introducing the foundation F, the solution u must have minimal potential
energy of all admissible displacement fields, i.e.

Epot(u) ≤ Epot(v) v ∈ K. (3.23)

That is why for any v ∈ K the function

h : [0, 1] → R, θ 7→ Epot

(
u + θ(v − u)

)
(3.24)
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has its minimum at θ = 0, resulting in

h′(0) = lim
θ→0
θ>0

Epot

(
u + θ(v − u)

)
− Epot(u)

θ
= E′

pot(u)(v − u)

=

∫

Ω

σ(u) : ǫ(v − u) dx −

∫

Ω

〈f, v − u〉dx −

∫

ΓN

〈g, v − u〉ds

≥ 0.

(3.25)

In the following the existence of a unique solution of (3.9) in the set of ad-
missible displacements K is shown. Therefore some basic and abstract theorems
for variational inequalities are needed, which are given in Section 3.3.

3.3 Some abstract Results for Variational Inequali-

ties

This section deals with two basic results for variational inequalities. The latter
is a generalization of the Theorem of Lax and Milgram giving an instrument
for proofing existence and uniqueness of solutions of variational inequalities.

Theorem 3.4 (Projection onto convex closed sets in Hilbert spaces).
Let K be a nonempty, closed, convex subset of a Hilbert space V . Then for each
a ∈ V there exists a unique element b := Pa ∈ K, named the projection of a
onto K such that the following equivalent assertions are valid:

‖b − a‖ ≤ ‖c − a‖ c ∈ K, (3.26)

respectively

〈b − a, c − a〉 ≥ 0 c ∈ K. (3.27)

Furthermore for all a1, a2 ∈ K the following holds:

‖Pa1 − Pa2‖ ≤ ‖a1 − a2‖. (3.28)

Proof. Binder [1], Kinderlehrer and Stampacchia [20]

Using Theorem 3.4 the Theorem of Lions and Stampacchia can be proofed.
In the Theorem of Lions and Stampacchia, there is no demand for symmetry of
the appearing operator . This is especially important if the underlying differ-
ential operator is nonsymmetric. Furthermore nonlinear problems can be dealt
with. An important demand will be the ellipticity of the underlying opera-
tor. The Theorem of Lax and Milgram results as a corollary of the following
theorem:

Theorem 3.5 (Lions, Stampacchia). Let V be a Hilbert space, K ⊆ V a
closed, convex, nonempty subset of the space V and A : V → V ′ a continuous
and coercive, not necessarily linear operator, i.e. constants M,α > 0 exist with

‖Au − Av‖ ≤ M ‖u − v‖, u, v ∈ K,

〈Au − Av, u − v〉 ≥ α ‖u − v‖2, u, v ∈ K,
(3.29)
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where V ′ denotes the dual of the space V .
Then for each L ∈ V ′ there exists a unique solution u ∈ K of the variational

inequality

〈Au − L, v − u〉 ≥ 0. (3.30)

Furthermore, the nonlinear solution operator is Lipschitz continuous with con-
stant 1/α, i.e.

‖u1 − u2‖ ≤
1

α
‖L1 − L2‖. (3.31)

Proof. Binder [1], Kinderlehrer and Stampacchia [20]

Corollary 3.6.

• (Stampacchia). Let V denote a real Hilbert space, K ⊆ V a closed, convex,
nonempty subset of the space V and a(·, ·) a continuous, coercive bilinear
form. Then a unique solution u ∈ K exists for every L ∈ V ′ fulfilling the
variational inequality

a(u, v − u) ≥ 〈L, v − u〉, v ∈ K. (3.32)

• (Theorem of Lax and Milgram). Let L, a(·, ·) be as above. If K = V , then
the variational equality

a(u, v) = 〈L, v〉, v ∈ V, (3.33)

is uniquely solvable.

3.4 Existence of a unique Solution of the Variational

Formulation of Signorini’s Problem

In this section the existence of a unique solution of the variational inequality
(3.9) describing Signorini’s problem is shown by using the theorems of Sec-
tion 3.3. In order to apply Theorem 3.5 or Corollary 3.6 the coercivity of the
bilinear form

a(u, v) =

∫

Ω

σ(u) : ǫ(v) dx (3.34)

has to be shown. From now on it is assumed that the elasticity tensor aijkl has
properties of symmetry

aijkl = ajilk = aklij (3.35)

and of ellipticity

aijklǫijǫkl ≥ αǫijǫij , α > 0, ǫ ∈ R

3×3 , ǫ = (ǫij)i,j=1,...,3. (3.36)

Then the following theorem holds:
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Theorem 3.7. Let Ω be a bounded domain with a boundary constisting of a
finite number of smooth parts. Furthermore let ΓD ⊆ Γ and ΓD has positive
measure. Let

V0 =
{
v ∈ H1(Ω)

∣
∣ v = 0 on ΓD

}
. (3.37)

Then there exists an α0 > 0 such that

a(v, v) ≥ α0 ‖v‖
2
H1(Ω), v ∈ V0. (3.38)

Proof. A proof can be found in Duvaut and Lions [6] and uses strongly Korn’s
inequality.

Combining the results of Corollary 3.6 and Theorem 3.7 the following con-
sequences can be deduced:

Theorem 3.8. Let Ω be a bounded domain with a boundary constisting of a
finite number of smooth parts, ΓD ⊆ Γ with positive measure. Let

K =
{
v ∈ H1(Ω)

∣
∣ v = u0 on ΓD, vn ≤ d on ΓC

}
, (3.39)

f ∈ H−1(Ω), g ∈ H− 1
2 (ΓN ).

Then the variational inequality (3.9) has a unique solution in K.
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Chapter 4

Finite Element Analysis of

Signorini’s Problem

4.1 Introduction

In this chapter a finite element discretisation of the variational inequality (3.9)
is presented and analysed. Therefore the solution space H1(Ω) is replaced by
the discrete space of piecewise linear finite elements. Furthermore a discrete,
polygonal approximation of the admissable set K is introduced. In Section 4.3
existence and uniqueness of a discrete solution is shown. Furthermore a result
giving conditions for the convergence of the discrete solution to the solution of
the continuous problem (3.9) is presented in Section 4.4.

On finite element methods many monographs were published during the last
twenty years. Only some are mentioned here, e.g. Zienkiewics [34], Goering,

Roos and Tobiska [12], Kikuchi [18], Ciarlet [4] or Krizek and Neit-

taanmäki [25]. In the context of variational inequalities the book of Glowin-

ski, Lions and Trémolières [11] or Brezzi, Hager and Raviart [3] must
be noted. Many references on various aspects of the finite element method
especially in the context with multilevel methods can be found in Langer [26].

4.2 Derivation of the Discrete Problem

In the following a finite element space is constructed by discretizing the domain
Ω and using linear finite elements. Later on a discrete variational inequality
approximating (3.9) is presented.

Let (Th)h∈H denote a family of triangulations of Ω into triangles t. Each
triangulation Th is assumed to be regular in the sense, that the intersection of
two triangles t, t ∈ Th, t 6= t consists of a common edge, a common vertex or
is empty. A situation like in Figure 4.1 is forbidden for example. The index h
is a parameter of the triangulation denoting the mesh width. Furthermore the
smallest inner angle of each triangle in Th is uniformly bounded away from 0,
i. e. the used triangles must not become sharper and sharper as h tends to 0.
Nh denotes the set of nodes in Th, Eh the set of edges. Ωh denotes the union of
all triangles in Th.
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Figure 4.1: Triangulation with a hanging node

For each triangulation Th the finite element space Sh ⊆ H1(Ωh) consists of
the continuous functions in H1(Ωh), which are linear on each triangle t ∈ Th

for each component. Sh is spanned by the nodal basis

Λh =
{

λ
(i),h
1 , . . . , λ

(i),h
d

∣
∣ pi ∈ Nh

}

. (4.1)

In many cases λ(i),h stands short for the vector
(
λ

(i),h
1 , . . . , λ

(i),h
d

)
, where d de-

notes the dimension of Ωh. The base functions λ
(i),h
j ∈ Sh are characterized by

the fact that for each p ∈ Nh

λ
(i),h
j (p) =

{

1 p = pi

0 otherwise.
(4.2)

In order to derive a discrete model also the admissable set K has to be approx-
imated. One possibility would be

Kh = K ∩ Sh. (4.3)

For numerical computations, this approximation is not useful. In order to check
the admissability of a function vh ∈ Sh, vh has to be evaluated at points not in
Nh. In order to avoid this drawback K is approximated by

Kh =
{
v ∈ Sh

∣
∣ v(pi) = u0(pi) for pi ∈ Nh ∩ ΓD,

〈v, n〉(pi) ≤ d(pi) for pi ∈ Nh ∩ ΓC

}
.

(4.4)

A test on the admissability of vh ∈ Sh only involves evaluations of vh at nodes
in Nh at the price of Kh being no more an inner approximation of K. That is
why the analysis of the convergence of the discrete solution to the solution of
the continuous problem becomes more difficult.

By using the terms defined above, the following finite element approximation
of the variational inequality (3.9) can be defined:

ah(uh, vh − uh) ≥ 〈Lh, vh − uh〉, vh ∈ Kh, (4.5)

where uh denotes the solution of (4.5) with

ah(uh, vh) =

∫

Ωh

σ(uh) : ǫ(vh) dx, (4.6)
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and

〈Lh, vh〉 =

∫

Ωh

〈f, vh〉dx +

∫

ΓNh

〈g, vh〉ds. (4.7)

The existence and uniqueness of a solution will be dealt with in the next section.

4.3 Existence and Uniqueness of a Discrete Solution

In this section the existence and uniqueness of a discrete solution of the vari-
ational inequality (4.5) is shown by using the results of Section 3.3 and Sec-
tion 3.4. As Sh ⊆ H1(Ωh) and Ωh has piecewise linear boundary, the ellipticity
of the bilinearform (4.6) can be shown by using Theorem 3.7 and is inherited
to Sh. Similar to Theorem 3.8 the following theorem can be deduced from
Corollary 3.6:

Theorem 4.1. Let Ω be a bounded domain with regular boundary, ΓD ⊆ Γ
with positive measure. Let Th denote a regular triangulation of Ω by using
linear triangle elements, Ωh be the union of all triangles in Th. Furthermore let
Kh be as in (4.4) with a finite element space Sh like in Section 4.2. Furthermore

let f ∈ H−1(Ω), g ∈ H− 1
2 (ΓN ).

Then the variational inequality (4.5) with ah(·, ·) defined in (4.6) and 〈Lh, ·〉
defined in (4.7) has a unique solution in Kh.

4.4 Convergence of the Discrete Solution

In order to complete the analysis of the discrete problem, a result showing the
convergence of the discrete solution uh to the solution of the continuous problem
(3.9) is presented.

Let us suppose that Ωh ⊆ Ω and let ṽh denote an extension to the domain
Ω of the function vh defined on Ωh constructed so that the value of ṽh in Ω\Ωh

is defined by constant extension in the directions normal to the boundary Γh.
Furthermore let K̃h be the set of all such extensions of functions in Kh. By
definition it is clear that the following identities hold for all ũh, ṽh ∈ K̃h:

ah(uh, vh) = ah(ũh, ṽh)

〈Lh, vh〉 = 〈Lh, ṽh〉
(4.8)

Using this extension the following theorem can be shown:

Theorem 4.2. Suppose that Ω has sufficiently smooth boundary and the so-
lution u ∈ K of the variational inequality (3.9) is regular in the sense that
u ∈ H2(Ω). Suppose that the function d, which characterizes the distance of

the body from the rigid foundation, belongs to H
3
2 (ΓC). Let ũh ∈ K̃h be the

extension of the approximate solution uh ∈ Kh of (4.5) onto the whole domain
Ω. Further suppose that the bilinear form a(·, ·) defined by (3.34) is coercive
and continuous on V . In addition, suppose that f ∈ L∞(Ω) and g ∈ L∞(ΓN ).
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Then, the sequence of extended finite element approximations (ũh)h∈H con-
verges in V to the solution u ∈ K of the variational inequality (3.9) as h tends
to zero. Indeed, a constant C independent of h exists, such that

‖ũh − u‖H1(Ωh) ≤ Ch (4.9)

where h is the mesh parameter for regular refinements of the mesh.

Proof. Kikuchi and Oden [19]

Remark 4.3. The assumption u ∈ H2(Ω) made in Theorem 4.2 is a restriction
and not automatically fulfilled by solutions of the variational inequality (3.9).
Especially at points with changing boundary conditions the regularity is less than
H2(Ω) in general.
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Chapter 5

Numerical Solution of

Signorini’s Problem

5.1 Introduction

In Chapter 4 a convergent finite element approximation of Signorini’s problem
was derived. In the following an iterative method for solving the resulting
discrete problem is derived. The starting point for the following is the fact,
that the variational inequality

ah(uh, vh − uh) ≥ 〈Lh, vh − uh〉, vh ∈ Kh,

is a necessary and sufficient condition for a minimum of

J(vh) =
1

2
ah(vh, vh) − 〈Lh, vh〉, vh ∈ Kh.

The solution method for the resulting algebraic system is a relaxation method of
Gauß-Seidel type. The unsatisfactory convergence rates of the classical Gauß-
Seidel type iterations are caused by the bad representation of the low-frequency
contribution of the error. In order to improve that, suitable coarse grid functions
are added to the space splitting.

Many references on multigrid and multilevel methods for elliptic problems
can be found in Hackbusch [13] or in Langer [27]. They have also been ap-
plied to various kinds of variational inequalities for example by Mandel [28],
Brandt and Cryer [2], Hackbusch and Mittelmann [14], Hoppe [16],
Hoppe and Kornhuber [17], Kornhuber [24] or Schöberl [31]. An intro-
duction into the field of truncated base functions can be found in Kornhu-

ber [24]. Kornhuber [24] also provides a long list of references on the field of
multigrid methods for variational inequalities.

Section 5.2 presents an introduction on Gauß-Seidel relaxation methods
including a proof of their convergence. In order to improve the convergence
properties additional coarse grid functions are added to the space splitting.
These extended relaxation methods are presented in Section 5.3 including a
proof of their convergence. One possibility for choosing the coarse grid functions
is the multilevel nodal basis. The resulting algorithm is presented in Section 5.4.
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As this algorithm can not be implemented with optimal order, also the obstacle
has to be approximated. This has to be done in a suitable manner in order
to preserve the global convergence of the method. One possibility for such an
approximation is presented in Section 5.5. In order to improve the convergence
rates of the algorithms presented in Section 5.5 an approach using truncated
base functions is presented in Section 5.6.

5.2 Gauß-Seidel Relaxation Methods

The starting point for the following considerations is the fact, that solving

ah(uh, vh − uh) ≥ 〈Lh, vh − uh〉, vh ∈ Kh, (5.1)

is equivalent to minimizing

J(vh) =
1

2
ah(vh, vh) − 〈Lh, vh〉 (5.2)

in Kh. The basic idea of relaxation methods is to decompose the global min-
imization of J(vh) into a sequence of local minimizations. The Gauß-Seidel
relaxation method results from the successive minimization of J in the sub-
spaces spanned by

{

λ
(i)
1 , . . . , λ

(i)
d

}

. λ
(i)
j represents the nodal base function at

point pi ∈ Th in space direction j, d is the dimension of Ωh.

The whole procedure can be found in Algorithm 5.1, where u
(i)
j , i = 1, . . . , n

denote intermediate iterates and α(i)λ(i) stands short for
∑d

k=1 α
(i)
k λ

(i)
k .

One iteration step of Algorithm 5.1 will be abbreviated by

uj+1 = M(uj). (5.3)

As the functional J is strictly convex, the minimization step

J(u
(i−1)
j + βλ(i)) −→ min

u
(i−1)
j +βλ(i)∈Kh

(5.4)

has a unique solution and therefore the algorithm is welldefined. Furthermore
the energy is monotonically decreasing by construction. In the following theo-
rem the global convergence of the Gauß-Seidel relaxation is shown:

Theorem 5.1. For any initial guess u0 ∈ Kh the sequence of iterates (uj)j∈N
generated by the Algorithm 5.1 converges to the solution uh of the variational
inequality (5.1).

Proof. The sequence of iterates (uj)j∈N is bounded because of

J(u0) ≥ J(uj) =
1

2
ah(uj , uj) − 〈Lh, uj〉 ≥

α

2
‖uj‖

2 − ‖Lh‖‖uj‖ ≥ const,

(5.5)

with α > 0 denoting the coercivity constant of ah(·, ·), i.e.

ah(u, u) ≥ α ‖u‖2, u ∈ Vh. (5.6)
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Let u0 ∈ Kh denote an arbitrary initial guess.
j := 0

(∗ Loop until convergence ∗)
WHILE not converged DO
BEGIN

u
(0)
j := uj

(∗ Minimize the energy J in every subspace ∗)
FOR i := 1 TO n DO
BEGIN

(∗ Minimize the energy J(u
(i−1)
j + ·) in the subspace ∗)

(∗ spanned by
{

λ
(i)
1 , . . . , λ

(i)
d

}

∗)

J(u
(i−1)
j + α(i)λ(i)) ≤ J(u

(i−1)
j + βλ(i)), u

(i−1)
j + βλ(i) ∈ Kh

u
(i)
j := u

(i−1)
j + α(i)λ(i)

END

uj+1 := u
(n)
j

j := j + 1
END

Algorithm 5.1: Gauß-Seidel relaxation
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Let (ujk
)k∈N be an arbitrarily chosen converging subsequence with

ũ = lim
k→∞

ujk
, ũ ∈ Kh. (5.7)

(ujk
)k∈N exists as (uj)j∈N is bounded and Vh is of finite dimension. As

J
(
ujk+1

)
≤ J

(
ujk+1

)
= J

(
M(ujk

)
)
≤ J

(
ujk

)
(5.8)

the continuity of J(·) and M(·) implies

J
(
M(ũ)

)
= J(ũ). (5.9)

From (5.9) it is easy to follow that

J(ũ(i)) = J(ũ), i = 1, . . . , n. (5.10)

ũ(i) denotes an intermediate iterate of Algorithm 5.1 with starting point ũ. As
the solution of

J
(
ũ(i−1) + αλ(i)

)
→ min

α∈R
ũ(i−1)+αλ(i)∈Kh

(5.11)

is unique and

J(ũ(i)) = J(ũ(i−1)) = J(ũ) (5.12)

the equality

ũ(i) = ũ(i−1), i = 1, . . . , n (5.13)

holds, resulting in

M(ũ) = ũ. (5.14)

It remains to show that ũ is a solution of the variational inequality (5.1). Let
y ∈ Kh be arbitrary. y and ũ can be written as

y =
n∑

i=1

β(i)λ(i), ũ =
n∑

i=1

β̃(i)λ(i). (5.15)

As ũ is a fixpoint of M, the variational inequality

ah

(
ũ + αλ(j), (β − α)λ(j)

)
≥ 〈Lh, (β − α)λ(j)〉, ũ + αλ(j), ũ + βλ(j) ∈ Kh

(5.16)

has the solution α = 0 for j = 1, . . . , n leading to

ah

(
ũ, βλ(j)

)
≥ 〈Lh, βλ(j)〉, ũ + βλ(j) ∈ Kh. (5.17)

Due to the special form of the restrictions in Kh it is easy to see that for any
j ∈ {1, . . . , n}

ũ +
(
β(j) − β̃(j)

)
λ(j) ∈ Kh. (5.18)
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Combining (5.17) and (5.18) and summing up (5.17) with respect to j it follows
that

n∑

j=1

ah

(
ũ, (β(j) − β̃(j))λ(j)

)
≥

n∑

j=1

〈Lh, (β(j) − β̃(j))λ(j)〉 (5.19)

resulting in

ah(ũ, y − ũ) ≥ 〈Lh, y − ũ〉. (5.20)

As (ujk
)k∈N was an arbitrarily chosen convergent subsequence of (uj)j∈N , the

whole sequence has to converge to ũ. As the solution of the variational inequal-
ity is unique, (uj)j∈N converges to the solution of the variational inequality,
which completes the proof.

The last part of the proof makes strong usage of the nodal decoupling of the
unknowns, respectively the inequalities describing Kh. In fact, this decoupling
is necessary for the global convergence of relaxation methods of Gauß-Seidel
type, as simple counter examples show (see Glowinski [10]).

5.3 Extended Relaxation Methods

Similar to the unrestricted case, the Gauß-Seidel procedure of Section 5.2 has
unsatisfactory convergence properties for decreasing mesh width, although it is
globally convergent. This originates in the fact, that it uses only high frequency
basis functions for the space splitting. Therefore the low-frequency contribution
to the error is represented badly. In order to improve the convergence speed,
the set of search directions is extended by additional coarse grid functions µ(i)

with large support, in contrast to the fine grid functions used up to now.
Extended relaxation methods of Gauß-Seidel type result by the successive

minimization of J first in the subspaces spanned by
{

λ
(i)
1 , . . . , λ

(i)
d

}

, i = 1, . . . , n

and afterwards in the subspaces spanned by
{

µ
(i)
1 , . . . , µ

(i)
d

}

, i = 1, . . . ,m. Nei-

ther the case µ
(i)
j = µ

(k)
j , j = 1, . . . , d, i 6= k nor the case µ

(i)
j = λ

(k)
j , j = 1, . . . , d

is excluded in this setup. The whole minimization procedure can be found in
Algorithm 5.2.

u
(i)
j denotes an intermediate iterate. The first inner iteration of Algo-

rithm 5.2 denotes the fine grid correction and is analogous to Algorithm 5.1,
the second inner iteration denotes the coarse grid correction.

Theorem 5.2. For any initial guess u0 ∈ Kh the sequence of iterates (uj)j∈N
generated by Algorithm 5.2 converges to the solution uh of the variational in-
equality (5.1).

Proof. The proof can be done in a similar way to the proof of Theorem 5.1.
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Let u0 ∈ Kh denote an arbitrary initial guess.
j := 0

(∗ Loop until convergence ∗)
WHILE not converged DO
BEGIN

u
(0)
j := uj

(∗ Fine grid relaxation ∗)
FOR i := 1 TO n DO
BEGIN

(∗ Minimize the energy J(u
(i−1)
j + ·) in the subspace ∗)

(∗ spanned by
{

λ
(i)
1 , . . . , λ

(i)
d

}

∗)

J(u
(i−1)
j + α(i)λ(i)) ≤ J(u

(i−1)
j + βλ(i)), u

(i−1)
j + βλ(i) ∈ Kh

u
(i)
j := u

(i−1)
j + α(i)λ(i)

END

(∗ Coarse grid relaxation ∗)
FOR i := n + 1 TO n + m DO
BEGIN

(∗ Minimize the energy J(u
(i−1)
j + ·) in the subspace ∗)

(∗ spanned by
{

µ
(i−n)
1 , . . . , µ

(i−n)
d

}

∗)

J(u
(i−1)
j + α(i)µ(i−n)) ≤ J(u

(i−1)
j + βµ(i−n)), u

(i−1)
j + βµ(i−n) ∈ Kh

u
(i)
j := u

(i−1)
j + α(i)µ(i−n)

END

uj+1 := u
(n+m)
j

j := j + 1
END

Algorithm 5.2: Extended Gauß-Seidel relaxation
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The first part showing (uj)j∈N being bounded can be done in analogy to
Theorem 5.1. Let (ujk

)k∈N denote an arbitrarily chosen subsequence converging
to ũ. As the energy of the iterate is decreasing in each inner iteration step

J(ujk+1
) ≤ J(ujk+1) ≤ J

(
M(ujk

)
)
≤ J(ujk

), (5.21)

inducing by use of the continuity of M and J

J
(
M(ũ)

)
= J(ũ). (5.22)

In analogy to the proof of Theorem 5.1, it can be shown that ũ is a fixpoint of
M and solves the variational inequality (5.1).

The proof of the above theorem strongly relies on two facts:

• Each fine grid base function is used in the relaxation.

• Each coarse grid correction should not increase the energy.

The great advantage of the above theorem is its flexibility on choosing the
coarse grid functions as there are hardly any restrictions for their selection.

5.4 Multilevel Gauß-Seidel Relaxation

Motivated by the convergence speed up of unrestricted multilevel methods for
elliptic selfadjoint problems compared to unrestricted Gauß-Seidel procedures, a
convergent relaxation method was derived in the previous section. The question,
how to choose the additional coarse grid functions, was left unanswered. It is
easily seen that the classical multigrid method with a Gauß-Seidel smoother can
be regarded as an extended relaxation method induced by the multilevel nodal
basis ΛS , specified in detail later. The resulting algorithm can be implemented
in a similar form to the classical V-cycle.

Let T0 denote the initial triangulation of Ωh. The triangulation T0 is refined
serveral times, providing a sequence of triangulations T1, . . . ,Tj . It is assumed
that the initial triangulation T0 is regular, especially that no hanging nodes
exist. The refining should be done in such a way, that it can be guaranteed
that

• the refined triangulation still has no hanging nodes, and

• that the inner angles are bounded away from 0, even for j tending to
infinity.

Both assumptions can be fulfilled for example by the following refinement stat-
egy for 2D problems, which is often referenced as red-green refinement (see
e. g. Kornhuber [24] or Verfürth [33]).

A triangle t ∈ Tk is refined either by subdividing it into four congruent sub-
triangles or by connecting one of its vertices with the midpoint of the opposite
side. The first case is called regular (red) refinement and the resulting triangles
are regular as they are similar to t. The second case is called irregular (green)
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Figure 5.1: Regular refinement and irregular closure

refinement and results in two irregular triangles. In order to fulfill the two
assumptions made above, irregular triangles must not be further refined.

The construction of the refined triangulations should be based on some adap-
tive strategy. For the refinement method described above this looks as follows:
Triangles marked for refinement by the error estimator are refined regularly.
Irregular refinements are only used to eliminate hanging nodes, generated by
the previous regular refinement. Irregular refined triangles must not be refined
any further.

The sequence T0, . . . ,Tj of triangulations gives rise to a sequence of finite
element spaces S0, . . . ,Sj . Let

Λk =
{

λ(i),k
∣
∣ pi ∈ Nk

}

(5.23)

denote the set of nodal basis functions, k = 0, . . . , j. The multilevel nodal basis
ΛS is then defined by

ΛS =
{

λ(1),j , . . . , λ(nj),j , . . . , λ(1),0, . . . , λ(n0),0
}

, (5.24)

where nk denotes the number of nodes in Nk. In the case of unrestricted, elliptic,
selfadjoint problems the classical V-cycle with Gauß-Seidel presmoothing and
no postsmoothing and the canonical restrictions and prolongations can be seen
as extended relaxation method induced by the constant set of search directions
ΛS .

The iteration procedure is given in Algorithm 5.3. As postsmoothing itera-
tions proofed useful in the unrestricted case, they are also added in this context
in order to get a symmetric iteration operator.

While the fine grid corrections in the direction of λ(1),j , . . . , λ(nj),j can be cal-
culated explicitly, the exact calculation of the coarse grid correction is rather
expensive, as every intermediate iterate has to be evaluated on nodes of the
finest grid in order to test its admissability. That is why additional prolonga-
tions are needed for every local coarse grid correction. As a consequence such a
procedure can no longer be implemented with O(nj) operations for one global
iteration step.
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Let u0 ∈ Kh denote an arbitrary initial guess.
l := 0

(∗ Loop until convergence ∗)
WHILE not converged DO
BEGIN

u
(0)
l := ul

ν := 0

(∗ Presmoothing on each level ∗)
FOR k := j TO 0 STEP −1 DO
BEGIN

FOR i := 1 TO nk DO
BEGIN

(∗ Minimize the energy J(u
(ν)
l + ·) in the subspace ∗)

(∗ spanned by
{

λ
(i),k
1 , . . . , λ

(i),k
d

}

∗)

J(u
(ν)
l + α(ν)λ(i),k) ≤ J(u

(ν)
l + βλ(i),k), u

(ν)
l + βλ(i),k ∈ Kh

u
(ν+1)
l := u

(ν)
l + α(ν)λ(i),k

ν := ν + 1
END

END

(∗ Postsmoothing on each level ∗)
FOR k := 0 TO j DO
BEGIN

FOR i := nk TO 1 STEP −1 DO
BEGIN

(∗ Minimize the energy J(u
(ν)
l + ·) in the subspace ∗)

(∗ spanned by
{

λ
(i),k
1 , . . . , λ

(i),k
d

}

∗)

J(u
(ν)
l + α(ν)λ(i),k) ≤ J(u

(ν)
l + βλ(i),k), u

(ν)
l + βλ(i),k ∈ Kh

u
(ν+1)
l := u

(ν)
l + α(ν)λ(i),k

ν := ν + 1
END

END

ul+1 := uν
l

END

Algorithm 5.3: Multilevel Gauß-Seidel relaxation
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5.5 Restriction of the Obstacle

In the previous section it was shown that a straight forward transfer of the
multigrid method to the variational inequality (5.1) results in a method which
is no more of optimal order, as the number of operations per global iteration
step is no longer bounded by O(nj). One way to overcome this problem is to
calculate the coarse grid correction only approximately. Such an approximation
has to be done in a suitable manner in order to preserve the global convergence
of the algorithm.

5.5.1 General Considerations

On the coarser grids Tk, k = 0, . . . , j − 1 linear functions can be represented by
their values on the coarse grid nodes. This property gives rise to the canonical
restrictions of the stiffness matrix and the residual occuring in the implemen-
tation of linear subspace corrections as the V-cycle.

To take advantage of the simple representation of linear functions on coarse
grid spaces, the coarse grid corrections are restricted to the neighborhood of
uj in the following sense: The initial fine grid correction defines the set of
active restrictions Aj . This set is not changed during the coarse grid correction
process, which means, that

〈uj+1(pi) − uj(pi), n(pi)〉 = 0, i ∈ Aj . (5.25)

The necessity of the active index set will become clear in the context of trun-
cated base functions used later.

One way to get the effort of one global iteration step under control is to
approximate the obstacle in an appropriate fashion. In Algorithm 5.3 one orig-
inally had to minimize the energy J on Kh, i.e.

J(u
(ν−1)
l + βλ(i),k) → min

β∈R

u
(ν−1)
l

+βλ(i),k∈Kh

. (5.26)

The reason for the large effort per iteration step of Algorithm 5.3 is the fact
that λ(i),k ∈ Λk has to be evaluated on fine grid points in order to test the
admissability of the intermediate iterate, although λ(i),k can be represented by
its values on the nodes of the k-th level Nk.

In order to get this problem under control, instead of (5.26) the problem

J(u
(ν−1)
l + βλ(i),k) → min

β∈R

u
(ν−1)
l

+βλ(i),k∈Kk
h

(5.27)

is solved, where Kk
h denotes an approximation of Kh containing only restrictions

on nodes of the k-th level, but not on nodes of finer levels. In most cases Kk
h is

a subset of Kh.
Kh contains inequality restrictions of the form

〈v(pi), n(pi)〉 ≤ d(pi), i ∈ I, (5.28)
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Kk
h should contain only restrictions on nodes of the k-th level Nk, that is

〈v(pi), n(pi)〉 ≤ d̃(pi), i ∈ I ∩Nk, (5.29)

where d̃ has to be chosen suitably.

5.5.2 Multilevel Gauß-Seidel Relaxation for Flat Obstacles

In the following it is assumed that all n(pi), i ∈ I are equal resulting in

n(pi) = n0, i ∈ I, (5.30)

in order to derive a suitable restriction of the obstacle. As the algorithm will
be implemented similar to a V-cycle it is enough to derive a restriction of the
obstacle on level k + 1 to that on the k-th level.

Suppose that on level k + 1 the inequality restrictions have the form

〈v(pi), n0〉 ≤ d(pi), i ∈ I ∩Nk+1. (5.31)

From now on µk denotes an arbitrary coarse grid function of level k, that is

µk ∈
{

λ(1),k, . . . , λ(nk),k
}

. (5.32)

Then the restrictions on the correction αµk look as follows:

〈u
(ν−1)
j (pi) + αµk(pi), n0〉 ≤ d(pi), i ∈ I ∩Nk+1. (5.33)

It is easily seen, that for choosing α several restrictions need to be considered.
In detail

〈αµk(pi), n0〉 ≤ d(pi) − 〈u
(ν−1)
j (pi), n0〉, i ∈ I ∩Nk+1 ∩ suppµk. (5.34)

As the obstacle on level k should only contain restrictions on nodes of level k,
one could use

〈αµk(pi), n0〉 ≤ min

{

d(pk) − 〈u
(ν−1)
j (pk), n0〉

∣
∣
∣
∣
pk ∈ supp(µk) ∩ I ∩Nk+1

}

,

i ∈ I ∩Nk.

(5.35)

As µk ∈ Λk, there is only one pi ∈ Nk with µk(pi) 6= 0. This connection will be
expressed in the term µk

pi
, which denotes for given pi the coarse grid function

µk ∈ Λk with µk(pi) 6= 0.
(5.35) delivers only one restriction on the choice of α and can be rewritten

in the form

〈αµk(p), n0〉 ≤ d̃(p), p ∈ I ∩Nk, (5.36)

with

d̃ = rk
k+1

(
d − 〈u

(ν−1)
j , n0〉

)
(5.37)
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Figure 5.2: Restriction operator rk
k+1

and

rk
k+1 h(p) = min

{

h(q)
∣
∣ q ∈ I ∩Nk+1 ∩ supp(µk

p)
}

, p ∈ I ∩Nk. (5.38)

The effect of this restriction can be seen in Figure 5.2.
Although the definition of rk

k+1 looks quite natural, it can be seen, that rk
k+1

delivers rather pessimistic bounds for the corrections. This can be improved by
taking the fact into account, that linear finite elements are used.

An improved restriction can be found in Kornhuber [24]. Let E ′
k ∈ Ek

denote the set of bisected edges and Ek the set of all the edges of level k,
pe ∈ Nk+1 is the midpoint of e ∈ E ′

k. Selecting a certain order in E ′
k, this

set can be written as E ′
k = (e1, . . . , es). Then the restriction operator Rk

k+1 is
defined according to

Rk
k+1 v = Res ◦ · · · ◦ Re1 v. (5.39)

For each e ∈ E ′
k the operator Re has the form

Re v = v + v1µk+1
p1

+ v2µk+1
p2

, (5.40)

with p1, p2 ∈ Nk denoting the vertices of e = (p1, p2) ∈ E ′
k. The scalars v1, v2 ∈

R are chosen such that

Re v(p) ≤ v(p), p = p1, pe, p2. (5.41)

This results in the following two cases:

• If v(pe) ≥
1
2

(
v(p1) + v(p2)

)
, then

(Re v)(p1) = v(p1) and (Re v)(p2) = v(p2). (5.42)
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v(p1) ≤ v(pe) v(pe) ≤ v(p2) (Re v)(p1) = v(p1)
(Re v)(p2) = 2 v(pe) − v(p1)

v(pe) ≥ v(p2) (Re v)(p1) = v(p1)
(Re v)(p2) = v(p2)

v(p1) ≥ v(pe) v(pe) ≤ v(p2) (Re v)(p1) = v(pe)
(Re v)(p2) = v(pe)

v(pe) ≥ v(p2) (Re v)(p1) = 2 v(pe) − v(p2)
(Re v)(p2) = v(p2)

Table 5.1: Calculation of Rk
k+1 for v(pe) ≤

1
2

(
v(p1) + v(p2)

)

g

R2
3 g

R1
2 R

2
3 g

Figure 5.3: Restriction operator Rk
k+1

• Otherwise the restrictions are given by Table 5.1.

Decomposing rk
k+1 in local restriction operators r e, e ∈ E ′

k in the same way
as done above, it can be shown that

rk
k+1 v ≤ Rk

k+1 v (5.43)

holds for all nonnegative v. In analogy to Figure 5.2 the effect of this restriction
can be seen in Figure 5.3. For a better comparison to rk

k+1 the fine grid function
is the same as in Figure 5.2.

Due to (5.43) one can expect less damping of the coarse grid corrections,
using Rk

k+1 instead of rk
k+1 for restricting the obstacle, providing faster conver-

gence of the whole algorithm.
The whole multilevel relaxation procedure for flat obstacles can be found in

Algorithm 5.4, respectively Algorithm 5.5.
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Algorithm 5.4. In this algoritm a multilevel Gauß-Seidel relaxation method
with obstacle restriction for flat obstacles is presented. j denotes the number of
levels used.

Let u0 ∈ Kh denote an arbitrary initial guess.
l := 0

(∗ Loop until convergence ∗)
WHILE not converged DO
BEGIN

u
(0)
l := ul

ν := 0

(∗ Presmoothing on each level ∗)
FOR k := j TO 0 STEP −1 DO
BEGIN

Calculate Kk
h by restricting the obstacle

FOR i := 1 TO nk DO
BEGIN

(∗ Minimize the energy J(u
(ν)
l + ·) in the subspace ∗)

(∗ spanned by
{

λ
(i),k
1 , . . . , λ

(i),k
d

}

∗)

J(u
(ν)
l + α(ν)λ(i),k) ≤ J(u

(ν)
l + βλ(i),k), u

(ν)
l + βλ(i),k ∈ Kk

h

u
(ν+1)
l = u

(ν)
l + α(ν)λ(i),k

ν := ν + 1
END

END

(∗ Postsmoothing on each level ∗)
FOR k := 0 TO j DO
BEGIN

FOR i := nk TO 1 STEP −1 DO
BEGIN

(∗ Minimize the energy J(u
(ν)
l + ·) in the subspace ∗)

(∗ spanned by
{

λ
(i),k
1 , . . . , λ

(i),k
d

}

∗)

J(u
(ν)
l + α(ν)λ(i),k) ≤ J(u

(ν)
l + βλ(i),k), u

(ν)
l + βλ(i),k ∈ Kk

h

u
(ν+1)
l = u

(ν)
l + α(ν)λ(i),k

ν := ν + 1
END

END
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ul+1 := uν
l

END

Algorithm 5.5. In this algorithm a recursive version of a multilevel Gauß-
Seidel relaxation with obstacle restriction for flat obstacles is presented. Again
j denotes the number of levels used.

Let u0 ∈ Kh denote an arbitrary initial guess.
l := 0

(∗ Loop until convergence ∗)
WHILE not converged DO
BEGIN

u
(0)
l := ul

(∗ Presmoothing ∗)

PreSmooth(j, u
(0)
l , u

(1)
l )

Calculate the set of active restrictions of u
(1)
l

(∗ Calculation of the residual ∗)

rl := 〈Lh, ·〉 − ah(u
(1)
l , ·)

(∗ Calculation of the restricted obstacle for the correction ∗)

dj−1 := Rj−1
j

(
dj − 〈u

(1)
l , n〉

)

(∗ Canonical restriction ∗)

rj−1 := rl|Sj−1 ; aj−1
h := ah(·, ·)|Sj−1×Sj−1

pj−1 := 0
MGM(j − 1, aj−1

h , rj−1, pj−1, dj−1)

(∗ Canonical interpolation ∗)
pj := pj−1|Sj

u
(2)
l := u

(1)
l + pj

(∗ Postsmoothing ∗)

PostSmooth(j, u
(2)
l , u

(3)
l )

ul+1 := u
(3)
l

l := l + 1
END
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PROCEDURE MGM(k, ak, Lk, uk, dk)
BEGIN

IF k = 1 THEN
BEGIN

uk,(0) := uk

PreSmooth(k, uk,(0), uk,(1))
PostSmooth(k, uk,(1), uk,(2))
uk := uk,(2)

END
ELSE
BEGIN

uk,(0) := uk

PreSmooth(k, uk,(0), uk,(1))

(∗ Calculation of the residual ∗)

rk := 〈Lk, ·〉 − ak(uk,(1), ·)

(∗ Calculation of the restricted obstacle for the correction ∗)

dk−1 := Rk−1
k

(
dk − 〈uk,(1), n〉

)

(∗ Canonical restriction ∗)

rk−1 := rk|Sk−1
; ak−1 := ak(·, ·)|Sk−1×Sk−1

pk−1 := 0
MGM(k − 1, ak−1, rk−1, pk−1, dk−1)

(∗ Canonical interpolation ∗)

pk := pk−1|Sk

uk,(2) := uk,(1) + pk

(∗ Postsmoothing ∗)

PostSmooth(k, uk,(2), uk,(3))
uk := uk,(3)

END

END

PROCEDURE PreSmooth(k, u, v)
BEGIN

u0 := u
FOR i := 1 TO n DO
BEGIN

(∗ Minimize the energy J(u(i−1) + ·) in the subspace ∗)
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(∗ spanned by
{

λ
(i),k
1 , . . . , λ

(i),k
d

}

∗)

J(u(i−1) + α(i)λ(i)) ≤ J(u(i−1) + βλ(i)), u(i−1) + βλ(i) ∈ Kk
h

u(i) := u(i−1) + α(i)λ(i)

END
v := u(n)

END

PROCEDURE PostSmooth(k, u, v)
BEGIN

u0 := u
FOR i := n TO 1 STEP −1 DO
BEGIN

(∗ Minimize the energy J(u(n−i) + ·) in the subspace ∗)

(∗ spanned by
{

λ
(i),k
1 , . . . , λ

(i),k
d

}

∗)

J(u(n−i) + α(i)λ(i)) ≤ J(u(n−i) + βλ(i)), u(n−i) + βλ(i) ∈ Kk
h

u(n−i+1) := u(n−i) + α(i)λ(i)

END
v := u(n)

END

5.5.3 Multilevel Gauß-Seidel Relaxation for Arbitrary Obsta-

cles

An arbitrary smooth obstacle is handled in a similar manner to flat obstacles.
For restricting the obstacles the same procedures as in Algorithm 5.5 are used,
as the normals of two adjacent points do not differ much as both the obstacle
and the body have smooth surfaces. The corrections are again calculated on
a coarser grid. As Kk

h is no longer a subset of Kk+1
h the convergence is no

more assured by Theorem 5.2 as the corrected solution need not be a member
of Kk+1

h . That is why an additional underrelaxation step is needed in order
to assure the admissability of the intermediate iterate and as a consequence to
guarantee the convergence of the scheme. The recursive version of the complete
procedure can be found in Algorithm 5.6. It can be seen, that a standard V-
cycle can easily be adopted to the requirements needed in this context by using
projected Gauß-Seidel smoothers and by adding the obstacle restriction.

Algorithm 5.6. In this algorithm a recursive version of a multilevel Gauß-
Seidel relaxation with obstacle restriction for arbitrary smooth obstacles is pre-
sented. j denotes the number of levels used.
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Let u0 ∈ Kh denote an arbitrary initial guess.
l := 0

(∗ Loop until convergence ∗)
WHILE not converged DO
BEGIN

u
(0)
l := ul

(∗ Presmoothing ∗)

PreSmooth(j, u
(0)
l , u

(1)
l )

Calculate the set of active restrictions of u
(1)
l

(∗ Calculation of the residual ∗)

rl := 〈Lh, ·〉 − ah(u
(1)
l , ·)

(∗ Calculation of the restricted obstacle for the correction ∗)

dj−1 := Rj−1
j

(
dj − 〈u

(1)
l , n〉

)

(∗ Canonical restriction ∗)

rj−1 := rl|Sj−1 ; aj−1
h := ah(·, ·)|Sj−1×Sj−1

pj−1 := 0
MGM(j − 1, aj−1

h , rj−1, pj−1, dj−1)

(∗ Canonical interpolation ∗)
pj := pj−1|Sj

(∗ Underrelaxation ∗)

ω = max

{

α ∈ [0, 1]

∣
∣
∣
∣
u

(1)
l + αpj ∈ Kh

}

u
(2)
l := u

(1)
l + ωpj

(∗ Postsmoothing ∗)

PostSmooth(j, u
(2)
l , u

(3)
l )

ul+1 := u
(3)
l

l := l + 1
END

PROCEDURE MGM(k, ak, Lk, uk, dk)
BEGIN
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IF k = 1 THEN
BEGIN

uk,(0) := uk

PreSmooth(k, uk,(0), uk,(1))
PostSmooth(k, uk,(1), uk,(2))
uk := uk,(2)

END
ELSE
BEGIN

uk,(0) := uk

PreSmooth(k, uk,(0), uk,(1))

(∗ Calculation of the residual ∗)

rk := 〈Lk, ·〉 − ak(uk,(1), ·)

(∗ Calculation of the restricted obstacle for the correction ∗)

dk−1 := Rk−1
k

(
dk − 〈uk,(1), n〉

)

(∗ Canonical restriction ∗)

rk−1 := rk|Sk−1
; ak−1 := ak(·, ·)|Sk−1×Sk−1

pk−1 := 0
MGM(k − 1, ak−1, rk−1, pk−1, dk−1)

(∗ Canonical interpolation ∗)

pk := pk−1|Sk

(∗ Underrelaxation ∗)

ω = max

{

α ∈ [0, 1]

∣
∣
∣
∣
uk,(1) + αpk ∈ Kk

h

}

uk,(2) := uk,(1) + pk

(∗ Postsmoothing ∗)

PostSmooth(k, uk,(2), uk,(3))
uk := uk,(3)

END

END

The pre- and postsmoothing routines are implemented in analogy to those in
Algorithm 5.5.
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Figure 5.4: Standard and Trucated Nodal Base Functions

5.6 Improvements by Using Truncated Base Func-

tions

For a special class of obstacle problems, the so-called membrane problems,
which can be formulated as

1

2
ah(vh, vh) − 〈Lh, vh〉 → min

vh≤d
(5.44)

Brandt and Cryer [2] and later on Kornhuber [22, 23] developed a fast con-
verging algorithm using truncations of the nodal base functions. They observed
that using standard nodal base functions they got weaker convergence rates due
to the fact, that those coarse grid functions, whose support had nonempty in-
tersection with the set of active restrictions, did not contribute to the coarse
grid correction. That is why the asymptotic convergence rates were worse com-
pared to the classical linear multigrid methods. Using truncated base functions
they could improve the convergence rates for problem (5.44). For problems
with more complex inequality restrictions the standard way for solving is to
use active set strategies combined with projected gradients and Hessians (see
Gill, Murray and Wright [9]). In this section it will be tried to bring both
approaches under one umbrella.

First of all the usage of truncated base functions for problem (5.44) is de-
scribed in order to motivate the following. A detailed derivation and description
can be found in Kornhuber [22, 23, 24].

Consider a problem with restrictions like those in (5.44). For any point of
the active set A the coarse grid correction must not change the value of the
iterate. This implies that if xi ∈ A then

αkµk = 0 for µi(xi) 6= 0, (5.45)

where µk denotes an arbitrary coarse grid function of level k. In Figure 5.4 the
difference between a coarse grid and a truncated base function on the coarse
grid is shown. The two dots denote points in the active set A.

It can be seen that truncated base functions may have a rather strange
shape. In particular their support does not need to be connected.
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It is clear that the truncation process is not included into the assembling of
the stiffness matrix, but into the restrictions and prolongations needed for the
stiffness matrix and the residual. In detail this looks as follows:

• Modified restriction of the residual: Set all entries form active nodes to 0
and use linear restriction afterwards.

• Modified restriction of the stiffness matrix: Set all entries form active
nodes to 0 and use linear restriction afterwards.

• Modified restriction of the upper bound: Handle all entries from active
nodes like entries from unrestricted nodes.

• Modified prolongation of the correction: Set all prolongations to active
nodes to 0.

In order to generalize this procedure, this point of view can not be used. But
form the view point of projected gradients a generalization is clear. Setting
entries belonging to active nodes to 0 is equivalent to eliminating parts not
belonging to the null space of the active restrictions used in projected gradient
methods.

This strategy can be easily generalized to the kind of boundary conditions
used in the context of Signorini’s problem. As the restrictions couple the dis-
placements nodewise, not only the smoothing procedure, but also the restric-
tions and prolongations have to work nodewise. In most cases this requires a
restructuring of the existing restriction and prolongation routines, but does not
increase the cost of the procedures.

The Gauß-Seidel smoother requires just little changes. The only difference
to the classical Gauß-Seidel smoother with projections is the introduction of
an active set. Nodes in the active set are only moved in tangential direction,
i. e. in the null space of the active restrictions.

Changing the restriction procedures requires more effort. As mentioned
above the routine works nodewise. Let ri denote the nodal residual at node pi.
From the view point of restrictions only those pi are relevant, that are in the
actual grid and not in the coarser one. Then pi lies in the middle of an edge
between pi1 and pi2 . If pi is active only the part of ri lying in the null space of
the restriction belonging to pi is restricted. Otherwise the whole part of ri is
restricted.

The restiction of the stiffness matrix works similar to the restriction of
the residual. Similar to the nodal representation of the residual r a nodal
representation of the stiffness matrix A is needed. As A is a block matrix, i.e.

A =






A11 . . . A1d

...
. . .

...
Ad1 . . . Add




 , (5.46)

where d denotes the number of space dimensions of Ωh, the nodal part aij is
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defined as

aij =






(
A11

)

ij
. . .

(
A1d

)

ij
...

. . .
...

(
Ad1

)

ij
. . .

(
Add

)

ij




 . (5.47)

If neither i nor j is active, then aij is restricted by the canonical restricion.
If only i is active, the matrix aij is first transformed to

aij →
(
I − nin

T
i

)
aij , (5.48)

where I denotes the identity matrix, and is then restricted by the canonical
restriction. (5.48) can be derived as follows: First of all aij is transformed
into a space spanned by ni and tki , k = 1, . . . , d − 1 by a base transform. tki ,
k = 1, . . . , d − 1 denote a basis of the null space of the restriction induced by
ni. For the transformed matrix the situation is in analogy to that in (5.44).
The entries of the transformed matrix connected with ni are set to 0 and the
resulting matrix is transformed back into the original coordinate system.

The case, in which j is active, is treated in a similar manner leading to

aij → aij

(
I − njn

T
j

)
. (5.49)

The resulting matrix is restricted in a canonical way.
If both i and j are active, the two cases above are combined leading to

aij →
(
I − nin

T
i

)
aij

(
I − njn

T
j

)
. (5.50)

Again the restriction of the resulting matrix is done canonically.
As metioned above the described matrix transforms can be seen as an anal-

ogon to projected Hessians. By a suitable renumbering A can be written as

A =






a11 . . . a1n

...
. . .

...
an1 . . . ann




 , (5.51)

with n denoting the number of nodes and the active set A = {1, . . . ,m} and
aij like in (5.47). Then the transform described above is given by

A →















B1 0 . . . . . . . . . 0

0
. . .

. . .
...

...
. . . Bm

. . .
...

...
. . . I

. . .
...

...
. . .

. . . 0
0 . . . . . . . . . . . . I















A















B1 0 . . . . . . . . . 0

0
. . .

. . .
...

...
. . . Bm

. . .
...

...
. . . I

. . .
...

...
. . .

. . . 0
0 . . . . . . . . . . . . I















(5.52)

with

Bk = I − nkn
T
k . (5.53)
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The prolongations are changed in the following way. First the corrections are
prolongated in the canonical way to the finer grid. On the finer grid, the in-
terpolated correction is projected onto the active restrictions in order to filter
those parts out not belonging to the null space of the active restrictions. Fur-
thermore underrelaxation of the projected correction is used not to violate any
of the inequality restrictions.

The implementation of the method described above looks similar to Algo-
rithm 5.6. The only difference is the usage of the modified restrictions and
prolongations and of the modified obstacle restriction.
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Chapter 6

Numerical Results

In Chapter 5 a method for solving Signorini’s problem was constructed. In or-
der to show its efficiency it was implemented at the Johannes Kepler University
Linz in the framework of FE++, a C++ version of a multilevel finite element
program developed by Schöberl [30]. A method proposed by Zienkiewics

and Zhu [35] was used for estimating the error. Many aspects on error estima-
tion and adaptive mesh refinement can be found in Verfürth [33]. As only
the refinement strategy for 2D works well, only 2D examples are presented.

6.1 Example 1: Rectangle Supported by a Step

In the first example the deformation of a rectangle supported by a step of a
stair is calculated. The geometrical situation before the deformation is shown
in Figure 6.1. The mathematical model for the situation shown in Figure 6.1
looks as follows:

Let Ω = [0, 1] × [0, 1]. On the boundary Γx=1 the displacements in x-
direction are restricted to zero. According to Chapter 2 the deformation can
be described by the following equations:

div σ + f = 0 in Ω,

σ n = 0 on Γx=0 ∪ Γy=1,

f = (0, 0, 0.1)T in Ω.

(6.1)

The stress-strain relationship is described by a linear elastic material law with
Young’s modulus Y = 1 and Poisson’s ration ν = 0.2. On the possible contact
surface Γy=0 Ω is supported by a “stair step”. This can be described by

〈u, n〉 ≤ g (6.2)

with

g =

{
1
10 if x ∈ [0, 0.42]

0 otherwise.
(6.3)

The numerical results are given in Table 6.1. For a better comparison the
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Ω

Figure 6.1: Reference configuration

Truncated Standard Gauß-Seidel
Basefunctions Basefunctions Iteration

Level Nodes Matrix- Iterations Iterations Iterations
generations

1 4 1 1 1 20
2 9 2 9 12 70
3 25 2 15 16 160
4 47 1 15 15 270
5 78 1 15 25 440
6 108 1 17 26 530
7 156 1 13 27 800
8 219 2 12 25 870
9 367 2 13 24 1530
10 507 1 14 20 1130

Table 6.1: Results for Example 1, Nested Iteration
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Figure 6.2: Deformed Mesh for Level 10

Truncated Standard Gauß-Seidel
Basefunctions Basefunctions Iteration

Level Nodes Matrix- Iterations Iterations Iterations
generations

1 4 1 1 1 20
2 9 1 9 14 80
3 25 2 18 19 200
4 47 2 19 21 360
5 78 2 18 32 560
6 108 2 21 35 830
7 156 2 20 37 1110
8 219 3 19 38 > 2000
9 367 4 18 39
10 507 4 20 38

Table 6.2: Results for Example 1, initial guess ul = 0

iteration was stopped, when the iterate fulfilled the Kuhn-Tucker conditions
for the problem approximately. Each method uses a nested approach in order
to reduce the number of iterations until the correct active set is known. The
deformed mesh for level 10 can be found in Figure 6.2. For comparison, results
without using nested iteration can be found in Table 6.2.

It can be seen that the method based on truncated base functions has ad-
vantages compared to using standard base functions. The difference in the
iteration numbers of both methods, especially when not using nested iteration
techniques, can be explained as follows:

The change in the boundary condition is not represented by the coarsest
grid. That is why the coarse grid correction is bad for the nodes lying in [0, 1]×
{0}. This can be seen best looking at the bounds for the normal displacements
induced by the restriction of the obstacle. In Figure 6.3 three levels of the
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Obstacle representation for

Level 4

Level 3

Level 2

Figure 6.3: Restriction of the obstacle for standard base functions

obstacle restriction are plotted. It can be seen that the obstacle becomes wider
from step to step until it supports Ω on the whole boundary Γy=0 inducing the
weaker convergence rates of the standard multilevel relaxation.

A comparison of the convergence rates of the multilevel Gauß-Seidel relax-
ation using truncated and standard base functions and standard Gauß-Seidel
relaxation can be found in Figure 6.4 and in Figure 6.5.

6.2 Example 2: Smooth Piston

In contrast to the problem stated in Example 1, in this example the contact
surface is not known in advance. This is the case almost always found in practi-
cal situations. The geometry before the deformation can be seen in Figure 6.6.
As possible contact surface the boundary of the semi-circle forming the lower
part of the piston is taken. The algorithms of Chapter 5 were applied to the
following problem:

div σ = 0 in Ω,

σ n = 0 on ΓN ,
(6.4)

as neither surface tractions nor volume forces were assumed. On ΓD the dis-
placements in y-direction were prescribed by

uy = −0.4. (6.5)

In order to ensure the uniqueness of the solution the x-displacements of the
midpoint of ΓD were restricted to zero.

The stress-strain relationship is described by a linear elastic material law
with Young’s modulus Y = 1 and Poisson’s ration ν = 0.2.

Level 7 of the deformed configuration can be found in Figure 6.7. It can
be seen, that the refinement mainly concentrates at points, where the contact
boundary condition changes. In these points not only the stresses are rather
high, as can be seen in Figure 6.8, but also the regularity of the solution is less
than in their neighborhood.
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Figure 6.4: Example 1: Comparison of the convergence rates, initial guess
ul = 0
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Figure 6.5: Example 1: Comparison of the convergence rates for nested iteration
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Ω

ΓD

ΓC

Figure 6.6: Example 2: Reference configuration

The numerical results are given in Table 6.3 using a nested iteration principle
and in Table 6.4, starting the relaxation procedures stated in Chapter 5 with
the initial guess ul = 0. It can be easily seen, that the use of truncated base
functions has severe advantages compared to standard base function. Taking
Figure 6.9 and Figure 6.10 into account it can be seen, that the convergence
rates of the multilevel Gauß-Seidel relaxation using truncated base functions
are much better compared to using standard base functions. The Gauß-Seidel
relaxation is only given for completeness, as it has completely unsatisfactory
convergence properties.

The large initial residual seen in Figure 6.10 can be explained as follows: The
initial solution does not fulfill the Dirichlet boundary conditions on ΓD. During
the calculation these boundary conditions are modelled by a penalty approach,
resulting in a very large residual, when these conditions are violated. It can be
seen, that the iterate of both multilevel methods fulfills the Dirichlet boundary
conditions within one iteration step, whereas the simple Gauß-Seidel relaxation
needs much longer. Then both multilevel procedures try to find the right set of
contact nodes, which is managed within a few iteration steps. In this phase they
behave similar to each other. The last part of the iteration is dominated by the
asymptotic convergence behaviour, showing severe advantages of the multilevel
relaxation using truncated base functions.

6.3 Example 3: Rigid Punch

In our third example the indentation of a rigid rectangular punch into an elastic
underground is calculated. A sketch of the geometry of the punch and the
underground can be found in Figure 6.11. Similar to Example 2, no volume
forces and no surface tractions are assumed. Then the problem can be modelled
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Figure 6.7: Example 2: Deformed mesh of level 7
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Figure 6.8: Example 2: Van Mieses stress
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Truncated Standard Gauß-Seidel
Basefunctions Basefunctions Iteration

Level Nodes Matrix- Iterations Iterations Iterations
generations

1 10 1 2 1 50
2 29 1 7 7 150
3 45 1 7 22 240
4 85 1 9 17 300
5 243 2 9 21 360
6 521 1 7 9 430
7 1342 1 7 11 620
8 3533 1 7 15 760
9 8500 3 8 14 660
10 17955 4 6 10 190

Table 6.3: Results for Example 2, Nested Iteration

Truncated Standard Gauß-Seidel
Basefunctions Basefunctions Iteration

Level Nodes Matrix- Iterations Iterations Iterations
generations

1 10 1 2 1 50
2 29 1 13 13 280
3 45 2 11 31 400
4 85 3 12 29 630
5 243 6 15 35 1250
6 521 8 17 39 > 2000
7 1342 8 18 42
8 3533 12 22 42
9 8500 15 23 41
10 17955 19 25

Table 6.4: Results for Example 2, initial guess ul = 0
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Figure 6.9: Example 2: Comparison of the convergence rates, initial guess
ul = 0
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Figure 6.10: Example 2: Comparison of the convergence rates for nested itera-
tion
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Rigid punch

Ω

ΓD

Figure 6.11: Example 3: Reference configuration

by the following equations:

div σ = 0 in Ω,

σ n = 0 on ΓN .
(6.6)

On ΓD the displacements in y-direction were prescribed by

uy = 0.4. (6.7)

In order to ensure the uniqueness of the solution the x-displacements of the
midpoint of ΓD were restricted to zero.

The stress-strain relationship is described by a linear elastic material law
with Young’s modulus Y = 1 and Poisson’s ration ν = 0.2.

In Figure 6.12 the deformed mesh of level 10 is shown. It can be seen that
the refinement is concentrated around the corners of the punch induced by the
singularity of the solution in these points. Nevertheless the iteration numbers
presented in Table 6.5 and Table 6.6 and the convergence rates presented in
Figure 6.13 and Figure 6.14 show a similar convergence behaviour of the three
iteration methods compared to the examples presented above.

Again it must be noted, that the Dirichlet boundary conditions are modelled
by a penalty approach explaining the large residual at the beginning of each
iteration procedure shown in Figure 6.14.

6.4 Summary

Summing up the results of the previous examples the multilevel relaxation
method using truncated base functions developed in Chapter 5 showed its effi-
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Figure 6.12: Example 3: Deformed mesh of level 10

Truncated Standard Gauß-Seidel
Basefunctions Basefunctions Iteration

Level Nodes Matrix- Iterations Iterations Iterations
generations

1 9 1 1 1 20
2 25 1 10 10 480
3 37 1 12 12 910
4 49 1 11 22 1120
5 131 1 12 22 820
6 213 1 12 21 580
7 311 1 13 20 740
8 405 1 12 29 900
9 628 1 12 26 1150
10 926 1 12 22 1610

Table 6.5: Results for Example 3, Nested Iteration
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Truncated Standard Gauß-Seidel
Basefunctions Basefunctions Iteration

Level Nodes Matrix- Iterations Iterations Iterations
generations

1 9 1 1 1 20
2 25 1 11 11 550
3 37 2 14 14 1060
4 49 2 13 25 1230
5 131 2 14 26 > 2000
6 213 2 17 28
7 311 2 18 29
8 405 2 17 37
9 628 2 17 37
10 926 2 18 35

Table 6.6: Results for Example 3, initial guess ul = 0
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Figure 6.13: Example 3: Comparison of the convergence rates, initial guess
ul = 0
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Figure 6.14: Example 3: Comparison of the convergence rates for nested itera-
tion

ciency in various situations. In each of the examples the convergence behaviour
of this relaxation method can be split in two parts:

• During the first part the method tries to determine the correct active set.
During this phase the difference between the method using truncated base
functions and the method using standard ones is small.

• During the second part the correct active set or is at least a very good
approximation is known. During this phase the convergence behaviour is
dominated by the asymptotic convergence bahaviour of the method. Here
the usage of truncated base functions results in severe improvement of the
convergence rates compared to the usage of standard base functions.

If nested iteration principles are used, the number of iterations needed to esti-
mate the correct active set is strongly reduced. In this case the asymptotic con-
vergence behaviour dominates the convergence behaviour of the whole method.

Although no proof of convergence rates was found up to now, it can be
expected, that the number of iterations needed to solve a given problem grows
logarithmically with the number of levels used. Using nested iteration principles
the solution of the problem can be obtained within an even slower growing num-
ber of iterations or even hardly growing number of iterations. Both assertions
are supported by the results presented above.
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Chapter 7

Conclusion

In the previous chapters various results on the analysis and simulation of Sig-
norini’s problem were presented.

After an introductory section on the foundation of the mechanics of con-
tinua including the derivation of the state equations of linear elasticity, general
nonlinear contact conditions for an elastic body coming into contact with a rigid
foundation were given and simplified, resulting in a system of linear inequali-
ties representing the nonpenetration conditions. Furthermore conditions on the
stresses on the contact surface, assuming frictionless contact, were presented.

The resulting system of differential equations and inequalities was trans-
formed into a variational form, resulting in a variational inequality due to the
nonpenetration conditions. Using some abstract results, conditions for the ex-
istence of a unique solution were given.

In order to solve Signorini’s problem numerically, a finite element formula-
tion of the variational problem was derived and analysed. Results on the unique
solvability of the discrete problem and on the convergence of the discrete solu-
tion were presented.

Special attention was paid to the efficient solution of the discrete problem.
Relaxation methods of Gauß-Seidel-type were used as a starting point. In order
to improve their unsatisfactory convergence properties, the space splitting was
enlarged by using the multilevel nodal basis. As the straight forward transfer
of multilevel relaxation methods of Gauß-Seidel-type onto Signorini’s problem
could no more be implemented with optimal order, a suitable representation of
the rigid obstacle was introduced.

In order to improve the convergence properties of the resulting method even
further, an approach using truncated base functions was presented.

Although there is no proof of convergence rates up to now, various examples
show the efficiency of the presented method, resulting in a slowly increasing
number of iterations the finer the used meshes are. If nested iteration principles
were used, the growth of the number of iterations could again be reduced.

In the future the algorithm will be extended into two different directions:
On the one hand to three-dimensional problems and on the other hand to time
dependent problems. Both generalizations can be done in a straight forward
manner.
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Despite the good convergence properties, the presented method also has
some drawbacks: On the one hand not every multilevel code supports the ef-
ficient projection of matrices onto coarser grids needed for the implementation
of the coarse grid correction using truncated base functions. Furthermore the
efficiency depends strongly on the number of matrix generations needed. But
the more important drawback is the fact, that no straight forward generaliza-
tion of the method to the very important class of body-body contact problems
is known up to now.
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