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Abstract

In isogeometric analysis, Non-Uniform Rational B-Spline (NURBS)
basis functions are used for preserving an exact geometry representa-
tion, as well as for representing the discrete solution calculated by fi-
nite element methods. While NURBS basis functions are defined over
a rectangular grid that does not allow locally restricted refinement,
the introduction of T-splines has provided methods for adapting basis
functions in such a way that local refinement is possible. In worst-case
examples, however, even the use of T-splines can lead to an unwanted,
almost global refinement.

We combine the exact geometry representation achieved by NURBS
geometry mappings with classic finite element basis functions that can
be refined locally more easily: We define subdivisions of the param-
eter domain that contain hanging nodes, and on these subdivisions,
we define piecewise polynomial finite elements basis functions that are
globally continuously differentiable. These basis functions are trans-
formed to the physical domain by a global NURBS geometry mapping.
Thereby, we preserve the exact representation of the geometry even
through the course of refinement without the need for updating geom-
etry information, while the use of hanging nodes allows the refinement
to be locally restricted.

We investigate how the properties of the NURBS geometry map-
ping influence the properties of the finite element basis functions on the
physical domain, and how a state-of-the-art a posteriori error estima-
tor can be combined with these specific basis functions. The findings
are illustrated in numerical examples.
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1 Introduction

1 Introduction

1.1 Motivation

Many physical processes from fields such as, for example, heat transport,
fluid dynamics, and elasticity can be modelled by partial differential equa-
tions. In general, these equations can not be solved analytically and various
numerical methods for finding discrete solutions have been developed and
researched, among them Finite Element Methods (FEM), which this thesis
deals with.

The application of FEM to engineering and design problems obviously re-
quires the interaction with engineers and design software. A typical situation
could be imagined as follows: An engineer designs the domain on which a
partial differential equation needs to be solved using Computer Aided Design
(CAD) software. The geometry is then imported into a FEM-programme,
which is applied to calculate a discrete solution. This solution is then ex-
ported back to the CAD- or some other programme for further processing
by the engineer. These few steps already include several disadvantageous
aspects:

Geometry representations in CAD and FEM software have been developed
independently over the last decades, and every step of importing or exporting
geometry data requires some sort of transformation. This also applies to
exporting the solution found by the FEM programme for further processing.
One issue is whether these transformations can be carried out automatically
and efficiently, or whether manual input is necessary, and if so, to what
extent. Another issue is that transforming geometry data is bound to require
some approximations, which results in inaccuracies and geometry errors.

In classic FEM, the geometry is represented by polygonal, i.e. straight-sided
elements. It is obvious that these elements fail to exactly represent curved
geometries and that a good approximation of the geometry might require
an undesireably high number of elements. Isoparametric FEM provides a
solution for this problem by being able to represent certain piecewise curved
geometries. Still, refining complicated parts of the boundary of the computa-
tional domain can require costly communication with the CAD programme
in order to preserve the best possible geometry representation [8, 9].

A standard technique in CAD is to use Non-Uniform Rational B-Splines
(NURBS) as basis functions for the geometry representation. These basis
functions do not only allow easy editing in CAD software and an exact repre-
sentation of circular and other curved geometries, but they also have certain
properties that make them suitable as FEM basis functions. This aspect pro-
vides the foundation for the isogeometric approach presented in [8], in which
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1 Introduction

these NURBS basis functions are used to represent the discrete solution. In
the isogeometric setting, the disadvantages mentioned above are overcome:
The geometry is represented exactly by the first, i.e. the coarsest mesh,
and the accurate representation is not lost in the course of mesh refinement.
Expressing the discrete solution with the same basis functions that are used
in CAD programmes also means that the transformation from one represen-
tation to the other and vice versa becomes unnecessary, hence no accuary is
lost during the communication between CAD- and FEM-programmes.

Another property of NURBS basis functions, however, is that they are de-
fined over knot vectors that form a grid-like structure. This structure does
not allow adaptive, locally restricted refinement. To overcome this problem,
T-splines and splines over T-meshes were introduced. As long as specific
rule are fulfilled, these allow subdivisions of the rectangular cells of the grid.
T-splines can be defined over “local knot vectors” and allow meshes with
“T-shaped junctions”, similar to hanging nodes in FEM, thus making local
refinement possible. These specific rules for refinement with T-splines, how-
ever, can require the insertion of unwanted, additional knots. In worst-case
examples, this even leads to a snowball-effect where inserted knots trigger
the insertion of even more knots, resulting in almost global refinement and
thereby jeopardizing the gained advantages [5, 6, 8].

While research in these field is still going on, the aim of this thesis is to
combine the following four aspects from the isogeometric and the classic
finite element approach:

• Exact representation of the physical domain by using NURBS geom-
etry mappings.

• Piecewise polynomial finite element basis functions.

• A posteriori error estimation for selecting cells that need further re-
finement.

• The use of hanging nodes for locally restricted refinement.

1.2 Overview

We briefly introduce the kind of partial differential equations that are dealt
with, and we repeat some basic aspects of the finite-element-technique in
Section 2. There, we also give a raw outline of the differences between the
“classic” and the “NURBS-FEM”-concepts.

In Section 3, we introduce the used finite element over subdivisions without
hanging nodes, namely the Bogner-Fox-Schmit rectangle. The associated
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1 Introduction

finite element space provides the foundation on which we construct the finite
elements over subdivisions with hanging nodes.

In Section 4, we introduce and define subdivisions with hanging nodes, the
associated finite element space and its basis functions, as well as the used
local refinement methods.

In Section 5, we briefly introduce NURBS basis functions and NURBS ge-
ometry mappings, and then discuss their interaction with the constructed
finite element space.

The used a posteriori error estimator is defined in Section 6. The compu-
tational examples and their results are given and discussed in Section 7.
Finally, a summary is given in Section 8.

3



2 Problem Formulation and Preliminary Remarks

2 Problem Formulation and Preliminary Remarks

2.1 Classical and Variational Formulation

We only give a brief overview of how to derive the finite element method
from the classical formulation of a partial differential equation. Details can
be found in e.g. [4, 9, 14, 15].

The classical formulation of a two-dimensional, scalar second-order partial
differential equation with mixed or pure Neumann and Dirichlet-boundary
conditions reads:

Find u, such that :
− div (A grad u) + bT grad u+ cu = f in Ω ⊂ R2

u = gD on ΓD

(A grad u) · n = gN on ΓN

 (1)

with the coefficients

A(x) =
(
A1(x) 0

0 A2(x)

)
, b(x) =

(
b1(x)
b2(x)

)
,

where n = (n1, n2)T is the outer normal unit vector of Ω and Γ = ∂Ω =
ΓN ∪ ΓD with ΓN ∪ ΓD = ∅.

A function u (from a proper function space) that fulfills (1) is called clas-
sial solution. The variational formulation, or weak formulation is derived
from the classic formulation by multiplying the partial differential equation
with a test function v in a proper space V0, integrating both sides over the
computational domain Ω, and using partial integration.

Let V = H1(Ω), V0 = {v ∈ V : v|ΓD
= 0}, Vg = {v ∈ V : v|ΓD

= gD}. The
variational formulation of (1) reads:

Find u ∈ Vg, such that :
a(u, v) = 〈F, v〉 ∀ v ∈ V0

}
(2)

where the bilinear form a(·, ·) and the linear form F are defined as follows:

a(u, v) :=
∫

Ω

(
(∇v)TA∇u+ (bT∇u)v + cuv

)
dx (3)

〈F, v〉 :=
∫

Ω
fv dx+

∫
ΓN

gNv ds. (4)

A function u that fulfills (2) is called weak solution. The following two
properties of a(·, ·) are important for the existence and uniqueness of a weak
solution:

4



2 Problem Formulation and Preliminary Remarks

A bilinear form a(·, ·) : V ×V → R is called coercive, if there exists a constant
µ1 > 0 such that

µ1‖v‖2
V ≤ a(v, v), ∀ v ∈ V.

It is called bounded, if there exists a constant µ2 > 0 such that

|a(u, v)| ≤ µ2‖u‖V ‖v‖V , ∀ u, v ∈ V.

Conditions that imply the coercivity and boundedness of a bilinear form
a(·, ·) as in (3) are briefly discussed in Appendix A.

Theorem 2.1. (Lax-Milgram) Let V be a Hilbert space, let the bilinear
form a(·, ·) : V × V → R be bounded and coercive, and let F : V → R be a
bounded linear form, i.e. F ∈ V ∗. Then, the varational problem (2) has a
unique solution u ∈ V and

1
µ2
‖F‖V ∗ ≤ ‖u‖V ≤ 1

µ1
‖F‖V ∗ . (5)

Proof. See [4].

For a bounded, coercive bilinear form a(·, ·), we can define the energy norm:

‖v‖E :=
√
a(v, v).

In Appendix A, we verify that this definition fulfills the properties of a norm.
Due to the boundedness and coercivity of a(·, ·), we have

µ1‖v‖2
V ≤ ‖v‖2

E = a(v, v) ≤ µ2‖v‖2
V ,

therefore ‖·‖E is equivalent to ‖·‖V . This also implies that a(·, ·) is bounded
in the energy norm:

|a(u, v)| ≤ µ2

µ1
‖u‖E‖v‖E , ∀ u, v ∈ V.

2.2 Galerkin Discretization

We choose finite-dimensional subspaces Vh ⊂ V , V0h ⊂ Vh with V0h ⊂ V0,
and Vgh = {u ∈ Vh : u = gh + v0h, gh ∈ Vh, v0h ∈ V0h} ⊂ Vg. Then,
the following finite-dimensional problem can be derived from the continuous
problem (2):

Find uh ∈ Vgh, such that :
a(uh, vh) = 〈F, vh〉 ∀ vh ∈ V0h

}
(6)

5



2 Problem Formulation and Preliminary Remarks

A function uh fulfilling (6) is called discrete solution. Since Vh is chosen
such that Vh ⊂ V , Vh is called conforming. In this setting, if the standard
assumptions of the theorem of Lax-Milgram are fulfilled in V for the contin-
uous problem, they are also fulfilled in the finite-dimensional subspace Vh.
Existence and uniqueness of a discrete solution again follow from the theo-
rem of Lax-Milgram. Under the same standard assumptions, the Lemma of
Cea gives the following estimate for the discretization error:

‖u− uh‖V ≤ µ2

µ1
inf

vh∈Vh

‖u− vh‖V

Choosing a basis {ϕ(i) : i = 0, . . . , Nh} of Vh, one can express uh ∈ Vh as a
linear combination of the basis functions with coefficients (u(i))i=1,...,Nh

:

uh(x) =
Nh∑
i=1

u(i)ϕ(i)(x). (7)

By requiring the condition in (6) to be fulfilled for all basis functions ϕ(i),
we arrive at Nh equations that can be written as:

Khuh = f
h

(8)

where

Kh = (Kij)i,j=1,...,Nh
, Kij = a(ϕ(j), ϕ(i)),

uh = (u(i))i=1,...,Nh
,

f
h

= (fi)i=1,...,Nh
, fi = 〈F,ϕ(i)〉 − a(gh, ϕ

(i)).

Thus, the problem of solving (6) has been transformed to the problem of
solving the system of linear equations (8). The matrix Kh in (8) is called
stiffness matrix.

It is standard to construct the basis functions such that they fulfill

ϕ(i)(x(j)) = δij . (9)

This way, the coefficients of the solution vector uh are also the function
values at the nodes:

uh(x(i)) = u(i). (10)

If any basis function ϕ(i) has common support with only a few other basis
functions ϕ(j), then most entries of the stiffness matrix Kij = a(ϕ(j), ϕ(i))
are zero, i.e. Kh is a sparse matrix. If a(·, ·) is symmetric, Kh is symmetric
as well.

6



2 Problem Formulation and Preliminary Remarks

2.3 Basis Functions of Finite-Element-Space

In classic FEM, the physical domain Ω is divided into subdomains Ωk, which
are obtained by element-wise defined mappings of a single reference element
Ω̂, i.e. Ωk = Gk(Ω̂). The basis functions over the physical space are deter-
mined as geometric transformations of shape functions ϕ̂(i) which are defined
over the reference element (see Fig. 1):

x ∈ Ωk : ϕ(i)(x) = ϕ̂ik(G−1
k (x)).

(a) Classic FEM (b) Using NURBS-mapping

Figure 1: Illustration of mapping of geometry and shape functions in classic
FEM and when using NURBS.

When using NURBS for representing the geometry, the whole parameter do-
main Q and its cells are mapped by a single mapping G, i.e. Ω = G(Q). The
same then applies to our basis functions: Basis functions are globally defined
over the parameter space and transformed by G: ϕ(i)(x) = ϕ̂(i)(G−1(x)).
The equation equivalent to (9) in the parameter space is

ϕ̂(i)(ζ(k)) = δik, where ζ(k) := G−1(x(k))

We will define our basis functions in the parameter space first, leaving the
issue of transformation to the physical space for later.

To construct the basis functions ϕ(i), we will actually combine the “classic-
FEM-” and the “NURBS-mapping”-approaches: Basis functions ϕ̂(i) in the
parameter space will be defined piecewise by transforming functions from a
reference element K̂, as it is done in classic FEM. These resulting functions,
which are defined over the whole parameter domain Q, are then mapped to
the physical space Ω by the one global geometry mapping.

7



2 Problem Formulation and Preliminary Remarks

In the following Sections 3 and 4, we will only discuss the construction and
the properties of basis functions over the parameter domain. The issue of
transforming them to the physical domain, i.e. the geometry function G and
its influence on the shape functions, will be discussed in Section 5.

Note that, in our case, K̂ and Q actually describe the same domain, namely
the unit square. We will, however, use these two different notations to
emphasize the different context in which they are used, and also because
one could also use other parameter domains Q for the NURBS-mapping
than the unit square.

8



3 Finite-Element-Space without Hanging Nodes

3 Finite-Element-Space without Hanging Nodes

3.1 Subdivision of Parameter Domain without Hanging Nodes

We subdivide the parameter domain Q = [0, 1]2 into open, axis-aligned
rectangles as illustrated in Fig. 2.

Figure 2: Example of a subdivision of Q = [0, 1]2 with rectangular cells and a
highlighted cell K. Nodes marked with �.
NE = 20, NX = 30, IK = {7, 8, 12, 13}.

These rectangles K of the form K = (a1, b1) × (a2, b2), where a1 < b1 and
a2 < b2, will be referred to as cells. The total number of cells will be denoted
by NE .

The vertices of the cells (i.e. the corners of the cells) will be referred to
as nodes. The total number of nodes will be denoted by NX , the set of
their indices by IX = {1, . . . , NX}. Nodes in the parameter domain will be
denoted by ζ(i), i ∈ IX .

Nodes are called boundary nodes, if they are contained in the boundary ∂Q
of the parameter domain, and inner nodes otherwise.

We define an edge as the straight and axis-aligned line that connects two
nodes. In a more formal way: If two nodes ζ(i) and ζ(j), ζ(i) 6= ζ(j) have the
same ξ1- or the same ξ2-coordinate, then we define the edge E(i,j) as follows:

E(i,j) := {ξ ∈ Q : ξ = (1− α) · ζ(i) + α · ζ(j), α ∈ [0, 1]}.

We call ζ(i) and ζ(j) the vertices of the edge E(i,j).

If the nodes ζ(i) and ζ(j) have different ξ1- and ξ2-coordinates, E(i,j) is
defined as the empty set. If an edge contains no node in its interior, we call
it an elementary edge.

9



3 Finite-Element-Space without Hanging Nodes

For example, in Fig. 2, we have

E(7,9) = E(7,8) ∪ E(8,9)

E(7,8) . . . elementary edge
E(7,12) . . . elementary edge
E(7,13) = ∅

If two cells K and K ′ with K 6= K ′ contain the same elementary edge in
their closure, then K and K ′ are called adjacent.

To simplify descriptions, we call an edge horizontal, if it is parallel to the
ξ1-axis, and vertical, if it is parallel to the ξ2-axis.

For convenience, we will sometimes use the informal terms “north”, “east”,
“south” and “west” to indicate directions or positions. These terms refer to
the directions (0, 1), (1, 0), (0,−1) and (−1, 0), respectively.

The whole subdivision will be denoted by K. For fixed cell K, the set of
indices of the vertices of K will be denoted by IK (see Fig. 2 for an example).
Note that |IK | = 4 for all K ∈ K.

3.2 Finite Element Space over the Parameter Domain

Beforehand, we give two definitions that will enable us to shorten some
repeatedly used formulations:

Definition 3.1. Let v : Q→ R be a function with existing first and mixed
derivatives. We write:

∂0v := v ∂1v :=
∂v

∂ξ1
∂2v :=

∂v

∂ξ2
∂3v :=

∂2v

∂ξ1∂ξ2

Definition 3.2. A repeatedly used set of indices shall be denoted as follows:

Iα := {0, 1, 2, 3}.

We also define the following sets of functions:

Definition 3.3. Let K be a subdivision of Q. We denote the set of bi-cubic
polynomials over a cell K ∈ K by

Q3(K) :=
{
u : K → R

∣∣∣ u(ξ1, ξ2) =
3∑

s,t=0

cstξ
s
1ξ

t
2, cst ∈ R.

}
,

10



3 Finite-Element-Space without Hanging Nodes

the set of piecewise bi-cubic functions over a subdivision K by

Q3(K) :=
{
u : u|K ∈ Q3(K), ∀K ∈ K

}
,

and the set of piecewise bi-cubic and globally C1-continuous functions by

Q1
3(K) := C1(Q) ∩ Q3(K).

We choose the latter as the finite element space over the parameter domain:

Xh := Q1
3(K). (11)

A function v ∈ Q3(K) is uniquely determined by prescribing function value,
first and mixed derivatives of v at the four corners of K. In other words:
Given 16 values λ(j)

β ∈ R, (j, β) ∈ IK × Iα, there exists exactly one bi-cubic
polynomial v ∈ Q3(K) that fulfills

∂βv(ζ(j)) = λ
(j)
β

for all (j, β) ∈ IK × Iα. In particular, if all λ(j)
β are zero, then v ≡ 0 on K.

A direct consequence is that a function v ∈ Q3(K) is piecewise uniquely de-
termined (and therefore uniquely determined over Q) by prescribing func-
tion value, first and mixed derivatives at all nodes ζ(i) ∈ K. The following
theorem shows that such a function is in Xh:

Theorem 3.4. Let u ∈ Q3(K) be piecewise determined by prescribing func-
tion value, first and mixed derivatives at all nodes ζ(i), i ∈ IX . Then

u ∈ C1(Q)

holds [4].

Proof. (See Fig. 3 for reference.) Let K1 and K2 be two adjacent cells in
K, and let E := K1 ∩K2 be their common elementary edge. Without loss
of generality, we assume that E is vertical, i.e. parallel to the ξ2-axis. The
two vertices ζ(p) and ζ(q) of E can thus be written as

ζ(p) =
(
ξ̄1, ξ

p
2

)
, ζ(q) =

(
ξ̄1, ξ

q
2

)
.

Let u be a function in Q3(K). This means that the restrictions of u to the
cells ui := u|Ki

, i ∈ {1, 2}, are bi-cubic polynomials in ξ1 and ξ2. Fur-
thermore, we uniquely determine ui by prescribing function value, first and
mixed derivatives at the vertices of Ki. The prescribed values at ζ(p) and
ζ(q) shall be denoted by λ(k)

α , (k, α) ∈ {p, q} × Iα, i.e. we have:

∂αui(ζ(k)) = λ(k)
α , i ∈ {1, 2}. (12)

11



3 Finite-Element-Space without Hanging Nodes

Figure 3: Adjacent cells with common vertical elementary edge.

In order to investigate u at the common edge of the two adjacent cells, we
look at the difference between the functions ui at E:

v := u1|E − u2|E = u1(ξ̄1, ·)− u2(ξ̄1, ·).

v is a cubic polynomial in ξ2 with the following properties that follow
from (12):

v(ζ(p)) = u1(ζ(p))− u2(ζ(p)) = λ
(p)
0 − λ

(p)
0 = 0

v′(ζ(p)) =
∂v

∂ξ2
(ζ(p)) =

∂u1

∂ξ2
(ζ(p))− ∂u2

∂ξ2
(ζ(p)) = λ

(p)
2 − λ

(p)
2 = 0

v(ζ(q)) = u1(ζ(q))− u2(ζ(q)) = λ
(q)
0 − λ

(q)
0 = 0

v′(ζ(q)) =
∂v

∂ξ2
(ζ(q)) =

∂u1

∂ξ2
(ζ(q))− ∂u2

∂ξ2
(ζ(q)) = λ

(q)
2 − λ

(q)
2 = 0

From v(ζ(p)) = v′(ζ(p)) = v(ζ(q)) = v′(ζ(q)) = 0, it follows that v ≡ 0, i.e.
u1|E ≡ u2|E , which shows continuity of u at E.

v ≡ 0 also implies ∂v
∂ξ2

≡ 0. With

∂v

∂ξ2
=

∂

∂ξ2

(
u1(ξ̄1, ·)− u2(ξ̄1, ·)

)
=

∂u1

∂ξ2
(ξ̄1, ·)−

∂u2

∂ξ2
(ξ̄1, ·)

this shows the continuity of ∂u
∂ξ2

at E. To investigate ∂u
∂ξ1

, we define the
following function:

w :=
∂u1

∂ξ1

∣∣∣∣
E

− ∂u2

∂ξ1

∣∣∣∣
E

=
∂u1

∂ξ1
(ξ̄1, ·)−

∂u2

∂ξ1
(ξ̄1, ·)

Again, w is a cubic polynomial in ξ2, and similar to above, we can show:

w(ζ(p)) =
∂u1

∂ξ1
(ζ(p))− ∂u2

∂ξ1
(ζ(p)) = λ

(p)
1 − λ

(p)
1 = 0

12



3 Finite-Element-Space without Hanging Nodes

w′(ζ(p)) =
∂w

∂ξ2
(ζ(p)) =

∂2u1

∂ξ1∂ξ2
(ζ(p))− ∂2u2

∂ξ1∂ξ2
(ζ(p)) = λ

(p)
3 − λ

(p)
3 = 0

w(ζ(q)) =
∂u1

∂ξ1
(ζ(q))− ∂u2

∂ξ1
(ζ(q)) = λ

(q)
1 − λ

(q)
1 = 0

w′(ζ(q)) =
∂w

∂ξ2
(ζ(q)) =

∂2u1

∂ξ1∂ξ2
(ζ(q))− ∂2u2

∂ξ1∂ξ2
(ζ(q)) = λ

(q)
3 − λ

(q)
3 = 0

Using the same argument as above, it follows that w ≡ 0, showing the
continuity of ∂u

∂ξ1
at E. We have thus shown the continuity of u and its first

derivatives at E, i.e. u ∈ C1(K1 ∪K2). Since E was an arbitrary edge, it
follows that u ∈ C1(Q).

Remark 3.5. The finite element associated with Xh is called Bogner-Fox-
Schmit rectangle. Since the piecewise bi-cubic functions are continuous over
Q and piecewise in H1(K), we obtain Xh ⊆ H1(Ω) = V . We even have
Xh ⊆ H2(Ω), i.e. Xh is suitable for forth-order partial differential equations
which, however, are not consider in this thesis. For details, see [4].

3.3 Basis Functions of Finite Element Space

For a fixed (i, α) ∈ IX × Iα, we define the piecewise bi-cubic function ϕ̂
(i)
α

through the following 4 ·NX conditions:

ϕ̂
(i)
α (ζ(j)) = δijδα0

∂ϕ̂
(i)
α

∂ξ1
(ζ(j)) = δijδα1

∂ϕ̂
(i)
α

∂ξ2
(ζ(j)) = δijδα2

∂2ϕ̂
(i)
α

∂ξ1∂ξ2
(ζ(j)) = δijδα3


∀ j ∈ IX . (13)

Using Definitions 3.1 and 3.2, we can write (13) more compactly:

∂β ϕ̂
(i)
α (ζ(j)) = δ(i,α)(j,β) ∀ (j, β) ∈ IX × Iα, (14)

where

δ(i,α)(j,β) :=
{

1, if i = j ∧ α = β
0, else.

This means we require value, first and mixed derivatives of ϕ̂(i)
α to be 0 at

all nodes, with the only exception of the “α-derivative” at node ζ(i), which

13



3 Finite-Element-Space without Hanging Nodes

is set to 1 (see Fig. 4 for an example). Each basis function ϕ̂(i)
α is associated

both with a node and with a “type of derivative”, which motivates the use
of the double indices.

Figure 4: Example for a basis function: ϕ̂
(13)
1 over the mesh from Fig. 2:

∂1ϕ̂
(13)
1 (ζ(13)) = 1, all other function values and derivatives at the subdivision’s

nodes are zero.

The conditions (14) imply that, if ζ(i) /∈ IK , then ϕ̂(i)
α ≡ 0 on K. Thus, each

function ϕ̂
(i)
α has support only in those four cells that have ζ(i) as a vertex

(if ζ(i) is a boundary node, ϕ̂(i)
α has support in less than four cells).

We will show that the functions defined by (14) form a basis of our finite
element space.

Lemma 3.6. The 4 ·NX piecewise bi-cubic functions ϕ̂(i)
α , (i, α) ∈ IX × Iα

are linearly independent.

Proof. Let u be a linear combination of functions ϕ̂(i)
α :

u :=
NX∑
i=1

3∑
α=0

λ(i)
α ϕ̂(i)

α , λ(i)
α ∈ R

We have to show:(
∀ (i, α) ∈ IX × Iα : λ(i)

α = 0
)
⇔
(
u ≡ 0

)
The implication is trivial, so we show the other direction: Assume u ≡ 0,
which implies

0 ≡ ∂0u ≡ ∂1u ≡ ∂2u ≡ ∂3u. (15)

14
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Assume that there exist indices (i0, α0) such that there is a coefficient λ(i0)
α0 6=

0. Then, due to the property ∂βϕ̂
(i)
α (ζ(j)) = δ(i,α)(j,β), it follows that

∂α0u(ζ
(i0)) = λ(i0)

α0
6= 0,

which contradicts (15). Thus, all coefficients λ(i)
α have to be zero and the

functions ϕ̂(i)
α are linearly independent.

Theorem 3.7. The set of functions

Φ :=
{
ϕ̂(i)

α , (i, α) ∈ IX × Iα

}
(16)

defined by (14) is a basis of Xh.

Proof. From Theorem 3.4, it follows that ϕ̂(i)
α ∈ Xh for all (i, α) ∈ IX × Iα.

Let u be an arbitrary function in Xh. Set u(i)
α := ∂αu(ζ(i)) for all (i, α) ∈

IX × Iα, and define

v := u−
NX∑
i=1

3∑
α=0

u(i)
α ϕ̂(i)

α .

Because of (14) and the definition of u(i)
α , it follows that ∂αv(ζ(i)) = 0 for

all (i, α), i.e. v ≡ 0. Thus, u can be expressed as a linear combination
of functions ϕ̂(i)

α . Because of Lemma 3.6, the functions ϕ̂(i)
α are linearly

independent, therefore Φ is a basis of Xh.

Remark 3.8. A direct conclusion is that the dimension of Xh is 4 ·NX .

Analogous to (7), we can express the discrete solution uh as a linear combi-
nation of basis functions:

uh(x) =
NX∑
i=1

3∑
α=0

u(i)
α ϕ(i)

α ,

where ϕ(i)
α is the transformation of ϕ̂(i)

α under the global geometry mapping
G. The property analogous to (10) now reads:

uh(x(i)) = u
(i)
0 .

3.4 Representation of Basis Functions

We represent the basis functions ϕ̂(i)
α as it is done in classic FEM: We define

basis functions p̂(i)
α on a reference element K̂ and transform them piecewise

to the cells K ∈ K.

15
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3.4.1 Basis Functions on the Reference Element

Let ζ(i), i ∈ {1, 2, 3, 4} benote the four corners of the unit square K̂ := [0, 1]2:

ζ(1) := (0, 0), ζ(2) := (0, 1), ζ(3) := (1, 0), ζ(4) := (1, 1). (17)

For any fixed (i, α) ∈ {1, 2, 3, 4}×Iα, we prescribe sixteen conditions for the
bi-cubic polynomial function p̂(i)

α (ξ1, ξ2) =
∑3

s,t=0 cstξ
s
1ξ

t
2, cst ∈ R:

∂β p̂
(i)
α (ζ(j)) = δ(i,α)(j,β) ∀ (j, β) ∈ {1, 2, 3, 4} × Iα. (18)

For each of the 16 combinations (i, α) ∈ {1, 2, 3, 4}×Iα, the system of linear
equations (18) with the unknowns cst can be solved uniquely. The resulting
values for the coefficients cst define explicit formulae for p̂(i)

α (see Fig. 5 for
an example).

Figure 5: Illustration of p̂(4)
1 : Values and derivatives are zero, except for the

derivative with respect to ξ1 at the node ζ(4).

Definition 3.9. From now on, whenever we refer to functions p̂(i)
α with

(i, α) ∈ {1, 2, 3, 4} × Iα, we will be referring to the sixteen explicitly known
polynomials defined by (17) and (18) on the unit square.

These functions p̂(i)
α are linearly independent, thus forming a basis of the

16-dimensional space Q3(K̂).

3.4.2 Local Representation of Basis Functions

Let K = (a1, b1)× (a2, b2) with a1 < b1, a2 < b2 be a cell of our subdivision
K, and let IK denote the set of indices of the vertices of K. Let Ĝ denote
the linear mapping that maps the reference element K̂ to K:

Ĝ : K̂ → K(
ξ̂1

ξ̂2

)
7→

(
(1− ξ̂1)a1 + ξ̂1b1

(1− ξ̂2)a2 + ξ̂2b2

)

16



3 Finite-Element-Space without Hanging Nodes

and let h1 := b1 − a1 > 0 and h2 := b2 − a2 > 0.

We link the globally numbered vertices of K to the vertices of the reference
element K̂ with the function ci : IK → {1, 2, 3, 4}. In our axis-aligned cells,
we define ci through the positions of the nodes in the cell K:

ci :=


1, if ζ(i) = (a1, a2) . . . “southwest”
2, if ζ(i) = (b1, a2) . . . “southeast”
3, if ζ(i) = (a1, b2) . . . “northwest”
4, if ζ(i) = (b1, b2) . . . “northeast”

Note that Ĝ, a1, a2, b1, b2, h1, h2, and ci depend on the cell K, which should
be indicated by adding K as a parameter. For the sake of readability, and
assuming that the context sufficiently clarifies which cell is being referred
to, we will not explicitly add K when using these variables.

For any fixed (i, α) ∈ IX×Iα we represent ϕ̂(i)
α : Q→ R piecewise as follows:

if (ξ1, ξ2) ∈ K ∧ i ∈ IK :
ϕ̂

(i)
0 (ξ1, ξ2) = p̂

(ci)
0

(
Ĝ−1(ξ1, ξ2)

)
ϕ̂

(i)
1 (ξ1, ξ2) = h1 · p̂(ci)

1

(
Ĝ−1(ξ1, ξ2)

)
ϕ̂

(i)
2 (ξ1, ξ2) = h2 · p̂(ci)

2

(
Ĝ−1(ξ1, ξ2)

)
ϕ̂

(i)
3 (ξ1, ξ2) = h1 · h2 · p̂(ci)

3

(
Ĝ−1(ξ1, ξ2)

)
otherwise :

ϕ̂
(i)
α (ξ1, ξ2) = 0, ∀ α ∈ Iα


(19)

Note that, if a point is contained in the closure of two different cells, i.e.
if (ξ∗1 , ξ

∗
2) ∈ K ∩K ′, K 6= K ′, the definition does not specify in which cell

ϕ̂
(i)
α (ξ∗1 , ξ

∗
2) should be evaluated. From Theorem 3.4, we know that the func-

tions ϕ̂(i)
α are continuous at the edge of two adjacent cells, thus ϕ̂(i)

α (ξ∗1 , ξ
∗
2)

can be evaluated either in K or in K ′.

Definition 3.10. The Jacobian of a function F : Q → R2 will be denoted
by ∇ξF , i.e.

∇ξF :=
(
∂F1/∂ξ1 ∂F1/∂ξ2
∂F2/∂ξ1 ∂F2/∂ξ2

)
.

Using the properties of p̂(i)
α and

∇ξ

(
Ĝ−1

)
=

( 1
h1

0
0 1

h2

)
,

17
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one can show by direct calculation that the given representation of ϕ̂(i)
α

fulfills
∂βϕ̂

(i)
α (ζ(j)) = δ(i,α)(j,β), ∀ (j, β) ∈ IX × Iα.

This local representation allows cell-wise assembling of Kh and the right-
hand-side f

h
in (8), as it is usually done in FEM.

3.5 Incorporation of Boundary Conditions

Neumann boundary conditions are incorporated the same way as it is done
in standard FEM: For each elementary edge contained in the Neumann-
boundary ΓN , we calculate its contribution to the integral∫

ΓN

gNϕ
(i)
α ds =

∑
E(p,q)⊆ΓN

∫
E(p,q)

gNϕ
(i)
α ds.

We incorporate Dirichlet boundary counditions

u = gD on ΓD

by applying them to the coefficients u(i)
α corresponding to nodes x(i) on

the Dirichlet boundary ΓD [9]. We approximate the function gD with a
function that is in Vh, or, after transforming gD to the parameter domain
with G−1, with a function in Xh. We interpolate ĝD := gD ◦G by piecewise
cubic polynomials that are determined by prescribing function value and first
tangential derivative in the direction of the boundary at all nodes contained
in the Dirichlet boundary.

To distinguish between the gradients in the parameter domain and the phyis-
cal domain, we write

∇ξ :=
(
∂

∂ξ1
,
∂

∂ξ2

)T

and ∇x :=
(

∂

∂x1
,
∂

∂x2

)T

.

Let Γ̂S be the “southern” boundary of Q and let ΓS be its image in the
physical domain:

Γ̂S :=
{

(ξ1, 0), ξ1 ∈ [0, 1]
}

ΓS := G
(
Γ̂S

)
.

We briefly discuss the incorporation of Dirichlet boundary conditions for the
special case of ΓD ⊆ ΓS . Other cases can be treated analogously.

18
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ΓS can be interpretet as a two-dimensional curve with the parametrization
G(·, 0) and parameter ξ1 ∈ [0, 1]. The tangent vector of ΓS at a point
G(ξ1, 0) is given by

∂

∂ξ1
G(ξ1, 0) =

(
J11(ξ1, 0)
J21(ξ1, 0)

)
where J := ∇ξG denotes the Jacobian of G. The derivative of gD in the
tangential direction of ΓS is given by

( J11 J21 )
( ∂gD

∂x1
∂gD
∂x2

)
=

(
JT (∇xgD)

)
1
.

Since (JT∇x)1 = ∂
∂ξ1

, we obtain(
JT (∇xgD(x(i)))

)
1

=
∂

∂ξ1
ĝD(ξ(x(i))),

where ξ(x(i)) := G−1(x(i)) and where ĝD(ξ) = gD(G(ξ)). Let

ûh(ξ) :=
∑
i∈IP

3∑
α=0

u(i)
α ϕ̂(i)

α (ξ)

denote the approximate solution uh transformed to the parameter domain.
We want ûh to approximate the Dirichlet boundary conditions, i.e.

ûh|Γ̂S
≈ ĝD,

which we realize by prescribing function value and the derivative in ξ1-
direction of ĝD at the nodes on Γ̂S . Together with the definition of the basis
functions ϕ̂(i)

α , this means we prescribe

ĝD(ξ(x(i))) = ûh(ξ(x(i))) = u
(i)
0

∂

∂ξ1
ĝD(ξ(x(i))) =

∂

∂ξ1
ûh(ξ(x(i))) = u

(i)
1 .

In more general settings, i.e. if not necessarily ΓD ⊆ ΓS , we can make analo-
gous considerations. In summary, we conclude that, in order to incorporate
Dirichlet boundary conditions, we have to prescribe

u
(i)
0 = gD(x(i)) and u

(i)
β =

(
JT (∇xgD(x(i)))

)
β

for all x(i) ∈ ΓD, where β = 1, if the edge containing ξ(x(i)) is horizontal,
and β = 2, if the edge is vertical.
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4 Finite-Element-Space with Hanging Nodes

Decreasing the size of the cells in our subdivision leads to a better approx-
imation of the exact solution, but also increases the computational effort
needed for assembling and solving the discrete problem. Especially if large
errors only appear in small areas of the domain, it would be preferable to
refine only the cells in those areas.

The question of how to use an a posteriori error estimator to identify the
cells with the highest contributions to the global error will be discussed in
Section 6. For the time being, we assume that we have already found those
areas of interest and marked them for refinement as illustrated in Fig. 6(a).

(a) Shaded cells marked
for refinement.

(b) Unwanted refinement
of unmarked ares.

(c) Local refinement with
hanging nodes.

Figure 6: Example comparing the refinement of small areas of the domain
without and with hanging nodes.

Simply using a subdivision with axis-aligned rectangles as discussed in Sec-
tion 3, can lead to an unwanted refinement outside the areas of interest,
as illustrated in Fig. 6(b). In order to prevent this, we introduce so-called
“hanging nodes” that allow a locally restricted refinement as illustrated in
Fig. 6(c).

4.1 Hierarchical Subdivision with Hanging Nodes

As before, we subdivide the parameter domain Q into axis-aligned, rectan-
gular cells and require that they form a subdivision of Q (see Fig. 7). Nodes
are again placed at the corners of each cell and the terms edge and elemen-
tary edge are the same as defined in Section 3.1. The whole subdivision is
again referred to by K.

We now distinguish between two kinds of nodes: A node is called primary
node, if it is a boundary node, or if it is an inner node and the vertex of
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(a) (b)

Figure 7: Two examples for subdivisions with hanging nodes:
� . . . Primary node � . . . Hanging node.

exactly four elementary edges. The set of indices of all primary nodes will be
denoted by IP , their total number by NP := |IP |. A node is called hanging
node, if it is an inner node and the vertex of exactly three elementary edges.
The set of indices of all hanging nodes will be denoted by IH . The set of
indices of all nodes will again be denoted by IX . Note that all nodes of
our subdivision are either primary nodes or hanging nodes, i.e. we have
IX = IP ∪ IH .

In addition to the definition given in Section 3.1, we now require an edge to
be continuous in that sense that the whole edge must be represented as a line
in the graphical representation of the subdivision. More formally speaking:
Every point on an edge E(i,j) must either be contained in the boundary of
Q or contained in the closure of at least two different cells. If there is no
such continuous connection, E(i,j) is defined as the empty set.

As before, an edge is called elementary edge, if it contains no node in its
interior. We introduce two additional types of edges that are defined as
follows:

If the two vertices ζ(i) and ζ(j) of the edge E(i,j) both are corners of the
same cell, we call E(i,j) a border edge.

If an edge E(i,j)

• contains at least one hanging node in its interior, and
• contains only hanging nodes in its interior, and
• is maximal,

it is called principal edge. With “maximal”, we mean that the edge can not
be extended beyond ζ(i) or ζ(j), because those nodes are primary nodes, or
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because there is no continuing edge. The nodes ζ(i) and ζ(j) are then called
the parent nodes of all hanging nodes contained in the interior of E(i,j),
and they are also called parent nodes of the edge itself. For illustrations of
principal edges, see Fig. 8 and Fig. 9.

Some examples for the different types of edges appearing in the subdivision
shown in Fig. 7(b) and Fig. 9 are:

E(5,6) . . . elementary edge
E(6,7) . . . elementary edge
E(5,7) = E(5,6) ∪ E(6,7)

E(4,7) = ∅
E(7,9) = ∅
E(10,12) . . . principal edge
E(3,15) . . . principal edge
E(8,9) . . . border edge
E(8,15) . . . border edge
E(15,16) . . . border edge and elementary edge
E(6,14) . . . border edge and principal edge

Note that in a subdivision without hanging nodes, every node is a primary
node, and every elementary edge is a border edge.

To structure the nodes of our subdivision, we assign a level to each node
and require (L1) and (L2) to be valid:

(L1) The level of a primary node is always 1.
(L2) The level of a hanging node is always higher than the levels of its

parent nodes.

We call K an hierarchical subdivision, if K is a partition of Q consisting of
axis-aligned rectangles, and if (L1) and (L2) are fulfilled.

Hanging nodes, their parent nodes, and the levels of those nodes can be
depicted in a directed “node-levels-graph”. In Fig. 8, this is done for the
subdivision in Fig. 7(a): (L1) corresponds to all primary nodes appearing in
the topmost level 1. (L2) means that each hanging node points to exactly
two parent nodes which are of a lower level.

Fig. 9 shows that the subdivision in Fig. 7(b) is not hierarchical: The circular
dependencies of hanging nodes and their parent nodes violate (L2).

Note that a subdivision without hanging nodes always is a hierarchical sub-
division.
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Figure 8: Top: Horizontal (left) and vertical (right) principal edges of the
subdivision in Fig. 7(a). Arrowheads pointing to parent nodes of principal
edges. Bottom: Node-levels-graph (levels indicated by blue boxes on the left).

Figure 9: Example of a subdivision violating (L2). Principal edges and node-
levels-graph shown only for the part in which the violation occurs.
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4.2 Finite Element Space with Hanging Nodes

As in the case without hanging nodes, we choose the space of all piecewise
bi-cubic, globally C1-continuous functions as our finite element space:

Xh := Q1
3(K). (20)

Now, however, we require K to be a hierarchical subdivision.

A function u ∈ Xh is again piecewise uniquely determined by prescribing
function value, first and mixed derivatives at all nodes of the subdivision.
Different to the situation in Section 3, however, we can not choose those
values freely any more.

4.2.1 Illustrative Example regarding C1-Continuity

An illustrative example is shown in Fig. 10. A subdivision without hanging
nodes is depicted in Fig. 10(a). The basis function ϕ̂(i)

0 associated with the
node ζ(i) (in the center, marked by a black circle), is plotted in Fig. 10(b).
The function is piecewise defined by prescribing

∂βϕ̂
(i)
α (ζ(j)) = δ(i,α)(j,β) (21)

at all nodes. As discussed in Section 3, it is globally C1-continuous.

A subdivision with hanging nodes is depicted in Fig. 10(c). If we piecewise
define the basis function ϕ̂

(i)
0 by simply prescribing (21) at all nodes again,

we obtain the piecewise bi-cubic function plotted in Fig. 10(d). Obviously,
this choice of prescribed values leads to discontinuities at some of the edges
containing hanging nodes.

The desired, globally C1-continuous basis function ϕ̂(i)
0 is shown in Fig. 10(e).

As we will discuss in the following subsections, prescribing values at primary
nodes and requiring global C1-continuity already determines the values that
have to be prescribed at hanging nodes.

4.2.2 Condition for Global C1-Continuity

For i ∈ IX , let K(i) be the set of cells that contain ζ(i) in their closure:

K(i) :=
{
K ∈ K : ζ(i) ∈ K

}
. (22)

Note that |K(i)| = 3, if i ∈ IH . The following condition is essential for global
C1-continuity:
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4 Finite-Element-Space with Hanging Nodes

(a) Subdivision with-
out hanging nodes.

(b) “Delta-condition” at all
nodes.

(c) Subdivision with
hanging nodes.

(d) “Delta-condition” both at
primary and at hanging nodes
- discontinuities appear.

(e) “Delta-condition” only at
primary nodes. Specially cho-
sen values prescribed at hang-
ing nodes.

Figure 10: Basis function ϕ̂
(i)
0 associated with the primary node marked by

the black circle, defined over subdivisions with and without hanging nodes.
Piecewise definition through “delta-condition” ∂βϕ̂

(i)
0 (ζ(j)) = δ(i,0)(j,β) and

through a method described in the following sections.

Theorem 4.1. Let K be a hierarchical subdivision of the parameter domain
Q. Let u ∈ Q3(K), and let uK := u|K be its restriction to the closure of a
cell K ∈ K. Then u is C1-continuous over Q, if and only if the condition

∂αuK(ζ(i)) = ∂αuK′(ζ(i)), ∀ α ∈ Iα, ∀K,K ′ ∈ K(i), (23)

is fulfilled for all i ∈ IX .

Proof. Assume that (23) holds for all i ∈ IX . Let E be an elementary edge
of the subdivision K and let ζ(p) and ζ(q) be its vertices as illustrated in
Fig. 11. Let K and K ′ be the two cells that contain E in their closure.
Since we assume that (23) holds for i ∈ {p, q}, we have

∂αuK(ζ(p)) = ∂αuK′(ζ(p))
∂αuK(ζ(q)) = ∂αuK′(ζ(q))

}
∀ α ∈ Iα.
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4 Finite-Element-Space with Hanging Nodes

Figure 11: Examples for two neighbouring cells K and K ′ where E := K ∩K ′

is not necessarily a whole border edge of K and K ′.

Using the same argument as in the proof of Theorem 3.4, we can then show
that u is C1-continuous over the whole elementary edge E. Since E was an
arbitrary edge of our subdivision, we can show that u is C1-continuous over
each elementary edge and thus globally over the whole parameter domain Q.

On the other hand, assume that (23) does not hold for all i ∈ IX , i.e.
assume that there exist indices (i0, α0) ∈ IX × Iα such that, for two cells
K1,K2 ∈ K(i0),

∂α0uK1(ζ
(i0)) 6= ∂α0uK2(ζ

(i0)) (24)

holds. If α0 ∈ {0, 1, 2}, it is obvious that u can not be C1-continuous at ζ(i0).
If α0 = 3, we proceed similar to the proof of Theorem 3.4: Let E := K1∩K2

be the common elementary edge of K1 and K2 containing ζ(i0). Without loss
of generality, assume that E is a vertical edge and let ξ̄1 be its ξ1-coordinate.
Let uj := u|Kj

be the restriction of u to the closure of Kj , j ∈ {1, 2}, and
define the cubic polynomial w : E → R of ξ2:

w(ξ̄1, ·) :=
∂u1

∂ξ1

∣∣∣
E
− ∂u2

∂ξ1

∣∣∣
E
.

If u was globally C1-continuous, then w ≡ 0, which implies w′ ≡ 0, i.e.:

∂2u1

∂ξ1∂ξ2

∣∣∣
E
− ∂2u2

∂ξ1∂ξ2

∣∣∣
E
≡ 0.

This contradicts (24), therefore u can not be globally C1-continuous.

4.2.3 Prescribing Values at the Nodes of the Subdivision

To determine a piecewise bi-cubic polynomial, we prescribe function value,
first and mixed derivative at all nodes of our subdivision. We determine
these values through the following inductive method:

Base Case: Values at Nodes of Level 1
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4 Finite-Element-Space with Hanging Nodes

We prescribe function value, first and mixed derivatives of our choice at all
primary nodes, i.e. at all nodes of level 1.

Induction Assumption: Values at Nodes of Level n

Assume that we have already prescribed value, first and mixed derivatives
at all nodes of levels less or equal to n ∈ N:

λ(i)
α . . . value prescribed for ∂αu at node ζ(i)

for i ∈ {j ∈ IX : level of ζ(j) ≤ n}, α ∈ Iα.

Induction Step: Prescribing Values at Nodes of Level n+ 1

We apply the following procedure to each node ζ(k) of level n+ 1:

Procedure 4.2. (Prescribing values at hanging nodes)
Let E be the principal edge containing ζ(k) and let ζ(p) and ζ(q) be the
parent nodes of E. E can be either horizontal or vertical.

I If E is a vertical principal edge:

B Step 1: Let ξ̄1 be the ξ1-coordinate of E. Define the cubic polynomials
v = v(ξ̄1, ·) and w = w(ξ̄1, ·) by prescribing the following values:

v(ζ(p)) = λ
(p)
0 , v′(ζ(p)) = λ

(p)
2 , v(ζ(q)) = λ

(q)
0 , v′(ζ(q)) = λ

(q)
2

w(ζ(p)) = λ
(p)
1 , w′(ζ(p)) = λ

(p)
3 , w(ζ(q)) = λ

(q)
1 , w′(ζ(q)) = λ

(q)
3

Since we have a hierarchical subdivision, it holds that the levels of ζ(p) and
ζ(q) are less or equal n. Thus, by our induction assumption, we know the
already prescribed values λ(p)

α and λ
(q)
α . The meaning of the polynomials v

and w is similar to the meaning in the proof of Theorem 3.4. Now, we use
these polynomials to prescribe values at the hanging node ζ(k) contained
in E:

B Step 2: Prescribe the following values λ(k)
α for ∂αu(ζ(k)):

λ
(k)
0 := v(ζ(k))

λ
(k)
1 := w(ζ(k))

λ
(k)
2 := v′(ζ(k))

λ
(k)
3 := w′(ζ(k))

I If E is a horizontal principal edge:

This case is treated analogously:
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4 Finite-Element-Space with Hanging Nodes

B Step 1: Let ξ̄2 be the ξ2-coordinate of E. Define the cubic polynomials
v = v(·, ξ̄2) and w = w(·, ξ̄2) by prescribing the following values:

v(ζ(p)) = λ
(p)
0 , v′(ζ(p)) = λ

(p)
1 , v(ζ(q)) = λ

(q)
0 , v′(ζ(q)) = λ

(q)
1

w(ζ(p)) = λ
(p)
2 , w′(ζ(p)) = λ

(p)
3 , w(ζ(q)) = λ

(q)
2 , w′(ζ(q)) = λ

(q)
3

B Step 2: Prescribe the following values λ(k)
α for ∂αu(ζ(k)):

λ
(k)
0 := v(ζ(k))

λ
(k)
1 := v′(ζ(k))

λ
(k)
2 := w(ζ(k))

λ
(k)
3 := w′(ζ(k))

Thus, we have prescribe values for function, first and mixed derivatives at
all nodes of level n+ 1 and the procedure can be repeated inductively until
we have reached the highest level, i.e. until we have prescribed values at all
hanging nodes.

4.2.4 Preliminary Considerations regarding C1-Continuity

Before showing that a piecewise bi-cubic function determined by the method
given in Section 4.2.3 is C1-continuous over Q, we make some preliminary
considerations.

For a cell K ∈ K, we define a “local basis” of Q3(K) analogously to (19):

Definition 4.3. Let K ∈ K, and let Ĝ, h1, h2, and ci be as defined in
Section 3.4.2. For (i, α) ∈ IK × Iα, define ψ̂(i)

α : K → R as follows:

ψ̂
(i)
0 (ξ1, ξ2) := p̂

(ci)
0

(
Ĝ−1(ξ1, ξ2)

)
ψ̂

(i)
1 (ξ1, ξ2) := h1 · p̂(ci)

1

(
Ĝ−1(ξ1, ξ2)

)
ψ̂

(i)
2 (ξ1, ξ2) := h2 · p̂(ci)

2

(
Ĝ−1(ξ1, ξ2)

)
ψ̂

(i)
3 (ξ1, ξ2) := h1 · h2 · p̂(ci)

3

(
Ĝ−1(ξ1, ξ2)

)


(25)

and denote the set of these 16 functions by ΨK :

ΨK :=
{
ψ̂(i)

α , (i, α) ∈ IK × Iα

}
. (26)
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Note that, like Ĝ, h1, h2 and ci, the basis functions ψ̂(i)
α depend on the cell

K on which they are defined. For the sake of readability, however, we do
not explicitly add K as a parameter, because the context should sufficiently
clarify which cell is being referred to.

Certain properties of these functions are summarized in the following Lemma:

Lemma 4.4. (a) ΨK is a basis of Q3(K).

(b) The functions ψ̂(i)
α , (i, α) ∈ IK × Iα satisfy

∂βψ̂
(i)
α (ζ(j)) = δ(i,α)(j,β), ∀ (j, β) ∈ IK × Iα.

(c) Let ζ(k) be a corner of a cell K ∈ K and let E1 and E2 be the two border
edges of K that have ζ(k) as a vertex. Then

ξ ∈ ∂K\(E1 ∪ E2) ⇒ ∂βψ̂
(k)
α (ξ) = 0, ∀ α, β ∈ Iα.

Proof. By direct calculation.

With the basis ΨK at hand, we can easily construct or represent a bi-cubic
polynomial over K such that the function and its first and mixed derivatives
at the corners of K take values of our choice:

Corollary 4.5. Given 16 values λ(i)
α ∈ R, (i, α) ∈ IK × Iα, the polynomial

v(ξ1, ξ2) :=
∑
i∈IK

∑
α∈Iα

λ(i)
α ψ̂(i)

α (ξ1, ξ2)

is the uniquely defined polynomial in Q3(K) fulfilling

∂αv(ζ(k)) = λ(k)
α ∀ (k, α) ∈ IK × Iα.

Proof. Follows from Lemma 4.4(a) and (b).

Let K ∈ K be an arbitrary, but fixed cell. Let E := E(p,q) be a border edge
of K and let uK := u|K be the restriction of a function u ∈ Xh to the closure
of K. As before, we denote the value prescribed for ∂αu at the node ζ(i) by
λ

(i)
α . We know from Corollary 4.5 and Lemma 4.4(c) that we can write

∂β(uK |E) =
∑

k∈IK

∑
α∈Iα

λ(k)
α · ∂βψ̂

(k)
α =

∑
k∈{p,q}

∑
α∈Iα

λ(k)
α · ∂βψ̂

(k)
α (27)

for any β ∈ Iα. This formalizes that function value, first and mixed deriva-
tives of uK |E only depend on the values, first and mixed derivatives at the
vertices of E, but not at the other nodes. Even though the size of the cell
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4 Finite-Element-Space with Hanging Nodes

is implicitly included in (27) due to the definition of the basis functions ψ̂(i)
α

in (25), one can show by direct calculation that ∂β(uK |E) depends on the
length of E, but not on the size of K in the other coordinate direction. Note
that these aspects were already used implicitly in the proof of Theorem 3.4.
A consequence that can be easily verified by direct calculation is formulated
as a remark for later reference:

Remark 4.6. Let K, E = E(p,q), uK , and λ
(i)
α be as defined above. Let

v(p,q) and w(p,q) be the univariate cubic polynomials that are determined
over E by the values λ(i)

α , (i, α) ∈ {p, q} × Iα as in Step 1 of Procedure 4.2.
Then v(p,q) and w(p,q) uniquely determine function value, first and mixed
derivatives of uK over the whole border edge E.

The following observation is also formulated as a remark for later reference:

Remark 4.7. Two univariate cubic polynomials f and g are globally equal,
if they have the same function value and first derivatives at two different
points, i.e. if

f(s) = g(s), f ′(s) = g′(s), f(t) = g(t), f ′(t) = g′(t), for s 6= t,

then f ≡ g globally.

4.2.5 C1-Continuity over a Hierarchical Subdivision

The following Lemma shows that the piecewise bi-cubic function determined
as described in in Section 4.2.3 is globally C1-continuous:

Lemma 4.8. Let u ∈ Q3(K) be piecewise defined by prescribing values for
function, first and mixed derivatives the corners of each cell K ∈ K. If
those values are determined as described in Section 4.2.3, then u is globally
C1-continuous.

Proof. From Theorem 4.1, we know that it is sufficient to show that (23) is
fulfilled at all nodes of our subdivision. Let ζ(i) be an arbitrary node of our
subdivision and let λ(i)

α denote the values prescribed through the described
procedure. As before, let uK := u|K denote the restriction of u to the closure
of a cell K ∈ K.

If ζ(i) is a primary node, the values λ(i)
α were chosen freely. A primary node

automatically is a corner of all cells K ∈ K(i). Hence, if i ∈ IP , (23) holds
due to the piecewise definition of u.

If ζ(i) is a hanging node, then ζ(i) is the corner of two cells and contained in
the border edge of a third cell (see Fig. 12 for reference). Let K1,K2 ∈ K(i)
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4 Finite-Element-Space with Hanging Nodes

Figure 12: Illustration of three cells containing a hanging node ζ(i) in their
closures.

denote the two cells that have ζ(i) as a corner. From the definition of u, it
directly follows that

∂αuK1(ζ
(i)) = λ(i)

α and ∂αuK2(ζ
(i)) = λ(i)

α (28)

for all α ∈ Iα.

Let K0 ∈ K(i) be the cell that contains ζ(i) in a border edge E, but does not
have ζ(i) as a corner. Let ζ(s) and ζ(t) denote the vertices of E. Let E∗ be
the principal edge containing ζ(i) and let ζ(p) and ζ(q) be the parent nodes
of E∗. E∗ also contains ζ(s) and ζ(t).

The values λ(s)
α and λ

(t)
α are determined in Step 2 of Procedure 4.2 by the

two univariate cubic polynomials v and w that, in turn, are determined over
E∗ by the values λ(p)

α and λ
(q)
α . The values λ(s)

α and λ
(t)
α analogously define

two univariate polynomials on E that we denote by v(s,t) and w(s,t). As
mentioned in Remark 4.7, we have v(s,t) ≡ v|E and w(s,t) ≡ w|E . From
this, it follows with Remark 4.6 and the fact that the values λ(i)

α are also
determined by v and w that

∂αuK0(ζ
(i)) = λ(i)

α , ∀ α ∈ Iα.

If ζ(s) = ζ(p) or ζ(t) = ζ(q) or both, the same argument holds. With (28),
this means that, (23) holds for all K,K ′ ∈ K(i), if i ∈ IH . Thus, (23) holds
for all i ∈ IP ∪ IH = IX which prooves the global C1-continuity of u.

4.3 Basis Functions of Finite Element Space with Hanging
Nodes

We choose the following modification of condition (14) to define our basis
functions over a hierarchical subdivision with hanging nodes:

Theorem 4.9. For a fixed (i, α) ∈ IP×Iα, let the piecewise bi-cubic function
ϕ̂

(i)
α be determined through the 4 ·NP conditions

∂βϕ̂
(i)
α (ζ(j)) = δ(i,α)(j,β), ∀ (j, β) ∈ IP × Iα (29)
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at primary nodes, and by prescribing values at hanging nodes as described
in Section 4.2.3. Then the set of functions

Φ :=
{
ϕ̂(i)

α , (i, α) ∈ IP × Iα

}
(30)

is a basis of Xh.

Proof. From Lemma 4.8, we know that the given definition results in globally
C1-continuous functions ϕ̂(i)

α , thus Φ ⊆ Xh. Linear independence can be
shown with the same argument as in Lemma 3.6.

Let f be an arbitrary but fixed function in Xh and let g be defined by

g := f −
∑
i∈IP

∑
α∈Iα

µ(i)
α ϕ̂(i)

α

where µ(i)
α := ∂αf(ζ(i)) for i ∈ IP . Obviously, we have

∂αg(ζ(i)) = 0, ∀ (i, α) ∈ IP × Iα. (31)

Because g ∈ Xh, condition (23) holds for g and all i ∈ IX .

Let E(p,q) be a princial edge of the subdivision. As mentioned in Remark
4.6, the values ∂αg, α ∈ Iα piecewise define univariate polynomials v(i,k) and
w(i,k) over the each border edge E(i,k) contained in E(p,q).

Figure 13: Illustration of overlapping border edges on a principal edge.

An important property of a principal edge is that the border edges contained
in it always overlap (as illustrated in Fig. 13). Hence, with Remark 4.7 and
(23), it follows that the piecewise cubic polynomials v(i,k) and w(i,k) are
segments of cubic polynomials v and w defined over the whole princial edge.
These cubic polynomials v and w, in turn, are determined by function value,
first and mixed derivatives of g at the parent nodes. If a parent node is a
primary node, then v and w and their first derivatives are zero due to (31).
If a parent node is a hanging node, we can repeat the argument recursively
until we reach primary nodes, because K is a hierarchical subdivision. Hence,
with (31), we obtain

∂αg(ζ(i)) = 0, ∀ (i, α) ∈ IX × Iα.

Therefore, g ≡ 0 and f can be represented as a linear combination of func-
tions in Φ. Since f ∈ Xh was arbitrary, Φ is a basis of Xh.
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Remark 4.10. A direct consequence of Theorem 4.9 is that the dimension
of Xh is 4 ·NP , i.e. the number of degrees of freedom of the discrete solution
only depends on the number of primary nodes. Note that the definition of
the basis functions given in Section 3 is a special case of the definition given
here, because IP = IX and NP = NX in a subdivision without hanging
nodes.

4.4 Local Representation of Basis Functions

As usual in FEM, the stiffness matrix Kh and the right-hand side f
h

in
equation (8) are assembled cell-wise. For each cell, its contributions to the
integrals a(ϕ̂(j)

β , ϕ̂
(i)
α ) and 〈F, ϕ̂(i)

α 〉 are calculated. To do this, we need to
know which basis functions have support in a cell K, and we need to find
their local representation on K.

We define the set of ancestors of a node ζ(j):

Anc(ζ(j)) :=
{
{ζ(j)}, if j ∈ IP

Anc(ζ(p)) ∪ Anc(ζ(q)), else, i.e. if j ∈ IH ,

where ζ(p) and ζ(q) are the parent nodes of ζ(j) in the case j ∈ IH .

We also define the set of ancestors of a cell K:

Anc(K) :=
⋃

i∈IK

Anc(ζ(i)).

For example, consider the subdivision in Fig. 8:

Anc(ζ(7)) = Anc(ζ(6)) ∪ Anc(ζ(8))
= {ζ(6)} ∪ Anc(ζ(3)) ∪ Anc(ζ(14)) = {ζ(3), ζ(6), ζ(14)}.

Let K refer to the cell in Fig. 8 that has ζ(6), ζ(7), ζ(9), and ζ(10) as its
vertices. Then

Anc(K) = {ζ(3), ζ(6), ζ(11), ζ(14)}.

Let (i, α) ∈ IP × Iα and K ∈ K be arbitrary but fixed. Naturally, the
restriction of the basis function ϕ̂

(i)
α ∈ Xh to K is bi-cubic, therefore it

can be represented locally as a linear combination of local basis functions
ψ̂

(j)
β ∈ ΨK :

ϕ̂(i)
α |K =

∑
j∈IK

∑
β∈Iα

λ
(j)
β ψ̂

(j)
β . (32)
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The coefficients λ(k)
β are the values defined by (29) at primary nodes and

determined at hanging nodes through the procedure given above in Section
4.2.3. Note that the coefficients λ(j)

β depend on i and α, so actually λ(j)
β =

λ
(j)
β (i, α). We determine these coefficients λ(j)

β by the following method that
can be interpreted as a reversal of Procedure 4.2:

Procedure 4.11. (Determination of coefficients for local representation)

I If ζ(j) is a primary node:

B λ
(j)
β := δ(i,α),(j,β).

I If ζ(j) is a hanging node:

B Find the parent nodes ζ(p) and ζ(q) of ζ(j).

B Determine λ(p)
β = λ

(p)
β (i, α) and λ

(q)
β = λ

(q)
β (i, α), β ∈ Iα by ap-

plying this Procedure 4.11 recursively to ζ(p) and ζ(q).

B Apply Procedure 4.2 to derive the four values λ(j)
β , β ∈ Iα from

the values λ(p)
β and λ(q)

β .

The recursion terminates, because the procedure is applied to nodes with
decreasing levels until level 1, i.e. until a primary node is reached. The
set of primary nodes that are reached by this method is Anc(ζ(j)). The
consequence is formulated in the following lemma:

Lemma 4.12. Let K ∈ K and let ϕ̂(i)
α be an arbitrary, but fixed basis func-

tion of Xh. Then

ζ(i) /∈ Anc(K) ⇒ supp(ϕ̂(i)
α ) ∩K = ∅.

Proof. Follows from the definition of ϕ̂(i)
α : If ζ(i) /∈ Anc(K), we obtain λ(j)

β =

0, for all (j, β) ∈ IK × Iα, and therefore ϕ̂(i)
α |K ≡ 0.

4.5 Edge Insertion into a Hierarchical Subdivision

We define the term edge insertion, as dividing one cell K ∈ K into two cells
by inserting an axis-aligned edge as illustrated in Fig. 14.

Since we have to insert edges in order to refine all or some selected cells, we
need to discuss the effects of such an edge insertion on the structure of the
subdivision K and on the function space Xh.

Lemma 4.13. Let K be a hierarchical subdivision and let K‡ be the subdi-
vision resulting from K and an edge insertion. Then K‡ is a hierarchical
subdivison.
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Proof. When a new edge is inserted into a hierarchical subdivision, two cases
can appear at its vertices:

Case 1: A new “T-shaped junction” is created, thus creating a new hanging
node (such as node ζ(17) in Fig. 14).

Case 2: An already existing “T-shaped junction” is changed into an “X-
shaped junction”, i.e. an already existing hanging node is changed into a
primary node (such as node ζ(5) in Fig. 14).

(a) Before inserting a horizontal edge
into the shaded cell.

(b) After edge insertion: ζ(17) is a new
hanging node. Former hanging node ζ(5)

has become a primary node.

Figure 14: Example of a hierarchical subdivision before and after an edge
insertion with corresponding node-levels-graphs.

Case 1: Creation of a New Hanging Node ζ(p)

The node is created on a principal edge and has two parent nodes. On the
new, inserted edge, there are no nodes which have ζ(p) as a parent node. The
new node ζ(p) only needs to get assigned a level that is higher than the levels
of its parent nodes to make sure that the subdivision remains hierarchical.

Case 2: Changing a Hanging Node ζ(q) into a Primary Node

The new primary node splits a principal edge E containing ζ(q) into two
principal edges E1 and E2, both of which have ζ(q) as a parent node (in
Fig. 14, principal edge E(3,14) is split into the principal edges E(3,5) and
E(5,14)).
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Let ζ(i) be a hanging node that was on E (such as ζ(10) in Fig. 14). Depend-
ing on its position on E, one of the parent nodes of ζ(i) is replaced by ζ(q).
Since K was a hierarchical subdivision before the edge insertion, ζ(i) has a
higher level than the other parent node. Because the level of a primary node
is always set to 1, ζ(i) has a higher level than ζ(q) as well.

A node ζ(j) that had ζ(q) as a parent node before the edge insertion (such as
ζ(6) in Fig. 14), still has ζ(q) as parent node. Before the insertion, the level
of ζ(j) was higher than the level of ζ(q). This is not changed by setting the
level of ζ(q) to 1.

Note that in Fig. 14(b), the level of node ζ(6) is 4, while the levels of its
parent nodes are 1 and 2. One could shift node ζ(6) to level 3 and node
ζ(11) to level 4. However, this is not necessary for showing that the new
subdivision is hierarchical, because (L2) is fulfilled either way.

Theorem 4.14. Let K be a hierarchial subdivision and let K‡ be the sub-
division resulting from K and an edge insertion. Let Xh := Q1

3(K) and
X‡

h := Q1
3(K‡) be the finite element spaces defined over those subdivisions,

then the inclusion

Xh ⊆ X‡
h (33)

holds.

Proof. Let K be the cell of the subdivision K that is split into the two cells
K ′ and K ′′ of K‡. Obviously, a bi-cubic function over K can be represented
exactly by two bi-cubic functions defined over K ′ and K ′′, thus Q1

3(K) ⊆
Q1

3(K‡).

Because of Lemma 4.13, we know that K‡ is a hierarchical subdivision,
therefore we can define basis functions of X‡

h analogous to (29) and (30).

4.6 Implemented Cell Refinement Procedure

As discussed in Section 4.3, we do not gain any degrees of freedom by in-
serting hanging nodes. Therefore, at least one new primary node should
be created when refining a cell. In our case, we define a cell refinement as
inserting one new primary node inside the cell, thereby splitting the cell
into four smaller axis-aligned cells as illustrated in Fig. 15. This way, at
least four new degrees of freedom are gained. Such a cell refinement can be
interpreted as repeating the discussed edge insertions three times, therefore
the statements of Lemma 4.13 and Theorem 4.14 hold.
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4 Finite-Element-Space with Hanging Nodes

The more general considerations in Sections 4.3 and 4.5 were made so that
other refinement procedures are also covered. Fig. 16 shows examples of
alterative procedures that can be realized by consecutive edge insertions.

Figure 15: Cell refinement through three consecutive edge insertions.

Figure 16: Examples of possible alternative cell refinement procedures.

4.6.1 Cell Refinement on a Structured Grid

In the actual implementation, a very specific way of refining cells was cho-
sen. If two neighbouring cells are both refined, we want a primary node
to be created at their common edge. Even stronger, we make the following
requirement: Let K and K ′ be two cells that share a whole border edge E
as illustrated in Fig. 17, i.e. E is an elementary edge. Assume that cell K
is refined, creating a new hanging node ζ(p) on E. The smaller cells that K
is split into may or may not be refined in the further process. Either way,
as soon as cell K ′ is refined, it must be done so that ζ(p) is changed into a
primary node.

Now, assume that the cell K ′′ to the east of cell K ′ in Fig. 17 is also refined
before cell K ′, creating a hanging node ζ(q) on their common edge E′. When
refining cell K, the stated requirement has to be fulfilled at ζ(p) and ζ(q),
i.e. by inserting one horizontal edge, both nodes have to be changed into
primary nodes. This implies that the nodes which are inserted in the course
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4 Finite-Element-Space with Hanging Nodes

Figure 17: Illustration of the refinement of two neighbouring cells K and K ′.
The node ζ(p) marked by the red circle must be the first to be changed into a
primary node, when cell K ′ is refined.

of cell refinement have to be aligned on a grid. Additionally, we require
that ζ(p) and ζ(q) are changed into primary nodes when refining cell K ′,
regardless of how many other hanging nodes have been created on E and
E′. This implies that the grid needs to be structured somehow.

We define such a structured grid via two coordinate vectors T1 and T2.
In order not to confuse them with nodes of the subdivision or knots of the
geometry mapping (see Section 5), the entries ξ(i)k , k ∈ {1, 2} of these vectors
Tk are referred to as ticks. As illustrated in Fig. 18(a), one can think of T1

and T2 as ticks on the two coordinate axes, which motivates the use of this
term.

To each tick ξ
(i)
k , we assign a ticks-layer that we denote with TicksL(ξ(i)k )

(we choose the term “layer” instead of “level” in order to avoid confusion
with the levels of nodes introduced in Section 4.1).

We construct T1 and T2 iteratively as follows:

Procedure 4.15. (Construction of ticks for Tk, k ∈ {1, 2})

I Initialization:
Define

T 0
k := (ξ(1)k , ξ

(2)
k , . . . , ξ

(nk)
k )

as the sorted sequence of ξk-coordinates of nodes in the initial subdi-
vision, i.e. ξ(1)

k = 0, ξ(nk)
k = 1, and ξ

(i)
k < ξ

(i+1)
k ,∀ i ∈ {1, . . . , nk − 1}.

Assign ticks-layer 0 to each tick in T 0
k .

I Ticks-insertion in the coordinate vector TL
k , L ≥ 0:

For each i ∈ {1, . . . , |TL
k | − 1}, define a new tick ξ̄(i)k in the interior of
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4 Finite-Element-Space with Hanging Nodes

(a) Example of a grid and ticks-layers with
highest ticks-layer Lmax = 3.

(b) Refinement of the cells shaded gray, based on the grid in (a).

Figure 18: Illustration of a structured grid with ticks in both coordinate-
directions (a) and cell refinements based on that grid (b).

the interval (ξ(i)k , ξ
(i+1)
k ) and assign the following ticks-layer:

TicksL(ξ̄(i)k ) := max
{

TicksL(ξ(i)k ),TicksL(ξ(i+1)
k )

}
+ 1

I Iteration:
Define

TL+1
k := (ξ(1)k , ξ̄

(1)
k , ξ

(2)
k , ξ̄

(2)
k . . . , ξ̄

(nk−1)
k , ξ

(nk)
k )

and repeat step ticks-insertion with TL+1
k iteratively until the desired

ticks-layer Lmax is reached. Then, set Tk := TLmax
k .

The resulting two coordinate vectors T1 and T2 define a grid such as illus-
trated in Fig. 18(a). Note that the new tick ξ̄(i)k in step ticks-insertion is not
necessarily the midpoint (ξ(i)k + ξ

(i+1)
k )/2 of the interval. In Section 5.2.2,

we will discuss an alternative procedure for determining ξ̄(i)k .

Once we have defined T1 and T2, we refine a cell K as follows:
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Procedure 4.16. (Cell-refinement on a structured grid)

I Find the ticks ξ(w)
1 , ξ(e)1 , ξ(s)2 , and ξ

(n)
2 , such that K = [ξ(w)

1 , ξ
(e)
1 ] ×

[ξ(s)2 , ξ
(n)
2 ] (i.e. the ticks define the “western”, “eastern”, “southern”,

and “northern” boundaries of K).

I Let Lw, Le, Ls, and Ln be the ticks-layers of ξ(w)
1 , ξ(e)1 , ξ(s)2 , and ξ(n)

2 ,
respectively.

I Find the unique tick ξ
(m)
1 between ξ

(w)
1 and ξ

(e)
1 and the unique tick

ξ
(m)
2 between ξ(s)2 and ξ(n)

2 , such that

TicksL(ξ(m)
1 ) = max{Lw, Le}+ 1.

TicksL(ξ(m)
2 ) = max{Ls, Ln}+ 1.

I Insert a new node ζ(NX+1) at the coordinates (ξ(m)
1 , ξ

(m)
2 ) and split the

cell K into four cells by inserting edges at the coordinates of ζ(NX+1).

Illustrations for this procedure are given in Fig. 18(b) and Fig. 19.

4.6.2 Advantages/Disadvantages of using a Structured Grid

Procedure 4.16 described above allows a new definition of parent nodes: A
new primary node is inserted at the coordinates (ξ(m)

1 , ξ
(m)
2 ), which triggers

the insertion of up to four new hanging nodes. Each one of these hanging
nodes is inserted on a border edge ofK, and we can define the vertices of that
border edge to be the parent nodes of the new hanging node. For example,
assume that a new hanging node is inserted in the “southern” border edge of
K, i.e. at the coordinates (ξ(m)

1 , ξ
(s)
2 ). Then, the parent nodes of this node

would be the “southwestern” corner of K (at the coordinates (ξ(w)
1 , ξ

(s)
2 ))

and the “southeastern” corner of K (at the coordinates (ξ(e)1 , ξ
(s)
2 )).

With this definition, it is possible to assign levels to each node such that
(L1) and (L2) are fulfilled. In Fig. 19, some examples for node-levels-graphs
in this new setting are shown. The difference to the previous version is that
now two nodes can only have one “child node” in common. For example,
see Fig. 19(a): With the previous definition, the nodes ζ(2), ζ(3), ζ(4), and
all hanging nodes east of node ζ(4) would have the same parent nodes ζ(1)

and ζ(5) (the latter is outside the plotted region of the subdivision). In the
new setting, ζ(4) is the only node that has ζ(1) and ζ(5) as parent nodes.
The parent nodes of ζ(3) are ζ(1) and ζ(4).
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4 Finite-Element-Space with Hanging Nodes

A big advantage of this new definition combined with Procedure 4.16 is
that the parent nodes do not change in the course of refinement, which is
also illustrated in Fig. 19: The node ζ(4) changes from a hanging node in
Fig. 19(a) to a primary node in Fig. 19(b). With the previous definition
of parent nodes, we would have to re-assign one parent node to all other
hanging nodes on the edge E(1,5). With the new definition, however, this is
not the case, as illustrated by the node-levels-graph of Fig. 19(b).

Since (L1) and (L2) are still fulfilled, all statements that were made for
hierarchical subdivisions still hold.

With this procedure, we limit ourselves to inserting one node per cell at a
time and neglect other refinement strategies such as those in Fig. 16, which
might be perceived as a disadvantage.

Another disadvantage is that the depth of the recursion in Procedure 4.11
for determining the coefficients λ(i)

α at a hanging node is larger. For example,
in Fig. 19(a), instead of directly calculating λ(2)

α from the values at ζ(1) and
ζ(5), we have to recursively carry out similar calculations for ζ(3) and ζ(4).

This disadvantage, however, can be countered in the following setting: As-
sume that, in step ticks-insertion of Procedure 4.15, the new ticks ξ̄(i)k are
inserted at the midpoints (ξ(i)k + ξ

(i+1)
k )/2. In this case, with the new defini-

tion of parent nodes, every hanging node is exactly the midpoint of its two
parent nodes.

Let v be a cubic polynomial over the interval [p, q] with size h := |q − p|.
Then v and v′ at the midpoint of the interval are given by

v

(
p+ q

2

)
=

1
2

(
v(p) + v(q)

)
+
h

8

(
v′(p)− v′(q)

)
, (34)

v′
(
p+ q

2

)
= − 3

2h

(
v(p)− v(q)

)
− 1

4

(
v′(p) + v′(q)

)
. (35)

In Procedure 4.2, the values of v and v′ at p and q correspond to the coeffi-
cients λ(i)

α , i ∈ {p, q}. Thus, Step 2 of Procedure 4.2 is reduced to evaluating
(34) and (35) from the known coefficients λ(i)

α at the parent nodes and the
easily calculated distance h between the parent nodes, without actually hav-
ing to construct and evaluate v.

4.7 Incorporation of Boundary Conditions

Boundary nodes are always primary nodes, therefore the incorporation of
boundary conditions is done exactly the same way as in a subdivision with-
out hanging nodes and as described in Section 3.5.
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4 Finite-Element-Space with Hanging Nodes

(a) Cells marked for refinement shaded gray. Any two parent nodes have only one “child
node” in common.

(b) Parent nodes of hanging nodes remain unchanged after a refinement step. Cells
marked for the next refinement step shaded gray.

(c) Parent nodes remain unchanged. Shifting hanging nodes ζ(2), ζ(8), and ζ(10) to level
2 is possible, but not necessary.

Figure 19: Subdivisions and corresponding node-levels-graphs illustrating the
new definition of parent nodes. (L1) and (L2) are fulfilled. Node ζ(5) is outside
the plotted area.
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5 NURBS Geometry Mapping

5.1 Introduction to B-Splines and NURBS

At first, we give an overview of the construction of B-splines and Non-
Uniform Rational B-Spline (NURBS) basis functions [8, 10, 11].

5.1.1 B-Spline Basis Functions

Definition 5.1. Let p ∈ N0 and let η = (η1, . . . , ηm) be a sequence of knots
in the parameter space with ηi ≤ ηi+1 for all i. The n = m−p−1 univariate
B-spline basis functions Bi,p : [η1, ηm] → R are defined recursively as follows:

Bi,0(ξ) :=
{

1 for ηi ≤ ξ < ηi+1

0 else
(36)

Bi,p(ξ) :=
ξ − ηi

ηi+p − ηi
Bi,p−1(ξ) +

ηi+p+1 − ξ

ηi+p+1 − ηi+1
Bi+1,p−1(ξ). (37)

p is called the degree of the B-spline basis functions and η the knot vec-
tor. A knot vector is called uniform, if the knots are equally-spaced in the
parameter space, and non-uniform otherwise.

Whenever a zero denominator appears in (37), the corresponding function
Bi,p is zero, so the whole fraction can be considered zero. Examples for B-
splines of degrees 0 to 3 over a uniform knot vector are depicted in Fig. 20;
quadratic B-splines over a non-uniform knot vector are shown in Fig. 21(a).

The following properties of B-spline basis functions are illustrated in Fig. 20
and Fig. 21(a): The support of the basis function Bi,p is contained in the in-
terval [ηi, ηi+p+1]. In general, a B-spline is continuous, if its degree is greater
or equal to 1, and B-splines of degree p have p− 1 continuous derivatives. If
an interior knot is repeated k times, the number of continuous derivatives
decreases by k. If an interior knot appears exactly p times, the function is
interpolatory (compare η6 = η7 = 3 in Fig. 21(a)).

On the interval [ηp+1, ηn−p], the B-spline basis functions form a partition
of 1, i.e.:

∀ ξ ∈ [ηp+1, ηn−p] :
n∑

i=1

Bi,p(ξ) = 1. (38)

If the first and the last knot appear p + 1-times, the functions are interpo-
latory at the beginning and the end of the interval, and (38) holds for all
ξ ∈ [η1, ηn] (see Fig. 21(a)).
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5 NURBS Geometry Mapping

Figure 20: B-spline basis functions of degrees 0,1,2, and 3 with the uniform
knot vector η = (0, 1, 2, 3, 4, 5). No repeated knots, the functions are in Cp−1.

A knot vector in which the first and the last knot appear p+1 times is called
an open knot vector. This is the standard in CAD literature and from now
on, we will only consider open knot vectors.

5.1.2 B-Spline Curve and NURBS Curve

A B-spline curve in Rd is constructed as a linear combination of B-spline
basis functions with coefficients Pi ∈ Rd. These points Pi are referred to
as control points; the piecewise linear interpolation of the control points
is called control polygon. For n basis functions Bi,p, i ∈ {1, . . . , n} and n
control points Pi ∈ Rd, the piecewise polynomial B-spline curve is given by:

C(ξ) :=
n∑

i=1

Bi,p(ξ) · Pi. (39)

We will also refer to p as the degree of the B-spline curve C.

As an example, Fig. 21(b) depicts the B-spline curve that results from the
basis functions in Fig. 21(a) and the illustrated, arbitrarily chosen control
polygon. Each control point Pi of the B-spline curve is associated with
one basis function Bi,p. The curve in Fig. 21(b) is interpolatory at P1, P5,
and P8, which corresponds to B1,2(0) = 1, B5,2(3) = 1, and B8,2(5) = 1,
respectively.
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(a) p = 2, i.e. generally C1-continuity. Non-uniform open knot vector
η = (0, 0, 0, 1, 2, 3, 3, 4, 5, 5, 5). Knot at ξ = 3 appears p-times: Inter-
polatory function and only C0-continuity. Interpolatory functions at
the beginning and the end of the interval.

(b) B-spline curve resulting from basis functions in Fig. 21(a) and the
shown set of control points. Curve is interpolatory at the control points
P1, P5, and P8. Effects of changing the position of P4 indicated by
semi-transparent curves.

Figure 21: Example of quadratic B-spline basis functions and an associated
B-spline curve defined by a random set of control points.

As mentioned, repeating an interior knot reduces the differentiability of the
B-spline basis functions. Hence, if an interior knot ηj appears twice, a B-
spline curve with degree p = 2 is not continuously differentiable at ηj .

Another possibility of constructing a B-spline curve that is interpolatory at
an “interior” control point is the following: Let C be a B-spline curve of
degree p = 2, defined over an open knot vector η with no repeated interior
knots. For 2 ≤ j ≤ n−1, let ηj+2 be an interior knot of η and let Pj = Pj+1

be a double control point. Then, due to the properties of the B-spline basis
functions, direct calculation yields

C(ηj+2) =
n∑

i=1

Bi,2(ηj+2) · Pi

= Bj,2(ηj+2) · Pj +Bj+1,2(ηj+2) · Pj+1 = Pj ,
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hence, C is interpolatory at Pj . Furthermore, one can calculate directly that

C ′(ηj+2) = 0,

i.e. the tangent vector of C vanishes at Pj . Note that, even though a cusp,
i.e. a “visual discontinuity” of the tangent vector may appear at Pj , the
curve is still continuously differentiable at Pj .

If d = 2 and a control point appears three times, i.e. if we have Pj = Pj+1 =
Pj+2, then C ′ vanishes over the whole interval [ηj+2, ηj+3] and C(η) = Pj

for all η ∈ [ηj+2, ηj+3]. In this case, the curve C is not injective.

Since each basis function has only small support, the position of a single
control point effects the shape of the curve only over a small part. Hence,
B-spline curves can be easily edited locally by moving a control point. This
is also illustrated in Fig. 21(b) by the semi-transparently indicated positions
of control point P4 and the resulting changed curves.

Some important geometric entities such as circles can not be exactly repre-
sented using only B-splines. For this, it is necessary to introduce Rational
B-Splines. We associate a weight wi with each control point Pi and define a
NURBS curve as follows:

CR(ξ) :=
n∑

i=1

Rp
i (ξ) · Pi,

with the NURBS basis functions

Rp
i (ξ) :=

Bi,p(ξ) · wi∑n
j=1Bj,p(ξ) · wj

.

If all weights wi are equal, we have Rp
i = Bi,p due to (38).

In Fig. 22, the unit circle is represented exactly by a NURBS curve. For
comparison, the B-spline curve using the same control points is plotted as
well. The geometry data is given in Appendix B.1.

For the sake of completeness, we mention that NURBS in Rd can be in-
terpreted as images of B-splines in Rd+1 under projective transformation.
This aspect, however, has no influence on the topic of this theses; see [8] for
details.

5.1.3 B-Spline- and NURBS-Surface, Geometry Mapping G

Definition 5.2. Given a control net of points Pi,j ∈ R2, (i, j) ∈ {1, . . . , n}×
{1, . . . , n∗} and corresponding weights wi,j ∈ R, the two-dimensional NURBS
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Figure 22: Exactly represented unit circle as example for a quadratic NURBS-
curve with control polygon (plotted in red) and non-uniform knot vector (for
complete geometry data see Appendix B.1).

surface is defined by

G(ξ1, ξ2) :=
n∑

i=1

n∗∑
j=1

R(p,p∗)
(i,j) (ξ1, ξ2) · Pi,j (40)

with the bivariate NURBS basis functions

R(p,p∗)
(i,j) (ξ1, ξ2) :=

Bi,p(ξ1) ·B∗
j,p∗(ξ2) · wi,j∑n

k=1

∑n∗

l=1Bk,p(ξ1) ·B∗
l,p∗(ξ2) · wk,l

(41)

where Bi,p and B∗
j,p∗ are two families of B-spline basis functions defined

by two degrees p and p∗ and two knot vectors η = (η1, . . . , ηn+p+1) and
η∗ = (η∗1, . . . , η

∗
n∗+p∗+1).

An example for a NURBS surface is depicted in Fig. 23(a). In order to ex-
clude mappings that penetrate themselves, we require G to be bijective. An
example for a NURBS surface that is not injective is illustrated in Fig. 23(b).

Some properties of B-spline basis functions are inherited by NURBS basis
functions. The support of the NURBS basis function R(p,p∗)

(i,j) is contained in
[ηi, ηi+p+1]× [η∗j , η

∗
j+p∗+1]. Accordingly, changing the position of one control

point effects the shape of the NURBS surface only locally. The continuity
of the NURBS basis function is the same as in case of B-splines, i.e. if
an interior knot is repeated k times, the number of continuous derivatives
decreases by k.

If all weights wi,j are equal, we again have

R(p,p∗)
(i,j) (ξ1, ξ2) = Bi,p(ξ1) ·B∗

j,p∗(ξ2)

and (40) defines a B-spline surface.
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(a) Example for NURBS surface. (b) Example for self-penetrating
NURBS surface.

Figure 23: Examples for NURBS surfaces depicted with control polygons. Self-
penetrating mappings such as in Fig. (b) are not considered in this thesis.

Definition 5.3. From now on, whenever we discuss the global mapping

G : Q → Ω ⊂ R2

ξ 7→ G(ξ),

we will be referring to a continuous, bijective NURBS surface as defined in
(40), unless specified otherwise. Its Jacobian will be denoted by

J := ∇ξG =
(
∂G1/∂ξ1 ∂G1/∂ξ2
∂G2/∂ξ1 ∂G2/∂ξ2

)
.

Edges in the parameter domain are mapped by G to curved lines in the
physical domain. To simplify descriptions, we will also refer to these lines
as “edges” in some places.

5.2 Different Representations of the same Physical Domain

The representation of a physical domain Ω as a NURBS surface with param-
eter domain Q is not unique. An example illustrates the different properties
of two different geometry mappings representing the same physical domain:

5.2.1 Illustrative Example

Fig. 24 shows a plate with a circular hole around the origin. Fig. 24(a)
and Fig. 24(b) illustrate how segments of the boundary of the parameter
domain are mapped to segments of the boundary of the physical domain.
The “southern” boundary (ξ1, 0) ∈ Q is mapped to the circular curve which
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can be represented exactly using quadractic NURBS basis functions. The
point (0.5, 1) ∈ Q on the “northern” boundary is mapped to the point
(−4, 4) ∈ Ω, which is a corner. We can construct this corner in two different
ways.

Using quadratic NURBS basis functions, a basis function is interpolatory
at an interior knot that appears twice. Thus, we can construct the corner
by using a double knot at at ξ1 = 0.5, which corresponds to the diagonal
x2 = −x1 in the physical domain. We will refer to this parametrization as
“K”. The geometry and the control polygon are depicted in Fig. 24(c), the
complete geometry data is given in Appendix B.2. As a consequence of the
double interior knot, the mapping G is not continuously differentiable at the
line ξ1 = 0.5. This is indicated in Fig. 24(c), where the edges plotted in blue
bend sharply along the diagonal.

We can also construct the corner by placing a double control point at
the coordinates (−4, 4), as illustrated in Fig. 24(d). We will refer to this
parametrization as “P”. The geometry data is given in Appendix B.3. The
mapping G remains C1-continuous in the interior of Q. The disadvantage
of this method is that some cells in Ω are strongly distorted, and that the
gradient of the mapping can change rapidly. Even though the same, equally
spaced subdivision of the parameter domain was used in Fig. 24(c) and
Fig. 24(d), the cells in the physical domain are distorted much stronger in
Fig. 24(d).

5.2.2 A Method for more Balanced Edge-Splitting in the Physical
Domain

A method for compensating this effect is discussed in [8] and can be applied
to our subdivisions. It suggests a non-equally spaced subdivision of the
parameter domain that leads to a more balanced subdivision of the physical
domain.

Consider a subdivision of Q and a “vertical column” of cells between the
ξ1-ticks ξ(i)1 and ξ

(i+1)
1 (like the cells shaded gray in Fig. 25). To refine the

whole column, we introduce a new ξ1-tick ξ̄1 between those two ticks. If the
refinement, i.e. the “edge-splitting” was equally spaced in the parameter
domain, we would simply choose

ξ̄1 :=
ξ
(i)
1 + ξ

(i+1)
1

2
.

This choice, however, might fail to split the images of the “southern” edge
[ξ(i)1 , ξ

(i+1)
1 ] × {0} and the “northern” edge [ξ(i)1 , ξ

(i+1)
1 ] × {1} in half. Even
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(a) Parameter Domain with
equally spaced subdivision.

(b) Physical Domain.

(c) Double knot: η4 = η5 = 0.5. (d) Double control point: P2,3 =
P3,3 = (−4, 4).

Figure 24: Geometry “plate with circular hole”. Image of the same equally
spaced subdivisions using different knot vectors and control polygons to con-
struct the corner at (−4, 4). For geometry data see Appendix B.2 and B.3.

if we find a coordinate ξ̄1 that splits the “southern image” in half, it might
fail to do so with the “northern image”, and vice versa (see blue box and
green diamond in Fig. 25).

The method proposed in [8] suggests determining ξ̄1 through the following
procedure:

Procedure 5.4. (Non-equally spaced ticks-insertion)

I Find the coordinate ξ̄a such that, in the physical domain, G(ξ̄a, 0) best
approximates the midpoint of the edge from G(ξ(i)1 , 0) to G(ξ(i+1)

1 , 0).
Likewise, find the coordinate ξ̄b such that G(ξ̄b, 1) best approximates
the midpoint of the edge from G(ξ(i)1 , 1) to G(ξ(i+1)

1 , 1).

I Take the weighted average of ξ̄a and ξ̄b to get the ξ1-coordinate ξ̄1. The
weights are the magnitudes of the parametric derivatives at (ξ̄a, 0) and

50



5 NURBS Geometry Mapping

(ξ̄b, 1), i.e.:

ξ̄1 :=
ωaξ̄a + ωbξ̄b
ωa + ωb

where

ωa :=
∥∥∥∥∂G∂ξ1 (ξ̄a, 0)

∥∥∥∥
l2

and ωb :=
∥∥∥∥∂G∂ξ1 (ξ̄b, 1)

∥∥∥∥
l2

.

The procedure can be applied analogously in the other coordinate direction.

Choosing the parametric derivatives as weights results in a better splitting
of the edge where the position in the physical domain changes more rapidly
with variation of the parameter.

Figure 25: Determination of new ξ1-tick ξ̄1 between ξ
(i)
1 = 0 and ξ

(i+1)
1 = 0.5

as weighted average of ξ̄a and ξ̄b. Derivatives with respect to ξ1 at (ξ̄a, 0) and
(ξ̄b, 1) indicated by arrows.

In Fig. 25, the point G(ξ̄a, 0) marked with the green diamond would pro-
vide the best splitting of the “southwestern image”, while the point G(ξ̄b, 0)
marked with the blue box would provide the best splitting of the “northwest-
ern image”. The dashed lines illustrate how the cells in the physical space
would be split, if either of those two coordinates was chosen. As indicated
by the arrows, ωb is much larger than ωa, thus the calculated coordinate ξ̄1
is closer to ξ̄b than to ξ̄a. The red dots and the solid, red line indicate the
chosen coordinate ξ̄1 and the resulting splitting.

The effect of this method is illustrated in Fig. 26 for the geometry mapping
“P” as in Fig. 24(d) and Appendix B.3. Starting from the initial subdivision
as depicted in Fig. 26(a), three refinement steps are shown in Fig. 26(b) and
Fig. 26(c).
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In Fig. 26(b), the cells are equally spaced in the parameter domain, leading
to the mentioned unbalanced cell-spacing in the physical domain.

In Fig. 26(c), the coordinates of the edges in the parameter domain were
determined through the described procedure, resulting in unequally sized
cells in the parameter domain, and in a better balance of cell-sizes near the
corner (−4, 4) in the physical domain.

At the circular part of the boundary, however, the effects are opposite: While
the circular curve is split equally in Fig. 26(b), the method in Fig. 26(c) leads
to a non-equally spaced splitting. As we will see in the numerical tests in
Section 7.1, it depends on the area of interest, which method provides better
results.

(a) Initial subdivision.

(b) Equally spaced subdivision of pa-
rameter domain.

(c) Choice of coordinates via described
method, non-equally spaced subdivi-
sion of parameter domain.

Figure 26: Comparison of three refinement steps with and without the method
presented in Section 5.2.2, starting from the same initial subdivision (a).
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5.3 Global Mapping and Finite Element Space

5.3.1 Finite Element Space over the Physical Domain

In the previous sections, we have only defined and discussed the basis func-
tions ϕ̂(i)

α over the parameter space Q. With G denoting the bijective global
geometry mapping that maps the parameter space Q to the physical space
Ω = G(Q), the definition of our basis functions over Ω is rather straightfor-
ward:

ϕ(i)
α (x) := ϕ̂(i)

α (G−1(x)).

The finite-dimensional function space Vh is then defined as the span of these
basis functions:

Vh := span
{
ϕ(i)

α , (i, α) ∈ IP × Iα

}
.

Since we require G to be bijective, we know that there exists a global inverse
G−1. If J is regular over a cellK, we know from the inverse function theorem
that the inverse G−1 is continuously differentiable over G(K) [7]. Hence, if
the subdivision is chosen in such a way that J is irregular only on edges,
but not in the interior of any cells, we have ϕ(i)

α |G(K) ∈ H1(G(K)) for all
cells K ∈ K. Since the inverse mapping G−1 is continuous on Ω, we obtain
ϕ

(i)
α ∈ C(Ω), and therefore ϕ(i)

α ∈ H1(Ω). Hence, Vh ⊂ H1(Ω), and we are
working with conforming finite elements [4].

5.3.2 Effects of Non-C1-Continuous Global Mappings

Recall that we represent the discrete solution as

uh(x) =
∑
i∈IP

∑
α∈Iα

u(i)
α ϕ(i)

α (x).

Let ûh(ξ) := uh(G(ξ)) be its transformation to the parameter domain, which
we can represent as

ûh(ξ) =
∑
i∈IP

∑
α∈Iα

u(i)
α ϕ̂(i)

α (ξ).

From the definition of the basis functions ϕ̂(i)
α over the parameter domain,

we know that

∇ξûh(ζ(i)) =
(
u

(i)
1

u
(i)
2

)
. (42)
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For β ∈ {1, 2}, let Jβ denote the parametric derivative of G with respect to
ξβ, i.e.:

J1 :=
(
∂G1/∂ξ1
∂G2/∂ξ1

)
=
(
J11

J21

)
,

J2 :=
(
∂G1/∂ξ2
∂G2/∂ξ2

)
=
(
J12

J22

)
.

Let x(i) be the image of ζ(i) in the physical domain, i.e. x(i) := G(ζ(i)).
With the relation

∇ξ = JT∇x

and (42), this means that the coefficient u(i)
β is the directional derivative of

uh at node x(i) in the direction Jβ.

In Fig. 27, the directions J1 and J2 are indicated by light blue and dark blue
arrows, respectively, at two nodes x(a) = G(ζ(a)) and x(b) = G(ζ(b)). The
depicted geometry is the “plate with circular hole” with the parametrization
“K” (with the double knot as in Fig. 24(c) and Appendix B.2). Let (ξ(b)1 , ξ

(b)
2 )

be the coordinates of the node ζ(b) in the parameter domain. The node x(b)

in the physical domain marked by the red dot is on the diagonal x1 =
−x2. There, the geometry mapping G is not continuously differentiable
with respect to ξ1, i.e. the directions

J−1 (ζ(b)) := lim
ξ1→ξ

(b)−
1

J1(ξ1, ξ
(b)
2 ), J+

1 (ζ(b)) := lim
ξ1→ξ

(b)+
1

J1(ξ1, ξ
(b)
2 ).

are not equal. This is indicated by the two corresponding light blue arrows in
Fig. 27. Even though the two directional derivatives are different in general,
they are coupled by the coefficient u(b)

1 of the discrete solution.

This coupling of different directional derivatives can appear at all nodes
where the geometry mapping is not continuously differentiable. Thus, we
have to expect inaccuracies of the discrete solution in cells that have such
a node as an ancestor. This is confirmed in the numerical experiments in
Sections 7.1 and 7.2.

Possible approaches for solving this problem could be the use of additional
degrees of freedom or other basis functions in such areas, or the definition
of internal interfaces. This, of course, raises the question of how to detect
such areas automatically and efficiently. These mentioned approaches were
not implemented in the course of this thesis.

5.4 Isogeometric Aspects

Recall that the functions in Xh are globally C1-continuous and piecewise
bi-cubic. As mentioned in Section 5.1, if all weights wi,j of the geometry
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Figure 27: Parametric derivatives of a geometry mapping that is not globally
C1-continuous.

mapping G are equal, the NURBS basis functions in (41) can be written as

R(p,p∗)
(i,j) (ξ1, ξ2) = Bi,p(ξ1) ·B∗

j,p∗(ξ2).

If the degrees p and p∗ are both less or equal to 3, the NURBS basis functions
R(p,p∗)

(i,j) are in Xh, i.e. they can be exactly represented as linear combinations

of the basis functions ϕ̂(i)
α of Xh. Hence, we are working in an isogeometric

setting in that sense that the discrete solution uh can be expressed by the
NURBS basis functions and new coefficients u′i,j :

uh(x) =
∑
i∈IP

∑
α∈Iα

u(i)
α ·

(
ϕ̂(i)

α ◦G−1
)

(x) (43)

=
n∑

i=1

n∗∑
j=1

u′i,j ·
(
R(p,p∗)

(i,j) ◦G−1
)

(x). (44)

If not all weights are equal, the denominator in (41) is non-trivial and this
is no longer the case. We can write (41) as

R(p,p∗)
(i,j) (ξ1, ξ2) =

RN (ξ1, ξ2)
RD(ξ1, ξ2)

,

where the nominator RN and denominator RD are defined over Q as follows:

RN (ξ1, ξ2) := Bi,p(ξ1) ·B∗
j,p∗(ξ2) · wi,j ,

RD(ξ1, ξ2) :=
n∑

k=1

n∗∑
l=1

Bk,p(ξ1) ·B∗
l,p∗(ξ2) · wk,l.
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Dividing the basis functions of Xh by the denominator RD, we can define
the functions

ϕ̂
(i)
α,D(ξ) :=

ϕ̂
(i)
α (ξ)
RD(ξ)

and the function space

Xh,D := span
{
ϕ̂

(i)
α,D, (i, α) ∈ IP × Iα

}
.

If p ≤ 3 and p∗ ≤ 3, the numerator RN (ξ1, ξ2) again is bi-cubic, i.e. RN ∈
Xh, and therefore

R(p,p∗)
(i,j) ∈ Xh,D

for all i, j. This way, we are in an isogeometric setting again, i.e. we can
calculate a discrete solution uh,D ∈ Xh,D and express this discrete solution
as a linear combination of the NURBS basis functions analogously to (43)
and (44):

uh,D(x) =
∑
i∈IP

∑
α∈Iα

u
(i)
α,D ·

(
ϕ̂

(i)
α,D ◦G−1

)
(x)

=
n∑

i=1

n∗∑
j=1

u′i,j,D ·
(
R(p,p∗)

(i,j) ◦G−1
)

(x).

The computational examples discussed in Section 7 were carried out using
both function spaces Xh and Xh,D. In these examples, however, no signifi-
cant differences between the discrete solutions uh and uh,D were detected.
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6 A Posteriori Error Estimator

6.1 General Remarks re Error Estimators

6.1.1 Definition, Reliability and Efficiency

The following definitions are given as in [3]:

Let u denote the (unknown) exact solution of the variational problem. A
quantity η which approximates ‖u−uh‖ in an appropriate norm ‖·‖ is called
a posteriori error estimator, or error estimator for brevity, if it is a function
of known quantities of the data and the discrete solution uh.

For an error estimator to be useful, it must be possible to compute η easily,
and η must provide lower and upper bounds of the error in the following
sense:

Definition 6.1. An error estimator η is called reliable if

‖u− uh‖ ≤ Crel · η + higher order terms (45)

with Crel being independent of the cell sizes. This condition guarantees that
the error estimator will only tend to zero, if the true error ‖u − uh‖ tends
to zero.

Definition 6.2. An error estimator η is called efficient if

η ≤ Ceff · ‖u− uh‖+ higher order terms (46)

with Ceff being independent of the cell sizes. This condition guarantees that,
if the true error ‖u−uh‖ tends to zero, this must be detected and indicated
by η tending to zero as well.

The “higher order terms” in (45) and (46) can be any additional terms that
could depend on known or unknown data. They are not the same in the two
equations, but both are much smaller than the error ‖u−uh‖. Let (Kh)h∈H
denote a family of subdivisions with a maximal cell-size h in a parameter set
H ⊂ (0,∞). Then, the higher order terms can be defined by the property

lim
h→0

higher order terms
‖u− uh‖

= 0.
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6.1.2 Local Error Estimation and Local Refinement

If we can calculate the global error estimator η as a sum of cell-wise com-
putable contributions ηK , such as, for example,

η =
∑
K∈K

ηK , or η2 =
∑
K∈K

η2
K , (47)

we can identify the cells with the highest contributions ηK to the global
error. Then we can refine those cells K ∈ K for which the criterion

ηK > θ

is fulfilled with a certain threshold θ. We will use two choices for determining
this threshold that will be referred to as “Value” and as “Quantile”:

Value : θ = α ·maxK∈K{η(K)}, 0 < α < 1

In this setting, obviously, all cells K for which ηK is larger than α-times the
largest appearing local error are refined. The actual number of refined cells
varies.

Quantile : θ = α−quantileK∈K{η(K)}, 0 < α < 1

In this case, θ is chosen such that (1−α) · 100 percent of all cells are refined
(for example, if α = 0.85, then those 15% of all cells will be refined that
have the largest local errors ηK).

For brevity, we will also refer to these two criterions with “Val[α]” and
“Qua[α]”.

6.2 Implemented Error Estimator

6.2.1 Basic Concept and Implementation with Bubble Functions

The concept discussed in [1] is based on enlarging of the function space
Vh with additional basis functions. Let Bh ⊂ V denote the space that is
spanned by those additional basis functions, then we can define

V̄h := Vh ⊕Bh ⊂ V.

Solving the differential equation in V̄h leads to a solution ūh ∈ V̄h, i.e.

a(ūh, v̄h) = 〈F, v̄h〉 ∀ v̄h ∈ V̄h (48)
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where ūh can be expressed as

ūh = uh + eh, uh ∈ Vh, eh ∈ Bh. (49)

Since V̄h is a better approximation of V than Vh, one would expect ūh to
be a better approximation of the exact solution than uh. Therefore, if the
error ‖ūh − uh‖ = ‖eh‖ is large in some areas of the computational domain,
this might indicate that the error ‖u− uh‖ is large in those areas as well.

The question is how to compute ‖eh‖. One could do this by assembling the
enlarged stiffness matrix for (48) and solving the larger system of equations,
thereby calculating eh. A much more efficient method is possible with the
following choice of Bh:

We enlarge Vh by the so-called bubble functions. A univariate bubble func-
tion is defined by

β̂a,b(ξ) :=


ξ − a

b− a
· b− ξ

b− a
, ξ ∈ (a, b)

0 , else

For each cell K ∈ K, we define the bivariate bubble function β̂(K):

β̂(K)(ξ1, ξ2) := β̂a1,b1(ξ1) · β̂a2,b2(ξ2), where K = (a1, b1)× (a2, b2).

We define their transformations to the physical domain and Bh as their
span:

β(K)(x) := β̂(K)(G−1(x))

Bh := span
{
β(K), K ∈ K

}
.

These bubble functions β̂(K) have the following important properties:

• The bubble functions are continuous over Q and piecewise in H1 (i.e.
β(K)|K′ ∈ H1(K ′) for all K ′ ∈ K). Hence, we have β(K) ∈ H1(Q) for
all β(K) ∈ Bh [4].

• The support of β̂(K) is contained in K, and two different bubble func-
tions have disjoint support. Therefore, we have

a(β(K), β(K′)) = 0, for K 6= K ′. (50)

The function eh ∈ Bh in (49) can be expressed as

eh =
∑
K∈K

e(K)β(K), e(K) ∈ R.
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For a fixed K ∈ K, we set v̄h := β(K) ∈ V̄h in (48). Then, it follows that

a(uh, β
(K)) +

∑
K′∈K

e(K
′) a(β(K′), β(K))︸ ︷︷ ︸

=0 for K 6=K′, (50)

= 〈F, β(K)〉,

a(uh, β
(K)) + e(K)a(β(K), β(K)) = 〈F, β(K)〉.

Thus, we can calculate the coefficients e(K) of eh, as well as the energy norm
of eh from known quantities [14]:

e(K) =
1

a(β(K), β(K))

(
〈F, β(K)〉 − a(uh, β

(K))
)
,

‖eh‖2
E =

∑
K∈K

(e(K))2a(β(K), β(K)).

We use this to define our a posteriori error estimator as the following cell-
wise computable sum in the form as in (47):

η2 := ‖eh‖2
E =

∑
K∈K

η2
K (51)

where ηK :=
〈F, β(K)〉 − a(uh, β

(K))
‖β(K)‖E

. (52)

6.2.2 Reliability and Efficiency

Omitting the higher order terms, the condition for the reliability of the error
estimator can be re-formulated as

Rrel :=
‖u− uh‖

η
≤ Crel. (53)

In the numerical examples in Section 7 in which the exact solution is known,
we will plot Rrel as an indicator for the reliability of η.

The efficiency of the error estimator can be shown explicitly. For this, we
define the restriction of the bilinear form a(·, ·) to the image of a cell K:

a(u, v)K :=
∫

G(K)
(∇v)TA∇u+ (bT∇u)v + cuv dx

and the corresponding restricted energy norm:

‖v‖E,K :=
√
a(v, v)K .

We can write

a(u, v) =
∑
K∈K

a(u, v)K and ‖v‖2
E =

∑
K∈K

‖v‖2
E,K .
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In particular, because the support of a bubble function β(K) is contained in
K, we also have for all v ∈ V and for all K ∈ K:

a(v, β(K)) = a(v, β(K))K and ‖β(K)‖2
E = ‖β(K)‖2

E,K .

With this, we derive from (52)

ηK =
1

‖β(K)‖E,K

(
〈F, β(K)〉︸ ︷︷ ︸
=a(u,β(K))

−a(uh, β
(K))

)

=
1

‖β(K)‖E,K
a(u− uh, β

(K))K , (54)

which we use to show the efficiency of η:

Lemma 6.3. The a posteriori error estimator defined in (51) and (52) is
efficient.

Proof. Since a(·, ·) is bounded, it follows from (54) that

ηK ≤ 1
‖β(K)‖E,K

µ2‖u− uh‖1,K‖β(K)‖1,K ,

where ‖ · ‖1,K denotes the H1-norm on the image G(K) of K and where
the constant µ2 does not depend on the particular cell K (see Appendix A).
Since also ‖β(K)‖1,K = ‖β(K)‖1, it follows that

ηK ≤ ‖β(K)‖1

‖β(K)‖E
µ2‖u− uh‖1,K ≤ µ2√

µ1
‖u− uh‖1,K .

Therefore,

η2 ≤ µ2
2

µ1

∑
K∈K

‖u− uh‖2
1,K =

µ2
2

µ1
‖u− uh‖2

1 ≤ µ2
2

µ2
1

‖u− uh‖2
E ,

i.e. (46) holds with Ceff = µ2/µ1. If a(·, ·) is symmetric, it follows from (54)
that (46) holds with Ceff = 1, because in this case |a(u, v)K | ≤ ‖u‖E,K‖v‖E,K

(see also Appendix A).
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7 Computational Examples

7.1 Plate with Circular Hole

We compare the aspects of the the geometry mapping “plate with circular
hole” that were discussed in Sections 5.2, 5.3, and 5.4.

7.1.1 Problem Setting

The physical domain Ω is depicted in Fig. 28. We solve the partial differential
equation

−∆u+ u = f

∇u · n = gN on ΓN := ∂Ω

where f and gN are determined by the following exact solution:

u : Ω → R
x 7→ − log |x− x0|

The function u has a singularity at x0. This enables us to focus on two
different parts of the subdivision with two different choices of x0 (see Fig. 28):

Case 1: x0 = (−0.75, 0.55) near the circular hole.

Case 2: x0 = (−1.75, 4.25) near the image of the “northern boundary”.

Figure 28: Positions of x0 for example “plate with circular hole”.
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7.1.2 Geometry Mappings

As in Section 5.2, the two different parametrizations will be referred to as
“K” (with the double interior knot) and “P” (with the double control point
at the corner). The corresponding control nets are depicted in Fig. 24(c) and
Fig. 24(d), the geometry data is given in Appendix B.2 and B.3, respectively.

The abbreviation “param” will be referring to an equally-spaced edge-split-
ting in the parameter domain, while “phys” will be referring to the method
introduced in Section 5.2.2 for a more balanced splitting in the phyiscal
domain.

7.1.3 Numerical Results, Uniform Refinement

The results for uniform refinements are illustrated in Fig. 29. The errors
‖u−uh‖ in the L2-norm and the energy norm are plotted versus the degrees
of freedom (DoF).

It can be seen in Fig. 24(c) and Fig. 27 that the parametrization “K” al-
ready provides a balanced splitting of the edges in the physical domain.
Accordingly, the subdivisions generated with “param” and “phys” and the
corresponding discrete solutions are very similar.

With the parametrization “P”, however, the differences between “param”
and “phys” can be seen clearly. “Param” provides a balanced splitting of
the circular part of the boundary, while “phys” fails to properly resolve this
part in coarse subdivisions. This is very well illustrated by the errors plotted
in Fig. 29(c) and Fig. 29(e) for Case 1.

In Case 2, where the singularity is situated near the “northern” boundary,
the results are opposite, as “param” does not resolve the area near the
singularity very well. The corresponding errors are plotted in Fig. 29(d)
and Fig. 29(f).

In both cases, it can be observed that the convergence rate with parametriza-
tion “K” is slower than that with “P”, due to the reduced smoothness of
the parametrization “K” and the coupling of different directional derivatives
that was discussed in Section 5.3. The results of the adaptive refinement
will visualize this problem even clearer.

Note that these two cases were specifically chosen to illustrate the differ-
ent effects of equally spaced and non-equally spaced edge splitting in the
parameter domain. In general, one can not automatically predict a priori
which method is better suited for a specific problem. The results, however,
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indicate that the convergence rates are the same after a certain fineness has
been reached.

The ratios Rrel = ‖u − uh‖/η calculated with the L2-norm and the energy
norm for the used parametrizations and refinement criteria are plotted in
Fig. 30. The numerical results indicate that the condition for the reliability
of the a posteriori error estimator, namely Rrel ≤ Crel for a constant Crel is
fulfilled.

In Section 5.4, we discussed that we can divide the basis functions ϕ̂(i)
α of

Xh by the denominator of the NURBS geometry mapping, thereby defining
basis functions ϕ̂(i)

α,D which span the function space Xh,D. The examples
were also computed using this function space Xh,D, resulting in discrete
solutions which we denote by uh,D. As a representative example, the errors
‖u−uh‖ and ‖u−uh,D‖ for Case 1 are compared in Fig. 31, and as mentioned
in Section 5.4, the differences are insignificant.

7.1.4 Numerical Results, Adaptive Refinement

The tests with adaptive refinement were only carried out using “param”.
The chosen refinement criteria were Qua[0.70], Qua[0.85] and Val[0.30]. The
errors are plotted in Fig. 32, the refined subdivisions in Fig. 33 for Case 1,
and in Fig. 34 for Case 2.

With parametrization “K”, in both cases and for all three criteria, the er-
ror estimator marked the cells along the diagonal, i.e. where the geome-
try mapping is not continuously differentiable, as those with the highest
error. Hence, the refined subdivisions and the errors are similar for all
three refinement criteria. As we have seen in the previous Section 7.1.3, the
parametrization “P” with “param” does not properly resolve the singularity
in Case 2. Still, it only takes a few refinement steps to obtain solutions that
provide a better approximation of the exact solution than those calculated
with “K”.
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(a) Solution for Case 1. (b) Solution for Case 2.

(c) Error in L2-norm, Case 1. (d) Error in L2-norm, Case 2.

(e) Error in energy norm, Case 1. (f) Error in energy norm, Case 2.

Figure 29: Comparison of uniform refinement of “plate with circular hole” with
parametrizations “P” and “K”, and different edge-splitting-methods “param”
and“phys”.
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(a) Rrel with L2-norm, Case 1. (b) Rrel with L2-norm, Case 2.

(c) Rrel with energy norm, Case 1. (d) Rrel with energy norm, Case 2.

Figure 30: Rrel for “plate with circular hole”, uniform ref’.

(a) Comparison in L2-norm. (b) Comparison in energy norm.

Figure 31: Comparison of ‖u− uh‖ and ‖u− uh,D‖ in Case 1.
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(a) Error in L2-norm, Case 1. (b) Error in L2-norm, Case 2.

(c) Error in energy norm, Case 1. (d) Error in energy norm, Case 2.

Figure 32: Errors in L2-norm and energy norm for uniform and adaptive
refinement with different refinement criteria in Case 1 and Case 2.
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(a) “K”, Qua[0.70], after 4 ref’: 3036 DoF. (b) “P”, Qua[0.70], after 4 ref’s: 3068 DoF.

(c) “K”, Qua[0.85], after 5 ref’s: 1528 DoF. (d) “P”, Qua[0.85], after 5 ref’s: 1556 DoF.

(e) “K”, Val[0.30], after 5 ref’s: 4152 DoF. (f) “P”, Val[0.30], after 5 ref’s: 1532 DoF.

Figure 33: Refined subdivisions of the domain “plate with circular hole” in
Case 1 (singularity marked by blue dot near circular hole).
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(a) “K”, Qua[0.70], after 4 ref’: 3024 DoF. (b) “P”, Qua[0.70], after 4 ref’s: 3060 DoF.

(c) “K”, Qua[0.85], after 5 ref’s: 1488 DoF. (d) “P”, Qua[0.85], after 5 ref’s: 1448 DoF.

(e) “K”, Val[0.30], after 5 ref’s: 2064 DoF. (f) “P”, Val[0.30], after 5 ref’s: 628 DoF.

Figure 34: Refined subdivisions of the domain “plate with circular hole” in
Case 2 (singularity marked by blue dot near “northern boundary”).
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7.2 Laplace Equation in L-Shaped Domain

The physical domain and the exact solution are as in [6].

7.2.1 Problem Setting

We solve the Laplace equation

∆u = 0

on the L-shaped domain Ω = [−1, 1]2\[0, 1]2 that is illustrated in Fig. 35(a).

The exact solution in polar coordinates (see also Fig. 35(b)) is given by

u : R+ × (0, 2π] → R

(r, ϕ) 7→ r
2
3 sin

(
2ϕ− π

3

)
which, after tranformation to Cartesian coordinates, satisfies the Laplace
equation. The boundary conditions are set as follows (see also Fig. 35(a)):

ΓD = {0} × [0, 1] ∪ [0, 1]× {0}

gD = f
(
r,
π

2

)
= f

(
r,

3π
2

)
= 0

ΓN = ∂Ω\ΓD

gN determined by exact solution u

(a) Physical domain with Dirichlet
boundary ΓD (blue) and Neumann
boundary ΓN (yellow).

(b) Exact solution.

Figure 35: Physical domain, Dirichlet- and Neumann-boundaries, and exact
solution for the numerical test “Laplace equation on L-shaped domain”.
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7.2.2 Geometry Mappings

We compare a total of four different parametrizations that realize the corners
at (0, 0) and (−1,−1) differently. The parametrization “K” uses a double
knot, while “Pa”, “Pb”, and “Pc” use double control points. The corre-
sponding control polygons are depicted in Fig. 36. While both “Pa” and
“Pb” use the same control polygon, different knot vectors result in different
distortions of the cells which is illustrated by the blue lines in Fig. 36(b) and
Fig. 36(c). With “Pa” and “Pb”, the parametric derivative with respect to
ξ1 vanishes on the whole diagonal x1 = x2. With “Pc” this is only the case
at the two corners, but not in the interior of the domain.

The following table provides an overview of the parametrizations and where
to find the complete data:

Parametrization Control polygon Complete geometry data
“K” Fig. 36(a) Appendix B.4
“Pa” Fig. 36(b) Appendix B.5
“Pb” Fig. 36(c) Appendix B.5
“Pc” Fig. 36(d) Appendix B.6

7.2.3 Numerical Results

The errors ‖u − uh‖ for uniform refinement and adaptive refinement with
the criterion Qua[0.72], starting from an 8 × 4-subdivision, are plotted in
Fig. 37, and illustrate the differences between the chosen parametrizations.

Similar to the case in the previous example “plate with circular hole”, the
parametrization “K” is not continuously differentiable along the diagonal
x1 = x2. The subdivision in Fig. 38(a) clearly shows that mainly the cells
along the diagonal were marked for refinement.

The parametrizations “Pa” and “Pb” use the same control polygon. The
subdivisions in Fig. 38(b) and Fig. 38(c) illustrate how the different knot
vectors influence the refinement processes, while Fig. 37(a) and Fig. 37(b)
indicate that the differences between the corresponding discrete solutions
decrease as the subdivisions get finer.

With “Pb”, the error estimator mainly marks the cells near the corner (0, 0)
for refinement (see Fig. 38(c)). With “Pa”, however, the cells on both sides
of the diagonal are marked for refinement, which can be seen in Fig. 38(b).
In Fig. 39(a) the basis functions resulting from the knot vector for “Pa” are
plotted. The derivatives of the basis functions B3,2 and B4,2 quickly change
near the coordinates 0.45 and 0.55. These coordinates correspond to the
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(a) “K” (b) “Pa”

(c) “Pb” (d) “Pc”

Figure 36: Control polygons for parametrizations “K”, “Pa”, “Pb”, and “Pc”.

refined areas alongside the diagonal. To check whether this phenomenon is
specific for the used error estimator, another test was carried out, using the
true local error as a refinement criterion, i.e. ηp,K := ‖u − uh‖p,K with the
L2-norm and the energy norm.

The results are shown in Fig. 40. For comparison, Fig. 40(a) depicts the same
subdivision as in Fig. 38(b). The subdivisions resulting from refinement
based on the exact local error and the criterion Qua[0.72] are depicted in
Fig. 40(b) and Fig. 40(c). The plots indicate that the error in the L2-norm
is not so sensitive towards the quickly changing derivatives of the basis
functions, while the error in the energy norm is. This is correctly detected
by the a posteriori error estimator.

The results using the parametrization “Pc” is shown in Fig. 38(d). The
refinement with this parametrization results in the expected local refinement
near the corner at (0, 0) and the best approximation of the exact solution.

The ratios Rrel = ‖u − uh‖/η calculated with the L2-norm and the energy
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norm for the used parametrizations and refinement criteria are plotted in
Fig. 37. As in the previous example “plate with circular hoe”, the numeri-
cal results indicate that the condition for the reliability of the a posteriori
error estimator, namely Rrel ≤ Crel for a constant Crel is fulfilled. For
the parametrizations “Pa” and “Pb”, however, Rrel is increasing slightly
Fig. 37(d) which indicates some difficulties when combining the error esti-
mator with these specific parametrizations.

(a) Error in L2-norm. (b) Error in energy-norm.

(c) Rrel with L2-norm, uniform ref’. (d) Rrel with energy norm, uniform ref’.

(e) Rrel with L2-norm, Qua[0.72]. (f) Rrel with energy norm, Qua[0.72].

Figure 37: Errors and Rrel for “L-shaped domain”.
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(a) “K”, Qua[0.72], after 5 ref’s: 2380 DoF. (b) “Pa”, Qua[0.72], after 5 ref’s: 2336 DoF.

(c) “Pb”, Qua[0.72], after 5 ref’s: 2404 DoF. (d) “Pc”, Qua[0.72], after 5 ref’s: 2320 DoF.

Figure 38: Refined subdivisions of L-shaped domain. Criterion Qua[0.72].
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(a) “Pa”: η = (0, 0, 0, 0.45, 0.5, 0.55, 1, 1, 1)

(b) “Pb”: η = (0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1)

Figure 39: Basis functions of degree 2 resulting from the knot vector η for
parametrizations “Pa” and “Pb”.

(a) “Pa”, a posteriori error estimator ηK

with Qua[0.72], after 5 ref’s.

(b) “Pa”, after 5 ref’s based on true local
error in L2-norm and Qua[0.72].

(c) “Pa”, after 5 ref’s based on true local
error in energy norm and Qua[0.72].

Figure 40: Refined subdivisions of “L-shaped domain” based on true local
error.
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7.3 Advection-Diffusion Problems

We solve an advection-diffusion equation in three settings. In each case,
the boundary conditions and advection velocity are chosen such that sharp
interior layers and boundary layers appear. The setting that will be referred
to as “Case 1” is used in [6] to illustrate an unwanted, consecutive insertion
of additional knots in the process of refining T-meshes, which leads to almost
global refinement.

7.3.1 Problem Settings and Geometry Mappings

We solve the advection-diffusion equation

−κ∆u+ b · ∇u = 0
with κ = 10−6

b(x1, x2) =


(cos θ, sin θ)T , θ = 45◦ in Case 1
(x2,−x1)T in Case 2
(cos θ, sin θ)T , θ = 15◦ in Case 3

In Case 1, the physical domain is the unit square, i.e. Ω = [0, 1]2 and
G = Id.

In Case 2 and Case 3, we solve the equation on the curved domain illustrated
in Fig. 42(a) and Fig. 43(a). In polar coordinates, this domain is given by
Ω = {(r, ϕ) ∈ [1, 2] × [0, π/2]}; the complete geometry data is given in
Appendix B.7.

The Peclet number Pe is defined by Pe = L·|b|/κ, where L is the side length
of the domain. If Pe > 1, the advection dominates the diffusion, which is
clearly the case in our example with Pe ≈ 106 [2]. This requires the use of
a stabilization method, and as in [6, 8], the Streamline Upwinding Petrov
Galerkin (SUPG) stabilization method is used [12]. The test functions ϕ(i)

α

are replaced by ϕ(i)
α + τ(b · ∇xϕ

(i)
α ) with the parameter τ set to

τ(K) :=
hb(K)
2 · |b|

,

where hb(K) is the length of the cell K in direction of the flow b.

We set the following boundary conditions:

Case 1 (see Fig. 41(a)):

ΓD = ∂Ω

gD(x1, x2) =
{

0, if (x1 = 1) ∨ (x2 = 1) ∨ (x1 = 0 ∧ x2 > 0.2)
1, else
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Case 2 (see Fig. 42(a)):

ΓD = ∂Ω\[1, 2]× {0}

gD(x1, x2) =
{

1, if (x1 = 0) ∧ (1.5 < x2 < 1.75)
0, else

ΓN = [1, 2]× {0}
gN (x1, x2) = 0

Case 3 (see Fig. 43(a)):

ΓD = ∂Ω

gD(x1, x2) =
{

1, if (x1 < 0.8) ∧ (x2 < 1.2)
0, else

The discontinuous boundary conditions and the strong advection result in
sharp layers that are indicated by thin blue lines in Fig. 41(a), Fig. 42(a),
and Fig. 43(a)

Since there is no exact solution, we only test whether the error estimator is
able to detect the constructed sharp layers and whether the locally refined
numerical solution provides a better approximation of the discontinuities.

7.3.2 Numerical Results

The estimated positions of the layers and the expected solutions together
with the refined subdivisions and the calculated numerical solutions are
illustrated in Fig. 41, Fig. 42, and Fig. 43 for Cases 1, 2, and 3, respectively.

Clearly, the sharp layers are correctly detected in all three cases. Also, the
refinement is successfully restriced to small areas around those sharp layers
without unwanted refinement of other areas.
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(a) Boundary conditions, esti-
mated position of sharp layers.

(b) Illustration of expected solution.

(c) After 1 ref’: 280 DoF. (d) Solution after 1 ref’.

(e) After 5 ref’s: 3768 DoF. (f) Solution after 5 ref’s.

Figure 41: Subdivisions and numerical solutions after several refinement steps.
Criterion Val[0.20], cells marked for refinement shaded gray.

78



7 Computational Examples

(a) Boundary conditions, esti-
mated position of sharp layers.

(b) Illustration of expected solution.

(c) After 1 ref’: 472 DoF. (d) Solution after 1 ref’.

(e) After 4 ref’s: 5160 DoF. (f) Solution after 4 ref’s.

Figure 42: Subdivisions and numerical solutions after several refinement steps.
Criterion Val[0.20].
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(a) Boundary conditions, esti-
mated position of sharp layers.

(b) Illustration of expected solution.

(c) After 1 ref’: 656 DoF. (d) Solution after 1 ref’.

(e) After 4 ref’s: 5760 DoF. (f) Solution after 4 ref’s.

Figure 43: Subdivisions and numerical solutions after several refinement steps.
Criterion Qua[0.60].
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8 Summary

We have defined and described hierarchical subdivisions of the parameter do-
main with rectangular cells that may contain hanging nodes. The globally
C1-continuous Bogner-Fox-Schmit rectangle was successfully extended to
such subdivisions with hanging nodes. As indicated by the computed numer-
ical examples in Section 7.3, stabilization of advection-dominated advection-
diffusion problems using the SUPG method can be applied to the used finite
elements.

While NURBS geometry mappings preserve the exact geometry of the phys-
ical domain, several aspects have to be considered when combining these
mappings with the used finite element basis functions. The examples in
Sections 7.1 and 7.2 illustrate how even simple physical domains can be
represented by different parametrizations, and how these parametrizations
affect the distortedness of cells in the physical domain and the accuracy of
the discrete solution. In combination with the implemented a posteriori er-
ror estimator, geometry mapping strongly influence the adaptive refinement
process. Especially non-C1-continuous parametrizations can lead to the re-
finement of areas where inaccuracies are caused by the geometry mapping
rather than the discrete solution itself.

While these problems can be reduced or overcome by choosing different
parametrizations as illustrated in Section 7.2, the question is how to find a
general approach. As mentioned in the introduction to this theses, the goal
is to work directly with geometry representations from CAD programmes.
The necessity of automatically or even manually re-parametrizing given ge-
ometries is the opposite of what we are aiming for.

As mentioned in Section 5.3.2, possible ways of dealing with non-C1-conti-
nuous geometry mappings include combinations of the finite element basis
functions and NURBS basis functions, additional degrees of freedom or the
definition of internal interfaces. However, these approaches raise the ques-
tions of linear independence of the basis functions and, again, of how to
realize them in an automatic and efficient way.
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A Appendix - Remarks re Bilinear Form

Energy Norm

For a bounded and coercive bilinear form a(·, ·) : V × V → R, the energy norm is
defined as

‖v‖E :=
√
a(v, v).

The following two properties follow immediately from the bilinearity and the coer-
civeness for all v ∈ V and all λ ∈ R:

• Positive homogenity: ‖λv‖E =
√
λ2a(v, v) = |λ|‖v‖E .

• Positive definiteness: ‖v‖E = 0 ⇔ v ≡ 0.

Thus, it remains to show the triangle inequality. Obviously,

0 ≤ ‖u− λ · v‖2E = a(u− λ · v, u− λ · v), u, v ∈ V, λ ∈ R.

Setting λ := a(u,v)+a(v,u)
2a(v,v) , we arrive at

0 ≤ a(u, u) · a(v, v)−
(a(u, v) + a(v, u)

2

)2

a(u, v) + a(v, u)
2

≤ ‖u‖E · ‖v‖E . (55)

• Triangle inequality:

‖u+ v‖E =
(
a(u, u) + 2

a(u, v) + a(v, u)
2︸ ︷︷ ︸

≤‖u‖E‖v‖E

+a(v, v)
) 1

2

≤
√

(‖u‖E + ‖v‖E)2 = ‖u‖E + ‖v‖E .

Hence, ‖ · ‖E fulfills the properties of a norm on V . If a(·, ·) is symmetric, it defines
an inner product

(v, u)A := a(u, v)

and (55) is the associated Cauchy-Schwarz inequality

|a(u, v)| = |(u, v)A| ≤ ‖u‖E‖v‖E .

Boundedness and Coercivity

As defined in Section 6.2.2, we denote the restrictions of the bilinear form a(·, ·)
and of a norm ‖ · ‖p to the image G(K) of a cell K ∈ K with a(·, ·)K and ‖ · ‖p,K ,
respectively.
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Boundedness in the Symmetric Case, b ≡ 0

If b ≡ 0, then a(·, ·) is symmetric. Assume that the coefficients A and c are bounded,
i.e. A, c ∈ L∞, then

|a(u, v)| ≤ ‖A‖∞|u|1|v|1 + ‖c‖∞‖u‖0‖v‖0
≤ max(‖A‖∞, ‖c‖∞) · (|u|1|v|1 + ‖u‖0‖v‖0)
≤ max(‖A‖∞, ‖c‖∞) · ‖u‖1‖v‖1. (56)

As discussed above, a symmetric bilinear form a(·, ·) is bounded in the energy norm:

|a(u, v)| ≤ ‖u‖E‖v‖E . (57)

Since (57) is independent from the domain over which a(·, ·) is defined, we can
conclude that

|a(u, v)K | ≤ ‖u‖E,K‖v‖E,K

holds for all K ∈ K.

Boundedness in the Nonsymmetric Case, b 6≡ 0

Assume that the coefficients A, b and c are bounded, i.e. A, b, c ∈ L∞. Then∫
Ω

(bT∇u)v dx =
∫

Ω

(b1∂1u+ b2∂2u)v dx

≤ ‖b‖∞‖v‖0

(√∫
Ω

(∂1u)2 dx+

√∫
Ω

(∂2u)2 dx

)
≤ 2‖b‖∞‖v‖0|u|1 ≤ 2‖b‖∞‖v‖1‖u‖1.

Together with (56), we obtain the boundedness of a(·, ·):

|a(u, v)| ≤
(

max(‖A‖∞, ‖c‖∞) + 2‖b‖∞︸ ︷︷ ︸
=:µ2

)
· ‖u‖1‖v‖1.

For the restriction to a cell K ∈ K, we obtain

|a(u, v)K | ≤ µ2,K · ‖u‖1,K‖v‖1,K

where

µ2,K := max(‖A‖∞,K , ‖c‖∞,K) + 2‖b‖∞,K

Since G(K) ⊆ Ω implies ‖f‖∞,K ≤ ‖f‖∞ for any function f ∈ L∞, we have
µ2,K ≤ µ2 for all K ∈ K and

a(u, v)K ≤ µ2 · ‖u‖1,K‖v‖1,K ,

i.e. the restriction of a(·, ·) to a cell K is bounded with a constant µ2 that does not
depend on the specific cell K.
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Coercivity in the Symmetric Case, b ≡ 0

If the following holds for the coefficients of a(·, ·):

A1, A2 ≥ A0 > 0, b ≡ 0, c ≥ c0 > 0 on Ω,

the coercivity of a(·, ·) immediately follows:

a(v, v) ≥ A0|v|1 + c0‖v‖0 ≥ min(A0, c0) · ‖v‖1.

If we only know that c ≥ 0 in Ω, then

a(v, v) ≥ A0|v|1.

In this case, coercivity follows from the Friedrich’s inequality, if ΓD 6= ∅ [15].

Coercivity in the Nonsymmetric Case, b 6≡ 0

We can re-write a(u, v) as follows:

a(u, v) =
∫

Ω

(∇v)TA∇u dx+
1
2

∫
Ω

(bT∇u)v − (bT∇v)u︸ ︷︷ ︸
=0, for u=v

dx

+
∫

Ω

(
−1

2
(∇ · b) + c

)
uv dx+

1
2

∫
Ω

∇ · (buv) dx︸ ︷︷ ︸
=

∫
∂Ω(buv)·n dx

,

In the example in Section 7.3, we have

A1, A2 ≥ 10−6 > 0, ∇ · b ≡ 0, c ≡ 0 in Ω.

For u = v and v ∈ H1
0 (Ω), the integral

∫
∂Ω

(bv2) · n dx vanishes on ΓD. In Case 1
and Case 3 of the example in Section 7.3, we have ΓD = ∂Ω. In Case 2, where
ΓN 6= ∅, we have n(x1, x2) = (0,−1)T and b(x1, x2) = (0,−x1)T on ΓN . Hence,∫

∂Ω
(bv2) · n dx =

∫
ΓN

x1v
2 dx ≥ 0. Since ΓD 6= ∅, it follows from the Friedrich’s

inequality that, in all three cases, the bilinear form a(·, ·) is coercive on H1
0 (Ω) [13].
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B Appendix - Geometry Data

B.1 Unit Circle

Data for the unit circle in Fig. 22 [8]:

Degree: p = 2
Knot vector: η = (0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4)

Coordinates and weights of control points:
i Pi wi

1 (1, 0) 1

2 (1, 1) 1√
2

3 (0, 1) 1

4 (−1, 1) 1√
2

5 (−1, 0) 1

i Pi wi

6 (−1,−1) 1√
2

7 (0,−1) 1

8 (1,−1) 1√
2

9 (1, 0) 1

B.2 Plate with Circular Hole, Double Knot

Data for the geometry “plate with circular hole”, Fig. 24(c), using the double
interior knot as in [6]:

Degrees: p = p∗ = 2
Knot vectors: η = (0, 0, 0, 0.5, 0.5, 1, 1, 1)

η∗ = (0, 0, 0, 1, 1, 1)

Coordinates and weights of control points:
i Pi,1 Pi,2 Pi,3 wi,1 wi,2 wi,3

1 (−1, 0) (−2.5, 0) (−4, 0) 1 1 1
2 (−1,

√
2− 1) (−2.5, 0.75) (−4, 2) (1 + 1√

2
)/2 1 1

3 ( 1√
2
, 1√

2
) (−1.5, 1.5) (−4, 4) (1 + 1√

2
)/2 1 1

4 (1−
√

2, 1) (−0.75, 2.5) (−2, 4) (1 + 1√
2
)/2 1 1

5 (0, 1) (0, 2.5) (0, 4) 1 1 1

B.3 Plate with Circular Hole, Double Control Point

Data for the geometry “plate with hole”, Fig. 24(d), using a double control point
as in [8]:
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Degrees: p = p∗ = 2
Knot vectors: η = (0, 0, 0, 0.5, 1, 1, 1)

η∗ = (0, 0, 0, 1, 1, 1)

Coordinates of control points:
i Pi,1 Pi,2 Pi,3 wi,1 wi,2 wi,3

1 (−1, 0) (−2.5, 0) (−4, 0) 1 1 1
2 (−1,

√
2− 1) (−2.5, 0.75) (−4, 4) (1 + 1√

2
)/2 1 1

3 (1−
√

2, 1) (−0.75, 2.5) (−4, 4) (1 + 1√
2
)/2 1 1

4 (0, 1) (0, 2.5) (0, 4) 1 1 1

B.4 L-Shaped Domain, Double Knot “K”

Data for the parametrization “K” of the geometry “L-shaped domain” as used in
Section 7.2 and as in [6].

Degrees: p = p∗ = 2
Knot vectors: η = (0, 0, 0, 0.5, 0.5, 1, 1, 1)

η∗ = (0, 0, 0, 1, 1, 1)
Weights: wi,j = 1 for all i, j

Coordinates of control points:

i Pi,1 Pi,2 Pi,3

1 (−1, 1) (−0.6, 1) (0, 1)
2 (−1, 0) (−0.55, 0) (0, 0.5)
3 (−1,−1) (−0.5,−0.5) (0, 0)
4 (0,−1) (0,−0.55) (0.5, 0)
5 (1,−1) (1,−0.6) (1, 0)

B.5 L-Shaped Domain, “Pa” and “Pb”

Data for the parametrizations “Pa” and “Pb” of the geometry “L-shaped domain”
as used in Section 7.2.

Degrees: p = p∗ = 2
Knot vectors: η = (0, 0, 0, 0.45, 0.5, 0.55, 1, 1, 1) for “Pa”

η = (0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1) for “Pb”
η∗ = (0, 0, 0, 1, 1, 1)

Weights: wi,j = 1 for all i, j
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Coordinates of control points:
i Pi,1 Pi,2 Pi,3

1 (−1, 1) (−0.5, 1) (0, 1)
2 (−1, 0.5) (−0.5, 0.5) (0, 0.5)
3 (−1,−1) (−0.5,−0.5) (0, 0)
4 (−1,−1) (−0.5,−0.5) (0, 0)
5 (0.5,−1) (0.5,−0.5) (0.5, 0)
6 (1,−1) (1,−0.5) (1, 0)

B.6 L-Shaped Domain, “Pc”

Data for the parametrization “Pc” of the geometry “L-shaped domain” as used in
Section 7.2.

Degrees: p = p∗ = 2
Knot vectors: η = (0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1)

η∗ = (0, 0, 0, 0.5, 1, 1, 1)
Weights: wi,j = 1 for all i, j

Coordinates of control points:

i Pi,1 Pi,2 Pi,3 Pi,4

1 (−1, 1) (−0.75, 1) (−0.3, 1) (0, 1)
2 (−1, 0.2) (−0.7, 0.35) (−0.3, 0.5) (0, 0.5)
3 (−1,−1) (−0.6,−0.3) (−0.2,−0.05) (0, 0)
4 (−1,−1) (−0.3,−0.6) (−0.05,−0.2) (0, 0)
5 (0.2,−1) (0.35,−0.7) (0.5,−0.3) (0.5, 0)
6 (1,−1) (1,−0.75) (1,−0.3) (1, 0)

B.7 Curved Domain

Data for the curved domain in Cases 2 and 3 in Section 7.3.

Degrees: p = p∗ = 2
Knot vectors: η = (0, 0, 0, 1, 1, 1)

η∗ = (0, 0, 0, 0.5, 1, 1, 1)

Coordinates of control points:
i Pi,1 Pi,2 Pi,3 Pi,4

1 (1, 0) (1,
√

2− 1) (
√

2− 1, 1) (0, 1)
2 (1.5, 0) (1.5, 1.5(

√
2− 1)) (1.5(

√
2− 1), 1.5) (0, 1.5)

3 (2, 0) (2, 2(
√

2− 1)) (2(
√

2− 1), 2) (0, 2)
i wi,1 wi,2 wi,3 wi,4

1,2,3 1 (1 + 1√
2
)/2 (1 + 1√

2
)/2 1
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C Appendix - Symbols and Notation

Commonly used symbols and notation

See e.g. [4, 9, 14, 15].

∇u Gradient of u; in 2d: ∇u = (∂u/∂x1, ∂u/∂x2)T . Also denoted grad u.
∇ · u Divergence of u; in 2d: ∇ · u = ∂u/∂x1 + ∂u/∂x2. Also denoted div u.
∆u Laplace-Operator applied to u; in 2d: ∆u = ∂2u/∂x2

1 + ∂2u/∂x2
2.

Ω Physical domain.
ΓD Dirichlet-boundary.
ΓN Neumann-boundary.

A Closure of a set A.
∂A Boundary of a set A.

C(Ω) Space of functions that are continuous over Ω.
C1(Ω) Space of functions that are continuously differentiable over Ω.
L2(Ω) Space of square-integrable functions over Ω.
H1(Ω) Space of square-integrable functions with square-integrable first weak

derivatives over Ω.
H1

0 (Ω) Space of functions in H1(Ω) that are zero on ΓD.

‖ · ‖0 L2-norm: ‖u‖20 =
∫
Ω
|u|2 dx.

| · |1 H1-seminorm: |u|21 =
∫
Ω
|∇xu|2 dx.

‖ · ‖1 H1-norm: ‖u‖21 = ‖u‖20 + |u|21.
‖ · ‖∞ L∞-norm: ‖u‖∞ = supΩ u.
‖ · ‖E Energy-norm: ‖u‖2E = a(u, u).
‖ · ‖p,K Restriction of the norm ‖ · ‖p to G(K) (e.g. ‖u‖20,K =

∫
G(K)

|u|2 dx).
‖ · ‖l2 l2-norm: ‖v‖2l2 =

∑|v|
i=1 v

2
i .

supp Support of a function: supp u = {x : u(x) 6= 0}.
| · | Absolute value of a scalar or cardinality of a vector, depending on

argument.

Symbols and notation specific to this thesis

Abbreviations for derivatives:
∂0v = v
∂1v = ∂v/∂ξ1
∂2v = ∂v/∂ξ2
∂3v = ∂2v/∂ξ1∂ξ2

Subdivision and Domains:
Q Parameter domain; Q = [0, 1]2 unless specified otherwise.
G Geometry mapping; Ω = G(Q).
ξ, ξ1, ξ2 Coordinates in the parameter domain.
x, x1, x2 Coordinates in the physical domain.
K Subdivision of Q.
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C Appendix - Symbols and Notation

K A cell of the subdivision.
K̂ Reference element; K̂ = [0, 1]2.
ζ(i) Node of the subdivision in the parameter domain.
x(i) Node of the subdivision in the physical domain.
K(i) Set of cells K ∈ K that contain ζ(i) in their closure.
E(p,q) Edge from node ζ(p) to ζ(q).
NE Total number of cells.
NX Total number of nodes.
Anc(·) Ancestors of the node ζ(i) or a cell K (see Sec. 4.4).

Index Sets:
Iα Set of indices Iα = {0, 1, 2, 3}.
IP Set of indices of all primary nodes.
IH Set of indices of all hanging nodes.
IX Set of indices of all nodes, IX = IP ∪ IH .
IK Set of indices of the vertices of a cell K.

Special function sets (see Section 3.2):
Q3(K) Set of bi-cubic polynomials over K.
Q3(K) Set of piecewise bi-cubic functions over K.
Q1

3(K) Set of piecewise bi-cubic and globally C1-continuous functions over K.

Nabla-Operator in parameter and physical domain:
∇x Nabla-Operator in physical domain; in 2d: ∇x = (∂/∂x1, ∂/∂x2)T .
∇ξ Nabla-Operator in parameter domain; in 2d: ∇ξ = (∂/∂ξ1, ∂/∂ξ2)T .

Finite element spaces and basis functions:
Vh Finite element space over parameter domain Ω.
ϕ

(i)
α Basis functions of Vh.

Xh Finite element space over parameter domain Q.
ϕ̂

(i)
α Basis functions of Xh.

p̂
(i)
α Basis functions of Q3(K̂).

ΨK Local basis of Q3(K).
ψ̂

(i)
α Local basis functions of Q3(K) of a specific cell K ∈ K.

Other abbreviations:
DoF Degrees of freedom.
ref’ Refinement.
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