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Abstract. We present a mixed method for a three-dimensional axisymmetric div-curl
system reduced to a two-dimensional computational domain via cylindrical coordinates.
We show that when the meridian axisymmetric Maxwell problem is approximated by
a mixed method using the lowest order Nédélec elements (for the vector variable) and
linear elements (for the Lagrange multiplier), one obtains optimal error estimates in
certain weighted Sobolev norms. The main ingredient of the analysis is a sequence of
projectors in the weighted norms satisfying some commutativity properties.

1. Introduction

We present a mixed method for solving three-dimensional axisymmetric div-curl sys-
tems. We are interested in the case when symmetry with respect to an axis permits
a reduction of the computational domain from three to two dimensions via cylindrical
coordinates. The dimension reduction results in computationally efficient methods for
applications in magnetostatics. However, the necessary use of cylindrical coordinates
complicates the mathematical analysis of numerical methods. In particular, the coordi-
nate transformation gives differential operators with singularities on the axis and function
spaces weighted by the radial variable are necessary. This note gives a few techniques to
overcome the difficulties caused by the degenerate weights. Specifically, we construct sim-
ple interpolation operators satisfying a commuting diagram property involving a sequence
of weighted spaces. This allows the application of standard techniques in the theory of
mixed methods to axisymmetric div-curl systems.

An efficient method for the dimension-reduced div-curl system was recently proposed
in [8], using a negative-norm least-squares technique. This method was shown to have
excellent conditioning independent of jumps in the coefficient, but it allowed only for
a piecewise constant coefficient. As an alternative, in this paper we present a mixed
method which allows for a piecewise smooth coefficient. Another advantage is that the
implementation of the mixed method involves finite element spaces more commonly used
than those of the negative-norm least-squares method. The mixed method simply uses
standard two-dimensional Nédélec elements [13] and continuous piecewise linear functions.
Thus the use of cylindrical coordinates does not necessitate special finite element spaces.

As a model problem, we consider Maxwell’s system for magnetostatics. Let Ω ⊂ R3 be a
convex, simply-connected, bounded domain in R3, with a connected boundary. We assume
that Ω is axisymmetric, i.e., it is invariant under rotations about the z-axis. Moreover,
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let D be a polygonal domain representing the cross-section, i.e., Ω is the revolution of D
about the z-axis. We assume that Ω intersects the z-axis on an interval of positive length.
If Ω does not intersect the z-axis, then the analysis of the problem is simple and standard
finite element methods can be applied. The magnetostatic system is

(1.1)







curlH = J in Ω
div(µH) = 0 in Ω
µH · n = 0 on ∂Ω,

where H is the magnetic field, J is the current density, µ is the magnetic permeability,
and n is the unit outward normal on ∂Ω. We assume that J is in L2(Ω)3 and satisfies the
compatibility condition div J = 0. The coefficient µ is assumed to be piecewise smooth
and to satisfy the bounds 0 < µ0 ≤ µ(x) ≤ µ1 for all x ∈ Ω, where µ0 and µ1 are positive
constants.

A standard technique to solve the magnetostatic system is via vector potentials. Define
B = µH, the magnetic intensity, and note that div B = 0. It is well known (see e.g. [1]
or [9, Theorem I.3.6]) that our assumptions on Ω imply the existence of a vector potential
A in H0(curl,Ω) satisfying B = curlA and div A = 0. Substituting H = µ−1B into
(1.1), we obtain the div-curl system

(1.2)







curlµ−1curlA = J in Ω
div A = 0 in Ω
A × n = 0 on ∂Ω.

A scalar-valued function is said to be invariant under rotation if it is constant with respect
to the angular variable in cylindrical coordinates, and a vector-valued function is said to
be axisymmetric if its component functions in cylindrical coordinates are invariant under
rotation. We assume that µ is invariant under rotation and J is axisymmetric. Therefore,
we seek an axisymmetric solution A (cf. [5]).

It is well known that (1.2) decouples into two independent systems in the presence
of axial symmetry [3]. To exhibit the decoupled system, let D be as before, namely
D = {(r, z) : (r, θ, z) ∈ Ω}, where we have used cylindrical coordinates (r, θ, z). We
assume that D has a polygonal boundary ∂D, which can be expressed as the disjoint union
∂D = Γ0 ∪ Γ1, where Γ1 = {(r, z) ∈ ∂D : r > 0}. Writing the system (1.2) in cylindrical
coordinates and assuming that the three components in A = Arer + Aθeθ + Azez are
θ-independent, we obtain the two decoupled systems

(1.3)















curlrz µ
−1curlrz(Ar, Az) = (Jr, Jz) in D,

divrz(Ar, Az) ≡
1

r

∂

∂r
(rAr) +

∂Az

∂z
= 0 in D,

(Ar, Az) · (−nz, nr) = 0 on Γ1,

and

(1.4)







− ∂

∂r

(

µ−11

r

∂

∂r
(rAθ)

)

− ∂

∂z

(

µ−1∂Aθ

∂z

)

= Jθ in D,

Aθ = 0 on Γ1.
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Here, we have used row-vector notation, nr and nz are the r and z-components of n,
respectively, and the two curl operators are defined by

(1.5) curlrz(Ar, Az) ≡ ∂zAr − ∂rAz and curlrzφ ≡
(

− ∂zφ,
1

r
∂r(rφ)

)

,

where we have abbreviated ∂/∂r to ∂r, etc. The first system, namely (1.3), forms the
so-called meridian problem, while (1.4) represents the azimuthal problem. Finite elements
for such problems were considered in [7, 12], although no error analysis in the natural
weighted spaces was given. The finite element suggested in [12] for the azimuthal problem
was independently arrived at in [10], where a convergence analysis was also provided.
Additionally, in [10], the convergence of a discretization of the azimuthal problem using
a more standard element (namely, the bilinear finite element), as well as the uniform
convergence of a V-cycle multigrid algorithm, was also proved. In this paper, we will
analyze finite elements for the meridian problem (1.3). The main new ingredient here is
an interpolation operator for a weighted H(curl)-space described next.

Due to the transformation to cylindrical coordinates, the subsequent analysis of problem
(1.3) involves function spaces weighted by the radial variable r. We denote by L2

α(D) the
weighted Lebesgue space of measurable functions v on D bounded in the norm ‖v‖L2

α(D) =

(
∫

D
rαv2 dr dz)1/2. Our notation for the natural norm on any Banach space X is simply

‖ · ‖X , but for convenience in the case of the often used space L2
1(D) (i.e., when α = 1),

we abbreviate ‖ · ‖L2
1
(D) to ‖ · ‖r. Additionally, we denote the inner product in L2

1(D) by

(u, v)r =

∫

D

r uv dr dz

and abbreviate the norm ‖ · ‖H1
1
(D) to ‖ · ‖1,r. The weighted Sobolev space Hk

α(D) for any

k ≥ 1 is the space of all functions in L2
α(D) whose distributional derivatives of order at

most k are in L2
α(D). We shall need the following additional weighted spaces:

Hr(curl, D) = {v ∈ L2
1(D)2 : curlrzv ∈ L2

1(D)},
H1

1,⋄(D) = {φ ∈ H1
1 (D) : φ = 0 on Γ1},

H1
−
(D) = {φ ∈ L1

−1(D) : gradrzφ ∈ L2
1(D)2}.

Here gradrzφ ≡ (∂rφ, ∂zφ) and the norm on Hr(curl, D) is defined by

‖v‖r,curl =
(

‖v‖2
r + ‖curlrzv‖2

r

)1/2
.

It can be shown that the trace condition in the definition of H1
1,⋄(D) is well defined (see

Lemma A.1). These spaces have occurred in the literature previously, and we shall use
their properties established in recent papers studying the axisymmetric Stokes problem [4]
or the axisymmetric Maxwell system [3], as well as in earlier books [5, 11].

The remainder of the paper is outlined as follows. Section 2 is devoted to carefully
defining the tangential trace operator on the weighted space Hr(curl, D). In Section 3,
we define and analyze a mixed formulation for (1.3) on the continuous level. The anal-
ysis proceeds by verifying the standard conditions in the theory of mixed methods [6].
In Sections 4 and 5, we consider discretization and approximation based on rectangular
and triangular meshes, respectively. Section 6 contains an analysis of the resulting dis-
crete mixed formulations, simultaneously treating the cases of rectangular and triangular
meshes. Numerical results are given in Section 7.
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2. The Tangential Trace Operator

The purpose of this section is to define the tangential trace of meridian vector fields
in Hr(curl, D). This is necessary to introduce a variational formulation incorporating
the boundary condition of (1.3), namely (Ar, Az) · t = 0 on Γ1, where t = (−nz, nr)
denotes the unit tangent vector to ∂D in the r-z plane, oriented counterclockwise. We
will first show that smooth vector fields are dense in Hr(curl, D). This will show that an
integration by parts formula that holds for smooth functions also holds for Hr(curl, D)
functions. The continuity of a trace operator follows.

Before proving the density result, we first set some more notations. Let D(R2) denote
the space of infinitely smooth real-valued functions with compact support in R2, and set
D(D) = {φ|D : φ ∈ D(R2)}. Also, let R2

+ = {(r, z) : r > 0}. Note that for any w
in L2

1(R
2
+) and φ in D(R2

+)2, the action of the distribution curlrzw on rφ, denoted by
〈curlrzw, rφ〉, satisfies

(2.1) 〈curlrzw, rφ〉 =

∫

R2
+

r w curlrzφ dr dz,

which also equals 〈rcurlrzw,φ〉. Here, products with r are to be considered in the sense
of products of distributions with smooth functions.

Proposition 2.1. The space of smooth vector fields D(D)2 is dense in Hr(curl, D).

Proof. Denoting the dual of a Hilbert space H by H ′, we show that any functional in
Hr(curl, D)′ which vanishes on D(D)2 also vanishes on Hr(curl, D). The proposition
then follows from Banach space theory. (This technique is also used in [9, Theorem I.2.4].)
Hence, we start by considering a linear functional l in Hr(curl, D)′ that vanishes on D(D)2.
Since Hr(curl, D) is a Hilbert space, the Riesz Representation Theorem yields some u in
Hr(curl, D) such that

(2.2) l(v) = (u,v)r,curl for all v in Hr(curl, D),

where (·, ·)r,curl is the inner product in Hr(curl, D) with diagonal ‖ · ‖2
r,curl.

The remainder of this proof proceeds by observing the properties of the function u

in (2.2). Let Z : L2
1(D) 7→ L2

1(R
2
+) denote the operator that trivially extends functions by

zero into R2
+. Also for vector functions, let Z(ur, uz) = (Zur, Zuz). Then

∫

R2
+

r
(

Zu · η + (Zcurlrzu)(curlrzη)
)

dr dz = l(η|D) = 0 for all η in D(R2
+)2.

By (2.1), this implies that r(Zu + curlrzZcurlrzu) = 0 in the distributional sense. But
since rZu is in L2

−1(R
2
+)2, we find that the same equality must hold in L2

−1(R
2
+)2, or

equivalently,

(2.3) Zu = −curlrz(Zcurlrzu) holds in L2
1(R

2)2.

Next, let v̆ denote the revolution of v, i.e., for any v in L2
1(D), define v̆ a.e. in Ω by

v̆(r, θ, z) = vr(r, z)er + vz(r, z)ez. It is proved in [3] that for any v in Hr(curl, D), the
revolved function v̆ is in H(curl,Ω). Hence for the u in (2.2), the function curl ŭ is in
L2(Ω)3. It is easy to see that if we revolve the functions on either side of (2.3) we obtain

(2.4) ZΩŭ = −curl (ZΩcurl ŭ) in L2(R3)3,
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where ZΩ : L2(Ω)3 7→ L2(R3)3 is the extension by zero. Thus, ZΩcurl ŭ is in H(curl,R3),
and hence curl ŭ is in H0(curl,Ω).

We need to show that l(v) = 0 for all v in Hr(curl, D). By the density of D(Ω)3

in H0(curl,Ω), there is a sequence {ηj} in D(Ω)3 converging to curl ŭ in H0(curl,Ω).
Considering any v in Hr(curl, D), and using these approximations of curl ŭ, we have

2π l(v) = 2π (u,v)r,curl = (ŭ, v̆)L2(Ω)3 + (curl ŭ, curl v̆)L2(Ω)3

= (ŭ, v̆)L2(Ω)3 + lim
j→∞

(ηj, curl v̆)L2(Ω)3

= (ŭ, v̆)L2(Ω)3 + lim
j→∞

(curlηj , v̆)L2(Ω)3

= (ŭ, v̆)L2(Ω)3 + (curl curl ŭ, v̆)L2(Ω)3 = 0.

Thus l vanishes on Hr(curl, D), and the proof is complete. �

Next, we establish an integration by parts formula. Functions in H1
−
(D) are well known

to have zero trace on Γ0 [3, 5, 10]. Since H1
−
(D) is a subspace of H1

1 (D), and since the
latter is well known to have traces in L2

1(Γ1) (cf. [10, Proposition 2.1]), we can define the
trace operator γt : D(D)2 7→ H1

−
(D)′ by

(2.5) 〈γt(v), φ〉 =

∫

Γ1

r v · t φ ds for all φ ∈ H1
−
(D).

Here, and elsewhere later, with slight abuse of notation we continue to use 〈·, ·〉 for the
duality pairing in different spaces. For example, in (2.5) it is the duality pairing inH1

−
(D),

while in (2.1) it is the duality pairing in D(R2
+)2. The space will be clear from context.

The next result shows that the domain of γt can be expanded.

Proposition 2.2. The trace operator extends to a continuous linear map from Hr(curl, D)
into H1

−
(D)′. Moreover, the integration by parts formula

(2.6) 〈γt(v), φ〉 = (v, curlrzφ)r − (curlrzv, φ)r

holds for all v in Hr(curl, D) and φ in H1
−
(D).

Proof. Equation (2.6) obviously holds for all smooth functions v in D(D)2 and φ in D(D).
By [10, Lemma 3.1], the set {φ ∈ D(D) : φ vanishes in a neighborhood of Γ0} is dense
in H1

−
(D). Hence, for any fixed v in D(D)2, the identity (2.6) holds for all φ in H1

−
(D).

Note that here we have used the easily verifiable fact that the map φ 7→ curlrzφ is
continuous from H1

−
(D) to L2

1(D). Finally, by the density asserted in Proposition 2.1, the
identity (2.6) holds for all v in Hr(curl, D). The continuity of the trace operator follows
by standard arguments (see e.g. the proof of [9, Theorem I.2.5]). �

In the next section, we will present a mixed formulation for (1.3). The boundary
condition there becomes an essential boundary condition, so we will use the subspace

Hr,⋄(curl, D) = ker γt

in our variational formulation. Clearly, by Proposition 2.2, Hr,⋄(curl, D) is a closed sub-
space of Hr(curl, D). Moreover, from (2.5) we see that smooth functions in ker γt have
tangential components that vanish on Γ1.
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3. Mixed Formulation

We can derive a mixed formulation of the meridian problem by multiplying the first
two equations of (1.3) by test functions as usual and integrating by parts. The appro-
priate integration by parts formula for the curl and divergence operators are given in
Proposition 2.2 and [8, Lemma 1], respectively. The resulting weak formulation seeks
u ∈ Hr,⋄(curl, D) and p ∈ H1

1,⋄(D) satisfying

(3.1)

{

(µ−1curlrzu, curlrzv)r + (v,∇p)r = (f ,v)r for all v ∈ Hr,⋄(curl, D),
(u,∇q)r = (g, q)r for all q ∈ H1

1,⋄(D),

where f = (Jr, Jz) and g = − divrz(Ar, Az). Although (Ar, Az) is divergence-free in the
model problem, we allow for g to be any function in L2

1(D). In the remainder of this
section, we quickly verify the conditions of the Babuška-Brezzi theory [6] to conclude the
unique solvability of (3.1).

Defining the linear operator B : Hr,⋄(curl, D) → H1
1,⋄(D)′ by Bv(q) = (v,∇q)r, we

denote W 0 = kerB, i.e.

W 0 = {v ∈ Hr,⋄(curl, D) : (v,∇q)r = 0 for all q ∈ H1
1,⋄(D)}.

Then we have the following theorem. In this theorem and in the remainder of the paper,
the letter C will denote a generic constant whose value may vary in different occurrences.

Theorem 3.1. The following holds for the axisymmetric mixed formulation (3.1).

(1) Inf-sup condition: There exists a constant C > 0 such that

C ‖p‖1,r ≤ sup
v∈Hr,⋄(curl,D)

(v, gradrzp)r

‖v‖r,curl
, for all p ∈ H1

1,⋄(D).

(2) Coercivity on kerB: There exists a constant C > 0 such that

‖v‖r,curl ≤ Cµ
1/2
1 ‖µ−1/2curlrzv‖r, for all v ∈W 0.

(3) Unique solvability: There is a unique u in Hr,⋄(curl, D) and a unique p in H1
1,⋄(D)

satisfying (3.1).

Proof. (1) Denote by H̆1
0(Ω) the functions in H1

0(Ω) invariant under rotation. The map-

ping H̆1
0 (Ω) → H1

1,⋄(D) defined by v(r, z) = v̆(r, θ, z) is an isomorphism (see §II.4 of [5]).

Applying this isomorphism and the Poincaré inequality on H1
0 (Ω), we get

(3.2) 2π‖p‖2
1,r ≤ ‖p̆‖2

H1(Ω) ≤ C‖ grad p̆‖2
L2(Ω) = 2πC‖gradrzp‖2

r,

where grad(·) denotes the three dimensional gradient operator. Note that for any p in
H1

1,⋄(D), the gradient grad p̆ is in H0(curl,Ω) and hence gradrzp is in Hr,⋄(curl, D) (cf. [3,
Proposition 3.19]). Moreover, curlrz(gradrzp) = 0 implies

C‖p‖1,r ≤
(gradrzp, gradrzp)r

‖gradrzp‖r,curl
≤ sup

v∈Hr,⋄(curl,D)

(v, gradrzp)r

‖v‖r,curl
.

(2) Let v ∈ W 0 and consider the revolved vector field v̆ = vrer + vzez defined in Ω.
Clearly v̆ × n = 0 on ∂Ω. By [3, Proposition 3.19], v̆ is in H(curl ,Ω). Let us now also
show that

(3.3) (v̆, grad q)L2(Ω) = 0, for all q ∈ H1
0 (Ω).
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The left hand side is

(v̆, grad q)L2(Ω) =

∫∫

D

∫ 2π

0

r v̆ · grad q dθ dr dz

=

∫∫

D

∫ 2π

0

r (vr ∂rq + vz ∂zq) dθ dr dz

= 2π

∫∫

D

r (vr ∂rq
˘

+ vz ∂zq
˘
) dr dz,

where

q
˘
(r, z) =

1

2π

∫ 2π

0

q(r, θ, z) dθ

and the interchanges in the order of integration and differentiations are justified as usual.
Since q is in H1

0(Ω), by [5, Theorem II.3.1], the averaged function q
˘

is in H1
1,⋄(D). Con-

sequently, the above calculation implies that

(v̆, grad q)L2(Ω) = 2π(v, gradrzq
˘

)r = 0,

as v is given to be in W 0. By a standard Poincaré-Friedrichs estimate [1, 9] for functions
satisfying (3.3), we have

‖v̆‖L2(Ω) ≤ C‖curl v̆‖L2(Ω).

Since v̆ is axisymmetric, curl v̆ = (curlrzv)eθ, so the above inequality implies a corre-
sponding estimate on D, namely

‖v‖r ≤ C‖curlrzv‖r ≤ Cµ
1/2
1 ‖µ−1/2curlrzv‖r.

This is equivalent to the desired inequality.
(3) The final statement follows by applying the Babuška-Brezzi theory for mixed sys-

tems, as the previous two statements of the theorem verified the assumptions required to
apply the theory. �

4. Approximation on Rectangular Meshes

In this section, we introduce finite element spaces based on rectangular meshes, which
approximate the spaces Hr(curl, D) and H1

1 (D). Triangular finite elements are given in
the next section. Although triangular elements cover more general domains, we include
the rectangular case, because its analysis readily reveals the main ideas and they are
simple to implement when applicable.

The rectangular finite element functions are simple bilinear functions for H1
1(D) and

the two-dimensional edge-based Nédélec functions for Hr(curl, D). To establish notation
for our finite element spaces, first define the polynomial spaces

Q1,1 = {p(r, z) = c0 + c1r + c2z + c3rz : ci ∈ R for 0 ≤ i ≤ 3},
ND1,1 = {(a+ bz, c+ dr) : a, b, c, d ∈ R} .
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Given a rectangular mesh Th aligned with the coordinate axes, define the finite element
spaces

Vh = {u ∈ H1
1 (D) : u|K ∈ Q1,1 for all K ∈ Th},

Wh = {v ∈ Hr(curl, D) : v|K ∈ ND1,1 for all K ∈ Th},
Sh = {u ∈ L2

1(D) : u|K is constant, for all K ∈ Th}.

Additionally, let

(4.1)
Vh,⋄ = {v ∈ Vh : v = 0 on Γ1},
Wh,⋄ = {v ∈ Wh : v · t = 0 on Γ1}.

Our aim in this section is to construct projectors ΠV
h , ΠW

h and ΠS
h onto the above finite

element spaces such that the following diagram commutes.

(4.2)

H1
1 (D)

gradrz−−−−→ Hr(curl, D)
curlrz−−−→ L2

1(D)




y

ΠV
h





y

ΠW
h





y

ΠS
h

Vh
gradrz−−−−→ Wh

curlrz−−−→ Sh.

The above is somewhat of an abuse of notation as the first two projectors are defined on
sufficiently smooth functions in H1

1 (D) and Hr(curl, D), respectively. The importance of
such a property in the analysis of mixed methods with the usual (unweighted) Sobolev
spaces is well known. As in the case of the standard unweighted Sobolev spaces, it is quite
technical to construct projectors whose domain is the entire corresponding Sobolev space
appearing in (4.2). Hence, the projectors we construct will require further regularity.

We first define the interpolation operator ΠV
h by its action element by element. On

every element K whose boundary does not intersect Γ0, (ΠV
h v)|K is the unique bilinear

function whose value at each of the four vertices of K coincides with that of v. The
remaining elements have vertices of the form (0, z0), (hr, z0), (hr, z1), and (0, z1), with
z1 = z0 + hz. On such elements, we must change the definition of ΠV

h v, as v 7→ v(0, z) is
not a continuous functional on H2

1 (D). The new degrees of freedom on such rectangles
are

(4.3)

m1(v) = v(hr, z0), m2(v) =

∫ hr

0

r ∂rv(r, z0) dr,

m3(v) = v(hr, z1), m4(v) =

∫ hr

0

r ∂rv(r, z1) dr.

The interpolant ΠV
h v on such an element is the unique function inQ1,1 satisfyingmi(Π

V
h v) =

mi(v) for i = 1, . . . , 4. The definition and analysis of this interpolant are very similar to
those of an interpolation operator defined in [10], where the weight r1/2 was used in place
of r in defining m2 and m4. We chose the r weight for convenience. A similar analysis
could be provided for the r1/2 weight.

Next, we define the projection ΠW
h onto Wh. On rectangles K not intersecting Γ0, ΠW

h

is the standard Nédélec interpolant defined by the unweighted integrals of the tangential
components along edges, i.e., the degrees of freedom are

∫

e
(ΠW

h v) · t ds for all edges e
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of K. On the remaining rectangles, the degrees of freedom are

(4.4)

M1(v) =

∫ (hr ,z0)

(0,z0)

r v · t ds, M2(v) =

∫ (hr ,z0+hz)

(hr ,z0)

v · t ds,

M3(v) =

∫ (0,z0+hz)

(hr ,z0+hz)

r v · t ds, M4(v) =

∫

K

r curlrzv dr dz.

Here
∫ a2

a1
denotes the straight line integral from the point a1 to the point a2 in the r-z

plane. For any function v for which the moments Mi exist, we define ΠW
h v|K as a function

in ND1,1 satisfying Mi(Π
W
h v) = Mi(v) for i = 1, . . . , 4. That ΠW

h v is uniquely defined
this way follows from the next lemma.

Finally, for the space Sh at the end of (4.2), we define ΠS
hw for any w in L2

1(D) as the
unique function in Sh such that on a mesh element K, its restriction (ΠS

hw)|K satisfies

(4.5)

∫

K

r (ΠS
hw) v dr dz =

∫

K

r w v dr dz if K̄ intersects Γ0, and

∫

K

(ΠS
hw) v dr dz =

∫

K

w v dr dz otherwise,

for all v in Sh. With these definitions, we have the following lemma verifying the commu-
tative properties in (4.2).

Lemma 4.1. The interpolation operators defined above have the following properties.

(1) The degrees of freedom in (4.3) are continuous linear functionals on H2
1 (D) and

are unisolvent. Hence ΠV
h is well defined and continuous on H2

1 (D).
(2) The degrees of freedom in (4.4) are continuous linear functionals on H1

1 (D)2 and

are unisolvent. Hence ΠW
h is well defined and continuous on H1

1 (D)2.
(3) The commutative properties

curlrzΠ
W
h v = ΠS

hcurlrzv,

ΠW
h gradrzu = gradrzΠ

V
h u,

hold for any u and v for which all of the above quantities are bounded.

(4) ΠV
h and ΠW

h preserve zero boundary conditions, i.e., if u is in H1
1,⋄(D) ∩ H2

1 (D),

then ΠV
h is in Vh,⋄, and if v is in Hr,⋄(curl, D) ∩H1

1 (D)2, then ΠW
h v is in Wh,⋄.

Proof. The continuity of m1 and m3 on H2
1 (D) follows from the standard Sobolev in-

equality (because the points involved are away from the z-axis). For m2 and m4, the
same continuity follows from [10, Proposition 2.1] or Lemma A.1. Similarly, Mi is contin-
uous on H1

1 (D)2 for 1 ≤ i ≤ 4.
Next, let us prove the unisolvence of {Mi}. (We omit the proof of unisolvence of {mi}

as it is simpler.) Suppose vh = (a + bz, c+ dr) on a rectangle K intersecting Γ0, with
Mi(vh) = 0 for 1 ≤ i ≤ 4. We need to show that vh vanishes. Since

curlrzvh = b− d,

M4(vh) = 0 implies b = d. Consequently, vh = ∇ψh for some bilinear function ψh in Q1,1.
It follows from M1(vh) = 0 and M3(vh) = 0 that ∂ψh/∂r vanishes on the horizontal edges
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of K. Thus, ψh(r, z) = c0 + c2z. Now

∫ (hr,z0+hz)

(hr ,z0)

∇ψh · t ds = M2(vh) = 0

implies ψh(r, z) = c0 is constant, i.e., vh = ∇ψh = 0.
The commutative properties follow in a standard way on elements away from Γ0. For

the remaining elements, the identity curlrzΠ
W
h v = ΠS

hcurlrzv follows immediately from
the definition of M4, since curlrzw is a scalar constant for any w in ND1,1. To verify
the second identity ΠW

h gradrzu = gradrzΠ
V
h u, it suffices to show that the degrees of

freedom Mi agree for gradrzu and gradrzΠ
V
h u, because the gradient of any function in

Vh is in Wh. By the definition (4.3) of ΠV
h ,

M1(gradrz(u− ΠV
h u)) =

∫ hr

0

r
(

∂ru(r, z0) − ∂rΠ
V
h u(r, z0)

)

dr = 0,

M2(gradrz(u− ΠV
h u)) =

∫ z0+hz

z0

(

∂zu(hr, z) − ∂zΠ
V
h u(hr, z)

)

dz

= u(hr, z0 + hz) − ΠV
h u(hr, z0 + hz) − u(hr, z0) + ΠV

h u(hr, z0)

= 0,

M3(gradrz(u− ΠV
h u)) =

∫ 0

hr

−r
(

∂ru(r, z0 + hz) − ∂rΠ
V
h u(r, z0 + hz)

)

dr = 0

M4(gradrz(u− ΠV
h u)) =

∫

K

r curlrzgradrz(u− ΠV
h u) dr dz = 0.

This proves the second commutative identity.
Finally, the last assertion on the boundary preservation properties is obvious by con-

struction. �

We conclude this section by proving approximation properties for the interpolation
operators. From now on, whenever we use the generic constant C, its value will always
be independent of the mesh size h = maxK∈Th

diam(K).

Lemma 4.2 (Approximation estimates). There exists a constant C such that

‖gradrz(u− ΠV
h u)‖L2

1
(D) ≤ Ch|u|H2

1
(D),(4.6)

‖v − ΠW
h v‖L2

1
(D)2 ≤ Ch|v|H1

1
(D)2 ,(4.7)

‖curlrz(v − ΠW
h v)‖L2

1
(D) ≤ Ch|curlrzv|H1

1
(D),(4.8)

‖w − ΠS
hw‖L2

1
(D) ≤ Ch|w|H1

1
(D),(4.9)

for all u ∈ H2
1 (D), w ∈ H1

1 (D), and v ∈ H1
1 (D)2. For (4.8), we additionally require

curlrzv ∈ H1
1 (D).

Proof. These estimates are established by proving analogous local estimates on each ele-
ment, squaring them, and summing. For elements away from the z-axis, standard argu-
ments prove the estimates. For the remaining elements K intersecting Γ0, we will now
show that all of the estimates follow from the fact that whenever φ in H1

1 (K) satisfies any
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one of the conditions
∫

e

r φ(r, z) dr = 0, for an edge e of K having a vertex in Γ0, or(4.10)

∫

e

φ(r, z) dr = 0, for the vertical edge e of K not intersecting Γ0, or(4.11)

∫

K

r φ(r, z) dr dz = 0,(4.12)

then

(4.13) ‖φ‖L2
1
(K) ≤ Ch|φ|H1

1
(K).

That (4.13) holds under conditions (4.10) and (4.11) is contained in [10, Lemma 2.1]. Its
proof under condition (4.12) is very similar, so we omit it.

Consider the last operator ΠS
h first. Since φ = (w−ΠS

hw)|K satisfies (4.12), the estimate
‖φ‖L2

1
(K) ≤ Ch|w|H1

1
(K) follows from (4.13) and |ΠS

hw|H1
1
(K) = 0. This proves (4.9). To

prove estimate (4.7) for ΠW
h , let (φr, φz) = v−ΠW

h v and observe that by construction, φr

satisfies (4.10) and φz satisfies (4.11). Hence

‖φr‖L2
1
(K) ≤ Ch|φr|H1

1
(K), ‖φz‖L2

1
(K) ≤ Ch|φz|H1

1
(K).

It is easy to verify by direct calculation that |ΠW
h v|H1

1
(K)2 ≤ C|v|H1

1
(K)2 . Using this to

bound the right hand sides above, we get (4.7). Estimate (4.8) follows from Lemma 4.1,
because

‖curlrz(v − ΠW
h v)‖L2

1
(D) = ‖curlrzv − ΠS

hcurlrzv‖L2
1
(D) by Lemma 4.1(3),

≤ Ch|curlrzv|H1
1
(D) by (4.9).

Proof of the final estimate proceeds similarly using Lemma 4.1:

‖gradrz(u− ΠV
h u)‖L2

1
(D) = ‖gradrzu− ΠW

h gradrzu‖L2
1
(D) by Lemma 4.1(3),

≤ Ch|gradrzu|H1
1
(D) by (4.7),

from which (4.6) follows. �

5. Approximation on Triangular Meshes

We now consider triangular meshes, proving results analogous to those given in the
previous section for rectangular meshes. In particular, we want to construct projectors
onto triangular finite element spaces satisfying the commuting diagram property (4.2)
and possessing optimal approximation properties.

With triangular elements, we are now able to mesh more general polygonal domains D.
Let Th be a mesh of D consisting of triangles, satisfying the usual finite element assump-
tions. For simplicity, we assume that Th is quasiuniform. Define the polynomial spaces

P1 = {p(r, z) = c0 + c1r + c2z : ci ∈ R for 0 ≤ i ≤ 2},
ND1 = {(a− bz, c+ br) : a, b, c ∈ R} .
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Then for each v in ND1(τ), v ·t is constant along each edge of τ . The global finite element
spaces are

Vh = {u ∈ H1
1 (D) : u|τ ∈ P1 for all τ ∈ Th},

Wh = {v ∈ Hr(curl, D) : v|τ ∈ ND1 for all τ ∈ Th},
Sh = {u ∈ L2

1(D) : u|τ ∈ R is constant, for all τ ∈ Th}.
One obvious set of global degrees of freedom for Vh consists of the function values at all

mesh vertices. However, we cannot consider the nodal interpolant corresponding to these
degrees of freedom, as the values on the z-axis are undefined for functions in our weighted
spaces. As in the rectangular case, we therefore define new degrees of freedom through
weighted edge moments. In the triangular case, there is an additional complication due
to multiple interior edges meeting at a vertex on the z-axis. Hence, we associate with
each vertex ai in Γ0 one edge e(ai) such that ai is an endpoint of e(ai) and e(ai) * Γ0. If
ai is an endpoint of Γ0, then we choose e(ai) to be the mesh edge connected to ai lying
on Γ1. Then, we set one global degree of freedom per mesh vertex by

(5.1)











σV
i (u) = u(ai), if ai /∈ Γ0,

σV
i (u) =

∫

e(ai)

r t · gradrzu ds, if ai ∈ Γ0.

Proposition 5.1. The linear functionals in (5.1) are continuous on H2
1 (D) and form

unisolvent degrees of freedom for Vh.

Proof. For ai /∈ Γ0, by a standard Sobolev inequality,

|σV
i (u)| = |u(ai)| ≤ ci‖u‖H2

1
(D),

while for ai ∈ Γ0, by Lemma A.1,

|σV
i (u)| =

∣

∣

∣

∣

∫

e(ai)

r t · gradrzu ds

∣

∣

∣

∣

≤ ci‖u‖H2
1
(D),

for some constants ci independent of u. Hence, the degrees of freedom are continuous
linear functionals on H2

1 (D). It only remains to show that these degrees of freedom are
unisolvent. If vh ∈ Vh has σV

i (vh) = 0 for all i, then obviously vh vanishes at all vertices
ai /∈ Γ0. It also vanishes on the remaining vertices ai ∈ Γ0 because the zero integral
degrees of freedom imply that vh(ai) must equal the value of vh at the other endpoint of
e(ai). Hence vh ≡ 0. �

Next, we define the set of global degrees of freedom for the Nédélec space Wh as

(5.2)



































σW
i (v) =

∫

e(ai)

r v · t ds for all mesh vertices ai ∈ Γ0,

σW
e (v) =

∫

e

v · t ds for all mesh edges e with e ∩ Γ0 = ∅,

σW
τ (v) =

∫

τ

r curlrzv dr dz for all mesh triangles τ with τ ∩ Γ0 6= ∅.

Note that these differ from the standard Nédélec degrees of freedom [13] in three respects:
(i) We use weighted edge moments near Γ0. (ii) Not all interior edges are used in defining
the degrees of freedom. (iii) Elements near Γ0 have an interior degree of freedom even
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though we are only considering the lowest order case. Due to these differences, we must
now verify that the new degrees of freedom control Wh.

Proposition 5.2. The linear functionals in (5.2) are continuous on H1
1 (D)2 and form

unisolvent degrees of freedom for Wh.

Proof. To prove unisolvence, suppose that all the degrees of freedom in (5.2) vanish for a
function vh in Wh. Then, clearly vh vanishes on elements τ not intersecting Γ0. It remains
to show that vh vanishes on the remaining elements, which we collect into a set S. The
elements in S can be classified in two types: for k = 1 or 2, we say that a triangle τ in
S is of type k if τ has exactly k vertices on Γ0 (see Figure 1). For any τ ∈ S, writing
vh|τ = (a − bz, c + br) and using the fact that the interior degree of freedom is zero, we
have

−2b

∫

τ

r dr dz =

∫

τ

r curlrz(a− bz, c + br) dr dz =

∫

τ

r curlrzvh dr dz = 0.

Hence b = 0 and vh is constant on τ . Therefore, to prove that vh vanishes on any τ in S,
it suffices to show that the tangential component of vh is zero on any two edges of τ .

Note that around any interior vertex of Γ0, there are two triangles of type two separated
by a number (possibly none) of type one triangles. The case of an end point is similar
but only involves one triangle of type two.

Now let us prove that vh vanishes on all type one triangles in S. Let τ be a type one
triangle and let a be its vertex on Γ0 (including the endpoints of Γ0). Then, e(a) cannot
be an edge shared by type two triangles only, i.e., there is at least one type one triangle,
say τ ′, having e(a) as an edge (see Figure 1). This triangle τ ′ need not coincide with τ .
It has an edge not intersecting Γ0 where the tangential component of vh is given to be
zero. Therefore, vh · t is zero on two edges of τ ′, hence vh vanishes on τ ′. We can repeat
this argument on any type one triangle adjacent to τ ′ (since vh · t = 0 on all edges on τ ′).
Therefore vh vanishes on all type one triangles connected to a, including τ .

Next, consider a type two triangle τ . It has two edges not on Γ0. We claim that vh · t
vanishes on these two edges. Indeed, if e is such an edge, and e is shared by a type one
triangle, then by the conclusion of the previous paragraph, vh · t = 0 on e. Also, if e is on
Γ1, then obviously vh ·t = 0 on e. The only other possibility is that e is shared by another
type two triangle τ ′. But in this case, e coincides with e(a) where a is the common vertex
of τ and τ ′ on Γ0. Obviously, vh · t = 0 on e(a) since all degrees of freedom are given to
be zero. Thus, vh · t vanishes on two edges of each type two triangle, so vh vanishes on
type two triangles as well.

The continuity of the linear functionals on H1
1 (D)2 follows easily from Lemma A.1 and

standard results. �

Define the projector ΠV
h onto Vh by

σV
i (ΠV

h v) = σV
i (v),

for all the degrees of freedom σV
i in (5.1). Similarly define the projector ΠW

h onto Wh using
all the degrees of freedom in (5.2). By Propositions 5.1 and 5.2, these projectors are well
defined. In particular, ΠW

h u for any u in H1
1(D)2 automatically satisfies the tangential

continuity constraints of Wh along all mesh edges even though not all edges are degrees
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type 2

type 1

τ
′

τ

τ

r

z

ai

aj
e(a

j)

aj+1

0

r̂

r̂

ẑ

ẑ

τ̂2

τ̂1

0

0

1

1

1

1
τ

τ

(a) (b)

Figure 1. (a) Illustration of the notations used in some of the proofs in
this section. The edges that define degrees of freedom connected to vertices
ai, aj and aj+1 are marked by thicker lines. (b) The two types of mappings
and the two corresponding reference triangles.

of freedom, i.e.,
∫

e

rv · t ds and

∫

e

r(ΠW
h v) · t ds

are not equal in general.
Additionally, we have the following local norm estimate.

Proposition 5.3. There exists a constant C such that

|ΠW
h v|H1

1
(τ)2 ≤ C|v|H1

1
(τ)2 ,

for all mesh triangles τ in Th and all v in H1
1 (τ)2.

Proof. The result is standard in the case when τ does not intersect Γ0. Writing ΠW
h v|τ =

(a− bz, c + br) on the remaining triangles τ , we have

−2b

∫

τ

r dr dz =

∫

τ

r curlrz(a− bz, c + br) dr dz =

∫

τ

r curlrzΠ
W
h v dr dz

= σW
τ (ΠW

h v) = σW
τ (v) =

∫

τ

r curlrzv dr dz

and hence

|ΠW
h v|2H1

1
(τ)2 =

∫

τ

r b2 dr dz =

(∫

τ
r curlrzv dr dz

)2

4
∫

τ
r dr dz

≤ C|v|2H1
1
(τ)2 .

�

We also need a projector ΠS
h onto Sh. Its definition is similar to the rectangular

case (4.5), namely, on elements τ intersecting Γ0, we define (ΠS
hw)|τ to be the L2

1(τ)-
orthogonal projection of w|τ onto the space of constants on τ . On the remaining elements,
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(ΠS
hw)|τ is the L2(τ)-orthogonal projection of w onto the space of constants on τ . Then,

we have the following analogue of Lemma 4.1 in the rectangular case.

Lemma 5.1. Items (3) and (4) of Lemma 4.1 hold verbatim in the triangular case with

the above defined projectors.

Proof. Since the commutative properties are standard for the interpolants based on the
standard degrees of freedom, it suffices to verify that they hold on elements τ with
nonempty τ ∩ Γ0. On such elements τ , because of the last set of degrees of freedom
in (5.2), the identity

(5.3) curlrzΠ
W
h v = ΠS

hcurlrzv

obviously holds. To prove the remaining commutative identity, it suffices to show that
the degrees of freedom in (5.2) vanish when applied to (ΠW

h gradrzp− gradrzΠ
V
h p)|τ . We

need only check σW
i and σW

τ as the case of σW
e is standard. Now, for any vertex ai in Γ0,

the definition of ΠV
h gives

∫

e(ai)

r gradrzΠ
V
h p · t ds =

∫

e(ai)

r gradrzp · t ds =

∫

e(ai)

rΠW
h gradrzp · t ds,

so σW
i (ΠW

h gradrzp − gradrzΠ
V
h p) = 0. Finally, if τ is a triangle in Th intersecting Γ0

nontrivially, then
∫

τ

r curlrzgradrzΠ
V
h p dr dz = 0 =

∫

τ

r curlrzgradrzp dr dz

=

∫

τ

r curlrzΠ
W
h gradrzp dr dz,

so σW
τ (ΠW

h gradrzp− gradrzΠ
V
h p) = 0. Thus ΠW

h gradrzp and gradrzΠ
V
h p agree on all the

degrees of freedom in Wh. Hence the commutativity property

(5.4) ΠW
h gradrzp = gradrzΠ

V
h p

follows.
Finally, the assertion of the lemma on the boundary conditions is obvious by the con-

struction of the interpolants (where we use the fact that e(ai) is contained in Γ1 if ai is
an endpoint of Γ0). �

In proving an approximation estimate for the interpolation operator ΠW
h , we shall use

the next lemma to control the error on edges not having degrees of freedom. In the
triangular case, local arguments of the type we used in the rectangular case are not
applicable, as the degrees of freedom are defined more globally.

Lemma 5.2. Let τ be a mesh triangle in Th having edges e1, e2, e3. Set

Ir
j (u) =

∫

ej

r u · t ds and I1
j (u) =

∫

ej

u · t ds.

(1) If the edge e3 is contained in Γ0, then

‖u‖2
L2

1
(τ)2 ≤ C

(

h2|u|2H1
1
(τ)2 + h|Ir

1(u)|2 + h|Ir
2(u)|2

)

for all u in H1
1 (τ)2.
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(2) If e3 does not intersect Γ0, but e1 and e2 have a common endpoint on Γ0, then

‖u‖2
L2

1
(τ)2 + h|Ir

1(u)|2 ≤ C
(

h2|u|2H1
1
(τ)2 + h|Ir

2(u)|2 + h|I1
3 (u)|2

)

for all u in H1
1 (τ)2.

Proof. The triangle τ is either a type one or type two triangle (using the terminology in
the proof of Proposition 5.2). This proof uses scaling arguments (as in [4]) employing
maps from two reference triangles, one for each type of τ . The reference triangles are τ̂1
and τ̂2, defined to be the triangles in the r̂-ẑ plane with vertices {(0, 0), (1, 1), (1,−1)}
and {(0,−1), (1, 0), (0, 1)}, respectively (see Figure 1).

To prove the first estimate, let F be an affine homeomorphism that maps τ̂2 onto τ
such that F maps the edge of τ̂2 on the z-axis onto e3. Map u(r, z) covariantly to define
the function û(r̂, ẑ) = J(F)tu(r, z) on τ̂2, where J(F) is the Fréchet derivative of F. If
λ3 is the barycentric coordinate function of τ that vanishes on e3 ⊆ Γ0, then r = λ3/h3

where h3 is the distance from e3 to the vertex of τ opposite to e3. Using this, it is easy
to show that

‖u‖2
L2

1
(τ) ≤ C h−1‖û‖2

L1
1
(τ̂2),(5.5)

|û|2H1
1
(τ̂2) ≤ C h3 |u|2H1

1
(τ),(5.6)

∣

∣

∣

∣

∫

êi

r̂ û · t̂i dŝ

∣

∣

∣

∣

2

≤ Ch2

∣

∣

∣

∣

∫

ei

r u · t ds
∣

∣

∣

∣

2

, for i = 1 and 2,(5.7)

where êi = F−1(ei) and t̂i denotes the unit tangent on êi. Therefore, once we show that

(5.8) C‖û‖2
L2

1
(τ̂2) ≤ |û|2H1

1
(τ̂2) + |Îr

1(û)|2 + |Îr
2(û)|2, for all û ∈ H1

1 (τ̂2)
2,

the first inequality of the lemma follows using (5.5)–(5.7). Here, Îr
j (û) =

∫

êj
r̂ û · t̂ dŝ.

To establish (5.8), suppose on the contrary that there exists a sequence {vn}n∈N in
H1

1 (τ̂2)
2 such that

(5.9)
1

n
‖vn‖2

L2
1
(τ̂2) > |vn|2H1

1
(τ̂2) + |Îr

1(vn)|2 + |Îr
2(vn)|2.

Normalizing, we may assume without loss of generality that ‖vn‖L2
1
(τ̂2) = 1 for all n ∈ N.

Thus (5.9) implies that limn→∞ |vn|2H1
1
(τ̂2)

= 0. In particular, {vn} is a uniformly bounded

sequence in H1
1 (τ̂2)

2. Consequently, the sequence {v̆n} of revolved functions is uniformly
bounded in H1(τ̆2), where τ̆2 ⊂ R3 is the revolution of τ̂2 about the ẑ-axis. The compact
imbedding of H1(τ̆2) in L2(τ̆2) yields a subsequence {v̆jn

}n∈N converging in L2(τ̆2). Now

‖vjn
− vjm

‖2
L2

1
(τ̂2) =

1

2π
‖v̆jn

− v̆jm
‖2

L2(τ̆2)

and limn→∞ |vjn
|H1

1
(τ̂2) = 0 imply the existence of a v ∈ H1

1 (τ̂2)
2 such that

lim
n→∞

vjn
= v in H1

1(τ̂2).

Moreover, since |v|H1
1
(τ̂2) = 0, we find that v is constant. By Lemma A.1, Îr

1(·) and Îr
2(·)

are continuous linear functionals on H1
1 (τ̂2)

2, so we also have that

Îr
j (v) = (v · t̂j)

∫

êj

r dŝ = 0 for i = 1, 2.
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Since the tangent vectors t̂1 and t̂2 are linearly independent, v · t̂1 = v · t̂2 = 0 implies
that v vanishes. But this contradicts ‖v‖2

L2
1
(τ̂2)

= limn→∞ ‖vn‖2
L2

1
(τ̂2)

= 1, so we conclude

that (5.8) holds on the reference element τ̂2. Mapping to a target element τ we complete
the proof of the first inequality of the lemma.

The proof of the second inequality of the lemma is similar. For this case, since τ is
a type one triangle, we must use a mapping from the other reference triangle τ̂1. Also,
now r is given by a different expression, namely r = r1λ1 + r2λ2, where ri denotes the
r-coordinate of the vertex of τ opposite to ei and λi is the barycentric coordinate function
vanishing on ei. But inequalities like (5.5)–(5.7) continue to hold, because r1/h and
r2/h are bounded above and below by fixed constants (independent of mesh size, but
depending on element angles and the angle Γ1 makes with Γ0). The argument on the
reference element τ̂1 by contradiction is analogous to that above. �

Lemma 5.3 (Approximation estimates). The projectors defined in the triangular case

also satisfy the estimates of Lemma 4.2, i.e., there exists a constant C such that

‖gradrz(u− ΠV
h u)‖L2

1
(D) ≤ Ch|u|H2

1
(D),(5.10)

‖v − ΠW
h v‖L2

1
(D)2 ≤ Ch|v|H1

1
(D)2 ,(5.11)

‖curlrz(v − ΠW
h v)‖L2

1
(D) ≤ Ch|curlrzv|H1

1
(D),(5.12)

‖w − ΠS
hw‖L2

1
(D) ≤ Ch|w|H1

1
(D),(5.13)

for all u ∈ H2
1 (D), w ∈ H1

1 (D), and v ∈ H1
1 (D)2. For (5.12), we additionally require

curlrzv ∈ H1
1 (D).

Proof. First, (5.13) follows from a result already established in the literature [4, Lemma 5].
As in the proof of Lemma 4.2, (5.12) follows from the commutativity property of

Lemma 5.1 and (5.13).
The proof of (5.11) is more involved. Recalling the notations in the proof of Proposi-

tion 5.2 (see Figure 1), we first consider a type one triangle τ with a vertex a on Γ0. Then
there is a sequence of type one triangles T0, T1, . . . , Tn, all connected to a, with T0 = τ ,
and Tn having e(a) as an edge. Let ℓj = ∂Tj−1 ∩ ∂Tj denote the corresponding sequence
of edges connected to a. Then, by Lemma 5.2(2) and Proposition 5.3,

‖v − ΠW
h v‖2

L2
1
(τ)2 ≤ C

(

h2 |v|2H1
1
(T0)2 + h

∣

∣

∣

∣

∫

ℓ1

r (v − ΠW
h v) · t ds

∣

∣

∣

∣

2 )

,

where we have used the fact that σW
e -type degrees of freedom in (5.2) coincide when

applied to v and ΠW
h v. We use Lemma 5.2(2) again, but this time to bound the integral

over ℓ1 appearing above using a seminorm over the next triangle T1. Combining with
further applications of Lemma 5.2(2) and Proposition 5.3, we have

‖v‖2
L2

1
(τ)2 ≤ C

(

h2 |v|2H1
1
(T0∪T1)2

+ h

∣

∣

∣

∣

∫

ℓ2

r (v − ΠW
h v) · t ds

∣

∣

∣

∣

2 )

≤ C

(

h2 |v|2H1
1
(T0∪T1∪···Tn)2 + h

∣

∣

∣

∣

∫

e(a)

r (v − ΠW
h v) · t ds

∣

∣

∣

∣

2 )

.
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The last integral is zero because of the first type of degrees of freedom in (5.2). Thus,
if Da denotes the union of all triangles connected to a, we have

(5.14) ‖v − ΠW
h v‖2

L2
1
(Da)2 ≤ Ch2|v|2H1

1
(Da)2 ,

where we have tacitly used the fact that the number n above is bounded by a fixed
constant due to the shape regularity of the mesh.

Next consider a type two triangle τ with edges e1, e2, e3 such that e3 ⊆ Γ0. Applying
Lemma 5.2(1) and Proposition 5.3,

‖v‖2
L2

1
(τ)2 ≤ C

(

h2 |v|2H1
1
(τ)2 + h

∣

∣

∣

∣

∫

e1∪e2

r (v − ΠW
h v) · t ds

∣

∣

∣

∣

2 )

.

The portions of the last integral over ei (for i = 1 or 2) vanish if ei is a degree of freedom.
Otherwise, they are bounded as above and we conclude that for any type two triangle τ ,

(5.15) ‖v − ΠW
h v‖2

L2
1
(τ)2 ≤ Ch2 |v|2H1

1
(Dx1

∪Dx2
)2

where xi is the vertex of τ opposite to ei.
For triangles τ not intersecting Γ0, the estimate

(5.16) ‖v − ΠW
h v‖2

L2
1
(τ)2 ≤ Ch2|v − ΠW

h v|2H1
1
(τ)2 ≤ Ch2|v|2H1

1
(τ)2

follows by standard arguments. Hence by summing over all triangles, and using (5.14),
(5.15), or (5.16) as appropriate, we obtain

‖v − ΠW
h v‖L2

1
(D)2 ≤ Ch|v|H1

1
(D)2 .

This proves (5.11).
The estimate (5.10) is proved as in the rectangular case using Lemma 5.1 and commu-

tativity. This completes the proof of all the lemma. �

6. The Discrete Mixed Method

With the tools constructed in the previous sections, we are now able to analyze a
discrete mixed method suggested by the variational formulation in Section 3. The mixed
Galerkin method develops approximate solutions in the discrete subspaces considered
in the previous sections by requiring them to satisfy the equations of the variational
formulation (3.1) in the discrete subspaces. To limit the technicalities in the analysis, we
assume throughout this section that the revolution of D, namely Ω, is convex.

The mixed Galerkin approximation is the function pair (uh, ph) ∈Wh,⋄×Vh,⋄ satisfying

(6.1)

{

(µ−1curlrzuh, curlrzvh)r + (vh,∇ph)r = (f ,vh)r for all vh ∈Wh,⋄,
(uh,∇qh)r = (g, qh)r for all qh ∈ Vh,⋄.

It follows from the next theorem that such a pair is uniquely determined by the above
equations. In (6.1), the finite element spaces can be either those defined in Section 4 (for
rectangular meshes) or those in Section 5 (for triangular meshes), i.e., Vh,⋄ and Wh,⋄ are
defined by (4.1), where Vh and Wh can be either as defined in Section 4 or as in Section 5.
The analysis of this section treats both cases simultaneously. Define W 0

h,⋄ as the subspace
of Wh,⋄ consisting of discretely divergence-free functions, i.e.,

W 0
h,⋄ = {φh ∈Wh,⋄ : (φh,∇ph)r = 0 for all ph ∈ Vh,⋄}.

Then we have the following theorem (cf. Theorem 3.1).
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Theorem 6.1. The following holds for the axisymmetric mixed method (6.1).

(1) Discrete inf-sup condition: For all ph in Vh,⋄,

C ‖ph‖1,r ≤ sup
vh∈Wh,⋄

(vh, gradrzph)r

‖vh‖r,curl
.

(2) Coercivity on the discrete kernel: For all vh in W 0
h,⋄,

‖vh‖r,curl ≤ Cµ1‖µ−1/2curlrzvh‖r.

(3) Unique solvability: There is a unique uh in Wh,⋄ and a unique ph in Vh,⋄ satisfy-

ing (6.1).
(4) Optimal error estimates: If (u, p) in Hr,⋄(curl, D) ×H1

1,⋄(D) is the exact solution

satisfying (3.1) and (uh, ph) in Wh,⋄×Vh,⋄ is the discrete solution satisfying (6.1),
then

‖u− uh‖Hr(curl,D) + ‖p− ph‖H1
1
(D) ≤ Ch

(

|u|H1
1
(D) + |curlrzu|H1

1
(D) + |p|H2

1
(D)

)

.

Here, we have implicitly assumed that u and p are smooth enough so that the above

norms make sense.

Proof. (1) The proof of the inf-sup condition is similar to the proof of the exact inf-sup
condition in Theorem 3.1(1). The only change is that we use the discrete version of
gradrzH

1
1,⋄(D) ⊆ Hr,⋄(curl, D), namely that for all ph in Vh,⋄, the gradient gradrzph is

in Wh,⋄.
(2) The proof of this inequality is an adaptation of the proof of Proposition 5.1(III) of

[9]. Let p ∈ H1
1,⋄(D) be the unique solution (cf. [10]) to

(gradrzp, gradrzq)r = (vh, gradrzq)r for all q ∈ H1
1,⋄(D),

and put
w := vh − gradrzp.

Define the revolved vector fields w̆ = wrer + wzez and φ̆h = φh
rer + φh

zez on Ω. By the
same argument given in the proof of Theorem 3.1(2), w̆ is in H0(curl ,Ω) and satisfies

(w̆, grad q)L2(Ω) = 0 for all q ∈ H1
0 (Ω),

i.e., w̆ is divergence free. Now, a well known imbedding of H0(curl ,Ω) ∩H(div,Ω) into
H1(Ω)3 for convex Ω [9, Proposition I.3.1] yields

(6.2) ‖w̆‖H1(Ω)3 ≤ C‖curl w̆‖L2(Ω)3 = C‖curl v̆h‖L2(Ω)3 ,

where, in the last step, we used curl w̆ = curl v̆h. By [3, Proposition 3.17], w = (wr, wz)
is in H1

−
(D) ×H1

1 (D) (and is bounded by an accompanying norm estimate). Hence,

(6.3) ‖w‖H1
1
(D)2 ≤ ‖w‖H1

−
(D)×H1

1
(D) ≤ C‖w̆‖H1(Ω)3 ≤ C‖curl v̆h‖L2(Ω)3 .

To prove the required inequality for vh, we use the above estimates for w. Since w

is in H1
1 (D)2, the projection ΠW

h w is well defined by Lemma 4.1(2) (rectangular case)
or Proposition 5.2 (triangular case). Obviously, gradrzp = vh − w implies that on each
element τ , (gradrzp)|τ is in H1

1 (τ)2, so it possesses enough regularity for application
of ΠW

h . Furthermore, since ΠW
h vh = vh,

vh = ΠW
h w + ΠW

h gradrzp

= ΠW
h w + gradrzΠ

V
h p,
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using the commutativity properties of Lemma 4.1 (rectangular case) or Lemma 5.1 (trian-
gular case). Now since vh is L2

1(D)-orthogonal to gradrzVh,⋄, the above equation implies

(vh,vh)r = (ΠW
h w,vh)r,

which, by the Cauchy-Schwarz inequality, gives

‖vh‖L2
1
(D)2 ≤ ‖ΠW

h w‖L2
1
(D)2 .

Combining with the approximation properties of Lemma 4.2 or Lemma 5.3,

‖vh‖L2
1
(D)2 ≤ ‖ΠW

h w‖L2
1
(D)2 ≤ ‖ΠW

h w − w‖L2
1
(D)2 + ‖w‖L2

1
(D)2

≤ Ch|w|H1
1
(D) + ‖w‖L2

1
(D)2

≤ C‖curlrzvh‖L2
1
(D),

where in the last step we have used (6.3). This proves the coercivity on the discrete kernel.
(3) The unique solvability is a well known consequence of (1) and (2) (cf. [6, 9]).
(4) The error estimate now follows from the Babuška-Brezzi theory [6, 9]. Indeed, (1)

and (2) imply quasioptimality, i.e.,

‖u− uh‖Hr(curl,D) + ‖p− ph‖H1
1
(D) ≤ C

(

inf
vh∈Wh,⋄

‖u− vh‖Hr(curl,D) + inf
qh∈Vh,⋄

‖p− qh‖H1
1
(D)

)

≤ C

(

‖u− ΠW
h u‖Hr(curl,D) + ‖p− ΠV

h p‖H1
1
(D)

)

.

Here we used the previously noted fact that the projectors ΠW
h and ΠV

h preserve zero
boundary conditions (see Lemma 4.1(4) or Lemma 5.1), so that ΠW

h u and ΠV
h p are indeed

in Wh,⋄ and Vh,⋄, respectively. Estimating the right hand side above by Lemma 4.2
(rectangular case) or Lemma 5.3 (triangular case) and applying a Poincaré inequality
completes the proof of the theorem. �

7. Numerical results

In this section, we verify that the finite element convergence rates predicted by our
analysis are achieved in a numerical example. We also make suggestions on how to
iteratively solve the discrete matrix system. As in the previous section, the finite element
spaces Vh,⋄ and Wh,⋄ can be defined on rectangular or triangular meshes. Define the
operators Ah : Wh,⋄ → (Wh,⋄)

′ and Bh : Wh,⋄ → (Vh,⋄)
′ by

Ahvh(wh) = (µ−1curlrzvh, curlrzwh)r for all vh,wh ∈Wh,⋄,
Bhvh(qh) = (vh,∇qh)r for all vh ∈Wh,⋄, qh ∈ Vh,⋄.

Let Ah and Bh denote the matrix representations of the operators Ah and Bh, respectively,
in the standard bases for Vh,⋄ and Wh,⋄. Then (6.1) is rewritten as the linear system

(7.1) Chxh = bh,

where

Ch =

[

Ah Bt
h

Bh 0

]

, xh =

[

uh

ph

]

, and bh =

[

fh
gh

]

.

Here, uh and ph denote the vectors of coefficients in the expansions of uh and ph in the
standard bases, respectively, and the right hand side vector bh is computed from the right
hand side of (6.1) as usual. Note that the matrix Ch is symmetric but indefinite.
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Table 7.1. Constant coefficient (µ ≡ 1) on the unit square D.

level L2
1 error of (Ar, Az) Order PCG Points Elements Unknowns

1 0.0851831 8 49 72 240
2 0.0515349 0.725 8 169 288 1032
3 0.0255215 1.014 8 625 1152 4128
4 0.0126821 1.009 8 2401 4608 16368
5 0.0063197 1.004 8 9409 18432 65040
6 0.0031543 1.003 8 37249 73728 259152
7 0.0015757 1.001 8 148225 294912 1034448

Table 7.2. PCG iteration counts for discontinuous coefficients (7.3) and
(7.4) on the unit square D.

level PCG for (7.3) PCG for (7.4) Points Elements Unknowns

1 15 23 45 64 246
2 16 23 153 256 954
3 17 23 561 1024 3714
4 17 23 2145 4096 14610
5 17 23 8385 16384 57906
6 17 23 33153 65536 230514
7 17 26 131841 262144 919794

For practical problems with a large number of degrees of freedom, since the matrix
system (7.1) is sparse, we solve (7.1) using a preconditioned iterative method. To precon-
dition the linear system (7.1), we employ multigrid methods on the spaces Vh,⋄ and Wh,⋄

and forms coming from the Hr(curl, D) and H1
1 (D) inner-products, respectively. The uni-

form convergence of V-cycle multigrid with standard Gauss-Seidel smoothing was proved
in [10]. For the Nédélec subspace Wh,⋄ of Hr(curl, D), we use V-cycle multigrid with
Arnold-Falk-Winther smoothing [2]. Let MV and MW denote the matrices representing
the multigrid V-cycles acting on the matrices with entries given by the inner products of
basis functions in Vh,⋄ and Wh,⋄, respectively. Instead of the indefinite system (7.1), we
solve the symmetric positive definite system

(7.2)
(

Ah + Bt
hMV Bh

)

uh = fh + Bt
hMV gh

by the preconditioned conjugate gradient method (PCG), with MW as preconditioner.
The system (7.2) is obtained from (7.1) by replacing the zero block with −M−1

V , under the
assumption that ph = 0. In all the numerical experiments reported below, the termination
condition for the PCG iterations is the reduction of the energy norm of the residual by a
factor of 10−12.

In Table (7.1), we list the L2
1(D)2-norm of the error in approximating (Ar, Az) on a

sequence of uniformly refined, unstructured meshes of the unit square. These results are
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for the constant coefficient µ ≡ 1 and data

f =
(

π2 sin πz,
π

r
(cos πz − cosπr) + π2 sin πr

)

,

g =
sin πz

r
.

In this case, the exact solution is the bounded and smooth vector field (Ar, Az) =
(sin πz, sin πr). The coarsest mesh (level 1) has a mesh size of approximately 1/6. Each
refinement of a mesh is performed by connecting the midpoints of edges of each mesh
triangle, so the finest mesh (level 7) is roughly of size 1/384. The third column lists
the observed order of convergence (the entry in the jth row of this column is equal to
log2(εj−1/εj), where εj is the L2

1(D)2-norm of the error at level j). We observe the theo-
retically predicted first-order convergence rate.

The effectiveness of the iterative solution technique by multigrid preconditioning is also
evident from Table 7.1 – the fourth column of the table lists the number of PCG iterations
taken to satisfy the termination condition. Observe that only 8 iterations are needed in
all cases. Table (7.2) lists the PCG iteration counts for the following two discontinuous
coefficients:

(7.3) µ =

{

(1 + sin r)/2, if z > 1/2,

1, otherwise,

(7.4) µ =

{

104, if z > 1/2,

1, otherwise.

The finest mesh size (level 7) is 1/256. For both of these discontinuous coefficients, we
observe that the preconditioned iterative solution technique works well.

Finally, we report two numerical experiments which test the conditioning for potentially
more problematic domain geometries. First, we considered the constant coefficient µ ≡ 1
on a curved domain D, namely the quarter of the unit circle in the first quadrant of
the r-z plane. The curve is approximated by straight line segments and the resulting
multigrid algorithms are non-nested. Second, we investigated the effect of non-convexity
by considering an L-shaped domain. For both of these domains, with sequences of meshes
of sizes comparable to those in the aforementioned experiments, only 8 PCG iterations
were needed. Thus the PCG method converged at the same rate as for the unit square (cf.
Table (7.1)). We conclude that the multigrid preconditioned iterative solution technique
can be equally effective on curved and non-convex domains.

Appendix A. A trace result

In this appendix we show a trace result for H1
1 (τ) for a triangle τ connected to Γ0. As

seen from Figure 1, τ can be either of type one or type two. If hτ and ρτ are the diameters
of τ and the largest circle inscribed in τ , respectively, then the ratio ρτ/hτ measures the
shape regularity of the triangle. We expect the trace inequality to have a constant Ctrc

dependent on ρτ/hτ . This dependence can be translated into a dependence on the interior
angles of τ . Our purpose here is to show that the trace constant also depends on the angle
τ makes with the z-axis and that the weights in the trace inequality are different for type
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one and type two triangles. Of the two nonzero angles that the edges of τ make with the
z-axis, let θ be the one with the smaller sine.

Lemma A.1. Suppose e is an edge of τ that intersects Γ0 at one and only one point. Then

there is a constant Ctrc depending on the shape regularity constant ρτ/hτ , but otherwise

independent of τ , such that for all v in H1
1(τ), we have the following.

(1) If τ is a type one triangle, then

1

|e|‖v‖
2
L2

2
(e) ≤ Ctrc

hτ

sin θ

(

1

h2
τ

‖v‖2
L2

1
(τ) + |v|2H1

1
(τ)

)

.

(2) If τ is a type two triangle, then

1

|e|‖v‖
2
L2

1
(e) ≤ Ctrc

1

sin θ

(

1

h2
τ

‖v‖2
L2

1
(τ) + |v|2H1

1
(τ)

)

.

Proof. It suffices to prove the stated inequalities for v in D(τ) because of the density of
D(τ) inH1

1 (τ) [11]. First, consider the type one case. Let the type one reference triangle τ̂1
(see Figure 1) be mapped onto τ by an affine map F. Without loss of generality, assume
that e = F(ê), where ê is the edge of τ̂1 in the first quadrant of the r̂-ẑ plane. If v̂ = v ◦F,
then the following estimates are easy to verify:

1

|e|‖v‖
2
L2

2
(e) ≤ ĉ r2

τ‖v̂‖2
L2

2
(ê),(A.1)

‖v̂‖2
L2

1
(τ̂1) ≤

ĉ

h2
τrτ

‖v‖2
L2

1
(τ),(A.2)

|v̂|2H1
1
(τ̂1) ≤

ĉ

rτ

|v|2H1
1
(τ),(A.3)

where rτ and rτ denote the maximum and minimum of the r-coordinate values of the two
vertices of τ not on Γ0, respectively, and ĉ depends only on the shape regularity constant.
Note that rτ/rτ ≤ Ctrc/ sin θ. We will now show that

(A.4)
1√
2
‖v̂‖2

L2
2
(ê) ≤ ‖v̂‖2

L2
1
(τ̂1) + 2‖∂z v̂‖2

L2
3
(τ̂1).

Once this is established, the required inequality follows from (A.1)–(A.3).
To prove (A.4), we consider a smooth function v on τ̂1 (dropping the accent from r̂, ẑ,

and v̂ for convenience) and use the fundamental theorem of calculus to write

v(r, r) − v(r, z) =

∫ r

z

∂zv(r, ζ) dζ,

so that

|v(r, r)|2 ≤ 2|v(r, z)|2 + 2

∣

∣

∣

∣

∫ r

z

∂zv(r, ζ) dζ

∣

∣

∣

∣

2

.

Integrating over z from −r to r,

r|v(r, r)|2 ≤
∫ r

−r

|v(r, z)|2 dz +

∫ r

−r

∣

∣

∣

∣

∫ r

z

∂zv(r, ζ) dζ

∣

∣

∣

∣

2

dz

≤
∫ r

−r

|v(r, z)|2 dz + 2r2

∫ r

−r

|∂zv(r, ζ)|2 dζ.
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Multiplying by r and integrating over r from 0 to 1 yields (A.4). This completes the proof
for the type one case.

The proof of the type two case proceeds similarly, but using the reference triangle τ̂2
instead (see Figure 1). Again, we denote by ê the edge of τ̂2 in the first quadrant of the
r̂-ẑ plane. As in the previous case,

v(r, 1 − r) − v(r, z) =

∫ 1−r

z

∂zv(r, ζ) dζ

implies

|v(r, 1 − r)|2 ≤ 2|v(r, z)|2 + 4

∫ 1−r

z

|∂zv(r, ζ)|2 dζ.

Integrating over −1 + r < z < 1 − r, we have

(1 − r) |v(r, 1− r)|2 ≤
∫ 1−r

−1+r

|v(r, z)|2 dz + 4

∫ 1−r

−1+r

|∂zv(r, ζ)|2 dζ.

Unlike the previous case, we now observe the presence of the factor (1 − r) above. Upon
further integration over 0 < r < 1, this will result in an unwanted degenerate weight.
Therefore, we integrate only over 0 < r < 1/2, obtaining

1

2

∫ 1/2

0

r |v(r, 1 − r)|2 dr ≤
∫ 1/2

0

r(1 − r) |v(r, 1− r)|2 dr

≤ ‖v‖2
L2

1
(τ̂2) + 4‖∂zv‖2

L2
1
(τ̂2).(A.5)

For the remaining piece of ê where 1/2 < r < 1, we integrate along the line segment
{(s, s− 2r + 1) : r − 1/2 < s < r} of length

√
2/2, perpendicular to ê at (r, 1 − r). This

gives

|v(r, 1 − r)|2 ≤ 2|v(s, s− 2r + 1)|2 +

∣

∣

∣

∣

∫ r

s

(1, 1) · gradrzv(ζ, ζ − 2r + 1) dζ

∣

∣

∣

∣

2

.

Integrating over r − 1/2 < s < r and then over 1/2 < r < 1, we have

1

2

∫ 1

1/2

r |v(r, 1 − r)|2 dr ≤ 2‖v‖2
L2

1
(τ̂2) +

1

2
|v|2H1

1
(τ̂2).(A.6)

Combining (A.5) and (A.6) yields

1√
2
‖v‖2

L2
1
(ê) ≤ 6‖v‖2

L2
1
(τ̂2) + 9|v|2H1

1
(τ̂2).

The scaling argument to complete the proof is similar to the type one case. The only
difference is that the norm on L2

1(e) gives one less factor of rτ than the norm on L2
2(e),

resulting in one less factor of hτ . �
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