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1 Introduction

In modern days, everybody is using an electrical device nearly all the time be
it a mobile, a digital watch, an e-reader or something similar. What do these
things have in common? Of course, they all obey the laws of electromagnetism,
which can be described by mathematical equations. Thus, we can discuss the
properties and relations in a mathematical sense. The goal of this thesis is to
get from the aforementioned Maxwell-equations to the Helmholtz-equation in
vector and scalar form in special electromagnetic regimes. The latter is going
to be used in the numerical part of this thesis as model for simulation of time-
harmonic problems.
The first part covers the theoretical approach, as discussed in the lecture ”Math-
ematical modeling in engineering”, on how to model the Maxwell equations, two
different types of formulation, the vector potential and the electric field one. And
some useful tools we have to use for the last theoretical part on how to get to
the Helmholtz equation.
The second part was covered in a lecture during my exchange year at the NTNU
(Norwegian University of Science and Technology) in Trondheim. The topic of
this class was called ”Numerical solutions using finite element method”. The
project here was to simulate a wi-fi router, which sends out a signal, and to
see how the wave disperses in a ”real” flat or in empty space or pretty much
anywhere one wanted to test the solution.

2 Maxwell’s Equations

2.1 Notations, definitions, and some preliminary results

Definition 2.1. (Curl) Let V ⊂ R3 be open and f : V −→ R3 be differentiable.

Then curlf := (∂f3(x)
∂x2

− ∂f2(x)
∂x3

, ∂f1(x)
∂x3

− ∂f3(x)
∂x1

, ∂f2(x)
∂x1

− ∂f1(x)
∂x2

)T

We can also write curlf as ∇× f .

Definition 2.2. (Divergence) Let V ⊂ R3 be open and f : V −→ R3 be differ-
entiable. Then divf := ∂f1

∂x1
+ ∂f2

∂x2
+ ∂f3

∂x3

We can also write divf as ∇ · f .

Definition 2.3. (Laplacian) Let V ⊂ R3 be open and f : V −→ R3 be two

times differentiable. Then ∆f := ∇ · (∇f) = ∂2f1

∂x2
1

+ ∂2f2

∂x2
2

+ ∂2f3

∂x2
3

Theorem 2.1. (Stokes’ Theorem) Let S be an area in R3, for which a parameter
area K ⊂ R2 exists. The parametrization ϕ : M −→ R3;K ⊂ M open be twice
differentiable. Let C be the positiv oriented boundary curve of K with increment
wise twice differentiable parametrization γ : [a, b] −→ R2. ∂S is the curve in R3

which has the parametrization γ ◦ϕ. Let f be a continuous differentiable vector
field on ϕ(K), then ∫

S

curlf dS =

∫
∂S

f · ds (1)
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Proof. See Theorem 8.50 in [1] �

Theorem 2.2. (Gauss’ Theorem) Let V ⊂ R3 a bounded domain with a suf-
ficiently smooth boundary ∂V . Let M such that V ⊂ M be open and f ∈
C1(M,R3). Then ∫

∂V

f · ndS =

∫
V

∇ · f dx (2)

Proof. See Theorem 8.58 in [1] �

Lemma 2.1. Let f ∈ C(Ω). If∫
V

f(x) dx = 0 ∀V ⊂ Ω,

then
f(x) = 0 ,∀x ∈ Ω

Proof. (Indirect proof) Assume f(x) 6= 0 for some x∗ ∈ Ω. We know that f
is continuous. Therefore, there exists an area around x∗, which we call U(x∗),
where f(x) 6= 0∀x ∈ U(x∗). Choosing V = Ux∗ , we get that∫

V

f(x) dx > 0

which leads to a contradiction. This yields that f(x) = 0∀x ∈ Ω �

Lemma 2.2. For a twice continuously differentiable function f : R3 −→ R, and
a twice differentiable vector field F : R3 −→ R, the following equations hold.

curl curlF = ∇(∇ · F )−∆F, (3)

curl(∇f) = 0, (4)

∇ · (curlF ) = 0. (5)

Proof. (3):

curl curlF = curl

∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1

 =

∂2(∂1F2 − ∂2F1)− ∂3(∂3F1 − ∂1F3)
∂3(∂2F3 − ∂3F2)− ∂1(∂1F2 − ∂2F1)
∂1(∂3F1 − ∂1F3)− ∂2(∂2F3 − ∂3F2)


Now splitting it up and adding some terms we get the right hand side∂1(∂1F1 + ∂2F2 + ∂3F3)

∂2(∂1F1 + ∂2F2 + ∂3F3)
∂3(∂1F1 + ∂2F2 + ∂3F3

−
∂2

1F1 + ∂2
2F1 + ∂2

3F1

∂2
1F2 + ∂2

2F2 + ∂2
3F2

∂2
1F3 + ∂2

2F3 + ∂2
3F3

 = ∇(∇ · F )−∆F,

(4):

curl(∇f) = curl


∂f
∂x1
∂f
∂x2
∂f
∂x3

 =

∂2∂3f − ∂3∂2f
∂3∂1f − ∂1∂3f
∂1∂2f − ∂2∂1f

 = 0
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(5):

∇·(curlF ) = ∇·

∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1

 = ∂1(∂2F3−∂3F2)+∂2(∂3F1−∂1F3)+∂3(∂1F2−∂2F1) = 0

�

2.2 The physical quantities

Let us first introduce the notations for the electric and magnetic fields.

Notation Unit Description

E = (E1, E2, E3)T [V/m] electric field intensity
D = (D1, D2, D3)T [As/m2] electric flux density
H = (H1, H2, H3)T [A/m] magnetic field intensity
B = (B1, B2, B3)T [Vs/m2] magnetic flux density
J = (J1, J2, J3)T [A/m2] electric current density

ρ = ρ(x, t) [As/m3] electric charge density
M = (M1,M2,M3)T [Vs/m2] magnetization

P = (P1, P2, P3)T [As/m2] electric polarization

E describes the direction and strength of an electric field.
D describes the density of electric field lines through an area A.
H is the same as E but for a magnetic field.
B is the same as D but for magnetic field lines.
J describes the density of a flowing current through a conductor.

2.3 Ampere’s Law

An electric current or a changing electric flux through a surface produces a
circulating magnetic field around any path that bounds that surface. [2]

Figure 1: Current running through a wire and creating a magnetic field
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Figure 1 illustrates the following integral relation.∮
∂S

H · τ ds =

∫
S

(J +
∂D

∂t
) · ndS

Now, using Stokes’ Theorem, we have∫
S

(curl H) · ndS =

∮
∂S

H · τ ds.

Combining the two equations and using Lemma 2.1, we get the first Maxwell-
equation

curl H = J +
∂D

∂t
. (6)

2.4 Faraday’s Law

Changing magnetic flux through a surface induces an inner voltage in any bound-
ary path of that surface, and a changing magnetic field induces a circulating
electric field; see, e.g., [2]. These two physical laws can be described by the
following two equations

ui = −
∫
S

∂

∂t
B · ndS

ui =

∫
S

curl E · ndS

Thus one can easily see how to derive the second Maxwell-equation which is of
the following form

curl E = − ∂

∂t
B. (7)

2.5 Electric Gauss’ Law

Electric charge produces an electric field, and the flux of that field passing
through any closed surface is proportional to the total charge contained within
the surface; see, e.g., [2]. Because of this statement we can derive the integral
formulation of the law easily. Thus we get that∫

∂V

D · ndS =

∫
V

ρ dx

where ρ is the charge density. Now we use Gauss’ Theorem to get∫
V

∇ ·Ddx =

∫
V

ρ dx

Since V is an arbitrary area, Lemma 2.1 yields the third Maxwell-equation

∇ ·D = ρ (8)
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2.6 Magnetic Gauss’ Law

The total magnetic flux passing through any closed surface is zero; see, e.g., [2].
This is true as long as we have a magnetic north- and southpole. With this
statement, we can see that ∫

∂V

B · ndS = 0

holds. If one follows with the same steps as for the Electric Gauss’ Law, we
derive the fourth Maxwell-equation

∇ ·B = 0. (9)

2.7 Maxwell’s Equations

In the previous subsections we derived the following system of partial differential
equations:

curl H = J +
∂D

∂t
,

curl E = − ∂

∂t
B,

∇ ·D = ρ,

∇ ·B = 0.

There are also some material laws to get even more relations between each of
the physical quantities.

B = µH + µ0M, (10)

D = εE + P, (11)

J = Jc + Ji = σ(E + v ×B) + Ji; (12)

see,e.g., [2]

2.8 Vector-potential Formulation

Now that the equations have been derived and relations between the quantities
have been stated we can derive some different formulations in vector form. It is
comparable with the notes in [3].
We know that if ∇B = 0 then there exists a vector potential A ∈ (C1(Ω))3 for
which it follows that B = curlA. Substituting this relation into Faradays’ Law
we get the following equation

curl(E +
∂A

∂t
) = 0
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Therefore, there exists a scalar potential ϕ such that

E +
∂A

∂t
= −∇ϕ

holds. Furthermore it can be shown that two more relations hold for some scalar
potentials ϕ, φ ∈ C2(Ω) which are

B = curlA = curlÂ , Â = A+∇ϕ

E = −∂A
∂t
−∇φ = −∂Â

∂t
−∇φ̂ , φ̂ = φ− ∂ϕ

∂t

Let us assume one can write Â as in the equation above, then we can insert this
just in the definition and get curl(A + ∇ϕ) = curlA + curl∇ϕ but we know
that the second part is equal to zero because of the Lemma in section 1.2. The
second equation follows because it holds that ∂ and ∇ are able to switch the
order of what is applied first to a scalar potential.
To get to the vector potential formulation we have to make some assumptions
about our magnetic and electric field. There is no velocity inside the field v = 0,
we have also no polarization P = 0 and magnetization M = 0. With Amperes’
Law and express that we can write B as curlA, thus getting

curlµcurlÂ+ σ
∂Â

∂t
+ ε

∂2Â

∂t2
= Ji (13)

2.9 Electric-field Formulation

Using Faradays’ Law we can see that

curlE = −∂B
∂t

= −µ∂H
∂t
− µ0

∂M

∂t

and taking curl 1
µ on both sides of the equation we obtain

curl
1

µ
curlE = − ∂

∂t
curlH − µ0

µ

∂

∂t
curlM

If we now include Amperes’, Ohms’ Law and simplify it by saying that we have
no magnetization and polarization then the electric field formulation follows as

curl
1

µ
curlE + σ

∂E

∂t
+ ε

∂2E

∂t2
= −∂Ji

∂t
(14)

2.10 Timeharmonic case

One can also use the timeharmonic ansatz to have their partial differential
equation not be dependend on time derivatives. For example take U where U
can be any of the physical quantities. Take the ansatz

U(x, t) = Û(x)eiωt = Û(x)(cos(ωt) + isin(ωt))

7



If we take the derivative with respect to time we can see that the amplitude
Û(x) is just a constant. It follows that

∂U

∂t
= (iω)Û(x)eiωt = (iω)U(x, t)

∂2U

∂t2
= −ω2Û(x)eiωt = −ω2U(x, t).

We can use this ansatz to get another form of the vector potential formulation

curl µcurl A+ iσ − εω2A = Ji

but if one wanted to use this ansatz for the electric field formulation, we would
have to deal with an imaginary source Ji, because this formulation is nothing
else than the derivative of the vector potential formulation with respect to time.

curl
1

µ
curlE + iσωE − εω2E = −iωJi

2.11 The Helmholtz equation in vector form for the electric-
field formulation

Again we start with Faradays’ Law, but this time we have more specifications
which are the following: µ, σ, ε0 shall be constants and we further have no
magnetisation.

curlE = −∂B
∂t

= −µ∂H
∂t

Now take the same step as in section 2.9 and get the same result which is

curl
1

µ
curlE + σ

∂E

∂t
+ ε

∂2E

∂t2
= −∂Ji

∂t

Because µ is a constant we can take it out of the curl and multiply the whole
equation with it to get

curlcurlE + σµ
∂E

∂t
+ εµ

∂2E

∂t2
= −µ∂Ji

∂t

With the Lemma in section 1.2 we can rewrite the curl curl in the following
form

∇(∇ · E)−∆E + σµ
∂E

∂t
+ εµ

∂2E

∂t2
= −µ∂Ji

∂t

Furthermore we also know that

0 = ρ = ∇ ·D = ε0∇ · E

this relation brings us nearly to the helmholtz equation in vector form

−∆E + σµ
∂E

∂t
+ εµ

∂2E

∂t2
= −µ∂Ji

∂t

8



the last step is to use the previously discussed timeharmonic ansatz to get

−∆E + iσωE − εω2E = −iωJi (15)

2.12 The Helmholtz equation in scalar form

We start by making some fair assumptions which help us to simplify the whole
system. The first one is that we have a circular or quadratic base of a domain
and the extension in the third direction is much bigger than the directions in
either of the other two directions

Ω̂ = Ω× (−h, h) ∈ R3

Our source is an orthonormal vector on our base domain

Ji =

 0
0

J3(x1, x2)

 , x = (x1, x2) ∈ Ω

Furthermore we can say that ∇J = 0. We only have magnetic and electric fields
parallel to our base domain.

H =

H1(x1, x2)
H2(x1, x2)

0

 , x = (x1, x2) ∈ Ω

B =

B1(x1, x2)
B2(x1, x2)

0

 , x = (x1, x2) ∈ Ω

As one can see, the B3 is equal to zero which means that the following equation
is fulfilled.

0 = B3 = (curl A)3 = ∂2A1 − ∂1A2 = 0

The next step is to find a matrix A which also holds for that equation and it is
easy to see that

A = A(x1, x2) =

 λ
λ

A3(x1, x2)

 , x = (x1, x2)

fulfills this, moreover λ is only a constant so we can set it to zero to get an even
easier matrix to work with.

A = A(x1, x2) =

 0
0

A3(x1, x2)

 , x = (x1, x2)

9



Before we continue, there is one aspect one still has to include the Coulomb
gauge which says that

div(A) = ∇ ·A = 0

If we know take a look at B as curlA we see that

B = curl A =

 ∂2A3

−∂1A3

0


Now to conclude everything we take curl curlA and get

curl (curl A) =

 0
0

−∂1(∂1A3)− ∂2(∂2A3)

 =

 0
0

−∆A3


Thus we get our scalar helmholtz equation in the following form

−∆A3(x)− (εω2 − σ(iω))A3(x) = J3(x) (16)

and if we further set k2 = εω2 − σ(iω) we get the form we will use for the
numerical solutions

−∆A3(x)− k2A3(x) = J3(x) (17)

3 Numerical solution by finite element method

3.1 Introduction

The goal of this project is to compute an approximate solution of the model of
wifi signal generated by a router in a flat by means of the finite element method.
For this, we will solve Helmholtz’ equation. This equation can be derived from
the wave equation by Fourier transformation; see Chapter 2.
This Helmholtz equation can be written in the form

−∆u− k2u = g in Ω.

with approriate boundary conditions.
In this equation, we have different data that are given :

• k which is the wave number. Which depends of the permittivity µ0, the
permeability ε0 of the medium, and also of the frequency. Indeed, we have
k = ω/c where c = 1/

√
ε0µ0 is the speed of light.

• g which is the source term.

10



3.2 Dirichlet boundary value problem

3.2.1 Showing solvability for sufficiently small k

Consider the Dirichlet boundary value problem{
−∆u− k2u = g in Ω,

u = 0 on ∂Ω,
(18)

for a given source function g ∈ L2(Ω). Find a condition on k which guarantees
that (18) has a unique weak solution.

Let v be a sufficiently smooth test function that vanishes on ∂Ω. We multiply
(18) by v, and we integrate over Ω, obtaining:

−
∫

Ω

∆uv dx−
∫

Ω

k2uv dx =

∫
Ω

gv dx.

Now, we can integrate by parts getting:

−
∫
∂Ω

∂u

∂n
v ds+

∫
Ω

∇u · ∇v dx−
∫

Ω

k2uv dx =

∫
Ω

gv dx (19)

and since v = 0 on ∂Ω, we have∫
Ω

∇u · ∇v dx−
∫

Ω

k2uv dx =

∫
Ω

gv dx (20)

The functions u and v need to have a first-order weak derivative in L2(Ω),
and the boundary conditions are such that the traces of u and v are 0 on
∂Ω. Thus, V has to be H1

0 (Ω), equipped with the norm ||v||V = (||v||2L2(Ω) +

|v|2H1(Ω))
1
2 . Therefore, the variational problem (20) can be reformed as follows:

Find u ∈ V = H1
0 (Ω) such that

a(u, v) = F (v) ∀v ∈ V (21)

where the bilinear form a : V ×V → R and the linear form F ∈ V ? are defined as
in the following way. a(u, v) =

∫
Ω
∇u∇v dx−

∫
Ω
k2uv dx and F (v) = −

∫
Ω
gv dx.

Using the Lax-Milgramm theorem, we show that, for a sufficiently small k,
there exists a unique u ∈ V such that the identity (21) is valid.

Indeed, the form a(., .) is bilinear. Let u1, u2, v ∈ H1
0 (Ω) and λ, µ ∈ R. Then,

we have

a(µu1 + λu2, v) =

∫
Ω

∇(µu1 + λu2) · ∇v dx−
∫

Ω

k2(µu1 + λu2)v dx

= µ(

∫
Ω

∇u1 · ∇v dx−
∫

Ω

k2u1v) dx+ λ(

∫
Ω

∇u2 · ∇v dx−
∫

Ω

k2u2v) dx

= µa(u1, v) + λa(u2, v).

11



Moreover, the form is symmetric. Indeed,

a(u, v) =

∫
Ω

∇u · ∇v dx−
∫

Ω

k2uv dx

=

∫
Ω

∇v · ∇u dx−
∫

Ω

k2vu dx

= a(v, u),

and therefore the form a(., .) is a symmetric bilinear form.

In addition to this, we now show that the bilinear form a : V × V → R is
continuous and coercive on V .
Continuity : ∃M > 0, |a(u, v)| ≤M ||u||V ||v||V ,∀u, v ∈ V.
Using triangle inequality and Cauchy-Schwarz

(u, v)L2 ≤ ||u||L2 ||v||L2 ,

we get

|a(u, v)| = |
∫

Ω

∇u · ∇v dx−
∫

Ω

k2uv dx|

≤ |
∫

Ω

∇u · ∇v dx|+ |
∫

Ω

k2uv dx|

≤ ||∇u||2L2 ||∇v||2L2 + k2||u||2L2 ||v||2L2

≤ ||u||V ||v||V + k2||u||V ||v||V
≤ C1||u||V ||v||V ,

with C1 = 1 + k2.

Coercivity : ∃α > 0 such that |a(u, u)| ≥ α||u||2V ,∀u ∈ V.
Using Friedrichs’ inequality

||u||L2(Ω) ≤ cF |u|H1(Ω) ∀u ∈ V = H1
0 (Ω),

1

c2F
≤ infv∈H1

0 (Ω)

∫
Ω
∇u · ∇u dx∫

Ω
u2 dx

= λmin(−∆)

12



we obtain

a(u, u) =

∫
Ω

|∇u|2 dx−
∫

Ω

k2u2 dx

= |u|2H1 − k2 1∫
Ω
|∇u|2 dx
||u||2

L2

|u|2H1

≥ |u|2H1 − k2 1

infv∈H1
0 (Ω)

∫
Ω
∇v∇v dx∫
Ω
vv dx

|u|2H1

= (1− k2

λmin(−∆)
)(

1

2
|u|2H1 +

1

2
|u|2H1)

≥ (1− k2

λmin(−∆)
)(

1

2
|u|2H1 +

1

2c2F
||u||2L2)

≥ (1− k2

λmin(−∆)
)min{1

2
,

1

2c2F
}||u||2H1 (22)

where the factor (1−(k2)/(λmin(−∆))) is larger than zero for all k2 < λmin(−∆).

According to these three points, by the Lax-Milgram theorem, there exists a
unique u ∈ V such that a(u, v) = F (v),∀v ∈ V , provided k2 < λmin(−∆).
Now the question arises what happens if k2 ≥ λmin(−∆). If k2 ≥ λmin(−∆),
then we can not use Lax-Milgram, because the requirement for coercivity is not
fulfilled.

3.2.2 Further Analysis for a sample example

Lax-Milgram only holds up until the first eigenvalue, λmin(−∆) of the system
−∆u = λu with u = 0 on ∂Ω. First we compute the eigenvalues in a special
example. Therefore we solve our aforementioned equation on a rectangular
(0,1) × (0,1) domain. Taking the ansatz for separation of variable u(x, y) =
X(x)Y (y), we get

−X ′′(x)Y (y)− Y ′′(y)X(x) = λX(x)Y (y)

=⇒ −X
′′(x)

X(x)
− Y ′′(y)

Y (y)
= λ

=⇒ −X
′′(x)

X(x)
= λ+

Y ′′(y)

Y (y)

Now the LHS is independent of y and the RHS is independent of x. Therefore
it follows that there exists a constant c for which

−X
′′(x)

X(x)
= λ+

Y ′′(y)

Y (y)
= c

13



. Now we can solve the two equations independently

−X ′′(x) = cX(x)

−Y ′′(y) = (c− λ)Y (y)

Solving the first equation and inserting X(0) = X(1) = 0, yields that c =
π2n2 for n ∈ N. If we solve the second equation in the same way with similar
boundary values we finally come to the conclusion that λnm = π2(n2 +m2) for
n,m ∈ N. Thus our exact solution is of the form u(x, y) = sin(nπx)sin(mπy).
The following pictures are a comparison on what happens for the approximate
solution in the program with k2 being away and close to the first eigenvalue.

Figure 2: k2 � λmin Figure 3: k2 ≈ λmin

In order to discuss the general case, we need the Fredholm theory; see,e.g., [4]
, which will not be discussed in this work. The solvability of the corresponding
finite element equations is discussed later in subsection 3.3.1

3.3 Finite Element Discretization

The function u in the Helmholtz equation can be approximated by a function
uh using linear combinations of basis functions (ψi) in the following form.

u ≈ uh
uh =

∑
i

uiψi

14



Figure 4: Using combinations of finite element basis functions to approximate
the function u

Here the solid blue line is approximated by the red dotted line which in this
case is our uh. A benefit of using FEM is, it does not have to be uniformly grid
as we can see in the following figure. We can discretize the domain in relation to
the gradient of our function. If we have at some point a steep drop or increase
in the function, we can adapt increments to decrease the likelihood of a large
difference between the function u and its approximation uh.
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Figure 5: Using combinations of finite element basis functions to approximate
the function u

In 2D, we first have to discuss what to use now, instead of the intervals on
the x-axis we used in the 1D case. The approach we use in this project is to put
our domain together via triangles.
Of course, those triangles have to fulfill certain properties to be considered for
the triangulation. The first property is a topological one. The triangulation has
to be conforming, by this we mean that the intersection of two triangles is either
a node or the common edge of both. The second property is a geometric one,
meaning hk/ρk ≤ β with hk being the longest edge of the triangle, ρk being the
diameter of the inscribed circle and β ≥ 1.

Figure 6: Conforming 2D mesh for a circle
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Figure 7: Showcasing two different witches hat functions

The figure above shows the basis functions, which we have used in our
project. We called this ones ”witches hat functions” because they have nearly
the same appearence Now we can make a similar approach as in the 1D case
where we approximated u ≈ uh =

∑
k uiψi.

Our weak formulation was of the following form∫
Ω

∇u · ∇v dx−
∫

Ω

k2uv dx =

∫
Ω

gv dx. (23)

So now instead of u and v we are going to use their approximations which leads
to the following∑

Ωk∈T
(
∑
i,j

uivj

∫
Ωk

∇ψi · ∇ψj −
∑
i,j

uivj

∫
Ωk

k2ψiψj) =
∑
Tk∈Ω

∑
j

vj

∫
Ωk

gψj .

where Tk is the set of all triangles in the domain Ω.
The next step is to transform this equation into a matrix equation which then
can be solved by a computer program. We used MATLAB in our project.
Splitting the left hand side up into two parts, the first part being the so called
stiffness matrix Ah = (Aij)

Aij =

∫
Ω

∇ψi∇ψj dx

17



and the second part being the mass matrix Mh = (Mij)

Mij =

∫
Ω

ψiψj dx

We note that the matrices Ah,Mh are sparse everywhere, where the two basis
functions ψi, ψj do not overlap.
For the right hand side, it is even easier. Because of the form of our source,
which is a dirac function multiplied with a basis function on one triangle, it is
everywhere sparse except where the basis function ψj coincides with ψs. Where
ψs is the basis function on the triangle where our source is.

3.3.1 The finite element equations

(Ah − λMh)uh = gh (24)

We can show existence and uniqueness by showing det(Ah−λMh) 6= 0. Since Ah
and Mh are SPD matrices. Rewrite Mh as P−1DP and wrtie D = D0.5 ∗D0.5

thus we can rewrite the discrete equation in the following form, where M−0.5
h =

(PD0.5)−1. Multiply (24) by M−0.5
h , we get

(M−0.5
h AhM

−0.5
h − λI)(M0.5

h uh) = M−0.5
h gh

Now having Âh,which is again a SPD matrix, instead of M−0.5
h AhM

−0.5
h and

ûh, ĝh in a similar fashion. Existence and uniqueness can be shown iff

det(Âh − λI) 6= 0

Âhûh = λûh , λ 6= EV

Now if λ = λi (single EV) then (Âh − λiI)ûh = ĝh is solvable iff (ĝh, ei) = 0
Meaning ûh = u∗h + µei, if we have multiple EVs ûh = u∗h +

∑
i∈EV µiei, leads

to

(Âh − λiI)u∗h = ĝh

(Âh − λiI)(µei) = 0

LHS =⇒ RHS (using symmetry of the matrix)

(Âh − λiI)ûh = ĝh

(ĝh, ei) = ((Âh − λiI)ûh, ei) = (ûh, (Âh − λiI)ei) = 0

RHS =⇒ LHS

ĝh =
∑
j

βjej =
∑
j 6=i

βjej , ûh =
∑
j

αjej

(Âh − λiI)ûh =
∑
j

αj(Âh − λiI)ej =
∑
j

αj(λj − λi)ej =
∑
j

βjej

⇐⇒ αj =
βj

λj − λi
, ûh =

∑
j 6=i

βj
λj − λi

ej + µei

Thus the system is solvable.
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3.3.2 Some further properties

• The finer the mesh, the better our final results. Meaning if we have an
area in our 2D domain where the gradient of our function changes a lot,
it would be a good idea to refine the mesh in this area as well, similar to
the figure for the 1D case

• We know, for k2 not being an eigenvalue, the matrix (A − k2M) has full
rank. Therefore, the inverse exists and the system (A− k2M)U = b has a
solution.

• For a lot of unknown variables the direct approach, just inverting the
matrix, which we used in this project, is not really feasible. Therefore,
people use iterative methods to solve the system.

• If the PDE is non-linear then the resulting system is also non-linear, this
system is for example solvable with the Newton method.

3.4 Code

3.4.1 Real case

In the first step, we try to code the solution with k ∈ R.

• We generate our flat with GetP late which returns a square with a mesh.
On each side of the square, we assume that there is Nq nodes, so the total
of nodes in the square is Nq2.

• We generate the source as a Dirac function on the coordinates that we
choose: we decide on the closest, to the source term, node . The source
term appears on the right hand side (our F ).

• We use the Dirichlet conditions for the boundaries, with u(x) = 0,∀x ∈
∂Ω.

3.4.2 Scheme of the code

• Main

Choose where to place the walls.

Extend this matrix to obtain our all flat. Obtain Nq from this matrix.

Place the source.

Choose the physical values. For instance the frequency, the perme-
ability and the permittivity.

• Call stiffness function

– Call [p, tri1, edge] = GetP late(Nq).

– Sort the mesh (tri).
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– Calculation of the stiffness matrix

∗ Find the closest node from the source coordinates.

∗ Loop over all triangles.

∗ Loop over each node (2 times if you are in the complex case - cf
lower).

∗ Calculate the basis functions and their gradients at the nodes.

∗ Calculate the evaluation of the solution between the two nodes.

– Calculate the right hand term (the evaluation of the source term).

• Add the boundary conditions (0 everywhere on the boundary for Dirichlet
boundary condition).

• Solve AU=b where U is the solution.

• Plot U.

3.4.3 How to create and to move the term source

To obtain a wifi signal, a router is needed. We represent this router by a Dirac
peak placed on a node of the mesh.

• We choose the coordinates for the source term. We find the closest node
to the source term and we let this node be the emplacement of the source
term.

• We let the right hand term be the source term. Since now, it contains
only the values on the triangles around the source term. We let all the
other values be zero.

• The source function is represented as a smeared Dirac function placed on
the node of the source.

• In the stiffness function, if the triangle has one of its nodes commune with
a node of the source term we integrate the dot product between the Dirac
function and the basis function.
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Figure 8: Source at (0,0).

Figure 9: Source at (-0.7,0.5).
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3.4.4 How to built walls

Here, the goal is to add walls in our flat. Physically, a wall appears on the
permittivity and on the permeability terms. But we can approximate these
changes on the coefficients just multiplying k by a unique coefficient coef k.

Our approach in the code is the following idea :

• We start with a small matrix Mat built which is the representation of our
flat. We put 1 when the medium is ”vacuum”, 104 for example when is
concrete.

• We extend this matrix to obtain a matrix which has a sufficient size Nq ∗
Nq to built a mesh of the size Nq ∗Nq too.

• We build our mesh and we sort the triangles as tri.

• We build a vector coefk to contain the coefficients of the different media
which has the same size than tri. We fill this vector with the values of
expanded Mat built. Two triangles on the same square will have the same
value.

22



Figure 10: Walls in the 2nd and 6th row.
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Figure 11: Walls on the first two columns.

We can see that the wall squeezes the oscillations. We can play with the
value of the coefficient coef k to reduce or increase this phenomeon.

3.4.5 Complex case

Now, we take k ∈ C. So k has two parts now: a real one and an imaginary one.
From now on u is also a complex function.
Let u = u1 + iu2 and k = k1 + ik2.{

−∆(u1 + iu2)− k2(u1 + iu2) = g in Ω
u = 0 on ∂Ω

(25)

If we look at this equation :

−∆u− k2
1u+ k2

2u− 2ik1k2u = g
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which is equivalent to :

−∆u1 − i∆u2 − k2
1u1 − ik2

1u2 + k2
2u1 + ik2

2u2 − 2ik1k2u1 + 2k1k2u2 = g

we can separate the real and the imaginary part to obtain two different equations
which are linked :{

−∆u1 − (k2
1 − k2

2)u1 + 2k1k2u2 = g
−∆u2 − (k2

1 − k2
2)u2 − 2k1k2u1 = 0

Hence, our goal will be to solve both equations at the same time.
If we integrate by parts we obtain (with the notation of the code) for the real
equation : ∫

∇u1ψj dx−
∫

(k2
1 − k2

2)u1ψj dx+

∫
2k1k2u2ψj dx =

⇔
3∑

n=1

an

∫
∇ψn · ∇ψj dx−

3∑
n=1

an

∫
(k2

1 + k2
2)ψnψj dx+

6∑
n=4

an

∫
2k1k2ψnψj dx = 0

and for the complex equation :∫
∇u2ψj dx−

∫
(k2

1 − k2
2)u2ψj dx−

∫
2k1k2u2ψj dx = 0

⇔
3∑

h=1

ah

∫
∇ψn · ∇ψj dx−

3∑
n=1

an

∫
(k2

1 + k2
2)ψnψj dx−

6∑
n=4

an

∫
2k1k2ψnψj dx = 0

We need two times more of ψj and ψh basis functions. In the code, we differen-
tiate the case where ψj (resp. ψh) is complexe checking the value of the index :
if it is strictly bigger than 3; we know that we are on the complex case. If not,
we are on the real case.
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Figure 12: Complex case - Source term at (0,0) - no walls.
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We can also add walls in the complex case :

Figure 13: Complex case - Source term at (0,0) - walls.
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Figure 14: Complex case - Source term at (0,0) - walls.

There is no wall on the bottom right, but the signal still decays because the
wave is affected by going through the wall.

3.5 Impedance boundary condition

With the Impedance boundary condition, (18) becomes :{
−∆u− k2u = g in Ω

∂u
∂n − iku = 0 on ∂Ω

(26)

We obtain a new weak formulation from (26) :

−
∫
∂Ω

∂u

∂n
v ds+

∫
Ω

∇u · ∇v dx−
∫

Ω

k2uv dx =

∫
Ω

gv dx.

−
∫
∂Ω

ikuv ds+

∫
Ω

∇u · ∇v dx−
∫

Ω

k2uv dx =

∫
Ω

gv dx.
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Hence, we arrive at the variational problem.
Find u ∈ H1(Ω) such that

−
∫
∂Ω

ikuv ds+

∫
Ω

∇u · ∇v dx−
∫

Ω

k2uv dx =

∫
Ω

gv dx ∀v ∈ H1(Ω).

This leads to

−ik
∑
j∈ωh

aj

∫
∂Ω

ψjψh ds+
∑
j∈ωh

aj

∫
Ω

∇ψj ·∇ψh dx−k2
∑
j∈ωh

aj

∫
Ω

ψjψh dx =

∫
Ω

gψh dx.

in the finite element discretization, where ψj and ψh are the basis functions of
the Lagrange space and ωh being the set of all indices.

Unfortunately, problems on the code with dimensions impeded us to compute
the code with the Impedance boundary condition. But the solution for the
waves should be similar as in the previous cases, decreasing from the source
term to the boundaries. The only additional thing is that waves get reflected
back into the domain at the edges of the domain.

3.6 Extras

We have implemented the code in the real case with Dirichlet boundary con-
ditions with a round flat. We can observe something really similar at waves
when we throw a rock on water. Moreover, we can see that the amplitude of
the waves is decreasing with the distance from the source. However the shape
of the waves is not really regular. We can assume that it is due to the Dirac
distribution which is not really regular.
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Figure 15: Round flat

4 Summary and outlook

We started by deriving Mawell’s equations from some physical properties we
experience in our everyday lives. With those and some dependencies between
each physical quantities we were able to get to the Helmholtz equation in vec-
tor and scalar form. Afterwards a numerical solution, via the finite element
approach, was implimented to calculate the amplitude of the solution on every
node on our grid. During this time we learned a lot about implementing the
FEM-method in Matlab and about how to approach a project with very little
to no guidelines whatsoever.

No code is perfect and you can always update it to make it better. What
we would do to make our code better if we would have had more time, or what
would have been nice if we implemented it is following:

• Actually implement the Impedance boundary condition.

• Adapt our Matrix for the wall in a way that we can assign every triangle
another coefficient, this would mean we could adapt our flat even more
and have diagonal walls aswell.

• Use the vectorisation of Matlab to obtain a faster code.
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