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JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Topology Optimization in Electrical Engineering

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplomingenieur

im Masterstudium

Industriemathematik

Eingereicht von:

Peter Gangl

Angefertigt am:

Institut für Numerische Mathematik

Beurteilung:

O.Univ.-Prof. Dipl.-Ing. Dr. Ulrich Langer

Linz, Februar, 2012



Abstract

Topology optimization is a well-established tool for finding optimal structures in mechanics.
Similar techniques can also be useful for applications from electrical engineering. The opti-
mization of electrical equipment such as electrical machines or electromagnets with respect
to a given cost functional is usually done by means of shape optimization methods, which can
only modify the shape of the boundary of a structure, but not its basic topology. Topology
optimization methods distribute material in a given part of the computational domain in an
optimal way and do not impose any a-priori conditions on the resulting structures. Hence,
these methods allow for optimal designs which could not be realized using shape optimization
methods.

Mathematically, topology optimization problems can be formulated as infinite-dimensional
optimization problems constrained by a partial differential equation as well as additional
inequality constraints. These optimization problems are typically ill-posed. This thesis
deals with the analysis of general topology optimization problems, discusses various possible
regularization approaches and presents an application to a concrete problem from electrical
engineering.

In a topology optimization problem, the design of a structure is represented by a discon-
tinuous function ρ, commonly refered to as the density function. Due to this discontinuous
nature of the problem, the discretization technique investigated in this thesis is a discontin-
uous Galerkin (DG) method, which allows for easier handling of jumps of function values.
This class of methods is introduced and analyzed in detail.

This thesis focuses on one regularization method, the phase-field method, which on the one
hand regularizes the ill-posed optimization problem, and on the other hand enforces the
density function to attain only values close to 0 and close to 1. Areas in the computational
domain with ρ(x) = 0 in the final solution have to be interpreted as void, whereas areas with
ρ(x) = 1 represent areas occupied by material.

The phase-field method is applied to a practical problem from electrical engineering where
the aim is to find a geometry for an electromagnet such that the induced magnetic field is as
homogeneous as possible in a given direction. A discretization of the resulting optimization
problem by a DG method yields a system of nonlinear equations, which is solved by Newton’s
method. Finally, numerical results are presented and discussed.
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Zusammenfassung

Topologieoptimierung ist eine gängige Methode zum Auffinden optimaler Strukturen in der
Mechanik. Ähnliche Techniken können auch für Anwendungen aus der Elektrotechnik nütz-
lich sein. Die Optimierung elektrischer Anlagen wie z.B. elektrische Maschinen oder Elektro-
magneten bezüglich eines gegebenen Kostenfunktionals wird üblicherweise mittels Verfahren
aus der Formoptimierung realisiert. Diese Verfahren können nur die Gestalt des Randes einer
Struktur verändern, nicht aber ihre grundlegende Topologie. Bei Topologieoptimierungsver-
fahren wird Material in einem gewissen Teil des Rechengebiets auf optimale Weise verteilt,
wobei von vornherein keine Bedingungen an die resultierende Struktur gestellt werden. Da-
her ermöglichen diese Verfahren optimale Designs, die durch Formoptimierung nicht realisiert
werden könnten.

Mathematisch können Topologieoptimierungsprobleme als unendlichdimensionale Optimie-
rungsprobleme formuliert werden, die durch eine partielle Differentialgleichung und weitere
Ungleichungen restringiert sind. Diese Probleme sind üblicherweise schlecht gestellt. Diese
Arbeit behandelt die Analyse allgemeiner Topologieoptimierungsprobleme sowie verschiede-
ne Möglichkeiten zur Regularisierung dieser und zeigt eine Anwendung auf ein konkretes
Problem aus der Elektrotechnik.

In einem Topologieoptimierungsproblem wird die Gestalt einer Struktur durch eine unstetige
Funktion ρ, häufig als Dichtefunktion bezeichnet, repräsentiert. Aufgrund dieser Unstetigkeit,
wird in dieser Arbeit eine diskontinuierliche Galerkin (DG)-Methode zur Diskretisierung
verwendet. Eine solche Diskretisierungsmethode ermöglicht eine einfachere Handhabung von
Sprüngen der Funktionswerte und werden im Detail beschrieben und analysiert.

Das Hauptaugenmerk dieser Arbeit liegt auf einer Regularisierungsmethode, der Phase-
Field -Methode, die einerseits das schlecht gestellte Optimierungsproblem regularisiert und
andererseits die Dichtefunktion zwingt, nur Werte nahe 0 und nahe 1 anzunehmen. Teilge-
biete des Rechengebiets Ω mit ρ(x) = 0 in der Lösung müssen als Luft interpretiert werden,
wohingegen Teilgebiete mit ρ(x) = 1 Gebiete, die von Material besetzt sind, darstellen.

Dieses Verfahren wird auf ein praktisches Problem aus der Elektrotechnik angewendet, in
dem die Geometrie für einen Elektromagneten gesucht ist, sodass das erzeugte Magnetfeld
so homogen wie möglich in eine vorgegebene Richtung ist. Eine Diskretisierung des resul-
tierenden Optimierungsproblems mittels DG führt auf ein nichtlineares Gleichungssystem,
das mit dem Newtonverfahren gelöst wird. Schlussendlich werden noch numerische Resultate
präsentiert und diskutiert.
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Chapter 1

Introduction

Optimization is the branch of mathematics that is concerned with finding an element z out of
a given set Z = Zad of admissible elements that is in some sense “better” than all the others.
Mathematically, the “quality” of these elements is described by a function J : Z → R, called
the objective or cost function, and the aim is to minimize (or maximize) J .

In structural optimization these points z represent geometric structures and the goal is
to find that geometry that minimizes a given functional. A classical example is to design a
bridge in a way such that it is as stiff as possible under given loadings, i.e., to find an element
z out of the set of admissible designs Z which maximizes the stiffness J . Maximizing the
stiffness of a structure is equivalent to minimizing its compliance. Therefore, this problem
is refered to as the minimal compliance problem. Structural optimization methods originate
from applications in structural mechanics (cf. Bendsøe [2] and Bendsøe and Sigmund
[3]), but have in recent years also been successfully applied to problems from electrical
engineering and other disciplines. For previous results from electrical engineering we refer
the reader to Lukáš [20] and the references therein.

The field of structural optimization comprises several different approaches. In sizing
optimization the geometry of the structure is (in the simplest case) assumed to consist of
straight bars and is fixed from the very beginning. The optimization process then consists
in determining the optimal thickness for each bar. Figure 1.1 shows the initial and final
designs of a bridge for the minimal compliance problem. See Section 4.2 for a more detailed
description of the problem.
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Figure 1.1: Initial and optimal design of a bridge using sizing optimization

In shape optimization the design parameter is some kind of parametrization of (a part of)
the boundary of the structure. The goal is to determine the optimal shape of the boundary
curve, whereas the basic topology of the design is prescribed. For a shape optimization
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Figure 1.2: Initial and optimal design of a bridge using shape optimization

example see Figure 1.2.
In contrast to these two approaches, the method of topology optimization does not make

any a priori assumptions on the topology of the structure. This means, roughly speaking, that
the number of holes in the final design is not known in the beginning. Clearly, this amounts
to less restrictions during the optimization process and gives hope for better results compared
to the shape and sizing optimization approaches. The basic idea in topology optimization
is (in its most general, continuous setting) to find the optimal material distribution in the
design domain Ωd, which is usually a subset of the computational domain Ω, by deciding
for every single point x in Ωd whether it should contain material or not. This decision
is guided by the objective functional, denoted by J , as well as by a constraining partial
differential equation (PDE) and possibly some other constraints. Mathematically, we are
facing a problem of PDE-constrained optimization which can be written as follows:

min
ρ,u

J(ρ, u) (1.1a)

subject to a(ρ;u, v) = ⟨F, v⟩ ∀v ∈ V0 (1.1b)∫
Ωd

ρ dx ≤ Vmax (1.1c)

ρ(x) ∈ {0, 1} (1.1d)

Here, the state equation (1.1b) is given in its variational form with the bilinear form
a(ρ; ·, ·) and the linear functional ⟨F, ·⟩. Of course, this infinite-dimensional optimization
problem cannot be solved in its full generality, but has to be discretized at some point. In
this thesis, we will follow the concept of “first optimize, then discretize” rather than the
other way around, meaning that we will work in an infinite-dimensional setting as long as
possible before performing a discretization.

Topology optimization problems are rather difficult to handle as they are very likely to be
ill-posed, i.e., existence and uniqueness of a solution as well as its continuous dependence on
the given data are not always guaranteed. Therefore, applying straightforward methods to
problems like (1.1) often results in different kinds of numerical troubles. In order to obtain
reasonable results, some regularization method has to be applied. We will discuss this issue
in Chapter 4.

This thesis aims at applying one regularization approach, the phase-field method to a
problem from Electrical Engineering, namely to the topology optimization of an electromag-
net in two space dimensions. This method has been investigated in detail for problems from
structural mechanics by Stainko in [30] and by Burger and Stainko in [5].

The idea behind most topology optimization approaches consists of two steps: First, a
discrete optimization problem is avoided by allowing the function ρ in (1.1) to attain any
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value between zero and one, i.e., condition (1.1d) is replaced by 0 ≤ ρ(x) ≤ 1. Second,
intermediate values of ρ are penalized so that the final solution consists only of “black” and
“white” areas, which have to be interpreted as material and void, respectively. The phase-
field method also involves a regularization term that excludes different kinds of numerical
anomalies by bounding the perimeter of the resulting structure. The idea of the phase-field
method is to balance the regularization term and the penalization term in a proper way. In
the beginning of the optimization process the focus is on avoiding numerical troubles, i.e.,
the regularization term dominates and intermediate values of ρ are not heavily penalized.
Towards the end of the process the influence of the regularization term is decreased and the
penalization term becomes dominant, driving ρ(x) either to zero or to one for each point x
in the design domain.

The benchmark problem we are going to investigate in Chapter 5 is the following: The
aim is to design an electromagnet in such a way that the resulting magnetic field in a certain
part of the computational domain is as homogeneous as possible in a given direction. These
kinds of electromagnets are used for measurements of magneto-optic effects and have been
developed at the Technical University of Ostrava, Czech Republic. For a more detailed
problem description we refer to Section 5.1.

The remainder of this thesis is organized as follows: In Chapter 2 we will gather the
mathematical machinery we are going to use. After a short introduction to general concepts
of optimization in finite and infinite dimensions we will introduce Newton’s method which is
used for solving the resulting optimality system. After a brief overview on Sobolev spaces,
we give a short introduction to mathematical modeling in electrical engineering and derive
the equations of 2D magnetostatics, which will serve as state equations in our benchmark
problem. Finally we will treat the question of existence and uniqueness of a solution to these
equations.

In Chapter 3 we will present the discretization technique we are going to use, a discon-
tinuous Galerkin (DG) method, discuss the existence and uniqueness issue, provide error
estimates and present some numerical results.

Chapter 4 will give an overview on the general strategies for solving problems like (1.1),
illustrate the different kinds of numerical anomalies arising in topology optimization as well
as suggest possible cures such as the phase-field method.

In Chapter 5 we will describe in detail the benchmark problem of this thesis, which is to
determine the optimal design for an electromagnet, and apply the phase-field method to it.
We will set up the first-order necessary optimality conditions, discretize them using a DG
method and finally solve the resulting system of nonlinear equations by Newton’s method.

In Chapter 6 we will present the numerical results we obtained for the benchmark problem
from Chapter 5.

Finally, in Chapter 7, we will summarize our findings and suggest possible future work.



Chapter 2

Preliminaries

2.1 Numerical Optimization

2.1.1 Constrained Optimization in Finite Dimensions

In this subsection we state the first-order necessary optimality conditions for an abstract
finite-dimensional optimization problem with both equality and inequality constraints. This
brief overview is based on Stainko [30] and should only serve as a motivation for the
infinite-dimensional case treated in the following subsection as, in this thesis, we will follow
the concept of “first optimize, then discretize” and therefore will perform the optimization
in the infinite-dimensional setting.

We consider the following optimization problem in Rn:

min
x∈Rn

J(x)

subject to ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I

(2.1)

Here, E and I are the disjoint sets of indices of equality and inequality constraints, respec-
tively, and the objective function J as well as the constraints ci, i ∈ E ∪ I, are continuously
differentiable mappings from Rn to R. A point x̄ is said to be feasible, if it satisfies the
constraints in (2.1). At any feasible point x we define the active set

A(x) = {i ∈ E ∪ I|ci(x) = 0}.

Letm denote the number of constraints in (2.1), i.e., m = |E∪I|. To formulate the first-order
necessary optimality conditions, we have to introduce the Lagrange function or Lagrangian
L : Rn+m → R defined as

L(x,λ) = J(x) +
∑

i∈E∪I
λici(x), (2.2)

with the Lagrange multiplier vector λ. Furthermore, we have to make sure that the con-
straints do not show any degenerate behaviour. We do this by requiring the constraints to
satisfy a constraint qualification:

4
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Definition 2.1 (LICQ). The linear independence constraint qualification (LICQ) holds at
the point x̄ if the set of gradients of the active constraints {∇ci(x̄)|i ∈ A(x̄)} is linearly
independent.

Now we can formulate the first-order necessary optimality conditions for a (local) solution
of (2.1), commonly called the Karush-Kuhn-Tucker (KKT) conditions:

Theorem 2.2 (First-Order Necessary Conditions). Suppose that x̄ is a local solution of
(2.1) with J and ci, i ∈ E ∪ I, continuously differentiable and that the LICQ holds at x̄.
Then there exists a Lagrange multiplier λ̄ such that the following conditions are satisfied:

∇xL(x̄, λ̄) = 0 (2.3a)

ci(x̄) = 0 ∀i ∈ E (2.3b)

λ̄i ≥ 0 and ci(x̄) ≤ 0 ∀i ∈ I (2.3c)

λ̄ici(x̄) = 0 ∀i ∈ E ∪ I. (2.3d)

Proof. See, e.g., Nocedal and Wright [23].

Any point x̄ that satisfies (2.3) under the above assumptions is called a first-order critical
or a KKT point for the problem (2.1).

2.1.2 Constrained Optimization in Infinite Dimensions

Let us now turn to the, for us, more interesting issue of optimality conditions for opti-
mization problems in an infinite-dimensional setting. This subsection is mainly based on
Tröltzsch [31].

Now the optimization is not performed over Rn, but over some Banach space Y . For
sake of simplicity, we will restrict ourselves to the case of optimization problems with only
equality constraints. A brief overview on possible ways to treat inequality constraints is
given in Remark 2.7. We are facing a problem like

min
y∈Y

J(y)

subject to G(y) = 0.
(2.4)

Here, J : Y → R is the objective functional and G : Y → Z represents the constraints, where
Y and Z are real Banach spaces. Typical examples of problems of this type are minimization
problems with a partial differential equation (PDE) in operator form as a constraint, e.g.
optimal control problems (cf. Tröltzsch [31]) or structural optimization problems (cf.
Bendsøe [2] and Bendsøe and Sigmund [3]). Again, the first-order optimality conditions
are stated using the Lagrangian of the optimization problem (2.4):

Definition 2.3. The function L : Y × Z∗ → R,

L(y, z∗) = J(y) + ⟨z∗, G(y)⟩Z∗×Z

is called the Lagrange function of problem (2.4).
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The first-order necessary optimality conditions will involve a derivative of the functionals
J and G, thus we have to introduce a notion of differentiation for mappings between Banach
spaces. Let Y and Z be real Banach spaces with respective norms ∥·∥Y and ∥·∥Z , let Y ⊂ Y
be open and recall that L(Y,Z) denotes the set of all bounded linear operators from Y to Z.

Definition 2.4 (Fréchet derivative). A mapping F : Y ⊇ Y → Z is said to be Fréchet
differentiable at y ∈ Y if there exist an operator A ∈ L(Y, Z) and a mapping r(u, ·) : Y → Z
with the following properties: For all h ∈ Y such that y + h ∈ Y it holds

F (y + h) = F (y) +Ah+ r(u, h) (2.5)

where

∥r(u, h)∥Z
∥h∥Y

→ 0 as ∥h∥Y → 0. (2.6)

The operator A is said to be the Fréchet derivative of F at the point y, written as A = F ′(y).

In the following we will refer to the Fréchet derivative of an operator F simply by F ′. Note
that for F : Y → Z we have F ′ : Y → L(Y, Z). Also note that any linear bounded operator
B is Fréchet differentiable since B(y + h) = By +Bh+ 0 with the Fréchet derivative being
the operator itself. For more properties of Fréchet derivatives we refer to Tröltzsch [31]
and Langer [18].

As in the finite-dimensional case, we again have to require some constraint qualification
to ensure that the constraints do not show any degenerate behaviour.

Definition 2.5. The constraint qualification of Zowe and Kurcyusz for (2.4) holds at ȳ ∈ Y
if

G′(ȳ)Y = Z, (2.7)

i.e., if the operator G′(ȳ) is surjective.

Note that Definition 2.5 applies to the case where we have only equality constraints
in (2.4), but can be generalized to the case involving inequality constraints, again see
Tröltzsch [31].

Now we can state the first-order necessary optimality conditions for a local solution to
problem (2.4):

Theorem 2.6 (First-Order Necessary Optimality Conditions). Suppose that ȳ ∈ Y is a
local solution of problem (2.4) with J and G continuously Fréchet-differentiable in an open
neighborhood of ȳ and that the constraint qualification (2.7) holds. Then there exists a
Lagrange multiplier z∗ ∈ Z∗ for ȳ satisfying the following conditions:

∇yL(ȳ, z∗) = J ′(ȳ) +G′(ȳ)∗z∗ = 0 in Y ∗ (2.8a)

G(ȳ) = 0 in Z (2.8b)

Proof. This theorem is a special case of Theorem 6.3 in Tröltzsch [31] where the more
general case including inequality constraints is treated.
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Remark 2.7 (Box constraints). A frequently occurring class of inequality constraints are so-
called box constraints. If we choose the Banach space Y in (2.4) to be L2(Ω), the optimization
problem involving box constraints looks as follows:

min
y∈L2(Ω)

J(y) (2.9a)

subject to G(y) = 0 (2.9b)

a(x) ≤ y(x) ≤ b(x) a.e. in Ω, (2.9c)

where a and b are functions from L∞(Ω) and (2.9b) represents a PDE constraint. It is then
possible to eliminate these inequality constraints by introducing a projection operator and to
reformulate the optimization problem as a non-smooth operator equation. Even though the
resulting operator is not differentiable, a generalization of Newton’s method can be applied (cf.
Section 2.2 for the classical Newton’s method). This generalization is called the Semismooth
Newton Method and can be shown to be q-superlinearly convergent, cf. Hinze et al. [15]
and Gangl [11]. We refer the reader also to Hintermüller et al. [14]. Box constraints
typically arise in optimal control problems, cf. Tröltzsch [31]. In Tröltzsch [31] also
more general kinds of inequality constraints are treated.

2.2 Newton’s Method

Here, we will briefly introduce Newton’s method for solving (systems of) nonlinear equations
which we will make use of in Chapter 5 as the optimality system of our topology optimiza-
tion problem will turn out to be nonlinear. This section is mainly based on Jung and
Langer [16]. We also refer the reader to Deuflhard [8].

Under certain conditions Newton’s method can be applied to an equation of the type

G(x) = 0, (2.10)

with G : Rn → Rn. The method is motivated via a first-order Taylor expansion as follows:
For a given approximation x(k) one would like to find a correction w(k) such that x(k)+w(k)

is an exact solution of (2.10). For achieving that, one attempts to find such a Newton
correction by performing a first-order Taylor expansion around x(k):

G
(
x(k) +w(k)

)
≈ G

(
x(k)

)
+G′

(
x(k)

)
w(k) = 0. (2.11)

The Newton correction is computed from (2.11) and added to the current iterate x(k). The
procedure looks as follows:

Algorithm 1. Newton’s Method
0. Choose initial guess x(0)

For k = 1 until convergence do
1. Compute Newton correction w(k) from

G′
(
x(k)

)
w(k) = −G

(
x(k)

)
(2.12)

2. Update x(k+1) = x(k) +w(k) and go to step 1
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It seems natural that one must require G to be continuously Fréchet differentiable at
the iterates x(k) and that the Jacobian G′ must be invertible at these points. The fol-
lowing theorem states the local q-quadratic convergence of Algorithm 1 under an addi-
tional smoothness assumption on G (cf. Jung and Langer [16]). Note that a sequence
{u(k)} is said to be q-quadratically convergent to a point u∗ with respect to a norm ∥ · ∥ if
∥u∗ − u(k+1)∥ ≤ C∥u∗ − u(k)∥2 for some constant C > 0 independent of k.

Theorem 2.8. Let G : Rn → Rn be twice continuously Fréchet differentiable and x∗ ∈ Rn

be a solution of the system of nonlinear equations (2.10). Let the Jacobian G′(x∗) be regular
in that solution point. If the initial guess x(0) is sufficiently close to the solution x∗ then
Algorithm 1 converges q-quadratically to the solution x∗ of (2.10).

A proof for the case where n = 1 can be found in Jung and Langer [16].

Remark 2.9. A sequence {u(k)} is said to be q-superlinearly convergent to a point u∗ with
respect to a norm ∥ · ∥ if ∥u∗ − u(k+1)∥ = o(∥u∗ − u(k)∥) or, in other words, if

lim sup
k→∞

∥x∗ − x(k+1)∥
∥x∗ − x(k)∥

= 0. (2.13)

If G is not twice, but only once continuously Fréchet differentiable and regular at the solution
x∗, Newton’s method still converges locally q-superlinearly (see, e.g., Hinze et al. [15]).
Furtheron, if G is only once continuously Fréchet differentiable and the Jacobian G′ is Lip-
schitz continuous then the method already converges q-quadratically. Hence, the requirement
that G should be twice continuously Fréchet differentiable in Theoerem 2.8 is actually too
strong. A proof of this statement can be found in Langer [18], where Newton’s method is
treated for operators between general Banach spaces.

A non-trivial issue is the choice of a proper initial value x(0) that is sufficiently close to
the exact (in general unknown) solution x∗. One way to deal with this inconvenience is to
perform Algorithm 1 with a variable step size (damped Newton’s method). In each iteration
the Newton correction w(k) is computed as in (2.12) and a step size τ = τ (k) ∈ (0, 1] is
chosen such that

∥G
(
x(k) + τw(k)

)
∥2 < ∥G

(
x(k)

)
∥2. (2.14)

The next theorem guarantees the existence of a τ (k) > 0 such that (2.14) is satisfied (Jung
and Langer [16]).

Theorem 2.10. Let G : Rn → Rn be differentiable. Furthermore, assume that the k-th
iterate x(k) is not a root of G and that the Jacobian G′ is regular in x(k), i.e., G

(
x(k)

)
̸= 0

and G′ (x(k)
)−1

exists. Then there exists a positive real number τ∗ such that inequality (2.14)
holds for all τ in (0, τ∗).

For a proof of this theorem we again refer the reader to Jung and Langer [16]. A
simple strategy would be to choose in every step τ ∈ {1, 1/2, 1/4, 1/8, . . . } maximal such
that (2.14) is satisfied. In particular, choose τ = 1 whenever it is admissible. For more
sophisticated strategies for choosing τ (k) like the Wolfe conditions or Goldstein conditions
we refer to Nocedal and Wright [23].
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2.3 Function Spaces

Next, we will introduce the function spaces we are going to use for formulating partial
differential equations in weak or variational form. This section is based on Rivière [27] and
Adams and Fournier [1].

Throughout this thesis, Ω denotes an open bounded Lipschitz domain in Rd, where d
denotes the space dimension. The space L2(Ω) is the space of Lebesgue measurable, square-
integrable functions over Ω,

L2(Ω) = {v measurable :

∫
Ω
v(x)2dx < ∞}.

Note that the elements of L2(Ω) are actually equivalence classes of functions: Two functions
v1 and v2 belong to the same equivalence class if they differ only on a set of measure zero.
The space L2(Ω), equipped with the norm

∥v∥L2(Ω) =

(∫
Ω
v(x)2dx

) 1
2

,

and the inner product

(v, w)L2(Ω) =

∫
Ω
v(x)w(x) dx,

is a Hilbert space. Given a multi-index α = (α1, . . . , αd) ∈ Nd, a locally integrable function
w is said to be the α-th weak partial derivative of a locally integrable function u if∫

Ω
u(x)Dαv(x) dx = (−1)|α|

∫
Ω
w(x)v(x) dx ∀v ∈ C∞

0 (Ω), (2.15)

where C∞
0 (Ω) is the space of all C∞(Ω) functions with compact support and the partial

derivative with respect to α is given by

Dαv =
∂|α|v

∂xα1
1 . . . ∂xαd

d

,

with |α| =
∑d

i=1 αi. For w, we again use the notation w = Dαu. Next, we will introduce
the Sobolev space Hs(Ω), s ∈ N, that is the space of L2(Ω) functions with weak derivatives
in L2(Ω) up to order s:

Hs(Ω) = {v ∈ L2(Ω)|Dαv ∈ L2(Ω) ∀ 0 ≤ |α| ≤ s}.

The space Hs(Ω) is again a Hilbert space with the norm

∥v∥Hs(Ω) =

 ∑
0≤|α|≤s

∥Dαv∥2L2(Ω)

 1
2

,

and the inner product

(v, w)Hs(Ω) =
∑

0≤|α|≤s

(Dαv,Dαw)L2(Ω).
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The Hs(Ω)-seminorm is defined by

|v|Hs(Ω) =

 ∑
|α|=s

∥Dαv∥2L2(Ω)

 1
2

.

The definition of Sobolev spaces can also be extended to Hs(Ω) with real s. Then we cannot
interpret the space as the space with s weak derivatives any more, but it can be seen as an
interpolated space, cf. Bergh and Löfström [4]. For instance, H1/2(Ω) lies in some sense
in between H1(Ω) and H0(Ω)(= L2(Ω)). For a more detailed introduction to Sobolev spaces
we refer to Adams and Fournier [1].

An important result is the embedding theorem that relates the Sobolev space Hs(Ω) to
the space of r times continuously differentiable functions Cr(Ω), r ∈ N:

Theorem 2.11 (Sobolev’s Embedding Theoerem). For Ω ⊂ Rd, we have

Hs(Ω) ⊂ Cr(Ω) if s− r >
d

2
. (2.16)

To be more precise, the theorem says that under certain conditions, if v ∈ Hs(Ω) then
there is a representative in the equivalence class of v that is Cr(Ω). In particular (r = 0):

Hs(Ω) ⊂ C0(Ω) if


s > 1

2 for d = 1,

s > 1 for d = 2,

s > 3
2 for d = 3.

For properly defining boundary conditions we have to introduce the notion of the trace
of a Sobolev function:

Theorem 2.12 (Trace theorem, [27]). Let Ω be a bounded domain with Lipschitz boundary
Γ and outward normal vector n. There exist trace operators γ0 : Hs(Ω) → Hs−1/2(∂Ω)
for s > 1

2 and γ1 : Hs(Ω) → Hs−3/2(Γ) for s > 3/2 that are extensions of the boundary
values and boundary normal derivatives, respectively. The operators γ0, γ1 are surjective.
Furthermore, if v ∈ C1(Ω̄), then

γ0v = v|Γ, γ1v = ∇v · n|Γ.

Remark 2.13. For sake of convenience, when talking about function values and normal
derivatives on boundaries we will always write v and ∇v · n instead of the traces γ0v and
γ1v, respectively, but always keep in mind the trace operators of Theorem 2.12.

Note that the surjectivity of the operator γ0 yields that any Dirichlet data gD ∈ H1/2(Γ)
can be extended to the interior of the domain by an H1(Ω) function. Therefore, a variational
problem with inhomogeneous Dirichlet boundary conditions can be converted to a problem
with homogeneous ones if the Dirichlet data satisfies gD ∈ H1/2(Γ) (homogenization).
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2.4 Mathematical Modeling in Electrical Engineering

In this section, we will give a short introduction to the physical background of the topology
optimization problem we are going to investigate. We state the full Maxwell equations and
derive from these the equations of 2D magnetostatics which will be the governing equations in
the optimization problem. This introduction is mainly based on Langer [19], Pechstein
[24], Zaglmayr [32] and Schöberl [28]. We refer the reader also to the monographs
Kaltenbacher [17] and Monk [22].

Electromagnetic fields are described by Maxwell’s equations established by James C.
Maxwell in 1862. The full Maxwell’s field equations in classical (differential) form read

curl H = J +
∂D

∂t
(2.17a)

div B = 0 (2.17b)

curl E = −∂B

∂t
(2.17c)

div D = ρ (2.17d)

with the electromagnetic quantities

H = (H1,H2,H3)
T magnetic field intensity [A/m]

B = (B1, B2, B3)
T magnetic flux density [V s/m2]

E = (E1, E2, E3)
T electric field intensity [V/m]

D = (D1, D2, D3)
T electric flux density [As/m2]

J = (J1, J2, J3)
T electric current density [As/m2]

ρ electric charge density [As/m3]

All these quantities are functions of the spatial variable x = (x1, x2, x3)
T and the time

variable t. The units given in brackets are the SI units. Since the system of equations (2.17)
is underdetermined (8 equations for 12 unknowns), we have to add material laws.

The electromagnetic fields are related via the following constitutive laws:

B = µH+ µ0M (2.18a)

D = εE+P (2.18b)

J = σE+ Ji (2.18c)

with

M permanent magnetization [V s/m2]
P electric polarization [As/m2]
µ magnetic permeability [V s/Am]
µ0 permeability of vacuum (= 4π10−7) [V s/Am]
ε electric permittivity [As/V m]
σ electric conductivity [A/Vm]
Ji impressed current density [A/m2].

For sake of simplicity we will neglect the effects of permanent magnetization and electric
polarization and set M = P = 0. In the general case, the parameters µ, ε and σ are tensors
depending on space and time as well as on the electromagnetic fields. However, we will
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neglect the effects of hysteresis and restrict ourselves to the case of isotropic materials where
these tensors reduce to scalar functions.

In many practical applications it is not necessary to treat the full Maxwell equations
(2.17) as under some physical assumptions they can be reduced to special electromagnetic
regimes. In non-conducting regions (σ = 0) the equations for the magnetic and electric
fields decouple into two independent systems. If we further assume all fields to be time-
independent (i.e. ∂

∂t = 0), we arrive at the equations of magnetostatics and electrostatics.
The last assumption is satisfied if the electromagnetic field is generated only by static or
uniformly moving charges (cf. Zaglmayr [32]). For the rest of this thesis we will deal only
with the magnetostatic regime:

curl H = Ji (2.19a)

div B = 0 (2.19b)

B = µH (2.19c)

Applying the divergence operator to (2.19a) and noting that div curl u = 0 for any twice
continuously differentiable vector field u, we immediately obtain the necessary solvability
condition

div Ji = 0. (2.20)

Assuming that the computational domain Ω is simply connected, equation (2.19b) implies the
existence of a vector potentialA = (A1(x), A2(x), A3(x))

T such thatB = curlA. Introducing
the magnetic reluctivity

ν(x, |B |) := 1

µ(x, |B |)
,

system (2.19) can be written in the vector potential formulation

curl (ν(x, |curlA|)curlA(x)) = Ji, (2.21a)

together with the boundary conditions

A(x)× n = 0 on ΓB and (2.21b)

ν(x, |curlA|)curlA(x)× n = 0 on ΓH , (2.21c)

for two disjoint sets ΓB, ΓH such that ΓB ∪ ΓH = ∂Ω. Note that (2.21b) implies that
B · n = 0 (see, e.g., Pechstein [24]) which is the so-called induction boundary condition.
The condition (2.21c) is equivalent to the condition H × n = 0 which is called the perfect
magnetic conductors (PMC) condition. Note that equation (2.21a) does not admit a unique
solution since for any solution A, a gradient field ∇Φ can be added such that A + ∇Φ
is a solution, too. A solution A can be made unique by additionally requiring, e.g., that
divA = 0. This condition is called Coulomb’s gauge. In the following, we will, for simplicity,
assume the magnetic reluctivity ν (and also the magnetic permeability µ) to be homogeneous,
i.e.,

ν(x, |curlA|) = ν(|curlA|). (2.22)
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We remark that all results of this chapter are still valid if the computational domain Ω
consists of an arbitrary, but finite number of materials that have uniform behaviour, i.e.,

Ω =
∪
i∈I

Ωi with Ωi open and pairwise disjoint, (2.23)

ν(x, |curlA|) = ν(i)(|curlA|) for x ∈ Ωi, (2.24)

for some functions ν(i) : R+
0 → R+

0 describing the behaviour of the material with index i ∈ I
(cf. Pechstein [24]).

2.4.1 Reduction to 2D

In this thesis we will deal with the topology optimization of an electromagnet in a two-
dimensional setting. The underlying state equations will be the equations of 2D magneto-
statics in vector potential formulation which can be derived from system (2.21) under certain
assumptions:

1. Ω = Ω2D × (−l, l) with l ≫ diam(Ω2D) or Ω = Ω2D × (−ϵ, ϵ) with ϵ ≪ diam(Ω2D),

2. Ji =

 0
0

J3(x1, x2)

 , (x1, x2)
T ∈ Ω2D,

3. H =

 H1(x1, x2)
H2(x1, x2)

0

 , (x1, x2)
T ∈ Ω2D.

Note that, because of the second assumption, the necessary solvability condition (2.20) is
automatically satisfied. Let, from now on, x = (x1, x2)

T be a vector in R2, let Ω = Ω2D as
well as ΓB = ΓB ∩ Ω2D and ΓH = ΓH ∩ Ω2D. Under the above assumptions, using (2.19c),
we further conclude

B =

 B1(x)
B2(x)

0

 , x ∈ Ω2D,

and therefore

0 = B3(x) = (curlA(x))3 =
∂A1

∂x2
(x)− ∂A2

∂x1
(x).

This is fulfilled with the ansatz

A = A(x) =

 0
0

u(x)

 , (2.25)

which yields

|B(x)| = |curlA(x)| =

∣∣∣∣∣∣
 ∂2u(x)

−∂1u(x)
0

∣∣∣∣∣∣ = |∇u(x)| ,
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where ∇ = (∂1, ∂2)
T denotes the gradient operator in two space dimensions. The left hand

side of equation (2.21a) now becomes

curl(ν(|curlA|)curlA(x)) = curl

 ν(|∇u|)∂2u(x)
−ν(|∇u|)∂1u(x)

0


=

 0
0

−div (ν(|∇u|)∇u(x)

 .

Note that with ansatz (2.25) the Coulomb gauge as introduced above is automatically sat-
isfied. A closer look at the boundary conditions (2.21b) and (2.21c) yields

0 = A(x)× n =

 −u(x)n2

u(x)n1

0

 ⇔ u(x) = 0 on ΓB, (2.26)

and

0 = ν(|curlA|)curlA(x)× n

= ν(|∇u|)

 0
0

∂2u(x)n2(x) + ∂1u(x)n1(x)

 on ΓH , (2.27)

which leads to the equations of (nonlinear) 2D magnetostatics in classical formulation:

Find u ∈ C2(Ω) ∩ C1(Ω ∪ ΓH) ∩ C(Ω ∪ ΓB) such that

−div (ν(|∇u|)∇u(x)) = J3(x) x ∈ Ω, (2.28a)

u(x) = 0 x ∈ ΓD = ΓB, (2.28b)

ν(|∇u|)∇u(x) · n = 0 x ∈ ΓN = ΓH . (2.28c)

Assuming that the magnetic reluctivity does not depend on the magnetic field itself, problem
(2.28) becomes a linear problem:

Find u ∈ C2(Ω) ∩ C1(Ω ∪ ΓH) ∩ C(Ω ∪ ΓB) such that

−div (ν∇u(x)) = J3(x) x ∈ Ω, (2.29a)

u(x) = 0 x ∈ ΓD = ΓB, (2.29b)

ν∇u(x) · n = 0 x ∈ ΓN = ΓH . (2.29c)

This assumption is justified for so-called linear materials. In this thesis, we will deal with
ferromagnetic materials as iron, which are nonlinear materials. Nevertheless, for sake of
simplicity, we will use the model (2.29) rather than (2.28), which will naturally result in
a modeling error. Throughout this thesis, we will assume that ΓD has positive measure
because we want to avoid the case of the pure Neumann problem, a solution to which can
be only unique up to an additive constant.
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2.4.2 Existence and Uniqueness of Equations of Nonlinear 2D Magneto-
statics

It is easily checked that the variational formulation of (2.28) reads as follows:

Find u ∈ Vg : a(u;u, v) = ⟨F, v⟩ ∀v ∈ V0, (2.30)

with

Vg = V0 = {v ∈ H1(Ω) : v|ΓD
= 0}, (2.31)

a(w;u, v) =

∫
Ω
ν(|∇w|)∇u(x) · ∇v(x) dx and (2.32)

⟨F, v⟩ =
∫
Ω
f(x)v(x) dx. (2.33)

Remark 2.14. For a function u in H1(Ω), the second part of Theorem 2.12 is actually not
applicable. This means that normal derivatives of H1(Ω) functions cannot be represented by
a function from L2(Ω). However, for the case where s = 1, Neumann boundary data can be
interpreted as functionals from the Sobolev space H−1/2(∂Ω) (cf. Adams and Fournier
[1]). In our particular case where we only treat homogeneous Neumann boundary conditions
we need not worry about this issue.

The variational equation (2.30) is equivalent to the operator equation in the dual space,

A(u) = F in V ∗
0 , (2.34)

with the nonlinear operator A : V0 → V ∗
0 defined by

⟨A(u), v⟩ = a(u;u, v). (2.35)

The well-posedness of a nonlinear variational problem of the form (2.30) is guaranteed
by Theorem 2.15 which is refered to as the nonlinear Lax-Milgram theorem or theorem of
Zarantonello.

Theorem 2.15 (Zarantonello). Let (V, (·, ·)V , ∥ · ∥V ) be a Hilbert space, F ∈ V ∗ and let
A : V → V ∗ be a nonlinear operator fulfilling the following conditions:

1. A is strongly monotone:

∃cA1 = const > 0 : ⟨A(u)−A(v), u− v⟩ ≥ cA1 ∥u− v∥2V ∀u, v ∈ V (2.36)

2. A is Lipschitz continuous

∃cA2 = const > 0 : ∥A(u)−A(v)∥V ∗ ≤ cA2 ∥u− v∥V ∀u, v ∈ V. (2.37)

Then the operator equation

A(u) = F (2.38)

has a uniquely determined solution u∗ ∈ V .
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Proof. A proof can be found in, e.g., Pechstein [24].

Using this theorem, the well-posedness of the nonlinear variational problem (2.30) can be
shown:

Theorem 2.16. Let the mapping defined by s → ν(s)s from R+
0 to R+

0 be strongly monotone
with monotonicity constant m, i.e.,

(ν(s)s− ν(t)t)(s− t) ≥ m(s− t)2 ∀s, t ≥ 0 (2.39)

and Lipschitz continuous with Lipschitz constant L > 0,

|ν(s)s− ν(t)t| ≤ L|s− t| ∀s, t ≥ 0. (2.40)

Then the nonlinear variational problem (2.30) has a unique solution u∗ ∈ V0 for any given
F ∈ V ∗

0 .

Proof. The conditions (2.39) and (2.40) imposed on ν yield the strong monotonicity and
Lipschitz continuity of the operator A in (2.38). Thus, Theorem 2.15 is applicable. For more
details, we again refer to Pechstein [24].

Remark 2.17. The conditions (2.39) and (2.40) are naturally satisfied as a consequence of
certain physical properties (cf. Pechstein [24]).

2.4.3 Existence and Uniqueness of Equations of Linear 2D Magnetostatics

The variational formulation of (2.29) reads as follows:

Find u ∈ Vg : a(u, v) = ⟨F, v⟩ ∀v ∈ V0 (2.41)

with

Vg = V0 = {v ∈ H1(Ω) : v|ΓD
= 0}, (2.42)

a(u, v) =

∫
Ω
ν∇u(x) · ∇v(x) dx and (2.43)

⟨F, v⟩ =
∫
Ω
f(x)v(x) dx. (2.44)

The lemma of Lax-Milgram states the conditions for well-posedness of a linear variational
problem like (2.41).

Lemma 2.18 (Lax-Milgram). Let V be a normed linear space with norm ∥ · ∥V , let the
bilinear form a : V × V → R be coercive (elliptic), i.e.,

a(v, v) ≥ µ1∥v∥2V ∀v ∈ V.

for some constant µ1 > 0, and bounded (continuous), i.e.,

a(v, w) ≤ µ2∥v∥V ∥w∥V ∀v, w ∈ V

for some constant µ2 > 0. Furthermore, let F be an element of V ∗. Then there exists a
unique solution to a variational problem of the form (2.41) and

1

µ2
∥F∥V ∗ ≤ ∥u∥V ≤ 1

µ1
∥F∥V ∗ . (2.45)
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Proof. A proof can be found in most books on the finite element method, e.g., Zulehner
[33].

To establish the well-posedness of (2.29) we have to check the coercivity and bounded-
ness of the bilinear form (2.43), as well as the boundedness of the linear functional (2.44).
Requiring the reluctivity to be bounded by two positive constants ν0, ν1 from below and
above,

ν0 ≤ ν(x) ≤ ν1, (2.46)

and using Cauchy’s inequality on L2(Ω), we immediately obtain the boundedness of the
bilinear form:

a(u, v) =

∫
Ω
ν∇u · ∇v dx ≤ ν1

∫
Ω
∇u · ∇v dx ≤ ν1∥∇u∥L2(Ω)∥∇v∥L2(Ω) (2.47)

≤ ν1∥u∥H1(Ω)∥v∥H1(Ω). (2.48)

As we require meas1(ΓD) > 0 we can use Friedrichs’ inequality,

∃CF > 0 : ∥v∥L2(Ω) ≤ CF |v|H1(Ω), (2.49)

which is valid for all v in V0 (see, e.g., Schöberl [29]), to show the coercivity of the bilinear
form (2.43). First we note that adding |v|H1(Ω) on both sides of (2.49) gives

|v|H1(Ω) ≥
1

CF + 1
∥v∥H1(Ω). (2.50)

Then we get

a(v, v) =

∫
Ω
ν|∇v|2 dx ≥ ν0

∫
Ω
|∇v|2 dx = ν0|v|2H1(Ω) (2.51)

≥ ν0
CF + 1

∥v∥2H1(Ω). (2.52)

The boundedness of the linear form F (2.44) is easily verified using Cauchy’s inequality:∫
Ω
fv dx ≤ ∥f∥L2(Ω)∥v∥L2(Ω) ≤ ∥f∥L2(Ω)∥v∥H1(Ω) (2.53)

Thus, Lemma 2.18 is applicable and yields existence and uniqueness of a solution to (2.41)
as well as its continuous dependence on the right hand side F .



Chapter 3

Discontinuous Galerkin Methods

Discontinuous Galerkin (DG) methods are non-conforming finite element methods, which
means that the approximation space Vh is not a subspace of the solution space V . More
precisely, although we are searching for a solution in a space V of functions with continuous
traces across the element interfaces, we make an ansatz with functions that are smooth only
in the element interiors and allow for discontinuities across element interfaces. We try to
regain continuity of the final solution by adding a penalization term to the bilinear form.
The reason why we chose a DG method for the discretization of our topology optimization
problem lies in the discontinuous nature of the design variable ρ. In the final (optimal) design,
ρ should jump from 0 (void) to 1 (material). Using a conforming (continuous) version of
the finite element method (FEM) would result in functions with very steep gradients at the
interface between material and void, which we want to avoid.

In this chapter, we will first introduce the function spaces involved and then derive the
DG variational formulation for a model problem. There exist several different versions of
discontinuous Galerkin methods, but we will restrict ourselves to the class of interior penalty
(IP) methods. We will discretize the obtained variational formulation of the model problem
and treat the question of existence and uniqueness of a solution in the discrete setting. We
will provide a priori error estimates and finally some numerical results for a model problem
on the one hand and for a real world problem coming from computational electromagnetics
on the other hand. The majority of this chapter is based on Rivière [27].

3.1 Preliminaries

An important tool in the analysis of DG methods are trace inequalities. For the rest of this
thesis, we will restrict ourselves to the case of two space dimensions, i.e., d = 2. Let T be
a bounded polygonal domain (e.g. a triangle in a FE mesh) with area |T | and diameter
hT = supx,y∈T ∥x − y∥, where ∥ · ∥ denotes the Eucledian norm in Rd. Furthermore, let |e|
denote the length of the edge e. Then there exists a constant C independent of hT and v
such that for any v ∈ Hs(T ) it holds

∥v∥L2(e) ≤ C|e|1/2|T |−1/2(∥v∥L2(T ) + hT ∥∇v∥L2(T )) ∀e ⊂ ∂T if s ≥ 1, (3.1)

∥∇v · n∥L2(e) ≤ C|e|1/2|T |−1/2(∥∇v∥L2(T ) + hT ∥∇2v∥L2(T )) ∀e ⊂ ∂T if s ≥ 2. (3.2)

The constant C in (3.1) and (3.2) is a generic constant that is in general unknown. In the
case where v is a polynomial we can exploit the equivalence of norms in finite-dimensional

18
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spaces to obtain the trace inequalities

∥v∥L2(e) ≤ Cth
−1/2
T ∥v∥L2(T ) ∀e ⊂ ∂T ∀v ∈ Pk(T ) and (3.3)

∥∇v · n∥L2(e) ≤ Cth
−1/2
T ∥∇v∥L2(T ) ∀e ⊂ ∂T ∀v ∈ Pk(T ), (3.4)

where Pk(T ) denotes the space of polynomials of total degree less than or equal to k on T ,

Pk(T ) = span{xI1xJ2 : I + J ≤ k, (x1, x2) ∈ T}.

The constant Ct in (3.3) and (3.4) is independent of hT and v, but depends on the poly-
nomial degree k. For a polynomial v ∈ Pk(T ) on a planar triangle T , Hesthaven and
Warburton [13] derived the trace inequality

∥v∥L2(e) ≤

√
(k + 1)(k + 2)

2

|e|
|T |

∥v∥L2(T ), (3.5)

which does not include any unknown constants and which will help us in finding a proper
coercivity constant (see Remark 3.8).

As already pointed out in the introduction of this chapter, in a DG method, given a
subdivision Th of the computational domain Ω, we are searching for solutions that are smooth
in the interior of the elements of Th and are possibly discontinuous across element interfaces.
For a proper treatment of such functions we define the broken Sobolev space Hs(Th), s ∈ N,
as

Hs(Th) = {v ∈ L2(Ω) : v|T ∈ Hs(T ) ∀ T ∈ Th}, (3.6)

equipped with the broken Sobolev norm

|||v|||Hs(Th) =

 ∑
T∈Th

∥v∥2Hs(T )

 1
2

. (3.7)

Clearly, we have

Hs(Ω) ⊂ Hs(Th) and Hs+1(Th) ⊂ Hs(Th).

Again, the definition can be extended to general indices s ∈ R.
Now we are ready to define the interior penalty Galerkin (IPG) methods. We will illustrate

the main ideas by deriving the variational formulation of the equations of 2D magnetostatics,
which will be the governing equations in our optimization problem.

3.2 Variational Formulation of Interior Penalty Galerkin Meth-
ods

As a model problem, we will consider the two-dimensional problem (2.29) in a slightly more
general setting, including inhomogeneous Dirichlet and Neuman boundary conditions:

Let Ω be a polygonal domain in R2 and Th a subdivision of Ω into triangles. Let ∂Ω be
partitioned into two disjoint sets, ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, and let n be the outer unit
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normal vector on ∂Ω. In the case where ΓD = ∅ a solution can be unique only up to an
additive constant. Therefore, we assume measd−1(ΓD) > 0. For the rest of this chapter we
will restrict ourselves to the case of two space dimensions, i.e., d = 2. For given f ∈ L2(Ω),
gD ∈ H1/2(ΓD) and gN ∈ L2(ΓN ), we formally consider the following elliptic boundary value
problem:

−div (ν∇u) = f in Ω, (3.8a)

u = gD on ΓD, (3.8b)

ν∇u · n = gN on ΓN . (3.8c)

In our case, the real-valued coefficient function ν represents the magnetic reluctivity and has
to be bounded from above and below by two positive constants ν0, ν1:

ν0 ≤ ν(x) ≤ ν1 a.e. in Ω. (3.9)

We do not make any smoothness assumptions on ν as the magnetic reluctivity in problem
(2.29) has jumps at the transition between different materials.

Remark 3.1. The following procedures can be performed in an analogous way if we replace
the real-valued function ν by a matrix valued function ν = ν(x) = (νij(x))1≤i,j≤2 that is
symmetric (νij = νji), positive definite and uniformly bounded from above and below by two
positive constants ν0, ν1:

ν0ξ · ξ ≤ ν(x) ξ · ξ ≤ ν1ξ · ξ ∀ξ ∈ R2 a.e. in Ω.

Remark 3.2. A subdivision Th is called admissible if for any two elements Ti, Tj ∈ Th
the intersection of their closures, T i ∩ T j, is either empty, a common vertex, a common
edge or (in 3D) a common face. In particular, this property excludes the occurrence of so-
called hanging nodes, which are vertices of elements that lie on an edge (or in 3D: face) of
another element, see Figure 3.1. In a finite element method with continuous ansatz functions,
hanging nodes must be avoided as they would destroy continuity across edges, whereas this
admissibility requirement is not necessary when dealing with discontinuous ansatz functions.
This is a major advantage of DG methods over conforming FE methods which allows for
local refinement without accounting for neighboring elements.

T1 T2

T3

T4

T5

T1 T2

T3

T4
T5

T6

Figure 3.1: The red vertex in the left picture is a hanging node as it lies on an edge of
T5. In the right picture the neighboring element T5 has been refined yielding an admissible
subdivision again.
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3.2.1 Derivation of the interior penalty variational formulation

Applying a DG method to a PDE means searching for a solution uh ∈ Hs(Th), i.e., a function
that is smooth on element interiors but in general discontinuous across element interfaces.
Thus, we cannot directly follow the procedure of deriving variational formulations in the
conforming case where integration by parts is performed over the whole computational do-
main Ω. As we also treat the case of Neumann boundary conditions we need differentiability
on the boundary. Due to Theorem 2.12, we get well-posedness of the boundary conditions
for s > 3/2. For convenience we will assume s = 2.

Let us fix the following notation:

Th set of triangles
Γ0
h set of interior edges

ΓD
h set of Dirichlet boundary edges

ΓN
h set of Neumann boundary edges

The derivation of the IP formulation of problem (3.8) consists of 5 steps. Note that ν, u, v
and f are functions of x even though we will skip the arguments for better readability.

1. Choice of approximation space Vg and test space V0:

Vg = V0 = V := Hs(Th)

2. Multiply PDE with test function v ∈ V0 integrate over each element and
sum up:

−
∑
T∈Th

∫
T
div (ν∇u) v dx =

∑
T∈Th

∫
T
f v dx

3. Perform integration by parts (Ibp) in the principal part:
Since the functions u and v are not continuously differentiable on the whole of Ω, we
cannot apply integration by parts on Ω, but rather have to do it on each element
separately:

−
∑
T∈Th

∫
T
div (ν∇u) v dx

Ibp
=

∑
T∈Th

[∫
T
ν∇u · ∇v dx−

∫
∂T

ν∇u · n v ds

]
.

Taking a closer look at the sum over the boundary integrals, we note that it can be
rewritten as a sum over all edges. For an edge e, let Tr and Ts be the two adjacent
elements, nr and ns be the corresponding outward unit normal vectors, and wr, ws

denote the function values of a function w on Tr and Ts, respectively. Using this
notation, we obtain

−
∑
T∈Th

∫
∂T

ν∇u · n v ds =−
∑
e∈Γ0

h

∫
e
((ν∇u)|Tr · nr vr + (ν∇u)|Ts · ns vs) ds

−
∑
e∈ΓD

h

∫
e
(ν∇u)|Tr · nr vr ds

−
∑
e∈ΓN

h

∫
e
(ν∇u)|Tr · nr vr ds.
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Now, on interior and Dirichlet boundary edges both (ν∇u)|Tr and (ν∇u)|Ts are re-
placed by an average value over the edge e, defined by

{w}e :=

{
1
2 (wr + ws) e ∈ Γ0

h

wr e ∈ ΓD
h ,

(3.10)

which gives

−
∑
T∈Th

∫
∂T

ν∇u · n v ds =−
∑
e∈Γ0

h

∫
e
({ν∇u}e · nr vr + {ν∇u}e · ns vs) ds

−
∑
e∈ΓD

h

∫
e
{ν∇u}e · nr vr ds−

∑
e∈ΓN

h

∫
e
(ν∇u)|Tr · nr vr ds.

Proceeding like this is possible because the exact solution has continuous traces across
the edge interfaces. In particular, for u ∈ H2(Ω) it holds (ν∇u)|Tr = (ν∇u)|Ts . Fur-
thermore, noting that ns equals −nr and introducing the jump of a function v on an
interior or Dirichlet edge e as

[v]e :=

{
vr − vs e ∈ Γ0

h

vr e ∈ ΓD
h ,

(3.11)

the above sum can be written as

−
∑

e∈Γ0
h∪Γ

D
h

∫
e
{ν∇u · nr}e [v]eds−

∑
e∈ΓN

h

∫
e
(ν∇u)|Tr · nr vrds.

Since a boundary edge e can have only one adjacent element, we skip the subscripts
for the Neumann edges. Combining our findings, we arrive at the following identity:

Find u ∈ Hs(Th) such that∑
T

∫
T
ν∇u · ∇v dx−

∑
e∈Γ0

h∪Γ
D
h

∫
e
{ν∇u · nr}e[v]e ds =

∫
Ω
fv dx+

∑
e∈ΓN

h

∫
e
ν∇u · n v ds.

4. Incorporate natural boundary conditions
Incorporating Neumann boundary conditions is of course done by replacing the conor-
mal derivative along Neumann boundary edges by the corresponding Neumann data
gN : ∑

e∈ΓN
h

∫
e
ν∇u · n v ds =

∑
e∈ΓN

h

∫
e
gN v ds.

5. Add IPG terms

� Since the exact solution of (3.8) is smooth on Ω and satisfies the Dirichlet bound-
ary conditions, we have [u]e = 0 for interior edges and [u− gD]e = 0 for Dirichlet
boundary edges. Thus, adding the term

β

∑
e∈Γ0

h

∫
e
{ν∇v · n}[u]ds+

∑
e∈ΓD

h

∫
e
{ν∇v}[u− gD]ds

 (3.12)
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to the bilinear form does not destroy consistency. The parameter β defines the
different IPG methods.

� In order to penalize discontinuities of the solution u ∈ Hs(Th), the additional
penalty term ∑

e∈Γ0
h

σe
|e|

∫
e
[u]e[v]eds+

∑
e∈ΓD

h

σe
|e|

∫
e
(u− gD)v ds (3.13)

is added to the bilinear form. As we will see in Section 3.4, the penalty parameter
σe can be used to make the bilinear form coercive. Note that if the mesh size
h goes to zero, so do the lengths of the edges, |e|, and the penalty term (3.13)
becomes more and more dominant, making discontinuities of the solution across
edges more and more “expensive”.

For different choices of β we obtain different IPG methods:
β = −1 Symmetric Interior Penalty Galerkin (SIPG)
β = 0 Incomplete Interior Penalty Galerkin (IIPG)
β = 1 Non-symmetric Interior Penalty Galerkin (NIPG)

Remark 3.3. Let us make some remarks on the derivation of the IPG methods:

� The trace of a function v ∈ H1(Th) is well-defined along any edge of the mesh because
of a local version of Theorem 2.12.

� From now on, we will omit the subscripts in {·}e and [ · ]e if there is no danger of
confusion.

� Note that we do not require the subdivision to be admissible.

In the following, we will restrict ourselves to the case where β = −1 (SIPG). Thus, after
discretization, the resulting stiffness matrix is symmetric. The SIPG formulation of problem
(3.8) looks as follows (recall that we require s > 3/2):

Find u ∈ Hs(Th) : ah(u, v) = ⟨F, v⟩ ∀v ∈ Hs(Th), (3.14)

with the SIPG bilinear form

ah(u, v) =
∑
T

∫
T
ν∇u · ∇v dx−

∑
e∈Γ0

h∪Γ
D
h

∫
e
{ν∇u · n}[v] ds

−
∑

e∈Γ0
h∪Γ

D
h

∫
e
{ν∇v · n}[u] ds+

∑
e∈Γ0

h∪Γ
D
h

σe
|e|

∫
e
[u][v] ds

(3.15)

and the functional F defined by

⟨F, v⟩ =
∫
Ω
f v dx+

∑
e∈ΓN

h

∫
e
gN v ds+

∑
e∈ΓD

h

∫
e
ν∇v · n gD ds+

∑
e∈ΓD

h

σe
|e|

∫
e
gD v ds. (3.16)
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Remark 3.4. Note that problem (3.14) does not depend on the choice of the normal ne.
Indeed, let e be one edge shared by two elements Ti and Tj and let nij be the unit normal
vector pointing from Ti to Tj. If ne coincides with nij, we have∫

e
{ν∇u · n}[v]eds =

∫
e
{ν∇u · nij}(v|Ti − v|Tj )ds.

If ne has the opposite direction to nij then the jump [w] has a different sign and∫
e
{ν∇u · n}[v]eds =

∫
e
{ν∇u · (−nij)}(v|Tj − v|Ti)ds

which gives the same expression as above.

Proposition 3.5 (Consistency, [27]). Let s > 3/2 and assume that the weak solution u of
problem (3.8) belongs to Hs(Th). Then u satisfies the variational problem (3.14).
Conversely, if u ∈ H1(Ω) ∩Hs(Th) satisfies (3.14), then u is the solution of problem (3.8).

The first statement immediately follows from the derivation of (3.14). A proof of this
proposition can be found in Rivière [27]. The proposition is valid for any fixed β ∈ R.

3.3 Finite Element Approximation

For the discretization of problem (3.14) we are going to use a subspace of H1(Th) consisting
of piecewise polynomials: For a given subdivision Th of the computational domain Ω and a
given polynomial degree k ∈ N, we define the finite element space

Dk(Th) = {vh ∈ L2(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th} (3.17)

where Pk(T ) denotes the space of polynomials of total degree less than or equal to k on
the element T . Note that functions in Dk(Th) are in general discontinuous across element
interfaces. Without any difficulty we can extend the above definition and allow for different
polynomial degrees kT on each element T .

The discretized version of problem (3.14) gives the following DG variational problem on
Dk(Th):

Find uh ∈ Dk(Th) : ah(uh, vh) = ⟨F, vh⟩ ∀vh ∈ Dk(Th) (3.18)

with ah(·, ·) and ⟨F, ·⟩ as in (3.15) and (3.16), respectively.
Next we will treat the question of existence and uniqueness of a solution to the discretized

problem (3.18).

3.4 Existence and Uniqueness

Next, we will check the properties of coercivity and boundedness of the bilinear form (3.15)
on the finite element space Dk(Th). For a given subdivision Th of our computational domain
Ω, we define the following energy norm on Dk(Th), sometimes also called DG-norm:

∥v∥E = ∥v∥DG =

 ∑
T∈Th

∫
T
ν∇v · ∇v dx+

∑
e∈Γh∪ΓD

σe
|e|

∫
e
[v]2e ds

1/2

. (3.19)
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Note that this is a norm if and only ifmeas(ΓD) > 0. Next, we will state and prove coercivity
of the bilinear form ah(·, ·) for the SIPG method (Rivière [27]):

Lemma 3.6. Let Th be a subdivision of the computational domain Ω. Let ν0, ν1 be as in
(3.9), Ct as in (3.4) and n0 be the maximum number of neighbors which an element T can

have, i.e., n0 = 3 for a conforming triangular mesh. Furthermore, choose σe ≥ 2C2
t ν

2
1n0

ν0
for

all interior and Dirichlet boundary edges.
Then the bilinear form ah(·, ·) defined in (3.15) is coercive with coercivity constant µ1 = 1

2
on the space Dk(Th) equipped with the norm ∥ · ∥E defined in (3.19).

Proof. Our aim is to estimate the DG bilinear form

ah(v, v) =
∑
T

∫
T
ν∇v · ∇vdx− 2

∑
e∈Γ0

h∪Γ
D
h

∫
e
{ν∇v · n}[v]ds+

∑
e∈Γ0

h∪Γ
D
h

σe
|e|

∫
e
[v]e[v]ds

on Dk(Th) from below by µ1∥v∥2E for some constant µ1. Therefore, we take a closer look at
the second sum. Using Cauchy-Schwarz’s inequality we get the following estimate:∑

e∈Γh∪ΓD

∫
e
{ν∇v · n}[v] ds ≤

∑
e∈Γh∪ΓD

∥{ν∇v · n}∥L2(e)∥[v]∥L2(e)

=
∑

e∈Γh∪ΓD

∥{ν∇v · n}∥L2(e)

(
1

|e|

)1/2−1/2

∥[v]∥L2(e). (3.20)

Using the definition of the average (3.10), where we denote by T e
1 and T e

2 the two elements
adjacent to an interior edge e, and the triangluar inequality as well as the boundedness of ν
(3.9) and the trace inequality (3.4), we can further estimate the term ∥{ν∇v · n}∥L2(e) for
an interior edge e:

∥{ν∇v · n}∥L2(e) ≤
1

2
∥(ν∇v · n)|T e

1
∥L2(e) +

1

2
∥(ν∇v · n)|T e

2
∥L2(e)

≤ ν1
2
∥(∇v · n)|T e

1
∥L2(e) +

ν1
2
∥(∇v · n)|T e

2
∥L2(e)

≤ Ctν1
2

h
−1/2
T e
1

∥∇v∥L2(T e
1 )

+
Ctν1
2

h
−1/2
T e
2

∥∇v∥L2(T e
2 )
.

Using the obvious inequality |e| ≤ hT where hT denotes the diameter of element T , we obtain∫
e
{ν∇v · n}[v] ≤ Ctν1

2

(
1

|e|

)1/2

|e|1/2
(
h
−1/2
T e
1

∥∇v∥L2(T e
1 )

+ h
−1/2
T e
2

∥∇v∥L2(T e
2 )

)
∥[v]∥L2(e)

≤ Ctν1
2

(
1

|e|

)1/2 (
h
1/2
T e
1
h
−1/2
T e
1

∥∇v∥L2(T e
1 )

+ h
1/2
T e
2
h
−1/2
T e
2

∥∇v∥L2(T e
2 )

)
∥[v]∥L2(e)

=
Ctν1
2

(
1

|e|

)1/2 (
∥∇v∥L2(T e

1 )
+ ∥∇v∥L2(T e

2 )

)
∥[v]∥L2(e)

≤
√
2Ctν1
2

(
1

|e|

)1/2 (
∥∇v∥2L2(T e

1 )
+ ∥∇v∥2L2(T e

2 )

)1/2
∥[v]∥L2(e)

≤ Ctν1

(
1

|e|

)1/2 (
∥∇v∥2L2(T e

1 )
+ ∥∇v∥2L2(T e

2 )

)1/2
∥[v]∥L2(e)
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where we have used the algebraic inequality a+b ≤
√
2a2 + 2b2 that is valid for non-negative

a, b. For a boundary edge e with adjacent element T e
1 we can proceed in an analogous way

to obtain ∫
e
{ν∇v · n}[v] ≤ Ctν1

(
1

|e|

)1/2

∥∇v∥2L2(T e
1 )
∥[v]∥L2(e).

Considering the sum over all interior and boundary edges and applying Cauchy-Schwarz’s
inequality in the Euclidean space,

∑
aibi ≤ (

∑
ai)

1/2 (
∑

bi)
1/2, we get the following:

∑
e∈Γh∪ΓD

h

∫
e
{ν ∇v · n}[v] ≤ Ctν1

 ∑
e∈Γh∪ΓD

h

1

|e|
∥[v]∥2L2(e)

1/2

×

∑
e∈Γh

∥∇v∥2L2(T e
1 )

+ ∥∇v∥2L2(T e
2 )

+
∑
e∈ΓD

h

∥∇v∥2L2(T e
1 )

1/2

≤ Ctν1
√
n0

 ∑
e∈Γh∪ΓD

h

1

|e|
∥[v]∥2L2(e)

1/2 ∑
T∈Th

∥∇v∥2L2(T )

1/2

.

Using the lower bound in (3.9) and Young’s inequality, ab ≤ δ
2a

2 + 1
2δ b

2 for δ > 0, we obtain

∑
e∈Γh∪ΓD

h

∫
e
{ν ∇v · n}[v] ≤ Ctν1

√
(n0)

 ∑
e∈Γh∪ΓD

h

1

|e|
∥[v]∥2L2(e)

1/2 ∑
T∈Th

1
√
ν0

∥ν1/2∇v∥2L2(T )

1/2

≤ δ

2

∑
T∈Th

∫
T
ν|∇v|2 dx+

C2
t ν

2
1n0

2δν0

∑
e∈Γh∪ΓD

h

1

|e|
∥[v]∥2L2(e).

Now we get a lower bound for ah(v, v),

ah(v, v) ≥ (1− δ)
∑
T∈Th

∫
T
ν∇v · ∇v dx+

∑
e∈Γh∪ΓD

h

1

|e|

(
σe −

C2
t ν

2
1n0

δν0

)
∥[v]∥2L2(e),

and obtain coercivity with coercivity constant µ1 = 1/2 with the choice δ = 1/2 provided

that σe ≥
2C2

t K
2
1n0

K0
.

Remark 3.7. � The IIPG bilinear form (β = 0) is coercive with µ1 = 1
2 if we choose

σe ≥
C2

t K
2
1n0

K0
for all interior end Dirichlet boundary edges. The proof is identical to the

proof above.

� It is easily seen that the NIPG bilinear form (β = 1) is coercive with coercivity constant
µ1 = 1 if σe > 0 is chosen on each edge.

Remark 3.8. In Lemma 3.6 we showed the coercivity of the bilinear form (3.15) on Dk(Th)
provided that the penalty parameter σe is larger than a threshold value which involves the
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constant Ct defined in (3.4), which is in general unknown. In this finite-dimensional frame-
work, we can now make use of the trace inequality (3.5) to obtain a more precise threshold
value. For a given triangle T , let θT denote the smallest angle in T , let νT0 , ν

T
1 the lower

and upper bound of ν on T , respectively, and kT the polynomial degree of the approximation
on T . Furthermore, for an interior edge e let T1 and T2 be the two adjacent elements, and
for a boundary edge e we denote the neighboring element by T . Then the limiting value of
the penalty is given by

σ∗
e =

3(νT1
1 )2

2νT1
0

(kT1)(kT1 + 1) cot(θT1) +
3(νT2

1 )2

2νT2
0

(kT2)(kT2 + 1) cot(θT2) ∀e ∈ Γh, (3.21)

σ∗
e =

6(νT1 )
2

νT0
(kT )(kT + 1) cot(θT ) ∀e ∈ ΓD

h . (3.22)

A proof can be found in Epshteyn and Rivière [9].

If σe > 0 for all edges e, it can easily be shown that the bilinear form ah(·, ·) defined in
(3.15) is bounded on Dk(Th) equipped with the energy norm ∥ · ∥E :

ah(v, w) ≤ µ2∥v∥E∥w∥E ∀v, w ∈ Dk(Th). (3.23)

Corollary 3.9 (Existence and Uniqueness). Let the assumptions of Lemma 3.6 hold. Then,
the DG problem (3.18) has a unique solution uh ∈ Dk(Th).

Proof. The statement follows immediately from Lemma 2.18 with V = Dk(Th) and ∥ · ∥V =
∥ · ∥E together with Lemma 3.6 and property (3.23).

Remark 3.10. Note that the bilinear form ah(·, ·) is in general not continuous on the broken
space H2(Th) with respect to the energy norm (Rivière [27]). Therefore, we cannot apply
the lemma of Lax-Milgram to problem (3.14).

3.5 Error Estimates

In this section we will again assume that the solution u belongs to Hs(Th) for some s > 3/2
and state a priori error estimates in both the energy norm (3.19) and the L2(Ω) norm. In
the following, uh ∈ Dk(Th) denotes the solution of problem (3.18).

Theorem 3.11 (Energy Error Estimate). Assume that the exact solution to (3.14) belongs
to Hs(Th) for s > 3/2. Assume also that the penalty parameter σe is chosen according to
Lemma 3.6. Then, there exists a constant C independent of h such that the following optimal
a priori error estimate holds:

∥u− uh∥E ≤ C hmin(k+1,s)−1|||u|||Hs(Th) (3.24)

Theorem 3.12 (L2 Error Estimate). Assume that the assumptions of Theorem 3.11 hold.
Then, there exists a constant C independent of h such that

∥u− uh∥L2(Ω) ≤ C hmin(k+1,s)|||u|||Hs(Th). (3.25)

Proofs to both theorems can be found in Rivière [27].
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linear (k = 1) quadratic (k = 2)

σI = 8, σD = 14 σI = 20, σD = 38

Nh L2(Ω) error energy error L2(Ω) error energy error

128 0.16448088 12.216117 0.13579264 11.605123

512 0.14367020 11.830577 0.01214983 2.4160455

2048 0.040351376 5.8590522 0.0014725878 0.62405851

8192 0.010499697 2.8966216 0.00018207063 0.15694465

32768 0.0026601091 1.4397248 2.2699724 · 10−5 0.039246521

Table 3.1: Errors in the L2(Ω) norm and the DG-energy norm of SIPG solution to (3.8) with
the above-mentioned data for linear and quadratic ansatz functions for different mesh sizes

3.6 Numerical Experiments

In this section we will present the numerical results we obtained by applying the SIPG
method to two problems of the type (3.8). First we will present our results for the Poisson
equation, then we will solve a problem from 2D magnetostatics.

3.6.1 Application to Poisson Equation

Consider problem (3.8) with ν(x) ≡ 1, Ω = (0, 1)2 and ΓD = ∂Ω. We want to approximate
the exact solution

u(x, y) = cos(8πx) + cos(8πy), (x, y) ∈ Ω. (3.26)

Thus, we choose f(x) = 64π2(cos(8πx)+cos(8πy)) and gD(x, y) = u|ΓD
(x, y). We computed

the SIPG solution for piecewise linear and piecewise quadratic ansatz functions. Table 3.1
shows the error in the L2(Ω) norm and in the energy norm (3.19), where we chose the
penalization value σe according to (3.21) and (3.22). The computation was performed on a
structured mesh as shown in the left picture in Figure 3.2, where the minimum angle of each
triangle is θT = π/4. This gives the threshold values σI = 6 on interior edges and σD = 12
on Dirichlet boundary edges for linear finite element functions (k = 1), as well as σI = 18
and σD = 36 for k = 2. We chose values slightly above those threshold values.
In each of the four columns of Table 3.1 one can observe the convergence rates established
in Section 3.5. The middle and right picture in Figure 3.2 show the SIPG solution and the
exact solution of (3.8) with the above-mentioned data using linear ansatz functions on a
structured mesh of 32768 elements, respectively.

3.6.2 Application to Equations of linear 2D Magnetostatics

Now we will consider the linear 2D magnetostatics problem (2.29). We want to compute
the magnetic field u = u(x, y) generated by a direct current electromagnet as depicted in
Figure 5.1 on page 42. These electromagnets are used for measurements of magneto-optic
effects and have been developed at the Technical University of Ostrava, Czech Republic, see
Lukáš [20] and the references therein. The left picture in Figure 3.3 shows a cross-section
of the electromagnet. We assume that only two of the four coils at the four poles are active
(indicated by ’+’ and ’-’ in the figure), which yields symmetry with respect to the x-axis and
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Figure 3.2: left: structured mesh consisting of Nh = 512 elements; center: solution obtained
by the SIPG method on a mesh consisting of Nh = 32768 elements; right: exact solution
(3.26)

antisymmetry with respect to the y-axis. Due to these symmetry properties, it suffices to
consider only a quarter of the electromagnet. The antisymmetry with respect to the y-axis is
modeled by imposing homogeneous Dirichlet boundary conditions, and the symmetry with
respect to the x-axis by imposing homogeneous Neumann conditions on the respective parts
of ∂Ω. We assume homogeneous Dirichlet boundary conditions on the remaining part of the
boundary, which corresponds to so-called conduction boundary conditions. The right picture
in Figure 3.3 shows the computational domain Ω with the part occupied by ferromagnetic
material (blue) and the coil (red). The magnetic reluctivity ν jumps from ν0 = 107/(4π) in
areas of air to ν1 = ν0/5100 in the ferromagnetic material. Note that the magnetic reluctivity
of air can be assumed to be the same as the reluctivity of vacuum. The right hand side f
corresponds to the impressed currents and is zero outside the coil (red area) and −106 inside.

+ -

-+

x

y

ΓD

ΓN

ΓD

ΓD

Figure 3.3: left: cross section of Maltese cross electromagnet; right: right upper section of
left picture with the area of ferromagnetic material (blue) and the coil (red)
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The solution of problem (2.29) is depicted in Figure 3.4. The left picture shows the solu-
tion we obtained by applying the SIPG method on a structured mesh with 32768 elements.
As we do not know the exact solution of (2.29), we compared our solution with the solution
obtained by a conforming finite element method on a mesh of the same size. The right
picture in Figure 3.4 shows the conforming finite element solution obtained by a program
developed by Dr. Clemens Pechstein at the Institute of Computational Mathematics at the
Johannes Kepler University Linz (cf. Pechstein et al. [25]).

Figure 3.4: Numerical solution of the described problem obtained by SIPG (left) and by a
conforming FE method (right) provided by Dr. Clemens Pechstein, Institute of Computa-
tional Mathematics, Johannes Kepler University Linz



Chapter 4

Abstract Topology Optimization

In this chapter we will give a brief overview on different ways of treating an abstract topol-
ogy optimization problem. This overview is mainly based on Bendsøe and Sigmund [3],
Stainko [30] and Christensen and Klarbring [7]. A topology optimization problem in
its general form looks as follows:

min
ρ,u

J (ρ, u) (4.1a)

subject to a(ρ;u, v) = ⟨F, v⟩ ∀v ∈ V0 (4.1b)∫
Ω
ρ(x) dx ≤ Vmax (4.1c)

ρ(x) ∈ {0, 1} (4.1d)

Here, J represents the cost functional that is quantity to be minimized, u denotes the state
variable and ρ the design variable which is only allowed to attain the values 1 (if point x
should be occupied with material) or 0 (otherwise). These two variables are linked via the
state equation (4.1b), here in variational form with V0 being the corresponding space of test
functions. Furthermore, the volume of the resulting structure is constrained by (4.1c). Due
to this relation we will also refer to ρ as the density variable.

Remark 4.1. For better imaginability the reader may think of the standard problem in
structural mechanics, the minimal compliance problem, where the aim is to maximize the
stiffness (or equivalently: to minimize the compliance J ) of a mechanical structure under
given external loading. The state equations are the equations of (linearized) elasticity. We
remark that in this case, in order to be able to guarantee coercivity of the bilinear form
a(ρ; ·, ·), the density ρ should not attain 0. Therefore, the constraint (4.1d) is usually replaced
by ρ(x) ∈ {ρmin, 1} with a small constant ρmin > 0 while regions with ρ(x) = ρmin are still
interpreted as void. In contrast to elasticity, we allow ρ to be zero in electromagnetics, see
Section 5.1.

Remark 4.2. In practical applications, we often have to impose a priori requirements on
the resulting structure, i.e., some parts of the domain Ω should be occupied with material in
any case or some parts should not. This can be achieved without any problem by defining the
density variable ρ only on a proper subset Ωd ⊂ Ω, called the design domain. In this chapter,
we will, for simplicity, assume Ωd = Ω. In Chapter 5, we will encounter an application from
electromagnetics where we will have to account for such restrictions.

31



CHAPTER 4. ABSTRACT TOPOLOGY OPTIMIZATION 32

Remark 4.3 (Nested and Simultaneous Formulation). There are basically two approaches
to attack a PDE-constrained optimization problem like (4.1). Let us briefly neglect the con-
straints (4.1c) and (4.1d) and consider the abstract problem

min
ρ,u

J (ρ, u)

subject to Aρu = F

where Aρ denotes the differential operator in the state equation. When using the nested
approach, the state variable u is - assuming the unique solvability of the state equation -
expressed in terms of the design variable ρ via the state equation as u = u(ρ) = A−1

ρ F . This
results in an unconstrained optimization problem of the form

min
ρ

J̃ (ρ) := J (ρ, u(ρ)).

On the one hand this reduces the problem’s dimension as the optimization is now performed
only in ρ, but on the other hand this also means that the state equation has to be solved
for every evaluation of the objective functional. The nested approach is a so-called feasible
path method, which means that the optimization is only performed on the manifold where
the constraining PDE is satisfied. The nested approach is sometimes also called black-box
method since the PDE solver realizing the operation u = A−1

ρ F can be inserted as black-box
code into the optimization programm.

The second approach is called the simultaneous or all-at-once approach. The constrained
optimization problem is solved by setting up and solving the first-order necessary optimality
conditions (KKT conditions) as discussed in Section 2.1. This approach does not follow
the feasible path, the state equation needs to be satisfied only by the final solution. Hence,
a significant speed-up can be expected. We will follow the simultaneous approach for our
benchmark problem in Chapter 5.

It is well-known that topology optimization problems of the form (4.1) are very likely to
be ill-posed. More precisely, they often lack existence and uniqueness of solutions, which
can be seen in the form of numerical problems of different kinds when applying straightfor-
ward solution methods (cf. Petersson and Sigmund [26]). To overcome these numerical
anomalies we will investigate several different approaches.

But first we notice that we are facing a discrete-valued design problem, or a 0-1 problem,
and that integer programming techniques for large-scale problems are usually rather ineffi-
cient. Therefore, the usual procedure in topology optimization is to relax condition (4.1d)
by introducing a continuous density variable ρ ∈ L∞(Ω) which can take all values between
0 and 1. Problem (4.1) then becomes

min
ρ,u

J (ρ, u) (4.2a)

subject to a(ρ;u, v) = ⟨F, v⟩ ∀v ∈ V0 (4.2b)∫
Ω
ρ(x) dx ≤ Vmax (4.2c)

0 ≤ ρ(x) ≤ 1 (4.2d)

Problem (4.2) is often referred to as the variable thickness sheet problem and can also be
regarded as a sizing optimization problem. A proof of existence of solutions in the case of
the minimal compliance problem can be found in Stainko [30] and the references therein.
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Figure 4.1: Illustration of penalizations of SIMP(left), RAMP(center) and ArcTan (right)
type for different penalization values

Anyways, problem (4.2) is a different problem and leads to solutions different from the
solutions of the original problem (4.1). Our goal is still to eventually obtain a black and
white picture of the final structure, i.e., a solution with ρ attaining only values (close to) 0
and (close to) 1. We try to achieve this by penalizing intermediate values of ρ.

4.1 Penalization

The different penalization methods used in topology optimization can basically be split into
two types:

In methods of the first type, the design variable ρ in the state equation (and only there)
is replaced by η(ρ) with η being a continuous, monotonously increasing function satisfying
η(0) = 0 and η(1) = 1. The idea behind this approach is the following: Using η(ρ) = ρ can
be seen as a linear interpolation between the material properties of void (ρ = 0) and material
(ρ = 1). Using a nonlinear function η(ρ) means performing a nonlinear interpolation between
0 and 1. The function η is chosen in such a way that it is inefficient for the algorithm to
choose intermediate values, ρ(x) ∈ (0, 1), as the obtained decrease of the objective functional
is disproportionately low compared to the amount of used material. In other words, it makes
it “uneconomical” to have intermediate densities in the optimal design.
The probably most popular penalization method is the SIMP method (Solid Isotropic Mate-
rial with Penalization) where η(ρ) is taken to be ρq for some q > 1. Other examples comprise
the RAMP method (Rational Approximation of Material Properties) with

η(ρ(x)) =
ρ(x)

1 + q(1− ρ(x))
, q > 0 (4.3)

or the ArcTan-choice

η(ρ(x)) =
1

2

(
1 +

arctan(q(2ρ(x)− 1))

arctan(ρ(x))

)
, q > 0 (4.4)

which - unlike the previous two approaches - penalizes 0 and 1 equally (cf. Lukáš [21]).
These three penalization methods are depicted in Figure 4.1.

The second type of penalization methods consists in using the linear material interpolation
η(ρ(x)) = ρ(x), but driving the intermediate density values towards 0 or 1 by a term of the
form

P (ρ(x)) =

∫
Ω
W (ρ(x))dx (4.5)
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with a non-negative, lower semicontinuous function W : [0, 1] → R which has exactly two
roots, at 0 and 1. Often used choices of W (·) are

W (ρ(x)) = ρ(x)(1− ρ(x)) or W (ρ(x)) = ρ(x)2(1− ρ(x))2.

The functional P in (4.5) can be included to the optimization problem in two different ways,
either by adding an additional inequality constraint of the form

P (ρ(x)) ≤ εP ,

to the problem or by adding it as a penalty term to the objective functional as J(ρ, u) +
γPP (ρ). However, in both cases it is a tricky task to find proper values for εP or γP .

4.2 An Example from Structural Mechanics

We want to motivate our further proceedings by presenting some numerical results which were
obtained by applying the SIMP method to the minimal compliance problem from structural
mechanics. The results were produced in the course of a project for the lecture “Structural
Optimization” held at the Division of Solid Mechanics at the University of Lund, Sweden, in
spring 2011. The implementation was done in Matlab using the FEM package “CALFEM”
developed and provided by that same department. The task was to find the optimal design
for constructing a bridge.

Problem description: The bridge to be constructed consists of five layers of 5mm
thickness each that are joined together. Each layer can be considered as a two-dimensional
structure (plain stress assumption). The task is to find the distribution of material with
material parameters E = 210 [GPa] and ν = 0.3 and density 7800 [kg/m3] on the design
domain [0, 30]×[0, 18] [m] such that its stiffness is maximized without exceeding the maximum
allowed weight of 10000kg. External forces simulating a total weight of 20000kg, which can
be assumed to be homogeneously distributed, are applied at the top of the structure. In
mathematical terms, this problem can be reformulated as follows:

min
u∈V0,ρ

f(u)

subject to a(ρ;u,v) = f(v) ∀v ∈ V0∫
Ω
ρ(x) dx ≤ Vmax

ρ(x) ∈ {ρmin, 1}

(4.6)

with the equations of linearized elasticity as state equation, i.e.,

a(ρ;u,v) =

∫
Ω
ε(u): Cε(v) dx, (4.7)

f(v) =

∫
Γt

v · t ds, (4.8)

where

ε(u) =
1

2

(
∇u+∇uT

)
(4.9)
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Γt

Γu

Ω

Figure 4.2: Initial design

denotes the linearized Green-St.Venant strain tensor and

C =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1− ν

 (4.10)

is the elasticity tensor under the plane stress assumption, i.e., the relation between the stress
components (σ11, σ22, σ12)

T and the strain components (ε11, ε22, ε12)
T . By Γt we denote the

upper boundary of our computational domain Ω, see Figure 4.2, and t denotes the surface
traction acting on that part of the boundary. The maximum allowed volume is denoted by
Vmax = weightmax/density = 10000/7800 [m3] and ρmin > 0 is an artificially introduced
lower bound on the density ρ which assures ellipticity of the bilinear form (4.7). We set
ρmin = 10−6. Furthermore, V0 is the space of admissible displacements, defined as

V0 = {v : Ω → R2 | vi ∈ H1(Ω), i = 1, 2, and v = 0 on Γu} (4.11)

with Γu as in Figure 4.2.
Introducing and penalizing intermediate values of ρ by the SIMP method as discussed

above means to replace problem (4.6) by

min
u∈V0,ρ∈L∞(Ω)

f(u)

subject to a(ρq;u,v) = f(v) ∀v ∈ V0∫
Ω
ρ(x) dx ≤ Vmax

ρmin ≤ ρ(x) ≤ 1

(4.12)

for some q > 1.
The optimization problem (4.12) was solved using the optimality criteria (OC) method.

This method starts out from the nested formulation of (4.12), discretizes it using piecewise
constant functions and linearizes the objective function in the variables

yk = ρ−α
k (4.13)

where ρk denotes the thickness of the k-th element. The resulting problem turned out to be
convex and was solved using Lagrangian duality. For more details on that method we refer
to Christensen and Klarbring [7].

Figure 4.3 shows the results obtained for different choices of the parameter α in the
OC method. Figure 4.4 shows the result for the same parameters as in the left picture of
Figure 4.3 on a mesh of half the size.
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Figure 4.3: Results of problem (4.12) obtained by SIMP and OC method with penalization
parameter q = 3 on a quadrilateral mesh with 2160 elements for different linearization
parameters α; left: α = 2, right: α = 1
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Figure 4.4: Result of problem (4.12) obtained by SIMP and OC method with penalization
parameter q = 3, linearization parameter α = 2 on a mesh with 8640 elements
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4.3 Numerical Instabilities

A well-founded overview on numerical instabilities arising in topology optimization is given in
Petersson and Sigmund [26]. The numerical problems appearing in topology optimization
can basically be divided into three categories all of which we could observe in our numerical
studies of the previous section:

By mesh dependence we understand the phenomenon that performing the same al-
gorithm on a finer mesh yields a qualitatively different solution with more holes and finer
structural elements rather than an improved picture of the same solution. This numerical
anomaly is rooted in the non-existence of solutions to the underlying optimization problem.
To be more precise, the reason is the non-losedness of the feasible design set. In terms of
the minimal compliance problem this can be seen as follows: Inserting more and more holes
while keeping the actual volume will result in stiffer and stiffer structures. This leads to an
indefinite perforation and finally microstructures which are typically anisotropic and thus
not in the feasible set any more, which indicates the lack of closure of the feasible design set.
Comparing the left picture in Figure 4.3 and Figure 4.4 we can see that we obtain a topolog-
ically different solution on the finer grid even though the same algorithmic parameters are
used.

The term checkerboard pattern refers to the reoccurring phenomenon of high oscilla-
tions of the density variable in the “optimal” solution of a topology optimization problem.
In Figure 4.3 we can observe the density function ρ alternating between material and void -
similar to the arrangement of a chess board, giving this numerical instability its name. The
reason for this behaviour is usually bad numerical modeling.

Local minima: By penalizing intermediate density values, problem (4.2) is often turned
from convex to non-convex. This means that performing the same optimization algorithm
for different starting values or different algorithmic parameters can result in completely
different “optimal” solutions. We could observe this behaviour in Figure 4.3 in terms of the
algorithmic parameter α.

In the next section we will present different ways of dealing with these presented difficul-
ties.

4.4 Regularization Methods

In this section we will shortly discuss various remedies for the mentioned numerical instabil-
ities. For a more detailed survey we again refer to Petersson and Sigmund [26].

Let us first address the issue of non-existence of a solution. As mentioned above, the
reason for non-existence of a solution is the lack of closure of the feasible design set. Now,
given a non-closed set Q there are basically two ways to obtain a closed set: Either choose
a closed subset Q′ ⊂ Q or choose a closed superset Q′′ ⊃ Q. These approaches are called
restriction and relaxation, respectively.

Remark 4.4. Before going over to topology optimization problems we want to illustrate
these methodologies in a simple example (Christensen and Klarbring [7]). Consider
the optimization problem in R

min
x∈H

f(x) (4.14)
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with f(x) = 1
x and the set H = {x ∈ R | x ≥ 1}. Obviously, H is not closed and the

minimization problem has no solution. One possible cure for this ill-posed problem would
now consist in restricting the feasible set H to a subset H′ = {x ∈ R | 1 ≤ x ≤ c} with some
constant c > 1, yielding a well-posed problem.
The opposite approach would be to enlarge the feasible set H and to form a closure. By
setting H′′ = {x ∈ R | x ≥ 1} ∪ {+∞} and defining f(+∞) = 0 we again obtain a solvable
minimization problem.

We will now discuss these two approaches in connection with topology optimization prob-
lems. Let us begin with relaxation:

4.4.1 Relaxation

Without going into detail, performing relaxation on a topology optimization problem would
mean to form a closure of the feasible design set by including infinitely perforated structures.
One relaxation method is the homogenization approach to topology optimization, described
in detail in Bendsøe and Sigmund [3]. Applying relaxation to a topology optimization
problem usually results in large areas with perforated microstructures and composite materi-
als, which will probably be expensive and complicated to manufacture. Nevertheless, design
with composite material is an area on its own (material optimization, cf. Bendsøe and
Sigmund [3]).

4.4.2 Restriction

In topology optimization, restriction of the design set is realized by adding constraints to
the optimization problem, again either in the form of an additional inequality constraint or
by adding a penalty term to the objective functional. In order to exclude microstructures
from the feasible design set, this additional constraint should somehow bound the maximum
of allowed oscillation of ρ. Basically there exist three kinds of restriction methods:

In perimeter control, high variations of the density ρ are avoided by posing a bound on the
perimeter of the structure which is - roughly speaking - the sum of lengths of all inner and
outer boundaries. Of course, in presence of areas with intermediate density (0 < ρ(x) < 1)
it is not clear how to define the perimeter of design. Therefore, the usual way to simulate a
bound on the perimeter is to pose a bound on the total variation of the density function ρ,
that is

∫
Ω |∇ρ(x)|dx if ρ is smooth enough. This choice makes sense since the total variation

of ρ coincides with the perimeter of an area Ωs when ρ is 1 in Ωs and 0 elsewhere (Petersson
and Sigmund [26]).

Another restriction method often used is called gradient control where one poses global
or local bounds on the gradient of ρ, again assuming ρ to be sufficiently smooth. A global
constraint can be in the form of a bound on the H1-norm or H1-seminorm. A proof of
existence of solutions when using these bounds can be found in Bendsøe and Sigmund [3].
It is also possible to impose local constraints on the gradient, which results in a high number
of additional constraints (in the order of the number of finite elements after discretization).

The third restriction method is to include filters in the optimization process as it is done
in image processing to reduce high frequency components. Stainko [30] showed existence of
solutions to the minimal compliance problem when combining a penalization like (4.5) with
a filter operator.
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We want to remark that for global restriction methods like perimeter or global gradient
control only one constraint has to be added, whereas local methods like local gradient con-
straints or filter methods result in a high number of additional constraints. However, local
methods will generally remove thin bars, which is not necessarily the case for global methods.
Furthermore, determining a proper bound for a global constraint is a serious problem, which
has to be solved by experiments. If the bound is too large the constraint will remain inactive
and there is no regularizing effect. If, on the other hand, it is chosen too small there might
be no optimal solution.

All the mentioned restriction methods bound the maximum of allowed variation of ρ and
therefore eliminate not only the mesh-dependence, but also the checkerboard patterns in the
resulting structure. However, with applying one of the restriction methods above comes one
serious problem: The optimization problem is often turned from convex to non-convex. In
order to cope with this, one can use continuation methods, i.e., one gradually changes the
optimization problem from an (artificial) convex problem to the regularized (non-convex)
problem one is actually interested in. For the SIMP method, this would mean to gradually
increase the penalization parameter q from 1 (giving problem (4.2) which is in many cases
convex) to higher values. If this change from convex to non-convex happens to abruptly, one
risks getting stuck in a local minimum of the non-convex problem.

One example of a continuation method is the phase-field method, which we will discuss
in detail in the next section.

4.5 The Phase-Field Method

Let from now on the density variable ρ be defined only on an open subset of Ω, the so-called
design domain Ωd.

The phase-field method is basically a restriction method as discussed in Section 4.4.2.
More precisely, perimeter control is performed by adding the total variation of the density
function ρ to the objective functional, weighted with a proper factor γ > 0. That means
that (4.1a) is replaced by

min
ρ,u

γ J (ρ, u) + |ρ|TV (4.15)

with the total variation of a function defined by

|ρ|TV = sup
g∈C∞

0 (Ωd;R2)
∥g∥∞≤1

∫
Ωd

divg(x) ρ(x) dx. (4.16)

Note that for ρ ∈ W 1,1(Ω),∫
Ωd

divg ρ dx = −
∫
Ωd

g · ∇ρ dx ∀g ∈ C∞
0 (Ωd;R2),

and the supremum over all g with ∥g∥∞ ≤ 1 is given by

|ρ|TV =

∫
Ωd

|∇ρ| dx, (4.17)
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cf. Caselles et al. [6]. The phase-field method now consists of two steps: First, as
it is usual in computational topology optimization, the 0-1 condition (4.1d) is relaxed by
introducing an L∞(Ωd) function ρ that can attain any value between 0 and 1. The second
step is to approximate the perimeter term in (4.15) by a functional of the form

Pϵ(ρ) =
ϵ

2

∫
Ωd

|∇ρ(x)|2 dx+
1

ϵ

∫
Ωd

W (ρ(x)) dx (4.18)

where W : R → R∪{+∞} is a positive lower semicontinuous function with exactly two roots,
at 0 and at 1, and ϵ is a positive regularization parameter. The phase-field reformulation of
the abstract topology optimization problem (4.2) then looks as follows:

min
ρ,u

Jϵ(ρ, u) (4.19a)

subject to a(ρ;u, v) = ⟨F, v⟩ ∀v ∈ V0 (4.19b)∫
Ωd

ρ(x) dx ≤ Vmax (4.19c)

0 ≤ ρ(x) ≤ 1 a.e. in Ωd (4.19d)

with

Jϵ(ρ, u) = γ J (ρ, u) + Pϵ(ρ)

= γ J (ρ, u) +
ϵ

2

∫
Ωd

|∇ρ(x)|2 dx+
1

ϵ

∫
Ωd

W (ρ(x)) dx.
(4.20)

The functional Pϵ in (4.18) consists of two parts where the first term causes the regularizing
effect of the method and the second term penalizes intermediate density values. They are
weighted by ϵ and 1/ϵ, respectively. Thus, depending on the magnitude of ϵ, the first or the
second part is dominant. The idea is now to perform a continuation in ϵ, i.e., to solve problem
(4.19) for a decreasing sequence {ϵ(k)}. For large ϵ, the first term in (4.18) dominates, and,
in many cases, the functional Jϵ can be shown to be convex provided that ϵ is large enough
(cf. Stainko [30] for the case where J(ρ, u) =

∫
Ω ρ dx). On the other hand, for small ϵ,

the density is forced to take values close to 0 or 1, and Jϵ becomes in general non-convex.
As outlined in the previous section, continuation methods gradually change a problem from
convex to non-convex. When decreasing ϵ in the phase-field method the optimal design of
the previous step can be expected to be a good initial guess for the next step such that the
algorithm does not get stuck in a local minimum, even though the functional Jϵ might be
non-convex.

The theorem of Modica and Mortola assures the convergence of minimizers {ρ(k)} of
the functional Jϵ as defined in (4.20) to a minimizer of (4.15) as ϵ → 0 in the sense of
Γ-convergence. For more details we refer the reader to Stainko [30] and the references
therein.

Common choices for the function W in (4.18) are

W (ρ) = ρ(1− ρ) dx or W (ρ) = ρ2(1− ρ)2 dx. (4.21)

The solution of problem (4.19) with small ϵ can be expected to exhibit a sharp transition
between areas of material and void. The thickness of the transition layer is in fact of order ϵ.
Numerical results when applying this method to the minimal mass problem in structural me-
chanics are presented by Stainko in [30]. The minimal mass problem consists in minimizing
the volume of a structure while keeping a certain stiffness to avoid material failure.



Chapter 5

Application to a Benchmark
Problem from Electromagnetics

In this chapter we are going to apply the phase-field method described in Section 4.5 to a
benchmark problem from electromagnetics. The task is to optimize the geometry of a direct
current electromagnet such that the arising magnetic field minimizes a given functional.
The benchmark problem is taken from Lukáš [20] and was treated by means of topology
optimization in Lukáš [21]. In Section 5.1 we will give a description of the physical problem
and set up a two-dimensional mathematical model. In Section 5.2 we will then formulate
the necessary optimality conditions, perform a DG discretization as introduced in Chapter 3
and apply Newton’s method to the arising system of nonlinear equations.

5.1 Problem Description

We consider a direct electric current electromagnet, the Maltese Cross electromagnet, as
depicted in Figure 5.1, consisting of a ferromagnetic yoke and four poles that are equipped
with coils which are pumped with direct electric current. This electromagnet is used for
measurements of so-called Kerr magneto-optic effects which play a role in high capacity data
storage media. In connection with this application, it is important that the magnetic field
in the area around the pole heads in the center of the electromagnet is as homogeneous, (i.e.
constant) as possible in different given directions. Our goal is to find an even better geometry
for those purposes. In mathematical terms, it would be desirable to have a geometry such
that the functional

J (curlu) :=
1

2

∫
Ωm

|curlu(x)−Bavg
m nm|2 dx (5.1)

is minimized where u is the magnetic potential such that B = curlu with B denoting the
magnetic flux density as introduced in Section 2.4. The subdomain Ωm is the magnetization
area around the pole heads, see Figure 5.2, nm is a given direction and Bavg

m denotes the
average value of the magnetic field B in direction nm:

Bavg
m = Bavg

m (curlu) :=
1

meas Ωm

∫
Ωm

|curlu(x) · nm| dx (5.2)

41
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A Maltese Cross electromagnet is capable of performing such measurements in eight
directions by just switching the currents in some coils off and on or by switching their
directions. We will consider the magnetic field in only one direction which is generated only
by the upper and lower coil in the right picture of Figure 5.1. Thus, we will consider the left
and right coil to be inactive. Another issue is that the magnetic field B should also be as
strong as possible. Therefore, the term

ξ
(
min{0, Bavg

m −Bmin}
)2

(5.3)

is usually added to the objective functional (5.1), which penalizes magnetic fields with an
average below a given minimal strength of Bmin. The parameter ξ is the penalization
parameter and is typically set to a high value, e.g., ξ = 106. However, in this thesis we will
assume for simplicity that the average Bavg

m is a given constant, which makes the penalization
term (5.3) redundant.

+ -

-+

x

y

Figure 5.1: The Maltese Cross electromagnet

Let us now formulate the topology optimization problem (4.1) for the case of this bench-
mark problem. We will treat the problem in only two space dimensions, and use the math-
ematical model derived in Section 2.4.1. Then the vector-valued function u(x1, x2, x3) can
be replaced by a scalar function u(x1, x2) and the curl operator in (5.1) and (5.2) becomes
the operator (∂2,−∂1)

T . Due to symmetry considerations we consider the problem only on
one quarter of the domain, see Figure 5.2. The anti-symmetry with respect to the y-axis
in the right picture of Figure 5.1 yields homogeneous Dirichlet boundary conditions on the
left boundary of Ω, and the symmetry with respect to the x-axis yields homogeneous Neu-
mann boundary conditions on the lower boundary. Furthermore, we consider homogeneous
Dirichlet boundary conditions on the upper and right part of the boundary, see Figure 5.2.
By Ωd we denote the subset of Ω where the material should be distributed. Note that we do
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not allow material in the areas around the pole heads as well as in the coils. The objective
functional lives on Ωm and the state equations have to be fulfilled on the entire domain Ω.
For simplicity, we assume linear behaviour of the materials involved such that our governing
equations are the equations of linear 2D magnetostatics (2.41) on p. 16. As the direction
in which we want to homogenize the magnetic field, we choose nm = (0, 1)T . As a further
simplification, we will neglect the volume constraint (4.1c). Problem (4.1) then reads as
follows:

min
u∈V0,ρ

1

2

∫
Ωm

∣∣∣∣( ∂2u

−∂1u

)
−Bavg

m nm

∣∣∣∣2 dx (5.4a)

subject to a(ρ;u, v) = ⟨F, v⟩ ∀v ∈ V0, (5.4b)

ρ(x) ∈ {0, 1} ∀x ∈ Ωd. (5.4c)

Here, the governing equation is given in variational form with

a(ρ;u, v) =

∫
Ω
ν(ρ(x))∇u(x) · ∇v(x) dx and (5.5)

⟨F, v⟩ =
∫
Ω
f(x)v(x) dx (5.6)

where f denotes the third component of the impressed current density (denoted as J3 in Sec-
tion 2.4.1), and ν represents the magnetic reluctivity of air or of the ferromagnetic material,

f(x) =

{
−106 x ∈ Ωc

0 else
ν(x) =

{
ν1 if ρ(x) = 1

ν0 if ρ(x) = 0
∈ L∞(Ω)

with ν0 = 1
4π10

7, ν1 = 1
5100ν0 and Ωc denoting the area occupied by the coils. As the space

of test functions V0 we choose V0 = {v ∈ H1(Ω) : v
∣∣
ΓD

= 0}. We mention that, in contrast to

the corresponding topology optimization problem in elasticity (4.6), the bilinear form (5.5)
is elliptic for any fixed ρ.

Remark 5.1. We will not require the solution to be in Hs(Ω) for some s > 3/2 (as it would
be necessary for applying Theorem 2.12), but interpret the normal derivative of a function
u from H1(Ω) as a functional from H−1/2(∂Ω), cf. Remark 2.14. As we are only treating
homogeneous Neumann boundary conditions, this functional will be the zero functional.

5.2 Application of Phase-Field Method

In this section we will apply the phase-field method as introduced in Section 4.5 to the bench-
mark problem (5.4) formulated in the previous section. We will derive the first-order nec-
essary optimality conditions, discretize them by means of a discontinuous Galerkin method
as introduced in Chapter 3 and finally solve the arising system of nonlinear equations by
Newton’s method.

As outlined in Section 4.5, applying the phase-field method to a topology optimization
problem like (5.4) consists of two steps: On the one hand, the function ρ(x) ∈ {0, 1} on Ωd,
cf. (5.4c), is replaced by a function ρ(·) which can attain all values between 0 and 1 on Ωd. On
the other hand, a phase-field functional of the type (4.18), which approximates the perimeter
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Figure 5.2: The Maltese Cross electromagnet

control term (4.16), is added to the objective functional. For the function W in (4.18), we
choose W (ρ) = ρ2(1− ρ)2. Problem (5.4) then becomes

min
u∈V0,ρ∈H1(Ωd)∩L∞(Ωd)

Jϵ(u, ρ) =
γ

2

∫
Ωm

∣∣∣∣( ∂2u

−∂1u

)
−Bavg

m nm

∣∣∣∣2 dx

+
ϵ

2

∫
Ωd

|∇ρ|2 dx+
1

ϵ

∫
Ωd

ρ2(1− ρ)2 dx

(5.7a)

subject to a(ρ;u, v) = ⟨F, v⟩ ∀v ∈ V0 (5.7b)

0 ≤ ρ(x) ≤ 1 a.e. in Ωd (5.7c)

with the notation from Section 5.1. We use the linear material interpolation

ν(ρ(x)) =

{
ν0 + (ν1 − ν0)ρ(x) if x ∈ Ωd

ν0 otherwise
∈ L∞(Ω) (5.8)

that interpolates linearly between the material properties of air (ν = ν0) and the ferro-
magnetic material (ν = ν1). Note that we assume linear behaviour of the ferromagnetic
material, i.e., that the reluctivity ν1 is constant and does depend on the magnetic field. In
order to guarantee that ν ∈ L∞(Ω), we require ρ ∈ H1(Ωd) ∩ L∞(Ωd). Recall that γ > 0 is
a fixed weighting factor and ϵ > 0 is the regularization parameter. Problem (5.7) is solved
for a decreasing sequence {ϵ(l)} where the solution for ϵ = ϵ(l) is used as an initial guess for
the next iteration step with ϵ = ϵ(l+1). For simplicity we will neglect the box constraints
0 ≤ ρ(x) ≤ 1.

5.2.1 Derivation of KKT System in Variational Form

We note that the variational equation (5.7b) can also be written in operator form as

G(u, ρ) := Aρu− F = 0 in V ∗
0 (5.9)
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with the operator Aρ : V0 → V ∗
0 defined by the identity

⟨Aρu, v⟩ = a(ρ;u, v)∀u, v ∈ V0.

Interpreting (5.7b) in terms of (5.9), the minimization problem (5.7) is of the same form
as (2.4) on p. 5 and we can define the Lagrangian. Identifying (V ∗

0 )
∗ with V0 via the Riesz

respresentation theorem (cf., e.g., Adams and Fournier [1]), Definition 2.3 gives
L : V0 ×H1(Ωd) ∩ L∞(Ωd)× V0 → R,

L(u, ρ, λ) = Jϵ(u, ρ) + ⟨λ,Aρu− F ⟩V0×V ∗
0
. (5.10)

For convenience, we will flip the arguments in the duality product and skip the indices if
there is no danger of confusion, i.e., we will write ⟨Aρu−F, λ⟩ instead of ⟨Aρu−F, λ⟩V ∗

0 ×V0 =
⟨λ,Aρu− F ⟩V0×V ∗

0
. Both the objective functional Jϵ and the operator G are Fréchet differ-

entiable. Before we derive the first-order necessary optimality conditions in variational form
we check the constraint qualification (2.5) for our operator G. Defining Y := V0 ×H1(Ωd),
y = (u, ρ) and y = (u, ρ), condition (2.5) reads

G′(y)Y = V ∗
0 ,

which means that, for any functional H in V ∗
0 , there should exist a y ∈ Y such that G′(y)y =

H where y ∈ Y denotes the (unknown) exact solution of (5.7). For our operator this means
that there should exist (u, ρ) such that

H
!
= G′(y)y = ∇G(u, ρ)

(
u

ρ

)
= ∇uG(u, ρ)u+∇ρG(u, ρ)ρ = Aρu+A(2)

ρ u

= a(ρ;u, ·) + a(2)(ρ;u, ·)

where the operator A
(2)
ρ is defined by the identity

⟨A(2)
ρ u, v⟩ = a(2)(ρ;u, v) := (ν1 − ν0)

∫
Ωd

ρ∇u · ∇v dx ∀u, v ∈ V0.

Note that the trilinear form a(2)(ρ;u, v) represents the derivative of the bilinear form (5.5)
with respect to ρ in case of the linear material interpolation (5.8). In other words, for any
right hand side H ∈ V ∗

0 there should exist an element u ∈ V0 and ρ ∈ H1(Ωd) such that

a(ρ;u, v) + a(2)(ρ;u, v) = ⟨H, v⟩ ∀v ∈ V0. (5.11)

If we now simply choose ρ = 0 then (5.11) becomes the linear problem (2.41) for which we
showed the existence of a unique solution u for any right hand side H ∈ V ∗

0 in Section 2.4.3,
provided that the coefficient function ν(x) = ν(ρ(x)) is bounded from below and above by
two positive constants ν0 and ν1 as in (2.46). This is of course satisfied by the optimal solution
of (5.7) in combination with (5.8). Note that the discussion of the constraint qualification
does not involve the regularization parameter ϵ. We say the problem satisfies a uniform
constraint qualification.

Now Theorem 2.6 is applicable to our problem and the first-order necessary optimality
conditions read as follows:
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∇uL(u, ρ, λ)p = γ

∫
Ωm

∇u · ∇p +Bavg
m

(
n2

−n1

)
· ∇p dx

+⟨p,A∗
ρλ⟩ =0 ∀p ∈ V0, (5.12a)

∇ρL(u, ρ, λ)q = ϵ

∫
Ωd

∇ρ · ∇q dx +
1

ϵ

∫
Ωd

(2ρ− 6ρ2 + 4ρ3)q dx

+(ν1 − ν0)

∫
Ωd

q∇u · ∇λ dx =0 ∀q ∈ H1(Ωd) ∩ L∞(Ωd),

(5.12b)

∇λL(u, ρ, λ)v = ⟨Aρu− F, v⟩ =0 ∀v ∈ V0, (5.12c)

where u ∈ V0, ρ ∈ H1(Ωd) ∩ L∞(Ωd) and λ ∈ V0. Note that in the derivation of the third
term in (5.12b) we used(

∂

∂ρ
⟨Aρu− F, λ⟩

)
q =

(
∂

∂ρ
(a(ρ;u, λ)− ⟨F, λ⟩)

)
q

=

(
∂

∂ρ

(∫
Ω
ν0∇u · ∇λ dx+ (ν1 − ν0)

∫
Ωd

ρ∇u · ∇λ dx− ⟨F, λ⟩
))

q

=

(
∂

∂ρ

(
(ν1 − ν0)

∫
Ωd

ρ∇u · ∇λ dx

))
q

= (ν1 − ν0) lim
t→0

1

t

(∫
Ωd

(ρ+ tq)∇u · ∇λ dx−
∫
Ωd

ρ∇u · ∇λ dx

)
= (ν1 − ν0)

∫
Ωd

q∇u · ∇λ dx.

Now we want to perform an IPG discretization of system (5.12). Since any DG discretiza-
tion starts out from the differential (or classical) form of a PDE rather than the variational
form, we first need to reformulate (5.12) in its classical form.

5.2.2 Derivation of KKT System in Differential Form

To formulate system (5.12) in differential form, we need to impose smoothness requirements
on the functions u, ρ and λ in the classical sense:

u ∈ C2(Ω) ∩ C1(Ω ∪ ΓN ) ∩ C0(Ω ∪ ΓD) (5.13)

ρ ∈ C2(Ωd) ∩ C1(Ωd) (5.14)

λ ∈ C2(Ω) ∩ C1(Ω ∪ ΓN ) ∩ C0(Ω ∪ ΓD) (5.15)

A procedure that is essential when deriving the differential form of a PDE from the
variational form is commonly refered to as “Euler’s trick”:

Remark 5.2 (Euler’s trick). Let Ω ⊂ Rd. If∫
Ω
g(x)v(x) dx = 0 ∀v ∈ C2

(
Ω
)
with v|∂Ω = 0 (5.16)
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Γd,1

Γm,2

Γm,1

Γd,2

Figure 5.3: Computational domain for benchmark problem with boundaries and interfaces

and if g is continuous on Ω, then g(x) = 0 on Ω.
This can be seen easily: Suppose that g is not the zero function, so there exists a point

x0 with g(x0) ̸= 0, w.l.o.g. g(x0) > 0. Due to the continuity of g there exists a neigh-
borhood Uε(x

0) of x0 such that g(y) > 0 for all y ∈ Uε(x
0). If we now choose a certain

non-negative function v that is zero outside U ε(x
0), positive in the interior and is smooth

enough (such a function can be constructed easily, see, e.g., Fomin and Gelfand [10])
then the integral over Ω reduces to an integral over Uε(x

0) which is obviously positive, in
contradiction to (5.16). Hence, the assumption that g is not the zero function was false.

This trick is also known as the fundamental lemma of calculus of variations (see, e.g.,
Fomin and Gelfand [10]). We will apply this procedure to integrals over a two-dimensional
domain Ω and to integrals over (a part of) the boundary ∂Ω.

A further essential ingredient for deriving the differential form of a PDE is the integration
by parts formula

−
∫
Ω
div ( a∇u) v dx =

∫
Ω
a∇u · ∇v dx−

∫
∂Ω

a∇u · n v ds (5.17)

which is valid if a, u, v are sufficiently smooth such that the above integrals are defined.
Let us begin with the reformulation of equation (5.12a). We define b(x) := Bavg

m

(
n2

−n1

)
and treat it as a general continuously differentiable function depending on x even though
it is a constant vector in our case. Recall Figure 5.2 for the structure of the computational
domain Ω with the boundary ∂Ω = ΓD∪ΓN and the subsets Ωd and Ωm which we assume to
be open. We further define particular parts of the boundary and interfaces (see Fiugre 5.3):

Γm,1 = ∂Ωm ∩ ∂Ω

Γm,2 = ∂Ωm\Γm,1

Γd,1 = ∂Ωd ∩ ∂Ω

Γd,2 = ∂Ωd\Γd,1

For better readability we will skip the arguments of the occurring functions. Note that the
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test function p vanishes on the Dirichlet boundary ΓD. From (5.12a) we obtain

0 = γ

∫
Ωm

∇u · ∇p+ b · ∇p dx+

∫
Ω
ν(ρ)∇p · ∇λ dx (5.18)

Ibp
= − γ

∫
Ωm

(∆u+ divb)p dx+ γ

∫
∂Ωm\ΓD

(∇u+ b) · n p ds

−
∫
Ω
div (ν(ρ)∇λ) p dx+

∫
∂Ω\ΓD

(ν(ρ)∇λ) · n p ds ∀ p ∈ V0.

(5.19)

Since this equality must hold for all functions p ∈ V0, it must also hold for all those
functions p that vanish outside Ωm:∫

Ωm

(−γ∆u− γdivb− div (ν(ρ)∇λ)) p dx = 0 ∀p ∈ V0 : p|Ω\Ωm
= 0. (5.20)

Since the involved functions are sufficiently smooth, Remark 5.2 yields

−γ∆u− γdivb− div (ν(ρ)∇λ) = 0 ∀x ∈ Ωm (5.21)

If we now choose a function p ∈ V0 that vanishes on ∂Ω and on Γm,2 and if we plug in
(5.21) into (5.19), we obtain

−
∫
Ω\Ωm

div(ν(ρ)∇λ)p dx = 0 ∀p ∈ V0 : p|∂Ω∪Γm,2 = 0. (5.22)

Again, applying Euler’s trick from Remark 5.2 gives

−div(ν(ρ)∇λ) = 0 ∀x ∈ Ω\Ωm. (5.23)

We again plug in our findings into (5.19) and see that only the boundary integrals

γ

∫
∂Ωm\ΓD

(∇u+ b) · n p ds+

∫
∂Ω\ΓD

(ν(ρ)∇λ) · n p ds

remain. Next we now choose p to vanish on Γm,2 ∪ (∂Ω\Γm,1), which after again applying
Euler’s trick yields the boundary condition

γ(∇u+ b) · n+ ν(ρ)∇λ · n = 0 ∀x ∈ Γm,1\ΓD. (5.24)

Repeating the described procedure with functions p ∈ V0 that vanish on ∂Ω and ∂Ωm yield
the interface condition

γ(∇u+ b) · n = 0 ∀x ∈ Γm,2 (5.25)

and the boundary condition

ν(ρ)∇λ · n = 0 ∀x ∈ ∂Ω\(Γm,1 ∪ ΓD), (5.26)

respectively.
So far, we have not treated the interface Γd,2 between the design domain Ωd and the

rest of Ω. We will need a condition on that interface in Section 5.2.4 where we will solve
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the DG reformulation of problem (5.12) by Newton’s method. Note the obvious relation
Ω = (Ω\Ωd) ∪ Ωd. Let us start out from equation (5.12a) once again:

(5.12a) = γ

∫
Ωm

(∇u+ b) · ∇p+

∫
Ω\Ωd

ν(ρ)∇p · ∇λ dx (5.27)

+

∫
Ωd

ν(ρ)∇p · ∇λ dx (5.28)

Now we perform integration by parts “in the other direction” in the second and third integral,
which gives

(5.12a) = . . . =− γ

∫
Ωm

div (∇u+ b) p dx+

∫
∂Ωm

(∇u+ b) · n p ds (5.29)

−
∫
Ω\Ωd

div (ν(ρ)∇p)λ dx+

∫
∂(Ω\Ωd)

(ν(ρ)∇p) · nλ ds (5.30)

−
∫
Ωd

div (ν(ρ)∇p)λ dx+

∫
∂Ωd

(ν(ρ)∇p) · nλ ds. (5.31)

Further noting ∂(Ω\Ωd) ∪ ∂Ωd = ∂Ω ∪ Γd,2 and that λ vanishes on ΓD due to λ ∈ V0, the
above expression reduces to

(5.12a) = . . . =− γ

∫
Ωm

div (∇u+ b) p dx+

∫
∂Ωm

(∇u+ b) · n p ds (5.32)

−
∫
Ω
div (ν(ρ)∇p)λ dx+

∫
ΓN

(ν(ρ)∇p) · nλ ds (5.33)

+

∫
Γd,2

(ν(ρ)∇p · nλ)Ωd
+ (ν(ρ)︸︷︷︸

=ν0

∇p · nλ)¬Ωd
ds (5.34)

where the subscripts in the last integral correspond to the evaluation inside or outside the
subdomain Ωd. Now, we perform integration by parts over the whole of Ω twice:

−
∫
Ω
div (ν(ρ)∇p)λ dx =

∫
Ω
ν(ρ)∇p · ∇λ dx−

∫
∂Ω

(ν(ρ)∇p) · nλ ds (5.35)

= −
∫
Ω
div (ν(ρ)∇λ) p dx+

∫
∂Ω

ν(ρ)∇λ · n p ds−
∫
∂Ω

(ν(ρ)∇p) · nλ ds

(5.36)

Inserting this into (5.32) and again noting that λ vanishes on ΓD gives

(5.12a) = . . . =− γ

∫
Ωm

div (∇u+ b) p dx+

∫
∂Ωm

(∇u+ b) · n p ds (5.37)

−
∫
Ω
div (ν(ρ)∇λ) p dx+

∫
∂Ω

ν(ρ)∇λ · n p ds (5.38)

−
∫
∂Ω

(ν(ρ)∇p) · nλ ds+

∫
ΓN

(ν(ρ)∇p) · nλ ds (5.39)

+

∫
Γd,2

(ν(ρ)∇p · nλ)Ωd
+ (ν0∇p · nλ)¬Ωd

ds, (5.40)
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which, by (5.21), (5.23), (5.24) and (5.26), reduces to the interface condition∫
Γd,2

(ν(ρ)∇p · nλ)Ωd
+ (ν0∇p · nλ)¬Ωd

ds = 0 ∀p ∈ V0, (5.41)

which will become important in Section 5.2.4.

Let us now turn to equation (5.12b). Integration by parts in the first term gives

0 = ϵ

∫
Ωd

∇ρ · ∇q dx+
1

ϵ

∫
Ωd

(2ρ− 6ρ2 + 4ρ3) q dx+ (ν1 − ν0)

∫
Ωd

q∇u · ∇λ dx (5.42)

=− ϵ

∫
Ωd

∆ρ q dx+ ϵ

∫
∂Ωd

∇ρ · n q ds

+
1

ϵ

∫
Ωd

(2ρ− 6ρ2 + 4ρ3) q dx+ (ν1 − ν0)

∫
Ωd

q∇u · ∇λ dx ∀q ∈ H1(Ωd)

(5.43)

Proceeding as above, we choose a test function q ∈ H1(Ωd) that vanishes on the boundary
∂Ωd and obtain∫

Ωd

(
−ϵ∆ρ+

1

ϵ
(2ρ− 6ρ2 + 4ρ3) + (ν1 − ν0)∇u · ∇λ

)
q dx = 0 ∀q ∈ H1(Ωd) : q|∂Ωd

= 0,

(5.44)

which by Euler’s trick yields the partial differential equation

−ϵ∆ρ+
1

ϵ
(2ρ− 6ρ2 + 4ρ3) + (ν1 − ν0)∇u · ∇λ = 0 ∀x ∈ Ωd. (5.45)

If we plug in (5.45) into (5.43) we see that only

ϵ

∫
∂Ωd

∇ρ · n q ds = 0 ∀q ∈ H1(Ωd)

remains, which by Euler’s trick yields the boundary condition for ρ

ϵ∇ρ · n = 0 ∀x ∈ ∂Ωd. (5.46)

If we follow the same considerations for the third equation (5.12c) we obtain (as it was to
be expected) the equations of linear 2D magnetostatics in differential form (2.29). Further-
more, the same considerations as in the derivation of the interface condition (5.41) yield:

0 =

∫
Ω
ν∇u · ∇v dx =

∫
Ω\Ωd

ν∇u · ∇v dx+

∫
Ωd

ν∇u · ∇v dx

= −
∫
Ω\Ωd

div (ν∇u) v dx+

∫
∂(Ω\Ωd)

ν∇u · n v ds−
∫
Ωd

div (ν∇u) v dx+

∫
∂Ωd

ν∇u · n v ds

= −
∫
Ω
div (ν∇u) v dx+

∫
∂Ω

ν∇u · n v ds+

∫
Γd,2

(ν∇u · n v)Ωd
+ (ν∇u · n v)¬Ωd

ds

=

∫
Γd,2

(ν∇u · n v)Ωd
+ (ν∇u · n v)¬Ωd

ds ∀v ∈ V0 (5.47)



CHAPTER 5. APPLICATION TO A BENCHMARK PROBLEM 51

In the last line we used the PDE and the Neumann boundary condition from (2.29) as well
as the fact that the test function vanishes on the Dirichlet boundary due to v ∈ V0. Again,
the subscripts correspond to the evaluation inside or outside the subdomain Ωd. Applying
Euler’s trick gives

0 = (ν∇u · n)Ωd
+ (ν∇u · n)¬Ωd

=: [ν∇u · n]Γd,2
, (5.48)

which means that the co-normal derivative of u must be continuous across that interface.
Combining our findings, the KKT system in differential form reads

χΩm (−γ∆u− γdivb)− div (ν(ρ)∇λ) = 0 in Ω (5.49a)

−ϵ∆ρ+
1

ϵ
(2ρ− 6ρ2 + 4ρ3) + (ν1 − ν0)∇u · ∇λ = 0 in Ωd (5.49b)

−div (ν(ρ)∇u) = f in Ω (5.49c)

together with the boundary conditions for u, λ, ρ

u = 0 on ΓD (5.49d)

ν(ρ)∇u · n = 0 on ΓN (5.49e)

λ = 0 on ΓD (5.49f)

ν(ρ)∇λ · n = 0 on ΓN\Γm,1 (5.49g)

γ(∇u+ b) · n+ ν(ρ)∇λ · n = 0 on ΓN ∩ Γm,1 (5.49h)

ϵ∇ρ · n = 0 on ∂Ωd (5.49i)

and the interface conditions

γ(∇u+ b) · n = 0 on Γm,2 (5.49j)∫
Γd,2

(ν(ρ)∇p · nλ)Ωd
+ (ν0∇p · nλ)¬Ωd

ds = 0 ∀p ∈ V0, (5.49k)

[ν∇u · n]Γd,2
= 0 (5.49l)

where χS denotes the characteristic function of a set S,

χS(x) =

{
1 if x ∈ S

0 otherwise.
(5.50)

5.2.3 DG Discretization of KKT System

Now we are ready to derive the DG formulation of system (5.49). We start out from a given
(not necessarily admissible) subdivision of Ω which we assume to be consistent with the
interfaces Γm,2 and Γd,2, meaning that no element T is allowed to lie across an interface. A
similar condition applies to a change of boundary conditions: Each edge of an element can
lie only on either ΓN or ΓD, see Figure 5.4.

Let us specify some notation:
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ΓD Γ
N ΓD Γ

N

ΓD

Γ
N

ΓI ΓI

Figure 5.4: Examples of subdivisions that are non-consistent (Ö) and consistent (X) with
respect to interfaces and changes of boundary conditions

Th triangulation of Ω
T d
h := {T ∈ Th : T ⊂ Ωd} triangulation of Ωd

T m
h := {T ∈ Th : T ⊂ Ωm} triangulation of Ωm

Γh := {e : e is edge of T, T ∈ Th} set of edges
ΓD
h := {e ∈ Γh : e ⊂ ΓD} set of Dirichlet edges

ΓN
h := {e ∈ Γh : e ⊂ ΓN} set of Neumann edges

Γm,0
h := {e ∈ Γh : int(e) ⊂ int(Ωm)} set of edges in the interior of Ωm

Γm,1
h := {e ∈ Γh : e ⊂ Γm,1} set of edges on Γm,1 = ∂Ωm ∩ ∂Ω

Γm,2
h := {e ∈ Γh : e ⊂ Γm,2} set of edges on Γm,2 = ∂Ωm\∂Ω

Γd,0
h := {e ∈ Γh : int(e) ⊂ int(Ωd)} set of edges in the interior of Ωd

Γd,1
h := {e ∈ Γh : e ⊂ Γd,1} set of edges on Γd,1 = ∂Ωd ∩ ∂Ω

Γd,2
h := {e ∈ Γh : e ⊂ Γd,2} set of edges on Γd,2 = ∂Ωd\∂Ω

We will derive the DG formulation of (5.49a) together with the corresponding boundary
conditions (5.49d), (5.49f), (5.49g) and (5.49h) as in Section 3.2.1. Recall the definition of the
broken Sobolev space (3.6) on p. 19 for Hs(Th) and Hs(T d

h ). Since a DG method naturally
involves normal derivatives on the edges of the mesh, we require all functions involved to be
locally H2 such that Theorem 2.12 is applicable and we can think of the normal derivatives
as functions from L2(e) (or actually from H1/2(e) ⊂ L2(e)) for all edges e in Γh. Let us
look for u ∈ Hs(Th), ρ ∈ Hs(T d

h ) ∩ L∞(Ωd) and λ ∈ Hs(Th) with s = 2 for simplicity (in
general: s > 3/2), and let us multiply (5.49a) with a test function p ∈ H2(Th) on each
element T in the subdivision Th and sum up over all elements. It is important to note that
if a non-symmetric discretization technique as the NIPG or the IIPG is used to discretize
system (5.49), the terms −div (ν(ρ)∇λ) in (5.49a) and −div (ν(ρ)∇u) in (5.49c) have to be
treated in different ways. Even though they have the same form in the differential form, we
must keep in mind that the Lagrange multiplier λ is actually the dual variable in (5.12a).
Thus, when deriving a DG reformulation of (5.49a), we start out from∫

T
−div (ν∇p)λ dx (5.51)

rather than ∫
T
−div (ν∇λ)p dx. (5.52)

The reason for proceeding like this will become clear in Section 5.2.4 when the Jacobian of
the KKT system after discretization will turn out to be symmetric again. Now we will follow
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the procedure described in Section 3.2.1:∑
T∈Th

∫
T
(χΩm(−γ∆u− γdiv b)) p− div (ν(ρ)∇p)λ dx (5.53)

= −
∑

T∈T m
h

∫
T
(γ∆u+ γdiv b)p dx−

∑
T∈Th

∫
T
div (ν(ρ)∇p)λ dx.

Performing integration by parts on each element leads to

(5.53) = −
∑

T∈T m
h

∫
T
γ(∇u+ b) · ∇p dx−

∫
∂T

γ(∇u+ b) · n p ds

−
∑
T∈Th

∫
T
ν(ρ)∇p · ∇λ dx−

∫
∂T

ν(ρ)∇p · nλ ds.

(5.54)

Following the procedure in Section 3.2.1, the first sum in (5.54) is replaced by∑
T∈T m

h

∫
T
γ(∇u+ b) · ∇p dx−

∑
e∈Γm,0

h ∪(Γm,1
h ∩ΓD

h )

∫
e
{γ(∇u+ b) · n}[p] ds

−
∑

e∈Γm,1
h ∩ΓN

h

∫
e
γ(∇u+ b) · n p ds−

∑
e∈Γm,2

h

∫
e
γ(∇u+ b) · n︸ ︷︷ ︸

=0

p ds

(5.55)

with the average over an edge, {·}, as defined in (3.10) and the jump operator, [ · ], defined
in (3.11). The integral over the edges on the interface Γm,2 vanishes due to the interface
condition (5.49j). However, we need to be careful when treating the second sum in (5.54), in
particular on the interface between the subdomain Ωd and the rest of the domain, Ω\Ωd, i.e.
on Γd,2. As the density variable ρ is not defined outside this subdomain we cannot simply
take a mean value of ν(ρ) across this interface. At a first glance this might seem to be not
a big deal since we could just extend the definition of ρ to all elements adjacent to Ωd and
set the value of ρ to zero there. This is true in the case where we want to apply that type
of method “only” to solve a partial differential equation like (5.49a). On the other hand, in
Section 5.2.4 we want to solve the resulting DG reformulation of (5.49) by Newton’s method
which involves derivatives of the DG forms. When dealing with the derivative with respect
to ρ of the resulting DG form we cannot simply extend the definition in a reasonable way.
Therefore, we do not introduce averages on those mentioned interface edges, but stick to the
edge integrals as they arise from the integration by parts. Of course, proceeding like this
will not harm consistency. The described procedure looks as follows: We have a closer look
on the second sum in (5.54),

−
∑
T∈Th

∫
T
ν(ρ)∇p · ∇λ dx−

∫
∂T

ν(ρ)∇p · nλ ds (5.56)

=
∑
T∈Th

∫
T
ν(ρ)∇p · ∇λ dx−

∑
e∈(Γ0

h\Γ
d,2
h )∪ΓD

h

∫
e
{ν(ρ)∇p · n}[λ] ds

−
∑
e∈ΓN

h

∫
e
{ν(ρ)∇p · n}[λ] ds−

∑
e∈Γd,2

h

∫
e
(ν(ρ)∇p · nλ))Ωd

+ (ν(ρ)∇p · nλ))¬Ωd
ds

(5.57)
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where the subscripts (·)Ωd
and (·)¬Ωd

correspond to the restriction to element adjacent to edge
e that is inside or outside Ωd, respectively. Note that these restrictions have to be interpreted
in the sense of Theorem 2.12 and are well-defined because all functions are locally H2. If we
add up (5.55) and (5.57) we see that the integrals over the Neumann boundary edges vanish
due to the boundary conditions (5.49g) and (5.49g). Adding the corresponding IPG terms
as in (3.12) and (3.13) on p. 22 completes our DG reformulation of (5.49a):

0 =
∑

T∈T m
h

∫
T
γ(∇u+ b) · ∇p dx−

∑
e∈Γm,0

h ∪(Γm,1
h ∩ΓD

h )

∫
e
γ{(∇u+ b) · n}[p] ds

+ β
∑

e∈Γm,0
h ∪(Γm,1

h ∩ΓD
h )

∫
e
γ{∇p · n}[u] ds+

∑
e∈Γm,0

h ∪(Γm,1
h ∩ΓD

h )

∫
e

σe
|e|

[u][p] ds

+
∑
T∈Th

∫
T
ν(ρ)∇p · ∇λ dx−

∑
e∈(Γ0

h\Γ
d,2
h )∪ΓD

h

∫
e
{ν(ρ)∇p · n}[λ] ds

+ β
∑

e∈(Γ0
h\Γ

d,2
h )∪ΓD

h

∫
e
{ν(ρ)∇λ · n}[p] ds+

∑
e∈Γ0

h∪Γ
D
h

∫
e

σe
|e|

[p][λ] ds

−
∑

e∈Γd,2
h

∫
e
(ν(ρ)∇p · nλ))Ωd

+ (ν(ρ)∇p · nλ))¬Ωd
ds

(5.58)

The derivations of the DG reformulations of (5.49b) and (5.49c) together with the remaining
boundary conditions are analogous to Section 3.2.1.

Our modified IPG reformulation of the KKT system (5.49) (or (5.12)) formally reads as
follows:

Find (u, ρ, λ) ∈∈ H2(Th)× (H2(T d
h ) ∩ L∞(Ωd))×H2(Th) such that

bh(u, p) + ah(ρ; p, λ) = ⟨F1, p⟩ ∀p ∈ H2(Th) (5.59a)

ch(ρ, q) + a
(2)
h (q, u, λ) = 0 ∀q ∈ H2(T d

h ) ∩ L∞(Ωd) (5.59b)

ah(ρ;u, v) = ⟨F3, v⟩ ∀v ∈ H2(Th) (5.59c)

with the bilinear forms defined by

bh(u, p) =
∑

T∈T m
h

γ

∫
T
∇u · ∇p dx−

∑
e∈Γm,0

h ∪(Γm,1
h ∩ΓD

h )

γ

∫
e
{∇u · n}[p] ds

+ β
∑

e∈Γm,0
h ∪(Γm,1

h ∩ΓD
h )

γ

∫
e
{∇p · n}[u] ds+

∑
e∈Γm,0

h ∪(Γm,1
h ∩ΓD

h )

∫
e

σe
|e|

[u][p] ds,

(5.60)
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ah(ρ;u, v) =
∑
T∈Th

∫
T
ν(ρ)∇u · ∇v dx−

∑
e∈(Γ0

h\Γ
d,2
h )∪ΓD

h

∫
e
{ν(ρ)∇u · n}[v] ds

+ β
∑

e∈(Γ0
h\Γ

d,2
h )∪ΓD

h

∫
e
{ν(ρ)∇v · n}[u] ds+

∑
e∈Γ0

h∪Γ
D
h

∫
e

σe
|e|

[u][v] ds

−
∑

e∈Γd,2
h

∫
e
(ν(ρ)∇u · n v))Ωd

+ (ν(ρ)∇u · n v))¬Ωd
ds, and

(5.61)

ch(ρ, q) =
∑
T∈T d

h

ϵ

∫
T
∇ρ · ∇q dx+

1

ϵ

∫
T
(2ρ− 6ρ2 + 4ρ3)q dx−

∑
e∈Γd,0

h

∫
e
ϵ{∇ρ · n}[q] ds

+ β
∑

e∈Γd,0
h

∫
e
ϵ{∇q · n}[ρ] ds+

∑
e∈Γd,0

h

∫
e

σe
|e|

[ρ][q] ds,

(5.62)

the tri linear form

a
(2)
h (ρ, u, λ) =

∑
T∈T d

h

(ν1 − ν0)

∫
T
ρ∇u · ∇λ dx (5.63)

and the linear forms

⟨F1, p⟩ = −
∑

T∈T m
h

γ

∫
T
b · ∇p dx+

∑
e∈Γm,0

h ∪(Γm,1
h ∩ΓD

h )

γ

∫
e
{b · n}[p] ds (5.64)

⟨F3, v⟩ =
∑
T∈Th

∫
T
f v dx. (5.65)

Note that since the third term in (5.49b) does not involve a derivative of q, no integration
by parts is performed in that term such that its DG reformulation (5.63) does not involve
any edge integrals. However, like in the derivation of IPG methods in Section 3.2.1, we
have the freedom to add any term that does not destroy consistency. We note that for the
exact solution (u, ρ, λ)T of the KKT system (5.12), the components u ∈ V0 and λ ∈ V0 have
continuous traces across element interfaces. Hence, the jump over any edge vanishes for all
edges of the mesh Th,

[u]e = 0 a.e. on e ∀e ∈ Γh,

[λ]e = 0 a.e. on e ∀e ∈ Γh.

Thus, adding the terms

−
∑

e∈(Γ0
h\Γ

d,2
h )∪ΓD

h

(ν1 − ν0)

∫
e
{ρ∇u · n}[λ] ds+ β

∑
e∈(Γ0

h\Γ
d,2
h )∪ΓD

h

(ν1 − ν0)

∫
e
{ρ∇λ · n}[u] ds

(5.66)

to a(2)(ρ, u, λ) does not destroy consistency of the method. Furthermore, differentiating the
interface condition (5.49k) with respect to ρ yields the condition

(ν1 − ν0)

∫
Γd,2

(ρ∇p · nλ)Ωd
ds = 0 ∀p ∈ V0, (5.67)



CHAPTER 5. APPLICATION TO A BENCHMARK PROBLEM 56

which is also a necessary condition for the exact solution. Thus, choosing p = u gives

(ν1 − ν0)

∫
Γd,2

(
ρ∇u · nλ

)
Ωd

ds = 0 (5.68)

for the exact solution (u, ρ, λ)T . Therefore, also this term is consistent and subtracting it
from the trilinear form a(2)(·, ·, ·) does not cause any troubles. We will replace (5.63) by

a
(2)
h (ρ, u, λ) =

∑
T∈T d

h

(ν1 − ν0)

∫
T
ρ∇u · ∇λ dx−

∑
e∈(Γ0

h\Γ
d,2
h )∪ΓD

h

(ν1 − ν0)

∫
e
{ρ∇u · n}[λ] ds

(5.69)

+ β
∑

e∈(Γ0
h\Γ

d,2
h )∪ΓD

h

(ν1 − ν0)

∫
e
{ρ∇λ · n}[u] ds−

∑
e∈Γd,2

h

(ν1 − ν0)

∫
e
(ρ∇u · nλ)Ωd

ds,

(5.70)

which makes the Jacobian of the discretized KKT system symmetric, as we will in see
Section 5.2.4.

For a discretization of (5.59) we use ansatz and test functions from the (non-conforming)
finite element spaces as defined in (3.17),

Vh,k := Dk(Th), (5.71)

V d
h,k := Dk(T d

h ), (5.72)

where k ∈ N denotes the polynomial degree. Let N be the dimension of Vh,k and M(≤ N)
the dimension of V d

h,k. Let {φ1, . . . , φN} be a basis of Vh,k, i.e.,

Vh,k = span {φ1, . . . , φN} (5.73)

and assume w.l.o.g. that the φi are ordered in such a way that the first M basis functions
form a basis of V d

h,k,

V d
h,k = span {φ1, . . . , φM}. (5.74)

The discretization yields the system

Find (uh, ρh, λh) ∈ Vh,k× ∈ V d
h,k× ∈ Vh,k such that

b(uh, φi) + a(ρh;φi, λh) = ⟨F1, φi⟩ ∀i = 1, . . . , N (5.75a)

c(ρh, φi) + a(2)(φi, uh, λh) = 0 ∀i = 1, . . . ,M (5.75b)

a(ρh;uh, φi) = ⟨F3, φi⟩ ∀i = 1, . . . , N (5.75c)

Note that, due to the trilinear form a(2)(·, ·, ·) and to the nonlinear term in ch(·, ·), system
(5.75) is nonlinear ! In the next subsection, we will apply Newton’s method, presented in
Section 2.2 to problem (5.75).
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5.2.4 Solving KKT System using Newton’s Method

Newton’s method is applicable to a general system of nonlinear equations of the form (2.10)
with continuously differentiable G with continuously invertible Jacobian G′ and the method
converges locally q-quadratically if G is twice continuously differentiable. In order to apply
Newton’s method to (5.75) we have to rewrite this system in the form (2.10) with a suitable
mapping G. Let us first note that by plugging in the basis representations

uh(x) =
N∑
j=1

ujφj(x) (5.76a)

ρh(x) =
M∑
j=1

ρjφj(x) (5.76b)

λh(x) =

N∑
j=1

λjφj(x), (5.76c)

with the basis functions from (5.73) and (5.74), problem (5.75) can be rewritten in the form

Find (u1, . . . , uN , ρ1, . . . , ρM , λ1, . . . λN ) ∈ RN+M+N such that

b(uh, φi) + a(ρh;φi, λh)− ⟨F1, φi⟩ = 0 ∀i = 1, . . . , N (5.77a)

c(ρh, φi) + a(2)(φi, uh, λh) = 0 ∀i = 1, . . . ,M (5.77b)

a(ρh;uh, φi)− ⟨F3, φi⟩ = 0 ∀i = 1, . . . , N, (5.77c)

which has the required form G(z) = 0 with z := (u1, . . . , uN , ρ1, . . . , ρM , λ1, . . . λN )T and
G : RN+M+N → RN+M+N defined as

G(z) =


[
b(
∑N

j=1 ujφj , φi) + a(
∑M

j=1 ρjφj ;φi,
∑N

j=1 λjφj)− ⟨F1, φi⟩
]
i=1,...,N[

c(
∑M

j=1 ρjφj , φi) + a(2)(φi,
∑N

j=1 ujφj ,
∑N

k=1 λkφk)
]
i=1,...,M[

a(
∑M

j=1 ρjφj ;
∑N

j=1 ujφj , φi)− ⟨F3, φi⟩
]
i=1,...,N

 . (5.78)

For applying Newton’s method we now have to compute the Jacobian of the function G in
(5.78) which turns out to be

G′(z) =

(
∂Gi

∂zk

)
i,k=1,...,N+M+N

=

 Kuu Kuρ Kuλ

Kρu Kρρ Kρλ

Kλu Kλρ 0

 (5.79)
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with the matrices

(Kuu)i,k = bh(φk, φi) for i, k = 1, . . . , N, (5.80)

(Kuρ)i,k =
∑
T∈T d

h

(ν1 − ν0)

∫
T
φk∇φi · ∇λh dx−

∑
e∈(Γ0

h\Γ
d,2
h )∪ΓD

h

(ν1 − ν0)

∫
e
{φk∇φi · n}[λh] ds

+ β
∑

e∈(Γ0
h\Γ

d,2
h )∪ΓD

h

(ν1 − ν0)

∫
e
{φk∇λh · n}[φi] ds

−
∑

e∈Γd,2
h

(ν1 − ν0)

∫
e
(φk∇φi · nλh)Ωd

ds

= a(2)(ϕk, ϕi, λh) for i, k = 1, . . . ,M, (5.81)

where the subscript in the last integral denotes the evaluation of the integral on the neigh-
boring element of the interface edge e that is inside Ωd,

(Kuλ)i,k = ah(ρh;φi, φk) for i, k = 1, . . . , N, (5.82)

(Kρu)i,k = a
(2)
h (φi;φk, λh) for i, k = 1, . . . ,M, (5.83)

(Kρρ)i,k =
∑
T∈T d

h

ϵ

∫
T
∇φk · ∇φi dx+

1

ϵ

∫
T
(2− 12φk + 12φ2

k)φi dx

−
∑

e∈Γd,0
h

∫
e
ϵ{∇φk · n}[φi] ds+ β

∑
e∈Γd,0

h

∫
e
ϵ{∇φi · n}[φk] ds

+
∑

e∈Γd,0
h

∫
e

σe
|e|

[φk][φi] ds

= a(2)(ϕk, uh, ϕi) for i, k = 1, . . . ,M, (5.84)

(Kρλ)i,k = a
(2)
h (φi;uh, φk) for i, k = 1, . . . ,M, (5.85)

(Kλu)i,k = ah(ρh;φk, φi) for i, k = 1, . . . , N, (5.86)

(Kλρ)i,k =
∑
T∈T d

h

(ν1 − ν0)

∫
T
φk∇uh · ∇φi dx−

∑
e∈(Γ0

h\Γ
d,2
h )∪ΓD

h

(ν1 − ν0)

∫
e
{φk∇uh · n}[φi] ds

+ β
∑

e∈(Γ0
h\Γ

d,2
h )∪ΓD

h

(ν1 − ν0)

∫
e
{φk∇φi · n}[uh] ds

−
∑

e∈Γd,2
h

(ν1 − ν0)

∫
e
(φk∇uh · nφi)Ωd

ds for i, k = 1, . . . ,M. (5.87)

5.2.5 Summary

Let us summarize the proceedings of this section in an abstract algorithm: The phase-field
method stipulates that problem (5.7) is solved for a decreasing sequence {ϵ(l)} whereas the
weighting factor γ is fixed. We choose to decrease ϵ as ϵ(l+1) = δϵ(l) with a proper factor
0 < δ < 1, e.g. δ = 1/2. For each ϵ the KKT system is discretized using a DG method and
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the arising system of nonlinear equations is solved by the (damped) Newton method. The
initial value for the very first iteration where ϵ = ϵ(0) has to be provided. In the subsequent
iterations (i.e. for ϵ = ϵ(l), l = 1, 2, . . .) the optimal design of the previous step is used as
an initial guess for Newton’s method. The algorithm terminates after a certain number of
iterations, when ϵ ≤ ϵmin. The resulting final design is expected to consist of almost only
black and white areas, meaning areas where the density ρ is 1 or 0, respectively.

Algorithm 2. Phase-Field Method for Benchmark Problem (5.4)

Choose γ, ϵ0, z0 = (u01, . . . , u
0
N , ρ01, . . . , ρ

0
M , λ0

1, . . . , λ
0
N )T , δ, ϵmin

While ϵ > ϵmin

Solve KKT system (5.49) using DG discretization by Newton’s method:
For k = 0 until convergence do

set up system matrix G′(zk) in (5.79)
solve G′(zk)wk = −G(zk)
choose τk ∈ {1, 1/2, 1/4, 1/8, . . . } maximal such that ∥zk + τkwk∥ < ∥zk∥
set zk+1 = zk + τkwk

end
set ϵ = δ ϵ



Chapter 6

Numerical Experiments

In this chapter we will shortly present the observations and numerical results we obtained
from the numerical realization of Algorithm 2. Recall that this algorithm summarizes the
procedure of solving our benchmark problem (5.4), which corresponds to the topology opti-
mization of an electromagnet, cf. Section 5.1. The goal is to find a geometry represented by
the density variable ρ such that the resulting magnetic field minimizes the functional∫

Ωm

∣∣∣∣( ∂2u

−∂1u

)
−Bavg

m

(
0

1

)∣∣∣∣2 dx (6.1)

where Bavg
m is a prescribed average value, which we choose as Bavg

m = 1
10 . We chose a

DG discretization with globally discontinuous, piecewise linear ansatz functions uh, ρh, λh.
The numerical experiments were performed on a PC using a 1.8 GHz Intel CPU and 2 GB
memory.

Recall that Algorithm 2 states that, for each value ϵ = ϵ(j) of a decreasing sequence {ϵ(j)},
the system of nonlinear equations (5.77) has to be solved using Newton’s method, where in
iteration k the Newton correction equation Kuu Kuρ Kuλ

Kρu Kρρ Kρλ

Kλu Kλρ 0

 wk
u

wk
ρ

wk
λ

 = −G(z(k)) (6.2)

with z(k) = (uk, ρk, λk)T = (uk1, . . . , u
k
N , ρk1, . . . , ρ

k
M , λk

1, . . . λ
k
N )T and the block matrices de-

fined in (5.80) - (5.87) has to be solved. Note that also these matrices depend on the current

iterates uh = u
(k)
h , ρh = ρ

(k)
h and λh = λ

(k)
h and that the vectors uk, ρk, λk are related to the

functions u
(k)
h , ρ

(k)
h and λ

(k)
h via (5.76). In our implementation, this large-scale, sparse system

of linear equations was solved using the software package PARDISO (Parallel Sparse Direct
Solver, see Schenk and Gärtner[12]). The computational domain Ω = [0, 1]2 was divided
into 638 elements using the structured mesh depicted in Figure 6.1. Here, the magnetization
area Ωm = [0, 1/16]2 was subdivided into 128 elements.

Throughout all testing it could be observed that the convergence behaviour of the pre-
sented method is heavily dependent on the choice of the parameters γ, {ϵ(j)} and the starting
value z0 = (u0, ρ0, λ0)T . For us, choosing the initial value z0 reduced to choosing an initial

design ρ0 and computing u0 = u0(ρ0) from (5.77c) and furtheron λ0 = λ0(u0, ρ0) via (5.77a).
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Figure 6.1: Subdivision of the computational domain Ω = [0, 1]2 used for numerical experi-
ments
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Figure 6.2: Left picture: initial design (geometry of Maltese cross electromagnet). Right
picture: design after 17 iterations of the damped Newton method.

As a first initial design we chose the geometry of the Maltese Cross electromagnet, see
Figure 5.1 on p. 42. However, for many choices of γ and ϵ(0), fast convergence towards a
constant density value on the whole of Ωd could be observed. See Figure 6.2 for the initial
density ρ(left) and the density after 17 iterations (right). The parameters chosen in this test
were ϵ = 3 and γ = 0.2/(|Ωm||Bavg

m |) = 512. It is common to scale the objective functional
(6.1) by the factor 1/|Ωm||Bavg

m . We incorporated this factor in the parameter γ. Due to
these observations, we restricted ourselves to constant initial values ρ0.

We pointed out in Chapter 4 that the penalization of intermediate density values can
cause a convex problem to become non-convex. This non-convexity could be observed in
numerous numerical tests as the convergence behaviour turned out to be very sensitive with
respect to the choice of the parameters and initial values. If the initial value is too far from
the exact solution, the (damped) Newton method converges very slowly. For the choice
γ = 0.02 ·2560 = 51.2 and the initial value ρ0 ≡ 0.75 = const on the entire design domain Ωd

we did not obtain convergence for ϵ0 = 0.05 and ϵ0 = 0.005 and aborted each of the two tests
after around 370 iterations. The damping parameter τ of the damped Newton method (cf.
(2.14)) typically ranged in the order of 10−4 and hence the method did not entail any major
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Figure 6.3: Left picture: Density values after 160 iterations of damped Newton method (con-
verged to local maximum ρ ≡ 0.5). Right picture: Design development after 800 iterations
of the phase-field method by Lukáš [21].

changes of the initial geometry. For the choice ϵ0 = 0.0025 we obtained quadratic convergence
after a total of 160 iterations of the damped Newton method. However, the density was driven
close to ρ ≡ 0.5 which is a local maximum of the function W (ρ) = ρ2(1 − ρ)2 that we used
for penalizing intermediate values of ρ. The result we obtained is depicted in Figure 6.3.
This poor convergence behaviour was already observed by D. Lukáš in Lukáš [21] where the
phase-field approach was applied to that same model problem and did not yield satisfactory
results even after 800 iterations. The intermediate results by Lukáš are depicted in the right
picture of Figure 6.3.

However, for the choice γ = 2 · 2560 = 5120, ϵ = 3 and ρ0h ≡ 0.75 we were able to
observe first signs of a tendency towards the optimal result when we compared intermediate

results with the initial design. The left picture in Figure 6.4 shows the difference ρ
(26)
h −ρ

(0)
h .

Even though the density on the whole design domain Ωd is decreasing, one can see a certain
tendency towards the optimal solution depicted in the right picture of Figure 6.4. This
optimal solution is taken from Lukáš [21] and was obtained by applying the penalization
method presented in (4.4) on p. 33.
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Figure 6.4: Left picture: Difference between density values of intermediate result after 26
iterations of the damped Newton method and the initial design. Right picture: Optimal
solution computed by D. Lukáš in [21].



Chapter 7

Conclusion and Outlook

In this thesis we gave an overview on the method of topology optimization and discussed
various possible regularization approaches. We investigated in more detail the phase-field
method and applied it to a real world problem from electromagnetics in combination with a
discontinuous Galerkin discretization.

In Chapter 3 we introduced a class of DG methods, the interior penalty Galerkin methods,
derived the variational formulation, discussed the existence and uniquness issue, provided
error estimates and verified them in numerical tests.

In Chapter 4 we presented different aspects of topology optimization in an abstract frame-
work. We discussed different penalization schemes and motivated the use of regularization
methods by pointing out possible numerical instabilities. After a brief discussion of possible
remedies, we focused on one regularization method, the phase-field method.

In Chapter 5 we gave a detailed description of a benchmark problem from electromag-
netics, which we regularized by the phase-field method. We derived the first-order necessary
optimality conditions for the resulting minimization problem and discretized them by a dis-
continuous Galerkin method. The discretized system turned out to be nonlinear and we
applied Newton’s method to it.

In Chapter 6 numerical experiments were presented. The phase-field method turned out
to be very sensitive with respect to the involved parameters and the initial design. For
inappropriate choices, the convergence was either very slow so that no major improvement
of the design was achieved, or the method converged to a local maximum.

This work can be continued in the following directions:

� Different Regularization Methods:
As indicated in Chapter 4, the regularization term in the phase-field functional (4.18)
could just as well be replaced by any other regularization term. Likewise, the penal-
ization term could be exchanged.

� Efficient Solver:
The presented method turned out to be dependent on the choice of the involved regu-
larization parameters. A next step would be to solve the linear system in each Newton
step by an iterative method such as the minimal residual (MINRES) method. For that
purpose, it would be desirable to have a preconditioner that is robust with respect to
all involved parameters.
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� Include Inequality Constraints:
In this thesis, for simplicity we did neither account for the box constraints on the
density variable nor for the volume constraint in (4.2). For a more realistic setting,
these constraints should be included in the optimization problem.

� Nonlinear Materials:
For simplicity we assumed linear behaviour of the material where the magnetic reluc-
tivity does not depend on the magnetic field itself and we could use model (2.29). The
ferromagnetic material that is distributed in the design domain behaves nonlinearly
and the model (2.28) would be more realistic.

� Domain Decomposition DG-FEM:
A discretization with discontinuous ansatz functions is reasonable on and around the
interface between material and void in the final design, as a jump of the density function
of any desired height can be forced just by a simple modification of the DG bilinear
form. However, in the parts of the computational domain where no jumps appear, a
discretization by a classical FE method would be more efficient as it would mean a
notable decrease in the number of global degrees of freedom. Hence, it might be a
good idea to make a domain decomposition and to perform a DG discretization on the
(unknown) interface and a classical FE discretization on the rest of the computational
domain Ω. A further issue is the question of how to determine the location of the
interface between material and void.
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[12] K. Gärtner and O. Schenk. On fast factorization pivoting methods for symmet-
ric indefinite systems. Elec. Trans. Numer. Anal, 23:158-179, 2006. http://www.

pardiso-project.org.

65



BIBLIOGRAPHY 66

[13] J.S. Hesthaven and T. Warburton. On the constants in hp-finite element trace inverse
inequalities. Computer methods in applied mechanics and engineering, 192:2765–2773,
2003.

[14] M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a
semismooth Newton method. SIAM Journal on Optimization, 13(3):865–888, 2003.

[15] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints.
Springer, 2009.

[16] M. Jung and U. Langer. Methode der finiten Elemente für Ingenieure: Eine Einführung
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