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Abstract

In this paper we consider a sufficiently broad class of nonlinear mathematical pro-
grams with disjunctive constraints, which, e.g., include mathematical programs with
complemetarity/vanishing constraints. We present an extension of the concept of Q-
stationarity as introduced in the recent paper [2]. Q-stationarity can be easily combined
with the well-known notion of M-stationarity to obtain the stronger property of so-called
QM -stationarity. We show how the property of QM -stationarity (and thus also of M-
stationarity) can be efficiently verified for the considered problem class by computing
Q-stationary solutions of a certain quadratic program. We consider further the situation
that the point which is to be tested for QM -stationarity, is not known exactly, but is
approximated by some convergent sequence, as it is usually the case when applying some
numerical method.
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1 Introduction

In this paper we consider the following mathematical program with disjunctive constraints
(MPDC)

min
x∈Rn

f(x) (1)

subject to Fi(x) ∈ Di :=

Ki⋃
j=1

Dj
i , i = 1, . . . ,mD,

where the mappings f : Rn → R and Fi : Rn → Rli , i = 1, . . . ,mD are assumed to be
continuously differentiable and Dj

i ⊂ Rli , j = 1, . . . ,Ki, i = 1, . . . ,mD are convex polyhedral
sets.

Denoting m :=
∑mD

i=1 li,

F := (F1, . . . , FmD) : Rn → Rm, D :=

mD∏
i=1

Di (2)
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we can rewrite the MPDC (1) in the form

min
x∈Rn

f(x) subject to F (x) ∈ D. (3)

It is easy to see that D can also be written as the union of
∏mD
i=1 Ki convex polyhedral sets

by

D =
⋃
ν∈J

D(ν) with J :=

mD∏
i=1

{1, . . . ,Ki}, D(ν) :=

mD∏
i=1

Dνi
i . (4)

As an example for MPDC consider a mathematical program with complementarity con-
straints (MPCC) given by

min
x∈Rn

f(x) (5)

subject to gi(x) ≤ 0, i = 1, . . .mI ,

hi(x) = 0, i = 1, . . .mE ,

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0, i = 1, . . .mC

with f : Rn → R, gi : Rn → R, i = 1, . . . ,mI , hi : Rn → R, i = 1, . . . ,mE , Gi, Hi : Rn → R,
i = 1, . . . ,mC . This problem fits into our setting (1) with mD = mC + 1,

F1 = (g1, . . . , gmI , h1 . . . , hmE )T , D1
1 = RmI− × {0}mE , l1 = mI +mE , K1 = 1

Fi+1 = (−Gi,−Hi)
T , D1

i+1 = {0} × R−, D2
i+1 = R− × {0}, li+1 = Ki+1 = 2, i = 1, . . . ,mC .

MPCC is known to be a difficult optimization problem, because, due to the complementar-
ity constraints Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0, many of the standard constraint
qualifications of nonlinear programming are violated at any feasible point. Hence it is likely
that the usual Karush-Kuhn-Tucker conditions fail to hold at a local minimizer and various
first-order optimality conditions such as Abadie (A-), Bouligand (B-), Clarke (C-), Mor-
dukhovich (M-) and Strong (S-) stationarity conditions have been studied in the literature
[6, 9, 17, 19, 20, 24, 25, 26, 27].

Another prominent example is the mathematical program with vanishing constraints (MPVC)

min
x∈Rn

f(x) (6)

subject to gi(x) ≤ 0, i = 1, . . .mI ,

hi(x) = 0, i = 1, . . .mE ,

Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . .mV

with f : Rn → R, gi : Rn → R, i = 1, . . . ,mI , hi : Rn → R, i = 1, . . . ,mE , Gi, Hi : Rn → R,
i = 1, . . . ,mV . Again, the problem MPVC can be written in the form (1) with mD = mV +1,
F1, D1

1 as in the case of MPCC and

Fi+1 = (−Hi, Gi)
T , D1

i+1 = {0} × R, D2
i+1 = R2

−, li+1 = Ki+1 = 2, i = 1, . . . ,mV .

Similar as in the case of MPCC, many of the standard constraint qualifications of nonlinear
programming can be violated at a local solution of (6) and a lot of stationarity concepts have
been introduced. For a comprehensive overview for MPVC we refer to [15] and the references
therein.
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However, when we do not formulate MPCC or MPVC as a nonlinear program but as a
disjunctive program MPDC, then first-order optimality conditions can be formulated which
are valid under weak constraint qualifications. We know that a local minimizer is always B-
stationary, which geometrically means that no feasible descent direction exists, or, in a dual
formulation, that the negative gradient of the objective belongs to the regular normal cone of
the feasible region, cf. [23, Theorem 6.12]. The difficult task is now to estimate this regular
normal cone. For this regular normal cone always a lower inclusion is available, which yields
so-called S-stationarity conditions. For an upper estimate one can use the limiting normal
cone which results in the so-called M-stationarity conditions. The notions of S-stationarity
and M-stationarity have been introduced in [7] for general programs (3). S-stationarity always
implies B-stationarity, but it requires some strong qualification condition on the constraints.
On the other hand, M-stationarity requires only some weak constraint qualification but it
does not preclude the existence of feasible descent directions. Further, it is not known in
general how to efficiently verify the M-stationarity conditions, since the description of the
limiting normal cone involves some combinatorial structure which is not known to be resolved
without enumeration techniques. These difficulties in verifying M-stationarity have also some
impact for numerical solution procedures. E.g., for many algorithms for MPCC it cannot be
guaranteed that a limit point is M-stationary, cf. [18].

In the recent paper [2] we derived another upper estimate for the regular normal cone
yielding so-called Q-stationarity conditions. Q-stationarity can be easily combined with M-
stationarity to obtain so-called QM stationarity which is stronger than M-stationarity. For
the disjunctive formulations of the problems MPCC and MPVC the Q- and QM -stationarity
conditions have been worked out in detail in [2]. In this paper we extend this approach to
the general problem MPDC. We show that under a qualification condition which ensures
S-stationarity of local minimizers, Q-stationarity and S-stationarity are equivalent. Further
we prove that under some weak constraint qualification every local minimizer of MPDC is a
QM -stationary solution and we provide an efficient algorithm for verifying QM -stationarity of
some feasible point. More exactly, this algorithm either proves the existence of some feasible
descent direction, i.e. the point is not B-stationary, or it computes multipliers fulfilling the
QM -stationarity condition. To this end we consider quadratic programs with disjunctive
constraints (QPDC), i.e., the objective function f in MPDC is a convex quadratic function
and the mappings Fi, i = 1, . . . ,mD are linear. We propose a basic algorithm for QPDC,
which either returns a Q-stationary point or proves that the problem is unbounded. Further
we show that M-stationarity for MPDC is related with Q-stationarity of some QPDC and the
combination of the two parts yields the algorithm for verifying QM -stationarity.

Our approach is well suited to the MPDC (1) when all the numbers Ki, i = 1, . . . ,mD are
small or of moderate size. Our disjunctive structure is not induced by integral variables like,
e.g., in [16]. It is also not related to the approach of considering the convex hull of a family
of convex sets like in [1, 4].

The outline of the paper is as follows. In Section 2 we recall some basic definitions from
variational analysis and discuss various stationarity concepts. In Section 3 we introduce the
concepts of Q- and QM -stationarity for general optimization problems. These concepts are
worked out in more detail for MPDC in Section 4. In Section 5 we consider quadratic programs
with disjunctive linear constraints. We present a basic algorithm for solving such problems,
which either return a Q-stationary solution or prove that the problem is not bounded below.
In the next section we demonstrate how this basic algorithm can be applied to a certain
quadratic program with disjunctive linear constraints in order to verify M-stationarity or
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QM -staionarity of a point or to compute a descent direction. In the last Section 7 we present
some results for numerical methods for solving MPDC which prevent convergence to non
M-stationary and non QM -stationary points.

Our notation is fairly standard. In Euclidean space Rn we denote by ‖ · ‖ and 〈·, ·〉 the
Euclidean norm and scalar product, respectively, whereas we denote by ‖u‖∞ := max{|ui| | i =
1, . . . , n} the maximum norm. The closed ball around some point x with radius r is denoted
by B(x, r). Given some cone Q ⊂ Rn, we denote by Q◦ := {q∗ ∈ Rn | 〈q∗, q〉 ≤ 0∀q ∈ Q} its
polar cone. By d(x,A) := inf{‖x− y‖ | y ∈ A} we refer to the usual distance of some point x
to a set A. We denote by 0+C the recession cone of a convex set C.

2 Preliminaries

For the reader’s convenience we start with several notions from variational analysis. Given a
set Ω ⊂ Rn and a point z̄ ∈ Ω, the cone

TΩ(z̄) = {w | ∃wk → w, tk ↓ 0 with z̄ + tkwk ∈ Ω}

is called the (Bouligand/Severi) tangent/contingent cone to Ω at z̄. The (Fréchet) regular
normal cone to Ω at z̄ ∈ Ω can be equivalently defined either by

N̂Ω(z̄) :=
{
v∗ ∈ Rd | lim sup

z
Ω→z̄

〈v∗, z − z̄〉
‖z − z̄‖

≤ 0
}
,

where z
Ω→z̄ means that z → z̄ with z ∈ Ω, or as the dual/polar to the contingent cone, i.e.,

by
N̂Ω(z̄) := TΩ(z̄)◦.

For convenience, we put N̂Ω(z̄) := ∅ for z̄ /∈ Ω. Further, the (Mordukhovich) limiting/basic
normal cone to Ω at z̄ ∈ Ω is given by

NΩ(z̄) :=
{
w∗ ∈ Rd | ∃ zk → z̄, w∗k → w∗ with w∗k ∈ N̂Ω(zk) for all k

}
.

If Ω is convex, then both the regular and the limiting normal cones coincide with the normal
cone in the sense of convex analysis. Therefore we will use in this case the notation NΩ.

Consider now the general mathematical program

min
x∈Rn

f(x) subject to F (x) ∈ D (7)

where f : Rn → R, F : Rn → Rm are continuously differentiable and D ⊂ Rm is a closed set.
Let

Ω := {x ∈ Rn |F (x) ∈ D} (8)

denote the feasible region of the program (7). Then a necessary condition for a point x̄ ∈ Ω
being locally optimal is

〈∇f(x̄), u〉 ≥ 0 ∀u ∈ TΩ(x̄), (9)

which is the same as
−∇f(x̄) ∈ N̂Ω(x̄), (10)
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cf. [23, Theorem 6.12]. The main task of applying this first-order optimality condition now
is the computation of the regular normal cone N̂Ω(x̄) which is very difficult for nonconvex D.

We always have the inclusion

∇F (x̄)T N̂D(F (x̄)) ⊂ N̂Ω(x̄), (11)

but equality will hold in (11) for nonconvex setsD only under comparatively strong conditions,
e.g. when ∇F (x̄) is surjective, see [23, Exercise 6.7]. The following weaker sufficient condition
for equality in (11) uses the notion of metric subregularity.

Definition 1. A multifunction Ψ : Rn ⇒ Rm is called metrically subregular at a point (x̄, ȳ)
of its graph gph Ψ with modulus κ > 0, if there is a neighborhood U of x̄ such that

d(x,Ψ−1(ȳ)) ≤ κd(ȳ,Ψ(x)) ∀x ∈ U.

Theorem 1 ([12, Theorem 4]). Let Ω be given by (8) and x̄ ∈ Ω. If the multifunction
x ⇒ F (x) −D is metrically subregular at (x̄, 0) and if there exists a subspace L ⊂ Rm such
that

TD(F (x̄)) + L ⊂ TD(F (x̄)) (12)

and
∇F (x̄)Rn + L = Rm, (13)

then
N̂Ω(x̄) = ∇F (x̄)T N̂D(F (x̄)).

In order to state an upper estimate for the regular normal cone N̂Ω(x̄) we need some
constraint qualification.

Definition 2 ([7, Definition 6]). Let Ω be given by (8) and let x̄ ∈ Ω.

1. We say that the generalized Abadie constraint qualification (GACQ) holds at x̄ if

TΩ(x̄) = T lin
Ω (x̄), (14)

where T lin
Ω (x̄) := {u ∈ Rn | ∇F (x̄)u ∈ TD(F (x̄))} denotes the linearized cone.

2. We say that the generalized Guignard constraint qualification (GGCQ) holds at x̄ if

(TΩ(x̄))◦ = (T lin
Ω (x̄))◦. (15)

Obviously GGCQ is weaker than GACQ, but GACQ is easier to verify by using some
advanced tools of variational analysis. E.g., if the mapping x ⇒ F (x) − D is metrically
subregular at (x̄, 0) then GACQ is fulfilled at x̄, cf. [14, Proposition 1]. Tools for verifying
metric subregularity of constraint systems can be found e.g. in [11].

Proposition 1 ([2, Proposition 3]). Let Ω be given by (8), let x̄ ∈ Ω and assume that GGCQ
is fulfilled, while the mapping u ⇒ ∇F (x̄)u − TD(F (x̄)) is metrically subregular at (0, 0).
Then

N̂Ω(x̄) ⊂ ∇F (x̄)TNTD(F (x̄))(0) ⊂ ∇F (x̄)TND(F (x̄)). (16)
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Note that we always have NTD(F (x̄))(0) ⊂ ND(F (x̄)), see [23, Proposition 6.27]. However,
if D is the union of finitely many convex polyhedral sets, then equality

NTD(F (x̄))(0) = ND(F (x̄)) (17)

holds. This is due to the fact that by the assumption on D there is some neighborhood V of
0 such that (D − F (x̄)) ∩ V = TD(F (x̄)) ∩ V .

Let us mention that metric subregularity of the constraint mapping x ⇒ F (x) − D at
(x̄, 0) does not only imply GACQ and consequently GGCQ, but also metric subregularity of
the mapping u⇒ ∇F (x̄)u− TD(F (x̄)) at (0, 0) with the same modulus, see [10, Proposition
2.1].

The concept of metric subregularity has the drawback that, in general, it is not stable
under small perturbations. It is well known that the stronger property of metric regularity is
robust.

Definition 3. A multifunction Ψ : Rn ⇒ Rm is called metrically regular near a point (x̄, ȳ)
of its graph gph Ψ with modulus κ > 0, if there are neighborhoods U of x̄ and V of ȳ such that

d(x,Ψ−1(y)) ≤ κd(y,Ψ(x)) ∀(x, y) ∈ U × V.

The infimum of the moduli κ for which the property of metric regularity holds is denoted by

reg Ψ(x̄, ȳ).

In the following proposition we gather some well-known properties of metric regularity:

Proposition 2. Let x̄ ∈ F−1(D) where F : Rn → Rm is continuously differentiable and
D is the union of finitely many convex polyhedral sets and consider the multifunctions x ⇒
Ψ(x) := F (x)−D and u⇒ DΨ(x̄)(u) := ∇F (x̄)u− TD(F (x̄)). Then

reg Ψ(x̄, ȳ) = reg DΨ(x̄)(0, 0) = max
{ 1

‖∇F (x̄)Tλ‖
|λ ∈ ND(F (x̄)) = NTD(F (x̄))(0), ‖λ‖ = 1

}
.

Moreover for every κ > reg Ψ(x̄, ȳ) there is a neighborhood W of x̄ such that for all x ∈ W
the mapping u⇒ ∇F (x)u− TD(F (x̄)) is metrically regular near (0, 0) with modulus κ,

‖λ‖ ≤ κ‖∇F (x)Tλ‖ ∀λ ∈ ND(F (x̄)) = NTD(F (x̄))(0) (18)

and
d(u,∇F (x)−1TD(F (x̄))) ≤ κd(∇F (x)u, TD(F (x̄))) ∀u ∈ Rn.

Proof. The statement follows from [23, Exercise 9.44] together with the facts that by our
assumption on D condition (17) holds and that TD(F (x̄)) is a cone.

We now recall some well known stationarity concepts based on the considerations above.

Definition 4. Let x̄ be feasible for the program (7).

(i) We say that x̄ is B-stationary, if (9) or, equivalently, (10) hold.

(ii) We say that x̄ is S-stationary, if

−∇f(x̄) ∈ ∇F (x̄)T N̂D(F (x̄)).
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(iii) We say that x̄ is M-stationary, if

−∇f(x̄) ∈ ∇F (x̄)TND(F (x̄)).

S- and M-stationarity have been introduced in [7] as a generalization of these notions
for MPCC. Using the inclusion (5) it immediately follows, that S-stationarity implies B-
stationarity. However the reverse implication only holds true under some additional condi-
tion on the constraints, e.g. under the assumptions of Theorem 1. A B-stationary point
is M-stationary under the assumptions of Proposition 1. However, the inclusion N̂Ω(x̄) ⊂
∇F (x̄)TND(F (x̄)) can be strict, implying that a M-stationary point x̄ needs not to be B-
stationary. Hence M-stationarity does eventually not preclude the existence of feasible descent
directions, i.e. directions u ∈ TΩ(x̄) with 〈∇f(x̄), u〉 < 0.

3 On Q- and QM-stationarity

In this section we consider an extension of the concept of Q-stationarity as introduced in the
recent paper [2]. Q-stationarity is based on the following simple observation.

Consider the general program (7), assume that GGCQ holds at the point x̄ ∈ Ω and
assume that we are given K convex cones Qi ⊂ TD(F (x̄)), i = 1, . . . ,K. Then for each
i = 1, . . . ,K we obviously have T lin

Ω (x̄) = ∇F (x̄)−1TD(F (x̄)) ⊃ ∇F (x̄)−1Qi implying

N̂Ω(x̄) = (T lin
Ω (x̄))◦ ⊂ (F (x̄)−1Qi)

◦.

If we further assume that (F (x̄)−1Qi)
◦ = ∇F (x̄)TQ◦i and by taking into account, that by [2,

Lemma 1] we have

(∇F (x̄)TS1) ∩ (∇F (x̄)TS2) = ∇F (x̄)T
(
S1 ∩ (ker∇F (x̄)T + S2)

)
for arbitrary sets S1, S2 ⊂ Rm, we obtain

N̂Ω(x̄) ⊂
K⋂
i=1

∇F (x̄)TQ◦i = ∇F (x̄)T
(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2)

)
∩

K⋂
i=3

∇F (x̄)TQ◦i

= ∇F (x̄)T
(
Q◦1 ∩ (ker∇F (x̄)T +Q◦2) ∩ (ker∇F (x̄)T +Q◦3)

)
∩

K⋂
i=4

∇F (x̄)TQ◦i = . . .

= ∇F (x̄)T
(
Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)
.

Here we use the convention that for for sets S1, . . . , SK ⊂ Rm we set
⋂K
i=l Si = Rm for l > K.

It is an easy consequence of (11), that equality holds in this inclusion, provided ∇F (x̄)T
(
Q◦1∩⋂K

i=2(ker∇F (x̄)T +Q◦i )
)
⊂ ∇F (x̄)T N̂D(F (x̄). Hence we have shown the following theorem.

Theorem 2. Assume that GGCQ holds at x̄ ∈ Ω and assume that Q1, . . . , QK are convex
cones contained in TD(F (x̄)). If

(∇F (x̄)−1Qi)
◦ = ∇F (x̄)TQ◦i , i = 1, . . . ,K, (19)
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then

N̂Ω(x̄) ⊂ ∇F (x̄)T
(
Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)

=

K⋂
i=1

∇F (x̄)TQ◦i . (20)

Further, if

∇F (x̄)T
(
Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)
⊂ ∇F (x̄)T N̂D(F (x̄)), (21)

then equality holds in (20) and N̂Ω(x̄) = ∇F (x̄)T N̂D(F (x̄)).

Remark 1. Condition (19) is e.g. fulfilled, if for each i = 1, . . . ,K either there is a direction
ui with ∇F (x̄)ui ∈ riQi or Qi is a convex polyhedral set, cf. [2, Proposition 1].

The proper choice of Q1, . . . , QK is crucial in order that (20) provides a good estimate for
the regular normal cone. It is obvious that we want to choose the cones Qi, i = 1, . . . ,K as
large as possible in order that the inclusion (20) is tight. Further it is reasonable that a good
choice of Q1, . . . , QK fulfills

K⋂
i=1

Q◦i = N̂D(F (x̄)) (22)

because then equation (21) holds whenever ∇F (x̄) has full rank. We now show that (21)
holds not only under this full rank condition but also under some weaker assumption.

Theorem 3. Assume that GGCQ holds at x̄ ∈ Ω and assume that we are given convex cones
Q1, . . . , QK ⊂ TD(F (x̄)) fulfilling (19), (22) and

ker∇F (x̄)T ∩ (Q◦1 −Q◦i ) = {0}, i = 2, . . . ,K. (23)

Then

N̂Ω(x̄) = ∇F (x̄)T N̂D(F (x̄)) = ∇F (x̄)T
(
Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)
.

In particular, (23) holds if there is a subspace

L ⊂
K⋂
i=1

(
Qi ∩ (−Qi)

)
(24)

such that (13) holds.

Proof. The statement follows from Theorem 2 if we can show that (21) holds. Consider
x∗ ∈ ∇F (x̄)T

(
Q◦1 ∩

⋂K
i=2(ker∇F (x̄)T +Q◦i )

)
. Then there are elements λi ∈ Q◦i , i = 1, . . . ,K

and µi ∈ ker∇F (x̄)T such that λ1 = µi + λi, i = 2, . . . ,K and x∗ = ∇F (x̄)Tλ1. We conclude
µi = λ1 − λi ∈ Q◦1 −Q◦i , implying µi ∈ ker∇F (x̄)T ∩ (Q◦1 −Q◦i ) = {0} and thus

λ1 = λ2 = . . . = λK ∈
K⋂
i=1

Q◦i = N̂D(F (x̄)).

Hence x∗ ∈ ∇F (x̄)T N̂D(F (x̄)) and (21) is verified. In order to show the last assertion note
that from (24) we conclude L ⊂ Qi and consequently Q◦i ⊂ L◦ = L⊥. Thus Q◦1 − Q◦i ⊂
L⊥ − L⊥ = L⊥, i = 2, . . . ,K. Since

ker∇F (x̄)T ∩ L⊥ =
(
(ker∇F (x̄)T )⊥ + L

)⊥
= (∇F (x̄)Rn + L)⊥ = {0},

it follows that (23) holds.
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Corollary 1. Assume that GGCQ holds at x̄ ∈ Ω and assume that we are given convex cones
Q1, . . . , QK ⊂ TD(F (x̄)) fulfilling (19) and (22). Further assume that there is some subspace
L fulfilling (12) and (13). Then the sets

Q̃i := Qi + L, i = 1, . . . ,K

are convex cones contained in TD(F (x̄)),

(∇F (x̄)−1Q̃i)
◦ = ∇F (x̄)T Q̃◦i , i = 1, . . . ,K (25)

and

N̂Ω(x̄) = ∇F (x̄)T N̂D(F (x̄)) = ∇F (x̄)T
(
Q̃◦1 ∩

K⋂
i=2

(ker∇F (x̄)T + Q̃◦i )
)
.

Proof. Firstly observe that Q̃i = Qi +L ⊂ TD(F (x̄)) +L ⊂ TD(F (x̄)) by (12). Next consider
z ∈ ri Q̃i. By (13) there exists u ∈ Rn and l ∈ L such that ∇F (x̄)u+ l = z. Because of −l ∈
L ⊂ Q̃i we have z−2l ∈ Q̃i and thus ∇F (x̄)u = z− l = 1

2z+ 1
2(z−2l) ∈ ri Q̃i by [22, Theorem

6.1] implying (25) by taking into account Remark 1. Further, from Qi ⊂ Q̃i ⊂ TD(F (x̄)) it
follows that

N̂D(F (x̄)) = (TD(F (x̄)))◦ ⊂
K⋂
i=1

Q̃◦i ⊂
K⋂
i=1

Q◦i = N̂D(F (x̄)).

Finally note that L ⊂ Q̃i∩(−Q̃i), i = 1, . . . ,K and the assertion follows from Theorem 3.

The following definition is motivated by Theorem 2.

Definition 5. Let x̄ be feasible for the program (7) and let Q1, . . . , QK be convex cones
contained in TD(F (x̄)) fulfilling (19).

(i) We say that x̄ is Q-stationary with respect to Q1, . . . , QK , if

−∇f(x̄) ∈ ∇F (x̄)T
(
Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)
.

(ii) We say that x̄ is QM -stationary with respect to Q1, . . . , QK , if

−∇f(x̄) ∈ ∇F (x̄)T
(
ND(F (x̄)) ∩Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)
.

Note that this definition is an extension of the definition of Q- and QM -stationarity in
[2], where only the case K = 2 was considered.

The following corollary is an immediate consequence of the definitions and Theorem 2.

Corollary 2. Assume that GGCQ is fulfilled at the point x̄ feasible for (7). Further assume
that we are given convex cones Q1, . . . , QK ⊂ TD(F (x̄)) fulfilling (19). If x̄ is B-stationary,
then x̄ is Q-stationary with respect to Q1, . . . , QK . Conversely, if x̄ is Q-stationary with re-
spect to Q1, . . . , QK and (21) is fulfilled, then x̄ is S-stationary and consequently B-stationary.
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We know that under the assumptions of Proposition 1 every B-stationary point x̄ for the
problem (7) is both M-stationary and Q-stationary with respect to every collection of cones
Q1, . . . , QK ⊂ TD(F (x̄)) fulfilling (19), i.e.

−∇f(x̄) ∈ ∇F (x̄)TND(F (x̄)) ∩∇F (x̄)T
(
Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)

= ∇F (x̄)T
((

ker∇F (x̄)T +ND(F (x̄))
)
∩Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)
.

Comparing this relation with the definition of QM -stationarity we see that QM -stationarity
with respect to Q1, . . . , QK is stronger than the simultaneous fulfillment of M-stationarity
and Q-stationarity with respect to Q1, . . . , QK . We refer to [2, Example 2] for an example
which shows that QM -stationarity is strictly stronger than M-stationarity. However, to ensure
QM -stationarity of a B-stationary point x̄, some additional assumption has to be fulfilled.

Lemma 1. Let x̄ be B-stationary for the program (7) and assume that the assumptions of
Proposition 1 are fulfilled at x̄. Further assume that for every λ ∈ NTD(F (x̄))(0) there exists a

convex cone Qλ ⊂ TD(F (x̄)) containing λ and satisfying (∇F (x̄)−1Qλ)◦ = ∇F (x̄)TQ◦λ. Then
there exists a convex cone Q1 ⊂ TD(F (x̄)) fulfilling (∇F (x̄)−1Q1)◦ = ∇F (x̄)TQ◦1 such that
for every collection Q2, . . . , QK ⊂ TD(F (x̄)) fulfilling (19) the point x̄ is QM stationary with
respect to Q1, . . . , QK .

Proof. From the definition of B-stationarity and (16) we deduce the existence of λ ∈ NTD(F (x̄))(0)

fulfilling −∇f(x̄) = ∇F (x̄)Tλ. By taking Q1 = Qλ we obviously have λ ∈ NTD(F (x̄))(0) ∩
Q◦1 ⊂ ND(F (x̄)) ∩ Q◦1 implying −∇f(x̄) ∈ ∇F (x̄)T (ND(F (x̄)) ∩ Q◦1). Now consider cones
Q2, . . . , QK ⊂ TD(F (x̄)) fulfilling (19). Similar to the derivation of Theorem 2 we obtain

−∇f(x̄) ∈ ∇F (x̄)T (ND(F (x̄)) ∩Q◦1) ∩
K⋂
i=2

∇F (x̄)TQ◦i

= ∇F (x̄)T
(
ND(F (x̄)) ∩Q◦1 ∩

K⋂
i=2

(ker∇F (x̄)T +Q◦i )
)

and the lemma is proved.

Lemma 2. Let x̄ be feasible for (7) and assume that TD(F (x̄)) is the union of finitely many
closed convex cones C1, . . . , Cp. Then for every λ ∈ NTD(F (x̄))(0) there is some ī ∈ {1, . . . , p}
satisfying λ ∈ C◦

ī
.

Proof. Consider λ ∈ NTD(F (x̄))(0). By the definition of the limiting normal cone there are

sequences tk
TD(F (x̄))−→ 0 and λk → λ with

λk ∈ N̂TD(F (x̄))(tk) =
( ⋃
i:tk∈Ci

TCi(tk)
)◦

=
⋂

i:tk∈Ci

(TCi(tk))
◦ =

⋂
i:tk∈Ci

NCi(tk).

By passing to a subsequence if necessary we can assume that there is an index ī such that
tk ∈ Cī for all k and we obtain λk ∈ NCī(tk) = {c∗ ∈ C◦

ī
| 〈c∗, tk〉 = 0} ⊂ C◦

ī
. Since the polar

cone C◦
ī

is closed, we deduce λ ∈ C◦
ī
.
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If TD(F (x̄)) is the union of finitely many convex polyhedral cones C1, . . . , Cp, then the
mapping u⇒ ∇F (x̄)u− TD(F (x̄)) is a polyhedral multifunction and thus metrically subreg-
ular at (0, 0) by Robinson’s result [21]. Further we know that for any convex polyhedral cone
Q we have (∇F (x̄)−1Q)◦ = ∇F (x̄)TQ◦. Hence we obtain the following corollary.

Corollary 3. Assume that x̄ is B-stationary for the program (7), that GGCQ is fulfilled
at x̄ and that TD(F (x̄)) is the union of finitely many convex polyhedral cones. Then there
is a convex polyhedral cone Q1 ⊂ TD(F (x̄)) such that for every collection Q2, . . . , QK of
convex polyhedral cones contained in TD(F (x̄)) the point x̄ is QM -stationary with respect to
Q1, . . . , QK .

4 Application to MPDC

It is clear that Q-stationarity is not a very strong optimality condition for every choice of
Q1, . . . , QK ⊂ TD(F (x̄)). As mentioned above the fulfillment of (22) is desirable. For the
general problem (7) it can be impossible to choose the cones Q1, . . . , QK such that (22) holds.
If TD(F (x̄)) is the union of finitely many convex cones C1, . . . , Cp then we obviously have

N̂D(F (x̄)) =

p⋂
i=1

C◦i .

However, to consider Q-stationarity with respect to C1, . . . , Cp is in general not a feasible
approach because p is often very large. We will now work out that the concepts of Q- and
QM -stationarity are tailored for the MPDC (1). In what follows let D and F be given by (2).

Given a point y = (y1, . . . , ymD) ∈ D, we denote by

Ai(y) := {j ∈ {1, . . . ,Ki} | yi ∈ Dj
i }, i = 1, . . . ,mD

the indices of sets Dj
i which contain yi. Further we choose for each i = 1, . . . ,mD some index

set Ji(y) ⊂ Ai(y) such that

TDi(yi) =
⋃

j∈Ji(y)

T
Dji

(yi). (26)

Obviously the choice Ji(y) = Ai(y) is feasible but for practical reasons it is better to choose
Ji(y) smaller if possible. E.g., if T

D
j2
i

(yi) ⊂ T
D
j1
i

(yi) holds for some indices j1, j2 ∈ Ai(y),

then we will not include j2 in Ji(y). Such a situation can occur e.g. in case of MPVC when
(−Hi(x̄), Gi(x̄)) = (0, a) with a < 0.

Now consider

ν ∈ J (y) :=

mD∏
i=1

Ji(y).

Since for every i = 1, . . . ,mD the set Di is the union of finitely many convex polyhedral sets,
for every tangent direction t ∈ TDi(yi) we have yi + αt ∈ Di for all α > 0 sufficiently small.
Hence we can apply [13, Proposition 1] to obtain

TD(ν)(y) =

mD∏
i=1

TDνii
(yi), ν ∈ J (y)
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with D(ν) given by (4), and

TD(y) =

mD∏
i=1

TDi(yi) =

mD∏
i=1

( ⋃
j∈Ji(y)

T
Dji

(yi)
)

=
⋃

ν∈J (y)

TD(ν)(y). (27)

We will apply this setting in particular to points y = F (x̄) with x̄ feasible for MPDC.

Lemma 3. Let x̄ be feasible for the MPDC (1) and assume that we are given K elements
ν1, . . . , νK ∈ J (F (x̄)) such that

{ν1
i , . . . , ν

K
i } = Ji(F (x̄)), i = 1, . . . ,mD. (28)

Then for each l = 1, . . . ,K the cone Ql := TD(νl)(F (x̄)) is a convex polyhedral cone contained

in TD(F (x̄)),
(
∇F (x̄)−1Ql

)◦
= ∇F (x̄)TQ◦l , and

K⋂
l=1

Q◦l = N̂D(F (x̄)).

Proof. Obviously for every l = 1, . . . ,K the cone Ql is convex and polyhedral because it
is the product of convex polyhedral cones. This implies

(
∇F (x̄)−1Ql

)◦
= ∇F (x̄)TQ◦l and

Ql ⊂ TD(F (x̄)) follows from (27). By taking into account (27) the last assertion follows from

N̂D(F (x̄)) =
(
TD(F (x̄))

)◦
=

mD∏
i=1

( ⋃
j∈Ji(F (x̄))

T
Dji

(Fi(x̄))
)◦

=

mD∏
i=1

( K⋃
l=1

T
D
νl
i
i

(Fi(x̄))
)◦

=

mD∏
i=1

( K⋂
l=1

(
T
D
νl
i
i

(Fi(x̄))
)◦)

=

K⋂
l=1

(mD∏
i=1

(
T
D
νl
i
i

(Fi(x̄))
)◦)

=

K⋂
l=1

(mD∏
i=1

T
D
νl
i
i

(Fi(x̄))
)◦

=
K⋂
l=1

Q◦l .

Definition 6. Let x̄ be feasible for the MPDC (1) and let index sets Ji(F (x̄)) ⊂ Ai(x̄),
i = 1, . . . ,mD fulfilling (26) be given. Further we denote by Q(x̄) the collection of all elements
(ν1, . . . , νK) with νl ∈ J (F (x̄)) =

∏mD
i=1 Ji(F (x̄)), l = 1, . . . ,K such that (28) holds.

1. We say that x̄ is Q-stationary (QM -stationary) for (1) with respect to (ν1, . . . , νK) ∈
Q(x̄), if x̄ is Q-stationary (QM -stationary) with respect to Q1, . . . , QK in the sense of
Definition 5 with Ql := TD(νl)(F (x̄)), l = 1, . . . ,K.

2. We say that x̄ is Q-stationary (QM -stationary) for (1) if x̄ is Q-stationary (QM -
stationary) for (1) with respect to some (ν1, . . . , νK) ∈ Q(x̄).

Definition 6 is an extension of the definition of Q- and QM -stationarity made for MPCC
and MPVC in [2]. Note that the number K appearing in the definition of Q(x̄) is not fixed.
Denoting Kmin(x̄) the minimal number K such that (ν1, . . . , νK) ∈ Q(x̄), we obviously have

Kmin(x̄) = max
i=1,...,mD

|Ji(F (x̄))| ≤ max
i=1,...,mD

Ki.
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We see from (27) that the tangent cone TD(F (x̄)) is the union of the |J (F (x̄))| =
∏mD
i=1 |Ji(F (x̄))|

convex polyhedral cones TD(ν)(y). Hence the minimal number Kmin(x̄) is much smaller than
the number of components of the tangent cone, except when all or nearly all sets Ji(F (x̄))
have cardinality 1. Further it is clear that for every ν1 ∈ J (F (x̄)) and every K ≥ Kmin(x̄)
we can find ν2, . . . , νK ∈ J (F (x̄)) such that (ν1, . . . , νK) ∈ Q(x̄).

We allow K to be greater than Kmin(x̄) for numerical reasons primarily. Recall that for
testing Q-stationarity with respect to (ν1, . . . , νK), we have to check for all l = 1, . . . ,K
whether −∇f(x̄) ∈ ∇F (x̄)TQ◦l , or equivalently, that u = 0 is a solution of the linear opti-
mization program

min〈∇f(x̄), u〉 subject to ∇F (x̄)u ∈ Ql
with Ql = TD(νl)(F (x̄)). Theoretically the treatment of degenerated linear constraints is not
a big problem but the numerical practice tells us the contrary. In [3] we have implemented
an algorithm for solving MPVC based on Q-stationarity and the degeneracy of the linear
constraints was the reason when the algorithm crashed. The possibility of choosing K >
Kmin(x̄) gives us more flexibility to avoid linear programs with degenerated constraints.

The following theorem follows from Corollaries 2, 3, Theorem 3 and the considerations
above.

Theorem 4. Let x̄ be feasible for the MPDC (1) and assume that GGCQ is fulfilled at x̄.

(i) If x̄ is B-stationary then x̄ is Q-stationary with respect to every element (ν1, . . . , νK) ∈
Q(x̄) and there exists some ν̄1 ∈ J (F (x̄)) such that x̄ is QM -stationary with respect to
every (ν̄1, ν2, . . . , νK) ∈ Q(x̄).

(ii) Conversely, if x̄ is Q-stationary with respect to some (ν1, . . . , νK) ∈ Q(x̄) and

∇F (x̄)T
(
Q◦1 ∩

K⋂
l=2

(ker∇F (x̄)T +Q◦l )
)
⊂ ∇F (x̄)T N̂D(F (x̄)), (29)

where Ql := TD(νl)F (x̄), l = 1, . . . ,K, then x̄ is S-stationary and consequently B-
stationary. In particular, (29) is fulfilled if

ker∇F (x̄)T ∩
(
Q◦1 −Q◦l

)
= {0}, l = 2, . . . ,K. (30)

5 On quadratic programs with disjunctive constraints

In this section we consider the special case of quadratic programs with disjunctive constraints
(QPDC)

min
x∈Rn

q(x) :=
1

2
xTBx+ dTx (31)

subject to Aix ∈ Di :=

Ki⋃
j=1

Dj
i , i = 1, . . . ,mD,

where B is a positive semidefinite n×n matrix, d ∈ Rn, Ai, i = 1, . . . ,mD are li×n matrices
and Dj

i ⊂ Rli , i = 1, . . . ,mD, j = 1, . . . ,Kj are convex polyhedral sets, i.e., QPDC is a special
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case of MPDC with f(x) = q(x) and Fi(x) = Aix, i = 1, . . . ,mD. In what follows we denote
by A the m× n matrix

A =

 A1
...
AmD

 ,

where m :=
∑mD

i=1 li.
We start our analysis with the following preparatory lemma.

Lemma 4. Assume that the convex quadratic program

min
x∈Rn

1

2
xTBx+ dTx subject to Ax ∈ C (32)

is feasible, where B is some symmetric positive semidefinite n × n matrix, d ∈ Rn, A is a
m× n matrix and C ⊂ Rm is a convex polyhedral set. Then either there exists a direction w
satisfying

Bw = 0, Aw ∈ 0+C, dTw < 0, (33)

or the program (32) has a global solution x̄.

Proof. Assume that for every w with Bw = 0, Aw ∈ 0+C we have dTw ≥ 0, i.e. 0 is a global
solution of the program

min dTw subject to w ∈ S :=

{
w |
(
B
A

)
w ∈ {0}n × 0+C

}
.

Since C is a convex polyhedral set, its recession cone 0+C is a convex polyhedral cone and so
is {0}n × 0+C as well. Hence

N̂S(0) = S◦ = (BT ...AT )({0}n × 0+C)◦ = BTRn +AT (0+C)◦

and from the first-order optimality condition −d ∈ N̂S(0) we derive the existence of multipliers
µB ∈ Rn and µC ∈ (0+C)◦ such that

−d = BTµB +ATµC .

The convex polyhedral set C is the sum of the convex hull Σ of its extreme points and its
recession cone. Hence for every x feasible for (32) there is some c1 ∈ Σ and some c2 ∈ 0+C
such that Ax = c1 + c2 and, by taking into account µTCc2 ≤ 0, we obtain

1

2
xTBx+ dTx =

1

2
xTBx− µTBBx− µTCAx

=
1

2
(x− µB)TB(x− µB)− 1

2
µTBBµB − µTCc1 − µTCc2 (34)

≥ −1

2
µTBBµB − µTCc1.

The set Σ is compact and we conclude that the objective of (32) is bounded below on the
feasible domain A−1C by −1

2µ
T
BBµB −maxc1∈Σ µ

T
Cc1. Thus

α := inf{1

2
xTBx+ dTx |Ax ∈ C}
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is finite and there remains to show that the infimum is attained. Consider some sequence xk ∈
A−1C with limk→∞

1
2x

T
kBxk + dTxk = α. We conclude from (34) that (xk−µB)TB(xk−µB)

is bounded which in turn implies that the sequence B1/2xk is bounded. Hence the sequence
xTkBxk = ‖B1/2xk‖2 is bounded as well and we can conclude also the boundedness of dTxk.
By passing to a subsequence we can assume that the sequence (B1/2xk, d

Txk) converges to
some (z, β) and it follows that α = 1

2‖z‖
2 + β. Since C is a convex polyhedral set, it follows

by applying [22, Theorem 19.3] twice, that the sets A−1C and {(B1/2u, dTu) |u ∈ A−1C}
are convex and polyhedral. Since convex polyhedral sets are closed, it follows that (z, β) ∈
{(B1/2u, dTu) |u ∈ A−1C}. Thus there is some x̄ ∈ A−1C with (z, β) = (B1/2x̄, dT x̄) and
1
2 x̄

TBx̄+ dT x̄ = α follows. This shows that x̄ is a global minimizer for (32).

In what follows we assume that we have at hand an algorithm for solving (32), which
either computes a global solution x̄ or a descent direction w fulfilling (33). Such an algorithm
is e.g. the active set method as described in [8], where we have to rewrite the constraints
equivalently in the form 〈ATai, x〉 ≤ bi, i = 1, . . . , p using the representation of C as the
intersection of finitely many half-spaces, C = {c | 〈ai, c〉 ≤ bi, i = 1, . . . , p}.

Consider now the following algorithm.

Algorithm 1 (Basic algorithm for QPDC).
Input: starting point x1 feasible for the QPDC (31).
1.) Set the iteration counter k := 1.
2.) Select (νk,1, . . . , νk,K) ∈ Q(xk) and consider for l = 1, . . . ,K the quadratic programs

(QP k,l) min q(x) subject to Ax ∈ D(νk,l).

If one of these programs is unbounded below, stop the algorithm and return the current
iterate xk together with ν̄ := νk,l and the descent direction w fulfilling (33). Otherwise
let xk,l, l = 1, . . . ,K denote the global solutions of (QP k,l).

3.) If q(xk) = q(xk,l), l = 1, . . . ,K, stop the algorithm and return xk together with
ν̄ := νk,1.

4.) Choose l ∈ {1, . . . ,K} with q(xk,l) < q(xk), set xk+1 = xk,l, increase the iteration
counter k := k + 1 and go to step 2.)

Note that the iterate xk is feasible for every quadratic subproblem (QP k,l). Further note
that the number K will also depend on xk.

Theorem 5. Algorithm 1 terminates after a finite number of iterations either with some
feasible point and some descent direction w indicating that QPDC is unbounded below or with
some Q-stationary solution.

Proof. If Algorithm 1 terminates in step 2.) the output is a feasible point together with
some descent direction showing that QPDC is unbounded below. If the algorithm does not
terminate in step 2.) the computed sequence of function values q(xk) is strictly decreasing.
Moreover, denoting νk := νk−1,l where l is the index chosen in step 4., we see that for each
k ≥ 2 the point xk is global minimizer of the problem

min q(x) subject to Ax ∈ D(νk).

This shows that all the vectors νk must be pairwise different and since there is only a finite
number of possible choices for νk, the algorithm must stop in step 3.). We will now show that
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the final iterate xk is Q-stationary with respect to (νk,1, . . . , νk,K). Since for each l = 1, . . . ,K
the point xk is a global minimizer of the subproblem (Qk,l), it also satisfies the first order
optimality condition

〈∇q(xk), u〉 ≥ 0 for every u ∈ Rn satisfying Au ∈ TD(νk,l)(Ax
k)).

This shows Q-stationarity of xk and the theorem is proved.

6 On verifying QM-stationarity for MPDC

The following theorem is crucial for the verification of M-stationarity.

Theorem 6. (i) Let x̄ be feasible for the general program (7). If there exists a B-stationary
solution of the program

min
(u,v)∈Rn×Rm

〈∇f(x̄), u〉+
1

2
‖v‖2 subject to ∇F (x̄)u+ v ∈ TD(F (x̄)), (35)

then x̄ is M-stationary.

(ii) Let x̄ be B-stationary for the MPDC (1) and assume that GGCQ holds at x̄. Then the
program (35) has a global solution.

Proof. (i) Let (ū, v̄) denote a B-stationary solution, i.e. −(∇f(x̄), v̄) ∈ N̂Γ(ū, v̄), where Γ =

(∇F (x̄)
... I)−1TD(F (x̄)). Since the matrix (∇F (x̄)

... I) obviously has full rank, we have

N̂Γ(ū, v̄) = (∇F (x̄)
... I)T N̂TD(F (x̄))(∇F (x̄)ū + v̄) by [23, Exercise 6.7]. Thus there exists a

multiplier λ ∈ N̂TD(F (x̄))(∇F (x̄)ū+ v̄) such that −∇f(x̄) = ∇F (x̄)Tλ and −v̄ = λ. Using [23,

Proposition 6.27] we have N̂TD(F (x̄))(∇F (x̄)ū+ v̄) ⊂ NTD(F (x̄))(∇F (x̄)ū+ v̄) ⊂ NTD(F (x̄))(0) ⊂
ND(F (x̄)) establishing M-stationarity of x̄.

(ii) Consider for arbitrarily fixed ν ∈ J (F (x̄)) the convex quadratic program

min
(u,v)∈Rn×Rm

〈∇f(x̄), u〉+
1

2
‖v‖2 subject to ∇F (x̄)u+ v ∈ TD(ν)(F (x̄)). (36)

Assuming that this quadratic program does not have a solution, by Lemma 4 we could find
a direction (wu, wv) satisfying(

0 0
0 I

)(
wu
wv

)
= 0, ∇F (x̄)wu + wv ∈ 0+TD(ν)(F (x̄)), 〈∇f(x̄), wu〉+ 〈0, wv〉 < 0.

This implies wv = 0,∇F (x̄)wu ∈ 0+TD(ν)(F (x̄)) = TD(ν)(F (x̄)) ⊂ TD(F (x̄)) and 〈∇f(x̄), wu〉 <
0 and thus, together with GGCQ, −∇f(x̄) 6∈ (T lin

Ω (x̄))◦ = N̂D(F (x̄)) contradicting our
assumption that x̄ is B-stationary for (1). Hence the quadratic program (36) must pos-
sess some global solution (uν , vν). By choosing ν̄ ∈ J (F (x̄)) such that 〈∇f(x̄), uν̄〉 =
min{〈∇f(x̄), uν〉 | ν ∈ J (F (x̄))} it follows from (27) that (uν̄ , vν̄) is a global solution of
(35).

We now want to apply Algorithm 1 to the problem (35). Note that the point (0, 0) is
feasible for (35) and therefore we can start Algorithm 1 with (u1, v1) = (0, 0).
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Corollary 4. Let x̄ be feasible for the MPDC (1) and apply Algorithm 1 to the QPDC (35).
If the algorithm returns an iterate together with some descent direction indicating that (35)
is unbounded below and if GGCQ is fulfilled at x̄, then x̄ is not B-stationary. On the other
hand, if the algorithm returns a Q-stationary solution, then x̄ is M-stationary.

Proof. Observe that in case when Algorithm 1 returns a Q-stationary solution, by Theo-

rem 4(ii) this solution is B-stationary because the Jocobian of the constraints (∇F (x̄)
... I)

obviously has full rank. Now the statement follows from Theorem 6.

We now want to analyze how the output of Algorithm 1 can be further utilized. Recalling
that TD(F (x̄)) has the disjunctive structure

TD(F (x̄)) =

mD∏
i=1

( ⋃
j∈Ji(F (x̄))

T
Dji

(Fi(x̄))
)
,

we define for y = (y1, . . . , ymD) ∈ TD(F (x̄)) the index sets

ATDi (y) := {j ∈ Ji(F (x̄)) | yi ∈ TDji (Fi(x̄))}, i = 1, . . . ,mD.

Further we choose for each i = 1, . . . ,mD some index set J TDi (y) ⊂ ATDi (y) such that

TTDi (Fi(x̄))(yi) =
⋃

j∈J TDi (y)

TT
D
j
i

(Fi(x̄))(yi) (37)

and set

J TD(y) :=

mD∏
i=1

J TDi (y).

Note that we always have
J TD(y) ⊂ J (F (x̄)).

In order to verify Q-stationarity for the problem (35) at some feasible point (u, v), we have
to consider the set QTD(u, v) consisting of all (ν1, . . . , νK) with νl ∈ J TD(∇F (x̄)u + v),
l = 1, . . . ,K such that

{ν1
i , . . . , ν

K
i } = J TDi (∇F (x̄)u+ v), i = 1, . . . ,mD.

At the k-th iterate (uk, vk) we have to choose (νk,1, . . . , νk,K) ∈ QTD(uk, vk) and then for
each l = 1, . . . ,K we must analyze the convex quadratic program

(QP k,l) min
u,v
〈∇f(x̄), u〉+

1

2
‖v‖2 subject to ∇F (x̄)u+ v ∈ TD(νk,l)(F (x̄)).

If for some l̄ ∈ {1, . . . ,K} this quadratic program is unbounded below then Algorithm 1
returns the index ν̄ := νk,l̄ together with a descent direction (wu, wv) fulfilling, as argued in
the proof of Theorem 6(ii),

wv = 0, ∇F (x̄)wu ∈ 0+TD(ν̄)(F (x̄)) = TD(ν̄)(F (x̄)), 〈∇f(x̄), wu〉 < 0.

Therefore wu constitutes a feasible descent direction, provided GACQ holds at x̄, i.e., for
every α > 0 sufficiently small the projection of x̄ + αwu on the feasible set F−1(D) yields a
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point with a smaller objective function value than x̄. If GACQ also holds for the constraint
F (x) ∈ D(ν̄) at x̄, then we can also project the point x̄ + αwu on F−1(D(ν̄)) in order to
reduce the objective function.

Now assume that the final iterate (uk, vk) of Algorithm 1 is Q-stationary for (35) and
consequently x̄ is M-stationary for the MPDC (1). Setting λ := −vk, the first order optimality
conditions for the quadratic programs (QP k,l) result in

−∇f(x̄) = ∇F (x̄)Tλ,

λ ∈
K⋂
l=1

NT
D(νk,l)

(F (x̄))(∇F (x̄)uk + vk) = N̂TD(F (x̄))(∇F (x̄)uk + vk) ⊂ ND(F (x̄)).

From this we conclude −∇f(x̄) ∈ ∇F (x̄)T (Q◦1 ∩ ND(F (x̄)) with Q1 := TD(ν̄)(F (x̄)) ⊂
TTD(ν̄)(F (x̄))(∇F (x̄)uk + vk) where ν̄ = νk,1 is the index vector returned from Algorithm

1. Now choosing ν2, . . . , νK such that (ν̄, ν2, . . . , νK) ∈ Q(x̄) we can simply check by testing
−∇f(x̄) ∈ ND(νl)(F (x̄)), l = 2, . . . ,K, whether x̄ is QM stationary or x̄ is not B-stationary.

Further we have the following corollary.

Corollary 5. Let x̄ be B-stationary for the MPDC (1) and assume that GGCQ is fulfilled at
x̄. Let ν̄ be the index vector returned by Algorithm 1 applied to (35). Then ν̄ ∈ J (F (x̄)) and
for every ν2, . . . , νK with (ν̄, ν2, . . . , νK) ∈ Q(x̄) the point x̄ is QM -stationary with respect to
(ν̄, ν2, . . . , νK).

7 Numerical aspects

In practice the point x̄ which should be checked for M-stationarity and QM -stationarity,
respectively, often is not known exactly. E.g., x̄ can be the limit point of a sequence generated
by some numerical method for solving MPDC. Hence let us assume that we are given some
point x̃ close to x̄ and we want to state some rules when we can consider x̃ as approximately
M-stationary or QM -stationary. Let us assume that the convex polyhedral sets Dj

i have the
representation

Dj
i = {y | 〈ai,jl , y〉 ≤ b

i,j
l , l = 1, . . . , pi,j}, i = 1, . . . ,mD, j = 1, . . . ,Ki,

where without loss of generality we assume ‖ai,jl ‖ = 1.
We use here the following approach.

Algorithm 2.
Input: A point x̃ and small positive parameters ε, σ, η.
1.) Calculate the index sets

Ãi(x̃, ε) := {j ∈ {1, . . . ,Ki} |d(Fi(x̃), Dj
i ) ≤ ε}, i = 1, . . . ,mD

Ĩji (x̃, ε) := {l ∈ {1, . . . , pi,j} | 〈ai,jl , Fi(x̃)〉 ≥ bi,jl − ε}, i = 1, . . . ,mD, j ∈ Ãi(x̃, ε)

and the convex polyhedral cones

T ji (x̃, ε) = {v | 〈ai,jl , v〉 ≤ 0, l ∈ Ĩji (x̃, ε)}, i = 1, . . . ,mD, j ∈ Ãi(x̃, ε).

Assume that Ãi(x̃, ε) 6= ∅, i = 1, . . . ,mD.
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2.) Consider

QPDC(x̃, ε, σ) min
u,v

〈∇f(x̃), u〉+
σ

2
‖u‖2 +

1

2
‖v‖2

subject to ∇F (x̃)u+ v ∈
mD∏
i=1

( ⋃
j∈Ãi(x̃,ε)

T ji (x̃, ε)
)
.

Let (ũ, ṽ) and ν̄ denote the output of Algorithm 1 applied to QPDC(x̃, ε, σ).
3. If σ‖ũ‖ > η consider the nonlinear programming problem

min f(x) subject to F (x) ∈ D(ν̄)

in order to improve x̃.
4.) Otherwise consider x̃ as approximately M-stationary and compute ν2, . . . , νK ∈∏mD

i=1 Ãi(x̃, ε) such that

T ν̄ii (x̃, ε) ∪
K⋃
l=2

T
νli
i (x̃, ε) =

⋃
j∈Ãi(x̃,ε)

T ji (x̃, ε), i = 1, . . . ,mD.

If

min
{
∇f(x̃)u | ∇F (x̃)u ∈

∏mD
i=1 T

νli
i (x̃, ε),

−1 ≤ ui ≤ 1, i = 1, . . . , n

}
≥ −η, l = 2, . . . ,K, (38)

accept x̃ as approximately QM -stationary. Otherwise consider the nonlinear program-
ming problem

min f(x) subject to F (x) ∈ D(ν l̄)

in order to improve x̃, where l̄ ∈ {2, . . . ,K} denotes some index violating (38).

In the first step of Algorithm 2 we want to estimate the tangent cone TD(F (x̄)). In
fact, to calculate TD(F (x̄)) we need not to know the point F (x̄), we only need the index
sets of constraints active at x̄ and these index sets are approximated by ε-active constraints.
Note that whenever Ãi(x̃, ε) = Ãi(x̄, 0) = Ai(F (x̄)) and Ĩji (x̃, ε) = Ĩji (x̄, 0), i = 1, . . . ,mD,

j ∈ Ai(F (x̄)) this approach yields the exact tangent cones T
Dji

(F (x̄)) = T ji (x̃, ε) for all

i = 1, . . . ,mD, j ∈ Ai(F (x̄)). To be consistent with the notation of Section 4 we make
the convention that in this case the index vector ν̄ computed in step 2.) belongs to J (x̄)
and also, whenever we determine ν2, . . . νK is step 4.), we have (ν̄, ν2, . . . , νK) ∈ Q(x̄). The
regularization term σ

2 ‖u‖
2 in QPDC(x̃, ε, σ) forces the objective to be strictly convex and

therefore Algorithm 1 will always terminate with a Q-stationary solution. Further note that
the verification of (38) requires the solution of K − 1 linear optimization problems.

The following theorem justifies Algorithm 2. Im the sequel we denote byM(x̄) (Msub(x̄))
the set of all ν ∈ J (x̄) such that the mapping F (·) − D(ν) is metrically regular near (x̄, 0)
(metrically subregular at (x̄, 0)).

Theorem 7. Let x̄ be feasible for the MPDC (1) and assume that ∇f and ∇F are Lipschitz
near x̄. Consider sequences xt → x̄, εt ↓ 0, σt ↓ 0 and ηt ↓ 0 with

lim
t→∞

‖xt − x̄‖
εt

= lim
t→∞

σt
ηt

+ ‖xt − x̄‖
ηt

= 0

19



and let (ũt, ṽt), ν̄
t and eventually νt,2 . . . , νt,Kt and l̄t denote the output of Algorithm 2 with

input data (xt, εt, σt, ηt).

(i) For all t sufficiently large and for all i ∈ {1, . . . ,mD} we have

Ãi(xt, εt) = Ai(F (x̄)), Ĩji (xt, εt) = Ĩji (x̄, 0), j ∈ Ai(F (x̄)). (39)

(ii) Assume that the mapping x⇒ F (x)−D is metrically regular near (x̄, 0).

(a) If x̄ is B-stationary then for all t sufficiently large the point xt is accepted as
approximately M-stationary and approximately QM -stationary.

(b) If for infinitely many t the point xt is accepted as approximately M-stationary then
x̄ is M-stationary.

(c) If for infinitely many t the point xt is accepted as approximately QM -stationary
and {ν̄t, νt,2, . . . , νt,Kt} ⊂ M(x̄) then x̄ is QM -stationary.

(d) For every t sufficiently large such that the point xt is not accepted as approximately
M-stationary and ν̄t ∈Msub(x̄) we have min{f(x) |F (x) ∈ D(ν̄t)} < f(x̄).

(e) For every t sufficiently large such that the point xt is not accepted as approximately
QM -stationary and νt,l̄t ∈Msub(x̄) we have min{f(x) |F (x) ∈ D(νt,l̄t)} < f(x̄).

Proof. (i) Let R > 0 be chosen such that f , F and their derivatives are Lipschitz on B(x̄, R)
with constant L. It is easy to see that we can choose ε > 0 such that for all i ∈ {1, . . . ,mD} we
have Ãi(x̄, ε) = Ãi(x̄, 0) = Ai(F (x̄)) and such that for every j ∈ Ai(F (x̄)) we have Ĩji (x̄, ε) =

Ĩji (x̄, 0). Consider t with ‖xt − x̄‖ < R, L‖xt − x̄‖ < εt < ε/2 and fix i ∈ {1, . . . ,mD}. For
every j ∈ Ai(F (x̄)) we have

d(Fi(xt), D
j
i ) ≤ ‖Fi(xt)− Fi(x̄)‖ ≤ L‖xt − x̄‖ < εt,

whereas for j 6∈ Ai(F (x̄)) we have

d(Fi(xt), D
j
i ) ≥ d(Fi(x̄), Dj

i )− ‖Fi(xt)− Fi(x̄)‖ ≥ ε− L‖xt − x̄‖ > εt

showing Ãi(xt, εt) = Ai(F (x̄)). Now fix j ∈ Ai(F (x̄)) and let l ∈ Ĩji (x̄, 0), i.e. 〈ai,jl , Fi(x̄)〉 =

bi,jl . By taking into account ‖ai,jl ‖ = 1 we obtain

〈ai,jl , Fi(xt)〉 ≥ b
i,j
l − ‖Fi(xt)− Fi(x̄)‖ > bi,jl − εt

implying l ∈ Ĩji (xt, εt), whereas for l 6∈ Ĩji (x̄, 0) = Ĩji (x̄, ε) we have

〈ai,jl , Fi(xt)〉 ≤ 〈a
i,j
l , Fi(x̄)〉+ ‖Fi(xt)− Fi(x̄)‖ < bi,jl − ε+ εt < bi,jl − εt

showing l 6∈ Ĩji (xt, εt). Hence Ĩji (xt, εt) = Ĩ(x̄, 0). Because of our assumptions we have
‖xt − x̄‖ < R and L‖xt − x̄‖ < εt < ε/2 for all t sufficiently large and this proves (39).

(ii) In view of Proposition 2 we can choose κ large enough such that the mappings F (·)−D,
u ⇒ ∇F (x̄)u − TD(F (x̄)) and F (·) − D(ν), u ⇒ ∇F (x̄)u − TD(ν)(F (x̄)), ν ∈ M(x̄) are
metrically regular near (x̄, 0) with modulus κ. By eventually shrinking R we can assume that
for every x ∈ B(x̄, R) the mappings u ⇒ ∇F (x)u − TD(F (x̄)), u ⇒ ∇F (x)u − TD(ν)(F (x̄)),
ν ∈M(x̄) are metrically regular near (0, 0) with modulus κ+ 1.

20



Without loss of generality we can assume that xt ∈ B(x̄, R) and (39) holds for all t
implying that T

Dji
(F (x̄)) = T ji (x̃, εt) holds for all i = 1, . . . ,mD, j ∈ Ai(F (x̄)). In fact then

the problem QPDC(xt, εt, σt) is the same as

min
u,v
〈∇f(xt), u〉+

σt
2
‖u‖2 +

1

2
‖v‖2 subject to ∇F (xt)u+ v ∈ TD(F (x̄)).

The point (ũt, ṽt) is Q-stationary for this program and thus also S-stationary by Theorem

4(ii) and the full rank property of the matrix (∇F (xt)
... I). Hence there is a multiplier λt ∈

N̂TD(F (x̄))(∇F (xt)ũt+ ṽt) ⊂ NTD(F (x̄))(0) fulfilling ṽt+λt = 0, ∇f(xt)+σtũt+∇F (xt)
Tλt = 0

and we conclude
‖ṽt‖ = ‖λt‖ ≤ (κ+ 1)‖∇f(xt) + σtũt‖ (40)

from (18).
By Q-stationarity of (ũt, ṽt) we know that (ũt, ṽt) is the unique solution of the strictly

convex quadratic program

min〈∇f(xt), u〉+
σt
2
‖u‖2 +

1

2
‖v‖2 subject to ∇F (xt)u+ v ∈ TD(ν̄t)(F (x̄)). (41)

For every α ≥ 0 the point α(ũt, ṽt) is feasible for this quadratic program and thus α = 1 is
solution of

min
α≥0

α〈∇f(xt), ũt〉+ α2

(
σt
2
‖ũt‖2 +

1

2
‖ṽt‖2

)
implying

−〈∇f(xt), ũt〉 = σt‖ũt‖2 + ‖ṽt‖2.

Hence

σt‖ũt‖ ≤ −〈∇f(xt),
ũt
‖ũt‖

〉 ≤ ‖∇f(xt)‖ (42)

and from (40) we obtain
‖ṽt‖ = ‖λt‖ ≤ 2(κ+ 1)‖∇f(xt)‖. (43)

(a) Assume on the contrary that x̄ is B-stationary but for infinitely many t the point xt
is not accepted as approximately M-stationary and hence ‖ũt‖ ≥ ηt/σt. This implies

d(∇F (x̄)
ũt
‖ũt‖

, TD(F (x̄))) ≤ d(∇F (xt)
ũt
‖ũt‖

, TD(F (x̄))) + L‖xt − x̄‖ ≤
‖ṽt‖
‖ũt‖

+ L‖xt − x̄‖

≤ 2(κ+ 1)‖f(xt)‖
σt
ηt

+ L‖xt − x̄‖

and by the metric regularity of u ⇒ ∇F (x̄)u − TD(F (x̄)) near (0, 0) we can find ût ∈
∇F (x̄)−1TD(F (x̄)) with

‖ût −
ũt
‖ũt‖

‖ ≤ κ
(

2(κ+ 1)‖f(xt)‖
σt
ηt

+ L‖xt − x̄‖
)
.
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Our choice of the parameters σt, ηt together with (42) ensures that for t sufficiently large we
have

〈∇f(x̄), ût〉 ≤ 〈∇f(x̄),
ũt
‖ũt‖

〉+ ‖∇f(x̄)‖‖ût −
ũt
‖ũt‖

‖

≤ 〈∇f(xt),
ũt
‖ũt‖

〉+ L‖xt − x̄‖+ ‖∇f(x̄)‖‖ût −
ũt
‖ũt‖

‖

≤ −σt‖ũt‖+ L‖xt − x̄‖+ ‖∇f(x̄)‖‖ût −
ũt
‖ũt‖

‖

≤ −ηt + L‖xt − x̄‖+ ‖∇f(x̄)‖κ
(

2(κ+ 1)‖f(xt)‖
σt
ηt

+ L‖xt − x̄‖
)
< 0

which contradicts B-stationarity of x̄. Hence for all t sufficiently large the point xt must be
accepted as approximately M-stationary.

To prove the statement that xt is also accepted as approximately QM -stationary for
all t sufficiently large we can proceed in a similar way. Assume on the contrary that x̄
is B-stationary but for infinitely many t the point xt is not accepted as approximately
QM -stationary. For those t let wt denote some element fulfilling ∇F (xt)wt ∈ TD(νt,l̄t ) ⊂
TD(F (x̄)), ‖wt‖∞ ≤ 1 and 〈∇f(xt), wt〉 ≤ −ηt. Then, similar as before we can find ŵt ∈
∇F (x̄)−1TD(F (x̄)) such that

‖ŵt − wt‖ ≤ κ‖∇F (x̄)−∇F (xt)‖‖wt‖ ≤ κL
√
n‖xt − x̄‖

and for large t we obtain

〈∇f(x̄), ŵt〉 ≤ 〈∇f(xt), wt〉+ ‖∇f(x̄)−∇f(xt)‖‖wt‖+ ‖∇f(x̄)‖‖ŵt − wt‖
≤ −ηt + L

√
n(1 + κ‖∇f(x̄)‖)‖xt − x̄‖ < 0

contradicting B-stationarity of x̄.
(b) By passing to a subsequence we can assume that for all t the point xt is accepted as

approximately M-stationary and hence σt‖ut‖ ≤ ηt → 0. By (43) we have that the sequence
λt ∈ NTD(F (x̄))(0) is uniformly bounded and by passing to a subsequence once more we
can assume that it converges to some λ̄ ∈ NTD(F (x̄))(0). By [23, Proposition 6.27] we have
λ̄ ∈ ND(F (x̄)) and together with

0 = lim
t→∞

(
∇f(xt) +∇F (xt)

Tλt
)

= ∇f(x̄) +∇F (x̄)T λ̄

M-stationarity of x̄ is established.
(c) By passing to a subsequence we can assume that for all t the point xt is accepted as

approximately QM -stationary and {ν̄t, νt,2, . . . , νt,Kt} ⊂ M(x̄). Hence for all t the point xt
is also accepted as M-stationary and by passing to a subsequence and arguing as in (b) we
can assume that λt converges to some λ̄ ∈ ND(F (x̄)) fulfilling ∇f(x̄) +∇F (x̄)T λ̄ = 0. Since
the set M(x̄) is finite, by passing to a subsequence once more we can assume that there is a
number K and elements ν̄, ν2, . . . , νK such that Kt = K , ν̄t = ν̄ and νt,l = νl, l = 2, . . . ,K
holds for all t. Since we assume that (39) holds we have (ν̄, ν2, . . . , νK) ∈ Q(x̄) and we
will now show that x̄ is QM -stationary with respect to (ν̄, ν2, . . . , νK). Since (ũt, ṽt) also
solves (41), it follows that λt = −vt ∈ NTD(ν̄)(F (x̄))(∇F (xt)ũt + ṽt) ⊂ ND(ν̄)(F (x̄)) and thus

λ̄ ∈ ND(F (x̄)) ∩ ND(ν̄)(F (x̄)) implying −∇f(x̄) ∈ ∇F (x̄)T
(
ND(F (x̄)) ∩

(
TD(ν̄)(F (x̄))

)◦)
.
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There remains to show −∇f(x̄) ∈
(
TD(νl)(F (x̄))

)◦
= ND(νl)(F (x̄)), l = 2, . . . ,K. Assume

on the contrary that −∇f(x̄) 6∈
(
TD(ν l̄)(F (x̄))

)◦
for some index l̄ ∈ {2, . . . ,K}. Then there

is some u ∈ ∇F (x̄)−1TD(ν l̄)(F (x̄)), ‖u‖∞ = 1
2 such that 〈∇f(x̄), u〉 =: −γ < 0 and since

ν l̄ ∈M(x̄), for each t there is some ût ∈ ∇F (xt)
−1TD(ν l̄)(F (x̄)) with

‖u− ût‖ ≤ (κ+ 1)‖∇F (x̄)−∇F (xt)‖‖u‖ ≤
√
n

2
(κ+ 1)L‖xt − x̄‖.

It follows that for all t sufficiently large we have ‖ût‖∞ ≤ 1 and

〈∇f(xt), ût〉 ≤ 〈∇f(x̄), u〉+ ‖∇f(xt)−∇f(x̄)‖‖ût‖+ ‖∇f(x̄)‖‖u− ût‖

≤ −γ + L
√
n(1 +

κ+ 1

2
)‖xt − x̄‖ < −ηt

contradicting our assumption that xt is accepted as approximately QM -stationary.
(d), (e) We assume that κ is chosen large enough such that the mappings F (·) − D(ν),

ν ∈ Msub(x̄) are metrically subregular at (x̄, 0) with modulus κ. Then by [10, Proposition
2.1] the mappings u ⇒ ∇F (x̄)u − TD(ν)(F (x̄)), ν ∈ Msub(x̄) are metrically subregular at
(0, 0) with modulus κ as well. Taking into account that (ũt, ṽt) solves (41), we can copy the
arguments from part (a) with TD(F (x̄)) replaced by TD(ν̄t)(F (x̄)) to show the existence of
ût ∈ ∇F (x̄)−1TD(ν̄t)(F (x̄)) with 〈∇f(x̄), ût〉 < 0 whenever xt is not accepted as approximately
M-stationary and t is sufficiently large. In doing so we also have to recognize that metric
regularity of u ⇒ ∇F (x̄)u − TD(ν̄t)(F (x̄)) can be replaced by the weaker property of metric
subregularity. Since ν̄t ∈Msub(x̄), ût is a feasible descent direction and for sufficiently small
α > 0 the projection of x̄+αût on F−1(D(ν̄t)) yields a point with a smaller objective function
value than x̄. This proves (d). In order to show (e) we can proceed in a similar way. Using the
same arguments as in part (a) we can prove the existence of a feasible direction ŵt ∈ TD(νt,l̄t )

with 〈∇f(x̄), ŵt〉 < 0, whenever t is sufficiently large and xt is not accepted as approximately
QM -stationary. Together with νt,l̄t ∈Msub(x̄) the assertion follows.

Acknowledgements

The research was supported by the Austrian Science Fund (FWF) under grants P26132-N25
and P29190-N32.

References

[1] E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete optimiza-
tion problems, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 466–486.

[2] M. Benko, H. Gfrerer, On estimating the regular normal cone to constraint systems
and stationary conditions, Optimization, DOI 10.1080/02331934.2016.1252915.

[3] M. Benko, H. Gfrerer, An SQP method for mathematical programs with van-
ishing constraints with strong convergence properties, 2016, submitted, preprint
http://www.numa.uni-linz.ac.at/publications/List/2016/2016-05.pdf

[4] S. Ceria, J. Soares, Convex programming for disjunctive convex optimization, Math.
Program. Ser. A, 86 (1999), pp. 595–614.

23



[5] A. L. Dontchev, R. T. Rockafellar, Implicit Functions and Solution Mappings,
Springer, Heidelberg, 2014.

[6] M. L. Flegel, C. Kanzow, A Fritz John approach to first order optimality condi-
tions for mathematical programs with equilibrium constraints, Optimization, 52 (2003),
pp. 277–286.

[7] M. L. Flegel, C. Kanzow, J. V. Outrata, Optimality conditions for disjunctive
programs with application to mathematical programs with equilibrium constraints, Set-
Valued Anal., 15 (2007), pp. 139–162.

[8] R. Fletcher, Practical methods of optimization, Vol. 2: Constrained optimization,
Wiley, Chichester, 1981.

[9] M. Fukushima, J. S. Pang, Complementarity constraint qualifications and simplified
B-stationary conditions for mathematical programs with equilibrium constraints, Comput.
Optim. Appl., 13 (1999), pp. 111–136.

[10] H. Gfrerer, First order and second order characterizations of metric subregularity and
calmness of constraint set mappings, SIAM J. Optim., 21 (2011), pp. 1439–1474.

[11] H. Gfrerer, D. Klatte, Lipschitz and Hölder stability of optimization problems and
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