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Abstract

This thesis deals with the higher-order Finite Element Method (FEM) for computational
electromagnetics. The hp-version of FEM combines local mesh refinement (h) and local
increase of the polynomial order of the approximation space (p). A key tool in the design and
the analysis of numerical methods for electromagnetic problems is the de Rham Complex
relating the function spaces H1(Ω), H(curl,Ω), H(div,Ω), and L2(Ω) and their natural
differential operators. For instance, the range of the gradient operator on H1(Ω) is spanned
by the space of irrotional vector fields in H(curl), and the range of the curl-operator on
H(curl,Ω) is spanned by the solenoidal vector fields in H(div,Ω).

The main contribution of this work is a general, unified construction principle for H(curl)-
and H(div)-conforming finite elements of variable and arbitrary order for various element
topologies suitable for unstructured hybrid meshes. The key point is to respect the de Rham
Complex already in the construction of the finite element basis functions and not, as usual,
only for the definition of the local FE-space. A short outline of the construction is as follows.
The gradient fields of higher-order H1-conforming shape functions are H(curl)-conforming
and can be chosen explicitly as shape functions for H(curl). In the next step we extend the
gradient functions to a hierarchical and conforming basis of the desired polynomial space.
An analogous principle is used for the construction of H(div)-conforming basis functions. By
our separate treatment of edge-based, face-based, and cell-based functions, and by including
the corresponding gradient functions, we can establish the local exact sequence property:
the subspaces corresponding to a single edge, a single face or a single cell already form an
exact sequence. A main advantage is that we can choose an arbitrary polynomial order on
each edge, face, and cell without destroying the global exact sequence. Further practical
advantages will be discussed by means of the following two issues.

The main difficulty in the construction of efficient and parameter-robust preconditioners for
electromagnetic problems is indicated by the different scaling of solenoidal and irrotational
fields in the curl-curl problem. Robust Schwarz-type methods for Maxwell’s equations rely
on a FE-space splitting, which also has to provide a correct splitting of the kernel of the curl
operator. Due to the local exact sequence property this is already satisfied for simple splitting
strategies. Numerical examples illustrate the robustness and performance of the method.

A challenging topic in computational electromagnetics is the Maxwell eigenvalue problem.
For its solution we use the subspace version of the locally optimal preconditioned gradient
method. Since the desired eigenfunctions belong to the orthogonal complement of the gra-
dient functions, we have to perform an orthogonal projection in each iteration step. This
requires the solution of a potential problem, which can be done approximately by a couple
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of PCG-iterations. Considering benchmark problems involving highly singular eigensolutions,
we demonstrate the performance of the constructed preconditioners and the eigenvalue solver
in combination with hp-discretization on geometrically refined, anisotropic meshes.

ii



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Methode der Finiten Elemente (FEM)
höherer Ordnung zur Simulation elektromagnetischer Feldprobleme. Die hp-Version der
FEM kombiniert lokale Netzverfeinerung (h) und lokale Erhöhung des Polynomgrades
des Approximationsraumes (p). In der analytischen wie auch numerischen Behandlung
elektromagnetischer Probleme spielt die exakte de Rham Folge der Funktionenräume H1(Ω),
H(curl,Ω), H(div,Ω), L2(Ω) eine wesentliche Rolle: So ist zum Beispiel das Bild des
Gradienten-Operators von H1(Ω) der Raum der rotationsfreien Funktionen in H(curl,Ω) und
das Bild des Rotations-Operators von H(curl,Ω) der Raum der divergenzfreien Funktionen
in H(div,Ω).

Der wesentliche Beitrag dieser Arbeit ist eine einheitliche Konstruktionsmethode für
H(curl)-konforme und H(div)-konforme Finite Elemente beliebiger und variabler Ordnung
für unterschiedlichen Elementgeometrien auf unstrukturierten hybriden Vernetzungen. Ein
wichtiger Punkt dabei, ist die exakte de Rham Folge bereits in der Konstruktion der Basis-
funktionen höherer Ordnung zu berücksichtigen und nicht, wie üblich, nur in der Definition
der globalen diskreten Räume. Kurz zur Konstruktion: Gradientenfelder von H1-konformen
hierarchischen Basisfunktionen höherer Ordnung sind H(curl)-konform und können daher
explizit als H(curl)-Basisfunktionen gewählt werden. Im nächsten Schritt werden die
Gradientfunktionen zu einer hierarchischen und konformen Basis für den gewünschten Poly-
nomraum vervollständigt. Das analoge Prinzip wird auch zur Konstruktion H(div)-konformer
Finiter Elemente angewendet. Die hierarchische Konstruktion der Basisfunktionen impliziert
ein natürliches Raumsplitting in den globalen Raum der Ansatzfunktionen niedrigster
Ordnung und in lokale Kanten-, Flächen- und Zellen-basierte Räume der Ansatzfunktionen
höherer Ordnung. Durch die spezielle Wahl der Ansatzfunktionen gilt eine exakte de Rham
Folge auch auf den lokalen Teilräumen - man spricht von lokalen exakten Folgen. Ein
wesentlicher Vorteil ist, dass der Polynomgrad auf jeder einzelnen Kante, Fläche und Zelle
des FE-Netzes beliebig variieren kann, ohne die globale exakte Sequenz zu zerstören. Weitere
praktische Vorteile werden anhand der folgenden Beispiele genauer diskutiert.

Die Herausforderung in der Konstruktion von effizienten und Parameter-robusten Vorkon-
ditionierern für curl-curl-Probleme liegt in der richtigen Behandlung des nicht-trivialen
Kerns des curl-Operators. Die lokale Zerlegung (lokale exakte Sequenz) des FE-Raumes
höherer Ordnung garantiert auch eine korrekte Zerlegung des Kerns. Dadurch wird bereits
für einfache Schwarz Vorkonditionierer die notwendige Robustheit im Parameter erzielt.
Numerische Beispiele demonstrieren Robustheit und Performance der Methode.

Die Lösung von Maxwell Eigenwertproblemen erfolgt mittels simultaner inexakter inverser
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Iteration und deren Beschleunigung durch die vorkonditionierte konjugierte Gradientenme-
thode (Locally Optimal Block PCG-Methoden). Da die Eigenfunktionen auf dem orthogo-
nalen Komplement der Gradientfunktionen gesucht werden, ist in jedem Iterationsschritt ei-
ne orthogonale Projektion erforderlich. Das entspricht der Lösung eines Potentialproblems
und kann durch einige PCG-Iterationen näherungsweise durchgeführt werden. Anhand ei-
nes Benchmark-Problems mit singulären Eigenfunktionen werden Vorkonditionierer und Ei-
genwertlöser in Verbindung mit hp-Diskretisierung auf geometrisch verfeinerten, anisotropen
Netzen getestet.
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6.3 Reduced Nédélec Basis and Special Gauging Strategies . . . . . . . . . . . . . . 128
6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 The magnetostatic problem . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4.2 The magneto quasi-static problem: A practical application . . . . . . . 133

7 The Maxwell Eigenvalue Problem 135

7.1 Formulation of the Maxwell Eigenvalue Problem . . . . . . . . . . . . . . . . . 135
7.2 Preconditioned Eigensolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.1 Preconditioned gradient type methods . . . . . . . . . . . . . . . . . . . 139
7.2.2 Block version of the locally optimal preconditioned gradient method . . 140

7.3 Preconditioned Eigensolvers for the Maxwell Problem . . . . . . . . . . . . . . 141
7.3.1 Exact and inexact projection onto the complement of the kernel function142
7.3.2 A preconditioned eigensolver for the Maxwell problem with inexact pro-

jection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

viii



7.3.3 Exploiting the local exact sequence property . . . . . . . . . . . . . . . 144
7.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.1 An h-p-refinement strategy . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.2 The Maxwell EVP on the thick L-Shape . . . . . . . . . . . . . . . . . . 145
7.4.3 The Maxwell EVP on the Fichera corner . . . . . . . . . . . . . . . . . . 149

A APPENDIX 151
A.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2 Basic Vector Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.3 Some more orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.3.1 Some Calculus for Scaled Legendre Polynomials . . . . . . . . . . . . . . 153
A.3.2 Some technical things . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography 154

Eidesstattliche Erklärung A1

Curriculum Vitae A3

ix



x



Chapter 1

Introduction

State of the Art

Electromagnetic processes are present everywhere in our daily life. Classical applications are
generators, transformers and motors, converting mechanical to electric energy and vice versa.
Wireless communication is based on electromagnetic waves in free space. Here, the design of
antennas is a sophisticated task. A fastly growing application field is optics. Optical fibers
allow the transport of light pulses over much longer distances than achieved by electric signals
through cables. Short light pulses are generated by laser resonators. Optical multiplexers
realized by photonic crystals have obtained much attraction over recent years.
All these applications are rather complex, hence for further technical developments and
optimization a deeper insight into electromagnetic processes is necessary.

Similar to many other physical and technical effects (such as solid and fluid mechanics, heat
transfer, quantum mechanics, geoscience, astrophysics, etc.) electromagnetic phenomena are
modelled by partial differential equations (PDEs). This is the basis for the mathematical
analysis and numerical treatment.

Only for very special problems can the solution of partial differential equations be done
analytically. This calls for numerical discretization techniques. The analysis of partial differ-
ential equations is commonly done within a variational framework. In the last fifty years, the
Finite Element Method (FEM) has been established as certainly the most powerful tool in
numerical simulation. This discretization technique is based on the variational formulation
of partial differential equations. The main advantages are its general applicability to linear
and nonlinear PDEs, coupled multi-physics systems, complex geometries, varying material
coefficients and boundary conditions. Furthermore, the method is based on a profound
functional analysis (cf. e.g. Ciarlet [35], Brenner-Scott [31], Braess [27]). In classical
(h-version) finite element methods we obtain convergence by global or local refinement of the
underlying mesh (h-refinement). The polynomial order of approximation on each element is
fixed to a low degree, typically p = 1 or p = 2. The error in the numerical solution decays
algebraically in the number of unknowns.
The p-version of the finite element method (see Babuska-Szabo [87]) allows an increase of
the polynomial order, while keeping the mesh fixed. In case of analytic solutions one obtains
exponential convergence, but in case of lower regularity the convergence rate reduces again
to an algebraic one. Hence, in the presence of singularities, which occur very frequently in
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2 CHAPTER 1. INTRODUCTION

practical problem settings, not much is gained compared with the h-version FEM. However,
by a proper combination of (geometric) h-refinement and local increase of the polynomial
degree p – the hp-method – exponential convergence can be regained for piecewise analytic
solutions involving singularities, e.g. due to re-entrant corners and edges. This is the
typical situation in practical applications. For pioneering works on hp-version FEM see
Babuska-Guo [10] and Babuska-Suri [11]. We refer also to the books by Schwab [83],
Melenk [68], and Karniadakis [60]. The recent textbook Demkowicz [42] copes also with
the aspects of practical implementation and automatic generation of hp-meshes. For the
successfull application to mechanics see e.g. Szabo et al. [86].

In linear as well as nonlinear time-dependent, time-harmonic, and magneto-static regimes of
Maxwell’s equations the general curl-curl problem

Find u ∈ V such that

∫

Ω
µ−1 curlu · curlv dx+

∫

Ω
κu · v dx =

∫

Ω
j · v dx ∀v ∈ V

appears, where u is the magnetic vector potential.
Using standard continuous finite elements in the discretization of electromagnetic problems
fails. In the presence of re-entrant corners and edges, the method may even converge to a
wrong solution (cf. Costabel-Dauge [38]). Moreover, in eigenvalue computation, using
standard elements is one source of spurious (non-physical) eigenvalues, which pollute the
computed spectrum (see Bossavit [26], Boffi et al. [21]).
The natural function space for the solution of the curl-curl problem is the vector-valued space
H(curl), which has less smoothness than H1, namely only tangential continuity over material
interfaces. This property goes along with the physical nature of electric and magnetic fields.
The classical H(curl)-conforming finite element spaces have been introduced in Nédélec

[72], [73].

The adaption of hp-methods to electromagnetic problems is not straightforward. Investi-
gations in this direction started only in the last decade, and the numerical analysis is not
complete, especially in 3D. A key tool in the design of numerical methods for Maxwell’s equa-
tions and their numerical analysis is the de Rham Complex (cf. Bossavit [22], [25] and more
recently Arnold et al. [8],[9]), which relates function spaces and their natural differential
operators, and reads in 3D:

R
id−→ H1(Ω)

∇−→ H(curl,Ω)
curl−→ H(div,Ω)

div−→ L2(Ω)
0−→ {0}.

The sequence is exact in the following sense: the range of an operator in the sequence coincides
with the kernel of the next operator.
The de Rham Complex perfectly fits to electromagnetics: in a variational setting H1(Ω) is the
natural function space for the electrostatic potential, the magnetic and the electric fields lie
in H(curl,Ω) and their fluxes belong to H(div,Ω). For a proper conforming hp-finite element
method, the discrete spaces have to form an analogous exact sequence.
High-order p-version elements for H(curl) are analyzed for constant order p in Monk [69].
Variable order elements are proposed for the first time in Demkowicz-Vardapetyan [45].
The consideration of hp-finite elements, allowing variable order approximation, on the basis
of the de Rham Complex is presented in Demkowicz et al. [44] and Demkowicz [41].
A first general construction strategy for tetrahedral shape functions on unstructured grids
was recently introduced by Ainsworth-Coyle [2] for the whole sequence of H1-, H(curl)-,
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H(div)- and L2-conforming spaces (for arbitrary but uniform p). For the formulation of finite
elements in the context of differential forms we refer to Bossavit [24],[25] and Hiptmair [54].
The construction of H(curl)-conforming finite elements is also an active research area in the
engineering community, cf. Lee [66], Webb-Forghani [96], Webb [95], and Sun et al. [85].

Due to the non-trivial, large kernel of the curl-operator - the gradient fields of H1(Ω) - not
only the convergence analysis but also the iterative solution of discretized Maxwell problems
becomes very challenging. The main difficulty stems from the different scaling of solenoidal
and irrotational fields in the curl-curl problem. This leads to very ill-conditioned system
matrices and standard Schwarz-type preconditioners like multigrid/multilevel techniques yield
only bad convergence behavior. In this context, we want to mention the pioneering works on
robust preconditioning in H(curl) and H(div) by Arnold et al. [7] and Hiptmair [55],
revisited and unified in Schöberl [78]. The difficulties can be resolved by a careful choice
of the Schwarz smoothers, in particular the space splitting has to respect the kernel of the
curl-operator. Further works on this topic are Toselli [89], Hiptmair-Toselli [58], Beck

et al. [16], and Pasciak-Zhao [75].

A rather complete overview on finite element methods for Maxwell’s equations can be found
in Monk [70]; for another comprehensive survey we refer to Hiptmair [56]. The topic
of hp-methods for Maxwell’s equations, including implementational aspects, is covered by
Demkowicz [42].

On this work

In this work we present a general, unified construction principle for H(curl)- and H(div)-
conforming finite elements of variable and arbitrary order. In order to allow for geometric
h-refinement, we have to consider hybrid meshes, involving hexahedral, tetrahedral, and pris-
matic elements. The innovation of our framework is to respect the exact de Rham sequence
already in the construction of the FE basis functions. We shortly outline the main points of
the construction for H(curl):

• We start with the classical lowest-order Nédélec shape functions. Note that the lowest-
order space always has to be treated separately by applying h-version methods, e.g. also
in linear solvers.

• We take the gradients of edge-based, face-based and cell-based shape functions of the
higher-order H1-conforming FE-space.

• Finally, we extend these sets of functions to a conforming basis of the desired polynomial
space.

By our separate treatment of the edge-based, face-based, and cell-based functions, and by
including the corresponding gradient functions, we can establish the following local exact
sequence property: the subspaces corresponding to a single edge, a single face or a single cell
already form an exact sequence.
This construction has several practical advantages:

• We can choose an arbitrary polynomial order on each edge, face, and cell independently,
without destroying the global exact sequence property, see Section 5.4.
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• A correct Schwarz splitting can be constructed by simple strategies, and only the lowest-
order space has to be treated globally or by standard h-methods. The parameter-
robustness is implied automatically by the local sequence property, see Section 6.2.4.

• Since gradients are explicitly available, we can implement gauging strategies by sim-
ply skipping the corresponding degrees of freedom (Reduced Basis Gauging). We will
illustrate in numerical tests that this approach tremendously improves the condition
numbers and solving times, see Section 6.4.1.

• Discrete differential operators, for instance used within the projection for preconditioned
eigenvalue solvers, can be implemented very easily, see Section 7.3.3.

The full family of finite element shape functions for all sorts of element topologies, covering
also anisotropic polynomial degrees and regular geometric h-refinement towards pre-defined
corners, edges and faces, has been implemented in the open-source software package Net-
gen/NgSolve

http://www.hpfem.jku.at/.

Other resources for higher-order Maxwell FE-packages are e.g. EMSolve (CASC, Lawrence
Livermore National Lab.), 3Dhp90 by L. Demkowicz (ICES University of Texas Austin,
Rachowicz-Demkowicz [76]), Concepts by P. Frauenfelder (ETH Zürich).

The thesis is organized as follows.
In Chapter 2, we present the Maxwell equations. We pay special attention to scalar and
vector potential formulations, and consider time-harmonic, quasi-static, and magneto-static
regimes in more detail. All these problems involve the abstract parameter-dependent curl-
curl-problem, mentioned before.
The first part of Chapter 3 recalls the natural function spaces and their properties. We
formally introduce the de Rham Complex, which is a guiding principle through the whole
work. We conclude this chapter with presenting variational formulations of the electromag-
netic problems introduced in Chapter 2.
Chapter 4 briefly overviews the basic concepts of conforming low-order finite element meth-
ods, including the non-standard function spaces H(curl,Ω) and H(div,Ω).
Chapter 5 contains the main contribution of this thesis: We present in detail our construction
of high-order FE-shape functions for the space H1(Ω), H(curl,Ω), H(div, (Ω) and L2(Ω) and
show that the local exact sequence property, mentioned above, holds.
Chapter 6 deals with parameter-robust Schwarz-type preconditioners for H(curl). We prove
that parameter-robust solvers are obtained also even by simple Schwarz-type smoothers, if
the presented conforming high-order FE-basis is used. In the second part the concept of re-
duced basis gauging is introduced. Finally, we present numerical tests for magneto-static and
magneto-quasi-static problems, illustrating the benefits of our methods.
Chapter 7 is concerned with the numerical solution of Maxwell eigenvalue problems. We in-
vestigate preconditioned eigensolvers and their combination with (in)exact projection meth-
ods. The performance of the eigensolver in combination with reduced-basis preconditioners is
demonstrated by the solution of benchmark problems.



Chapter 2

Electromagnetics: Fundamental
equations and formulations

2.1 Maxwell’s equations

Classical electromagnetics treats electric and magnetic macroscopic phenomena including their
interaction. Electric fields which vary in time cause magnetic fields and vice versa. James
Clark Maxwell described these phenomena in his ”Treatise on Electricity and Magnetism” in
1862.

The classic theory mainly involves the following four time- and space-dependent vector fields:

• the electric field intensity denoted by E [V/m],

• the magnetic field intensity H [A/m],

• the electric displacement field (electric flux) D [As/m2],

• the magnetic induction field (magnetic flux) B [V s/m2].

The sources of electromagnetic fields are electric charges and currents described by

• the charge density ρ [As/m3]) and

• the current density function j [A/m2],

where the SI units denotes meter (m), seconds (s), Ampére (A), Volt (V ).

2.1.1 The fundamental equations

The basic relations of electromagnetics are based on experiments and laws by Faraday,
Ampére, and Gauß. We start here with integral formulation of the main governing equa-
tions, which facilitates a physical interpretation. In the following we refer by A to a surface
and by V to a volume in R

3. The corresponding boundaries are denoted by ∂V with outer
unit normal vector n, and ∂A with unit tangential vector τ .

5
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indj

δΒ
δ t j

H

Figure 2.1: Faraday’s and Ampére’s law

Faraday’s induction law describes how the change (in time) of the magnetic flux through
a surface A induces a voltage in the loop (∂A) and hence gives rise to an electric field E:

∫

A

∂B

∂t
· n dA+

∫

∂A
E · τ ds = 0. (2.1)

Since there exist no magnetic charges (monopoles), the magnetic field is solenoidal (source-
free). Moreover, magnetic field lines are closed. The magnetic flux B through the surface of
a bounded volume V is conservative, i.e.

∫

∂V
B · n dA = 0. (2.2)

Ampére’s law states how electric currents through a surface A induce a magentic field
as illustrated in Figure 2.1. The integral of the magnetic field along a closed path (∂A) is
proportional to the current through the enclosed surface, i.e.,

∫

∂A
H · τ ds =

∫

A
j · n dA.

Maxwell generalized this law by adding the displacement current density ∂D
∂t , which yields

∫

∂A
H · τ ds =

∫

A

∂D

∂t
· n dA+

∫

A
j · n dA. (2.3)

Gauß’ law describes how electric charges give rise to an electric field. It has the form

∫

∂V
D · n dA =

∫

V
ρ dx. (2.4)

The electric flux D through the boundary of a volume V is proportional to the enclosed
volume charges.

Applying Gauß’ and Stokes’ theorems

∫

V
divB dx =

∫

∂V
B · n dA and

∫

A
curlH · n dA =

∫

∂A
H · τ ds
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to the integral equations (2.1)-(2.4) yields the Maxwell equations in the following (classical)
differential form:

∂B

∂t
+ curlE = 0, (2.5a)

divB = 0, (2.5b)

∂D

∂t
− curlH = −j, (2.5c)

divD = ρ. (2.5d)

The conservation of charges

An important physical property can be derived by taking the divergence of equation (2.5c) in
combination with equation (2.5d), which yields the continuity equation

div j +
∂ρ

∂t
= 0. (2.6)

By integration over a volume V and application of Gauß’ theorem we see that this equation
describes the conservation of charges. This can be seen from the Integral formulation, namely

∫

∂V
j · n dA+

∂

∂t

∫

V
ρ dx = 0, (2.7)

which states that the total charge in a volume V changes according to the net flow of electric
charges across its surface ∂V .

2.1.2 Material properties

The system (2.5) is still undertetemined, i.e., it provides only 8 equations for 12 unknowns.
The gap is closed by including appropriate constitutive laws. First, the magnetic and electric
field intensities are related with the corresponding fluxes by

D = ǫE, (2.8a)

B = µH. (2.8b)

Furthermore, in conducting materials the electric field induces a conduction current with
density jc, which is given by Ohm’s law

j = jc + ji with jc = σE, (2.9)

where j and ji denote the total and the impressed current densities, respectively. As a special
class of conduction currents we want to mention eddy currents, which arise in metallic bodies
if excited by varying magnetic fields.

Hence, the electric and magnetic properties of a medium are characterized by

• the electric permittivity ǫ [As/V m],

• the magnetic permeability µ [V s/Am],

• the electric conductivity σ [As].
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In general, the three parameters are tensors depending on space and time, and on the
electromagnetic fields themselves. However, in isotropic media they simplify to scalars, and
in so-called linear materials, they are independent of the field intensities. We will consider
only isotropic, linear materials in this thesis, and moreover assume the material parameters
to be time independent.

The values of the parameters in vacuum are

ǫ0 ≈ 8.854 · 10−12 Fm−1, µ0 = 4π · 10−7 Hm−1, σ0 = 0.

ǫ0 and µ0 are further connected by 1√
ǫ0µ0

= c, where c denotes the speed of light.

2.1.3 Initial, boundary and interface conditions

Although the number of equations now coincides with the number of unknowns, the system
of differential equations (2.5) is not yet complete. We have to impose initial and bound-
ary conditions as well as interface conditions between different materials where the material
parameters jump. Below we will mainly focus on time-harmonic or static settings, and we
therefore skip the treatment of initial conditions at this point. We only remark that applying
the divergence to Faraday’s and Ampére’s law yields

∂

∂t
divB(x, t) = 0 and

∂

∂t
divD(x, t) = −div j(x, t).

Hence, if the magnetic field is solenoidal (divB = 0) at the initial time, then it is solenoidal
for any time. The second relation together with Gauß’ law (2.5d) yields that the change of
the charge density is given by the electric current density j, see also the continuity equation
(2.6).

Interface conditions

Assume a partition of the domain V ⊂ R
3 into two disjoint domains V1, V2 such that

V = V 1 ∪ V 2. By Γ := V1 ∩ V2 we denote the common interface, and by nΓ we refer to
the unit normal vector pointing from V2 to V1. In the following we derive the continuity
requirements at interfaces by Gauß’ theorem and Stokes’ theorem assuming that the involved
functions, domains and surfaces are sufficiently smooth.

From equation (2.2) we obtain

0 = −
∫

∂V
B · n dx+

∫

∂V1

B1 · n dx+

∫

∂V2

B2 · n dx

= −
∫

∂V1∩Γ
B1 · nΓ dA+

∫

∂V2∩Γ
B2 · nΓ dA

=

∫

Γ

[
B · nΓ

]
dA,

where B1 := B|V1
, B2 := B|V2

, and
[
B · nΓ

]
= (B2 −B1) · nΓ denotes the jump over the

interface Γ. Since the above formula is valid for arbitrary subsets of V , we obtain that the
normal component of the induction field has to be continuous over the interface, which reads
as [

B · n
]
Γ

= 0, (2.10)
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where now n denotes a normal vector to the surface (interface) Γ.

A similar argument works for the electric flux density D, but here we also take surface
charges ρS on the interface into account. Hence, the total electric charge in V is given by∫
V ρ dx =

∫
V1
ρ dx+

∫
V2
ρ dx+

∫
Γ ρS dA, and via (2.5d) we obtain

[
D · nΓ

]
= ρS . (2.11)

Next we derive interface conditions for the electric field E. Let the interface Γ be as above
and A denote an arbitrary plane surface intersecting the interface Γ along a line L := A ∩ Γ.
Let A1 := A ∩ V1, A2 := A ∩ V2 be the two disjoint parts of A such that A1 ∪ A2 = A and
A1 ∩A2 = L. Considering Faraday’s law (2.1) in integral form for A,A1, A2, we see that

0 = −
∫

∂A
E · τ ds+

∫

∂A1

E1 · τ 1 ds+

∫

∂A2

E2 · τ 2 ds

=

∫

∂A1∩Γ
E1 · τ 1 ds+

∫

∂A2∩Γ
E2 · τ 2 ds

=

∫

L

[
E · τL

]
ds

with E1 := E|A1
and E2 := E|A2

and τL = τ 1 = −τ 2. Since A was arbitrary, we conclude
that the tangential components of the electric field have to be continuous over the interface
Γ, which is equivalent to [

E × nΓ

]
= 0, (2.12)

where as before n denotes a normal to the surface Γ.

Similar arguments can be applied for the magnetic field H. Taking into account also the
possibility of impressed surface currents jΓ,i on the interface, we obtain

[
H × nΓ

]
= −jΓ,i. (2.13)

We conclude this section on interface conditions with some remarks on those components of
the electromagnetic fields that were not considered above: It can be shown easily that the
normal components of fluxes and the tangential components of the field intensities may be
discontinuous when the material parameters jump across the interface. To see this, we assume
for simplicity ρS = 0 and jS,i = 0 on the interface Γ. Then substituting the constitutive laws
(2.8a), (2.8b) and (2.9) into the above (2.10)-(2.13) yields

[
E · nΓ

]
6= 0,

[
H · nΓ

]
6= 0,

[
D × nΓ

]
6= 0, and

[
B × nΓ

]
6= 0

in general, namely if
[
µ
]
6= 0 and

[
ǫ
]
6= 0 across the interface Γ.

Boundary conditions

In the sequel we present several frequently used boundary conditions for the normal or the
tangential components of the electromagnetic fields. We focus here on standard boundary con-
ditions of Dirichlet-, Neumann- or Robin-type. For a detailed review of of classical boundary
conditions, we refer to B́ıró [18].
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Perfect electric conductors (PEC) Let ΩPEC denote a perfectly conducting region with
σ ∼ ∞. Then Ohm’s law j = σE implies E|ΩPEC

∼ 0 as long as the currents j are bounded.

Hence, the interface condition (2.12) justifies to substitute perfectly conducting regions by
the PEC-boundary condition for the electric field, i.e., we assume

E × n = 0 on ΓPEC. (2.14)

The PEC-wall is in particular suitable for modeling adjacent metallic domains, e.g., metallic
electrodes.

Perfect magnetic conductors (PMC) model materials with very high permeability,
where one can assume a vanishing magnetic field HΩ1 = 0. The interface condition (2.13)
then implies that an adjacent PMC-region can be substituted by the boundary condition

H × n = 0 on ΓPMC (2.15)

Prescribed surface charges ρS on the boundary Γ are introduce by a condition

D · n = −ρS on Γ (2.16)

on the normal electric flux, cf. the interface condition (2.11).

Impressed surface currents jΓ,i yield a condition on the normal component of the mag-
netic field at the boundary Γ in analogy to the interface condition (2.13), i.e.

H × n = jΓ,i on Γ. (2.17)

Impedance boundary conditions It is well-known that in highly conducting materials,
eddy currents are concentrated near the surface. If one is interested in the field intensities
in regions adjacent to highly (but still finitely) conducting materials, the reflection at the
interface can be modeled by impedance boundary conditions. These are Robin-type boundary
conditions relating the magnetic and electric fields in the following form:

H × n− κ(E × n) × n = 0 on Γ, (2.18)

where κ is called the impedance parameter.

2.2 Vector and scalar potentials

Let Ω be a bounded, simply connected domain in R
3. Then due to divB = 0, and by

curl∇ϕ = 0 and div curlv = 0, we know that B can be expressed by a vector potential
A(x, t), i.e.,

B = curlA.

Subsituting into Faraday’s law (2.5a) yields

curl

(
E +

∂A

∂t

)
= 0,
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which in turn implies the existence of a scalar potential ϕ(x, t) such that

E = −∇ϕ− ∂A

∂t
.

Hence, Ampére’s law (2.3) can be expressed by

curlµ−1 curlA + σ
∂A

∂t
+ ǫ

∂2A

∂t2
= ji − σ∇ϕ− ǫ

∂

∂t
∇ϕ. (2.19)

Note, that for any arbitrary scalar function ψ the potentials

Ã = A + ∇ψ
ϕ̃ = ϕ− ∂ψ

∂t

provide the same magnetic and electric fields, since B(A, ϕ) = B(Ã, ϕ̃) and E(A, ϕ) =
E(Ã, ϕ̃). By choosing a vector potential A∗ such that

A∗ = A +

∫ t

t0

∇ϕdt,

we obtain E = −∂A∗

∂t and curlA = curlA∗, and the following vector potential formulation of
Maxwell’s equations

curlµ−1 curlA∗ + σ
∂A∗

∂t
+ ǫ

∂2A∗

∂t2
= ji, (2.20)

which is the type of equation whose numerical solution we will investigate in detail in this
theses. Once A∗ is determined, the electric and the magnetic fields can be calculated by
B = curlA∗ and E = −∂A∗

∂t .

In analogy to (2.12), the continuity requirements of vector potentials across an interface Γ
between are given by

[A∗ × n]Γ = 0.

A perfect electric conducting (PEC) wall is modeled by homogenous essential boundary con-
dition for the vector potential A∗, cf. (2.14), i.e.,

A∗ × n = 0 on ΓPEC. (2.21)

A PMC wall is described by natural boundary conditions

µ−1 curlA∗ × n = 0 on ΓPMC. (2.22)

Compare to (2.15), respectively by

µ−1 curlA∗ × n = −jΓ,i on Γ (2.23)

if impressed surface currents jΓ,i are included.
As already mentioned above, the introduced potentials A∗ and φ are not unique. Uniqueness
can be enforced by imposing additional conditions, which is called gauging. In case of constant
coefficients the so-called Coulomb-gauge is commonly used, where

div A∗ = 0

is required together with the additional boundary condition A∗ · n = 0. Furthermore, the
impressed currents are assumed to be divergence free, i.e. div ji = 0.
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2.3 Special electromagnetic regimes

In many practical applications one does not have to deal with the full system of Maxwell’s
equations (2.5a)-(2.5d). Taking into account the physics of the considered problem, the system
(2.5) can often be simplified. We will distinguish between the time-harmonic case, slowly and
fast varying electromagnetic fields, and the static regime. For a detailed overview of the most
commonly investigated problem classes, we refer to Van Rienen [92], B́ıró [18], and in the
special case of high-frequency scattering problems to Monk [70].

2.3.1 Time-harmonic Maxwell equations

The investigation of a time harmonic setting is interesting for two reasons: First, the Fourier
transformation in time can be applied to the nonstationary equations, and a general solution
can be obtained afterwards by superposition of the solutions at the several frequencies. Sec-
ondly, if a system is excited with a signal of a single frequency, then a single-frequency analysis
is appropriate. We assume the electromagnetic fields E, D, H and B to be time-harmonic,
i.e. of the form

u(x, t) = Re(û(x)eiωt), (2.24)

where the hat accounts for complex-valued functions and Re denotes the real part of complex
numbers. To stay consistent we assume also the charge density ρ, as well as the current
density j to be of the form (2.24). For ease of notation, we will omit the hat marker in the
sequel, e.g., we denote Ê by E and so on. The transformation into the frequency domain
implies complex-valued fields, but has the advantage that the derivative with respect to time
is replaced by a simple multiplication operator, i.e.,

∂u

∂t
(x, t) → iωu(x, t).

By this transformation, the time-harmonic Maxwell equations can be stated as

curlE(x) + iωµH(x) = 0, (2.25a)

divµH(x) = 0, (2.25b)

curlH(x) − (iωǫ+ σ)E(x) = ji(x), (2.25c)

div ǫE(x) = ρ(x). (2.25d)

The continuity equation (2.6) transforms to

iωρ(x) + div j(x) = 0. (2.26)

Thus we can easily eliminate the charge density in a time-harmonic setting. The vector
potential formulation (2.20) then reads

curlµ−1 curlA + iωσA − ω2ǫA = ji (2.27)

where we used E = −iωA and B = curlA. Furthermore, the mixed impedance boundary
condition (2.18) on ΓR ⊂ ∂Ω is transformed into a Robin-type condition of the form

µ−1 curlA × n+ κiωA × n = 0 on ΓR.
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2.3.2 Magneto-Quasistatic Fields: The Eddy-Current Problem

A special class of time-dependent electromagnetic problems arises, when at least one of the
electromagnetic fields varies only slowly in time. In so-called quasistatic models the time-
derivative of the magnetic flux or the electric flux is therefore neglected. We focus here
on magneto-quasistatic problems, which are suitable for low-frequency applications like, e.g.,
electric motors, relays and transformers. In this case, the magnetic induction is the dominant
factor, and the contribution of the displacement currents is negligible in comparison to the
currents, i.e. |∂D

∂t | ≪ |j|. We can therefore neglect the contribution of the displacement
currents and use Ampére’s law in its original form to obtain

∂B

∂t
+ curlE = 0,

divB = 0,

curlH = j,

divD = ρ.

Note that a coupling between magnetic and electric fields occurs only in conducting materials.
The quasi-static electromagnetic equations in vector potential formulation are given by

σ
∂A

∂t
+ curlµ−1 curlA = ji (2.28)

with B = curlA and E = −∂A
∂t ; the conduction current is given by jc = −σ ∂A∂t . The time

harmonic magneto-quasistatic vector potential formulation reads

curlµ−1 curlA + iωσA = ji. (2.29)

2.3.3 Static field equations

If the electromagnetic field is generated only by static or uniformly moving charges, we can
assume all fields to be time-independent. We can skip the terms involving time-derivatives in
Faraday’s and Ampére’s law, namely (2.5a) and (2.5c).
Electrostatic fields can only occur in non-conducting regions (σ = 0). Hence the magnetic
and the electric fields are decoupled and we can deduce two independent systems.

The electrostatic problem is described by the system

curlE = 0,

divD = ρ,

D = ǫE.

By introducing the scalar potential φ such that E = −∇φ, the electrostatic problem simplifies
to the Poisson-equation

−div(ǫ∇φ) = ρ in Ω. (2.30)

Note that the potential φ is defined only up to constants. Suitable boundary conditions can
be derived from the boundary conditions for the electric field and its flux. Given surface
charges D · n = −ρS are introduced as a natural boundary condition

ǫ
∂φ

∂n
= −ρS on ΓN . (2.31)
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In case of an adjacent perfect electric conductor (PEC) we require ∇φ × n = 0, which is
satisfied if the potential is constant on each connected part ΓPEC,i of the PEC boundary, i.e.,

φ = Ui on ΓPEC,i. (2.32)

Here, the constants Ui =
∫
Γi
E · n dA are the applied voltages at the boundary ΓPEC,i.

The magnetostatic problem simplifies to

curlH = ji,

divB = 0,

B = µH.

Applying the divergence on the first equation shows that impressed currents have to be di-
vergence free, i.e.

div ji = 0, (2.33)

in order to provide consistency. We again introduce a vector potential A satisfying B =
curlA. Then the magnetostatic vector potential problem reads

curlµ−1 curlA = ji. (2.34)

As outlined above, the vector potential A of the magnetostatic problem is only defined up to
gradient functions. Uniqueness can be enforced, e.g., by Coulomb Gauge, where we addition-
ally require

div A = 0 in Ω. (2.35)

Essential boundary conditions

A× n = 0 on ΓB, (2.36)

imply that the magnetic flux through the boundary is zero, i.e. B ·n = 0. Impressed surface
currents (H × n = −jS) are introduced by natural boundary conditions

µ−1 curlA × n = −jS on ΓH (2.37)

The homogeneous condition µ−1 curlA×n = 0 models magnetic symmetry planes or adjacent
perfectly magnetic conduction regions. We note that in the case of multiple non-connected
parts of ΓH , one has to pose some further integral conditions for the magnetic flux over
each several part of ΓH or the magnetic voltage between these parts. For details we refer to
B́ıró [18].

2.4 The general curl-curl problem

The time-harmonic and magneto-static problems discussed in the previous section have a
common structure, which suggest to treat them - analytically and numerically - in a com-
mon framework. Note that similar problems also arise in the solution of Maxwell eigenvalue
problems (see Chapter 7), in the solution of time dependent problems in each time step of
a numerical integration scheme, but also in the solution of nonlinear problems via Newton’s
method. The general structure is that of the the following curl-curl problem:
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Problem 2.1. Let Ω ⊂ R
3 a bounded domain with boundary ∂Ω = ΓD ∪ ΓN . Find u such

that

curlµ−1 curlu+ κu = f in Ω ⊂ R
3,

(u× n) × n = gD on ΓD,

µ−1 curlu× n = gN on ΓN .

The parameter κ is defined problem-depending as

• κ = 0 for the magnetostatic problem (2.34),

• κ = iωσ − ǫω2 ∈ C for the time-harmonic Maxwell equations in the vector potential
formulation (2.27),

• κ = iωσ for quasi-static problems (2.29) in case of low-frequency applications,

• κ = −ǫω2 ∈ R
− for high-frequency applications (electromagnetic waves in cavities).

For the sake of simplicity we assume below that the paremeters µ, ǫ, σ are scalars, i.e. the
underlying material is isotropic.

In order to be able to treat the various problems in this common framework, we have to focus
on numerical methods that are robust with respect to the parameter κ. This will be one of
the key aspects in our analysis.
In order to show applicability in all regimes of κ values, we will investigate magneto-static,
time-harmonic quasistatic (low-frequency), and eigenvalue problems in more detail.
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Chapter 3

Function Spaces and Variational
Formulations

In the previous chapter we discussed several problems governed by Maxwell’s equations. The
electrostatic problem resulted in a Poisson-type problem

−div(κ∇ϕ) = f + b.c. (3.1)

for the scalar potential ϕ. In time-harmonic formulations as well as in time-stepping schemes
we obtained curl-curl problems of the form

curlµ−1 curlu+ κu = j + b.c., (3.2)

with a vector field u, a given current density j, permeability µ and a problem depending
parameter κ ∈ C.

In this chapter we introduce the natural function spaces for a variational formulation of
the partial differential equations under consideration, i.e., H1(Ω), H(curl,Ω), and H(div,Ω),
and provide a short overview of definitions and basic results on weak derivatives and trace
operators. We then discuss in some detail properties of the involved differential operators,
namely the gradient, the divergence and the curl operator, and show that the functions spaces
are naturally connected via the differential operators. This leads to the formalism of the de
Rham Complex, which is an important property of the function spaces on the continuous
level that should also be conserved for finite dimensional approximations. Hence de Rham
complexes will play an important role in our construction of finite element spaces as well as
design and analysis of preconditioners and error estimators presented below. Finally, we recall
the basic existence and uniqueness results for variational problems and derive the existence
and uniqueness of solutions to the electromagnetic problems under consideration.

3.1 Vector-valued Function Spaces, Trace Operators and
Green’s formulas

We start with the definition and basic properties of the operators involved in the various
formulations of Maxwell’s equations presented so far: Let Ω ⊂ R

d, d = 2, 3 be a domain. The
gradient operator of a scalar function ϕ is defined as

∇ϕ :=

(
∂ϕ

∂x1
, ...,

∂ϕ

∂xd

)
(3.3)

17
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and the divergence of a vector v = (v1, ..., vd) is defined as

div v = ∇ · v :=

d∑

i=1

∂vi
∂xi

. (3.4)

In two dimensions, there are two definitions of the curl-operator. For Ω ⊂ R
2, the vector curl

operator of a scalar function q is defined as

Curl q := (
∂q

∂x2
,− ∂q

∂x1
)T , (3.5)

and the scalar curl operator acting on a vector function v = (v1, v2) as

curlv = ∇× v :=
∂v2
∂x1

− ∂v1
∂x2

. (3.6)

For Ω ⊂ R
3 the curl operator of a vector function v = (v1, v2, v3) is defined as

curl v = ∇× v :=

(
∂v2
∂x3

− ∂v3
∂x2

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v1
∂x3

− ∂v3
∂x1

)T
. (3.7)

We next recall the definition of derivatives in the weak sense:

Definition 3.1 (Generalized differential operators).

1. For w ∈ L2(Ω) we call g = ∇w the (generalized) gradient of w, if there holds

∫

Ω
g · v dx = −

∫

Ω
w div v dx ∀v ∈

(
C∞

0 (Ω)
)3
.

2. For u ∈ (L2(Ω))3 we call c = curlu ∈
(
L2(Ω)

)3
the (generalized) curl of u, if there

holds ∫

Ω
c · v dx =

∫

Ω
u · curlv dx ∀v ∈ [C∞

0 (Ω)]3.

3. For q ∈
(
L2(Ω)

)3
we call d = div q ∈ L2(Ω) the (generalized) divergence of q, if there

holds ∫

Ω
d v dx = −

∫

Ω
q · ∇v dx ∀v ∈ C∞

0 (Ω).

The following function spaces will turn out to provide a natural setting for the investigation
of the PDEs discussed above.

Definition 3.2 (Function Spaces). Let us define the spaces

L2(Ω) := {u |
∫

Ω
u2 dx <∞}

H1(Ω) := {ϕ ∈ L2(Ω) |∇ϕ ∈ [L2(Ω)]3}
H(curl,Ω) := {v ∈ [L2(Ω)]3 | curlv ∈ [L2(Ω)]3}
H(div,Ω) := {q ∈ [L2(Ω)]3 | div q ∈ L2(Ω)}
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and the corresponding scalar products by

(u, v)0 =
∫
Ω uv dx

(ϕ,ψ)1 =
∫
Ω ∇ϕ · ∇ψ dx+ (ϕ,ψ)0

(u,v)curl =
∫
Ω curlu · curlv dx+ (u,v)0

(p, q)div =
∫
Ω divpdiv q dx+ (p, q)0

The induced norms are denoted by ‖ · ‖0, ‖ · ‖1, ‖ · ‖curl, and ‖ · ‖div.

We only mention that elements in the above spaces have to be understood as equivalence
classes, i.e., two functions are considered to be equal (belong to the same equivalence class)
if they coincide up to a set of zero measure. All the above spaces are Hilbert spaces when
equipped with the corresponding scalar products, in particular they are complete.

For the results of this section we need some conditions on the underlying domain Ω and its
boundary Γ := ∂Ω.

Definition 3.3 (Lipschitz-domain). The boundary of a domain Ω ⊂ R
3 is called Lipschitz-

continuous, if there exist a finite number of domains ωi, local coordinate systems (ξi, ηi, ζi),
and Lipschitz-continuous functions b(ξi, ηi) such that

• ∂Ω ⊂ ⋃ωi with ∂Ω ∩ ωi = {(ξi, ηi, ζi)|ζi = b(ξi, ηi)} ,

• Ω ∩ ωi = {(ξi, ηi, ζi)|ζi > bi(ξi, ηi)}.
Ω is then called a Lipschitz-domain.

The boundary ∂Ω of a Lipschitz-domain can be represented locally by the graph of bi and
Ω lies locally on one side of this graph. We want to mention that this definition allows
domains with corners, but cuts are excluded. We refer to McLean [67] for other examples
of non-Lipschitz domains. Also note that a Lipschitz-boundary enables the definition of an
outer unit vector n almost everywhere on ∂Ω.

For Lipschitz-domains with ∂Ω bounded the following density results hold (see Girault-

Raviart [49]):

H1(Ω) = C∞(Ω̄)
‖·‖1

, H(curl,Ω) = C∞(Ω̄)
‖·‖curl

, and H(div,Ω) = C∞(Ω̄)
‖·‖div

, (3.8)

which allows to easily extend classical properties of C∞ functions also to the above function
spaces.
In the sequel, we recall important trace and extension theorems, and different versions
of Green’s formula. Those results will be needed to state the differential equations in a
variational setting and to consider boundary and interface conditions.

Trace theorems for the space H1(Ω)

The trace of a smooth function ϕ ∈ C(Ω) is defined pointwise as

(tr∂Ω u)(x) = u(x) ∀x ∈ ∂Ω, briefly tr∂Ω(u) = u|∂Ω.

Using the density result (3.8) we can extend the classical trace concept to more general
function spaces:
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Theorem 3.4 (Trace theorem and Greens formula for H1(Ω)). Let Ω ⊂ R
d, d = 2, 3 be a

bounded Lipschitz-domain.

1. The classical trace mapping tr∂Ω defined on C∞(Ω) can be uniquely extended to a con-
tinuous, linear operator

tr∂Ω : H1(Ω) → H1/2(∂Ω) with ‖tr∂Ω(v)‖1/2 � ‖v‖1 ∀v ∈ H1(Ω),

where H1/2(∂Ω) := C∞(∂Ω)
‖·‖1/2

and ‖u‖2
1/2 = ‖u‖2

0 +
∫
∂Ω

∫
∂Ω

|u(x)−u(y)|2
|x−y|d dx dy, where

� refers to ≤ up to a constant.

2. There holds the integration by parts formula

∫

Ω
∇u · v dx = −

∫

Ω
u div v dx+

∫

∂Ω
tr∂Ω(u)v · n dx ∀u ∈ H1(Ω) ∀v ∈ H(div,Ω).

(3.9)

3. Let g ∈ H1/2(∂Ω). Then there holds

∃v ∈ H1(Ω) : tr∂Ω(v) = g with ‖v‖1 � ‖g‖1/2.

The third statement is an extension theorem, which is important for incorporation of Dirichlet
boundary conditions. Here and below, we use Sobolev spaces of fractional order on manifolds,
which can be defined similarly as in the theorem above, or as traces of certain classes of
functions on Ω; for their definition we refer in particular to McLean [67].

The following corollary discusses the interface conditions of H1-functions.

Corollary 3.5. Let Ω1, . . . ,Ωm be bounded Lipschitz domains and a non-overlapping domain
decomposition of Ω, i.e. Ωi∩Ωj = ∅ for i 6= j and

⋃
Ωi = Ω with interfaces Γij := ∂Ωi∩∂Ωj.

Suppose ui := u|Ωi
∈ H1(Ωi) and trΓijui = trΓijuj. Then

u ∈ H1(Ω) and (∇u)|Ωi = ∇ui.

This result is fundamental for the construction of conforming finite element methods, where
the discrete space is chosen as a subspace of H1(Ω). If the finite element functions, which are
defined elementwise, are continuous over the element interfaces, then the global FE-function is

in H1(Ω). Note also that the space H1
0 (Ω) := C∞

0 (Ω)
‖·‖1

is equal to the space of H1 functions
with homogenous Dirichlet boundary conditions, i.e.,

H1
0 (Ω) = {u ∈ H1(Ω) | tr∂Ωu = 0}.

For Poisson problems with pure Neumann boundary conditions, we will utilize the quotient
space,

H1(Ω)/R = {u ∈ H1(Ω) |
∫

∂Ω
u dx = 0}.
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Some results concerning the space H(curl)

Let us consider the following tangential traces for vector functions v ∈ [C∞(Ω̄)]d, d = 2, 3:

• trτ(v)(x) := v(x) · τ (x) for x ∈ Γ and Ω ⊂ R
2,

• trτ(v)(x) := v(x) × n(x) for x ∈ Γ and Ω ⊂ R
3,

• trT (v)(x) := (v(x) × n(x)) × n(x) for x ∈ Γ and Ω ⊂ R
3,

with τ denoting the tangential vector and n the outer unit normal vector on Γ := ∂Ω. Due
to the density result (3.8) we can extend the trace mapping to a wider class of functions:

Theorem 3.6 (Trace theorem and integration by parts in H(curl)). Let Ω be a bounded
Lipschitz-domain.

1. The classical trace map trτ can be extended from [C∞(Ω)]d to a continuous and linear
map (still denoted by trτ)

trτ : H(curl,Ω) → [H−1/2(∂Ω)]m, and ‖trτ(v)‖−1/2 � ‖v‖curl ∀v ∈ H(curl),

where m = 3 if Ω ⊂ R
3 or m = 1 if Ω ⊂ R

2.

2. There holds the integration by parts formula

∫

Ω
curlu·ϕ dx =

∫

Ω
u·Curlϕ dx−s

∫

Γ
trτ(u)·ϕdx ∀u ∈ H(curl,Ω)∀ϕ ∈

(
H1(Ω)

)d
.

(3.10)
For m = 3 Curl and curl are defined to be the same.

In 3D, the generalized tangential trace operator trτ is not surjective onto H−1/2(∂Ω), its
range coincides with

H−1/2(div, ∂Ω) :=
{
v ∈ (H−1/2(∂Ω))3

∣∣ v · n = 0 a.e.on ∂Ω, div∂Ω v ∈ H−1/2(∂Ω)
}
.

This results in the following

Theorem 3.7 (Extension theorem for H(curl)). For g ∈ H−1/2(div, ∂Ω) there exists a v ∈
H(curl,Ω) with

trτ(v) = g and ‖v‖2
curl � ‖g‖2

−1/2 + ‖div∂Ω g‖2
−1/2.

The closure, with respect to theH(curl)-norm, of the space of infinitely differentiable functions
with compact support in Ω is denoted by

H0(curl) := [C∞
0 (Ω)]3

‖·‖curl
.

This space is equal to the space of H(curl) functions with homogenous tangential boundary
conditions, i.e.,

H0(curl,Ω) = {u ∈ H(curl,Ω) | (u× n) × n = 0}.

The following corollary treats the interface conditions for H(curl)-functions.
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Corollary 3.8. Let Ω1, . . . ,Ωm be a non-overlapping domain decomposition of Ω, i.e. Ωi ∩
Ωj = ∅ and

⋃
Ωi = Ω with interfaces Γij = ∂Ωi ∩ ∂Ωj. Suppose ui := u|Ωi

∈ H(curl,Ωi) and
trTi,Γijui = trTi,Γijuj. Then

u ∈ H(curl,Ω) and (curlu)|Ωi = curlui.

Thus conforming finite element spaces for discretization of H(curl) can be constructed by
requiring the tangential components to be continuous over the element interfaces. This ensures
that the resulting global finite element functions are in H(curl,Ω). Note that the normal
components of H(curl) functions need not to be continuous.

Basic results on the H(div) space

For v ∈ (C∞
0 (Ω̄))d, d = 2, 3 the normal trace is defined by

(trn(v))(x) := v(x) · n(x) ∀x on Γ := ∂Ω,

where n denotes the outward unit normal vector on Γ. Utilizing that [C∞(Ω̄)]d is dense in
H(div,Ω), the trace operator can be extended to the whole H(div) space.

Theorem 3.9 (Trace theorems and integration by parts for H(div,Ω)). Let Ω be a bounded
Lipschitz-domain.

1. The trace map trn can be extended as a bounded, linear mapping (still denoted by trn)

trn : H(div,Ω) → [H−1/2(∂Ω)]3, and ‖trn(v)‖−1/2 � ‖v‖div ∀v ∈ H(div,Ω).

2. There holds the following version of Green’s theorem:
∫

Ω
divuϕdx = −

∫

Ω
u · ∇ϕdx+ 〈trn(u), ϕ〉 ∀u ∈ H(div,Ω), ∀ϕ ∈

(
H1(Ω)

)3
,

(3.11)
where 〈·, ·〉 denotes the duality product 〈·, ·〉

H− 1
2 ×H 1

2
.

3. Suppose g ∈ H−1/2(Γ). Then there holds the extension theorem:

∃v ∈ H(div,Ω) : trnv = g and ‖v‖div � ‖g‖−1/2.

The closure of arbitrary differentiable functions with compact support in Ω in the H(div)-
norm is denoted by

H0(div) := [C∞
0 (Ω)]3

‖·‖curl

and equals the space of H(div) functions with homogeneous normal boundary condition, i.e.,

H0(div,Ω) = {v ∈ H(div,Ω) | trn,∂Ω(v) = 0}.
The following corollary deals with appropriate interface conditions for H(div)-functions.

Corollary 3.10. Let Ω1, . . . ,Ωm be a non-overlapping domain decomposition of Ω, i.e. Ωi ∩
Ωj = ∅ and

⋃
Ωi = Ω with interfaces Γij = ∂Ωi ∩ ∂Ωj. Suppose ui := u|Ωi

∈ H(div,Ωi) and

ui|Γij · ni = uj |Γij · ni. Then

u ∈ H(div,Ω) and (divu)|Ωi = divui.

Due to this corollary conformity of finite element functions in H(div) can be guaranteed by
requiring continuity of the normal components across element interfaces.
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3.2 Mapping Properties of Differential Operators

In the previous chapter we introduced vector and scalar potential formulations for Maxwell’s
equations in their classical, strong form. Now, we want to extend this concept also to the
generalized differentiability setting presented in this chapter. The question on the existence
of potential fields is strongly connected to the characterization of the kernel and the range of
the involved differential operators.
The following notation for the kernel of the differential operators will be used:

ker(∇) := {v ∈ H1(Ω)
∣∣∇v = 0},

ker(curl) := {v ∈ H(curl,Ω)
∣∣ curlv = 0},

ker(div) := {v ∈ H(div,Ω)
∣∣ div v = 0},

The corresponding range spaces are denoted by ∇H1(Ω), curlH(curl,Ω), divH(div,Ω).
The well-known identities

curl(∇φ) = 0, (3.12a)

div(curlu) = 0, (3.12b)

which are trivially satisfied for twice continuously differentiable functions, can be generalized
to the Hilbert spaces under consideration in the following way:

∇H1(Ω) ⊂ ker(curl), (3.13a)

curlH(curl,Ω) ⊂ ker(div), (3.13b)

divH(div,Ω) ⊂ L2(Ω). (3.13c)

Identities instead of inclusions hold in general only under additional assumptions on
the domain Ω. For the following statements, we assume Ω to be a bounded, simply-
connected Lipschitz-domain (the case of multiply-connected domains is treated in Girault-

Raviart [49] and Dautray-Lions [40]. For more general domains, namely pseudo-Lipschitz
domains where also cuts are allowed, we refer to Amrouche et al. [4]).

Assumption 3.11. Let Ω be a bounded, simply-connected Lipschitz-domain.

The nullspace (in H1(Ω)) of the gradient operator is the set of constant functions. Conse-
quently, the nullspace can be made trivial by restriction to H1

0 (Ω) or H1(Ω)
/
R:

ker(∇,H1(Ω)) = R and ker(∇,H1
0 (Ω)) = ker(∇,H1(Ω)/R) = {0}.

The classical Stokes theorem on the existence of a scalar potential of curl-free functions can
be extended in the following way, cf. [49, Theorem 2.9].

Theorem 3.12 (Existence of scalar potentials). Let u ∈ L2(Ω)d denote a vector field. Then
curlu = 0 in Ω

• if and only if there exists a scalar-potential φ ∈ H1(Ω) such that u = ∇φ, where φ is
unique up to an additive constant.

• if and only if there exists a unique scalar-potential φ ∈ H1(Ω)/R such that u = ∇φ.
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In other words, ∇(H1(Ω)) = ker(curl).

Theorem 3.13 (Existence of vector potentials, cf. [49, Theorem 3.4, 3.5, and 3.6]). Let

u ∈
[
L2(Ω)

]3
denote a vector field.

1. u is divergence-free
divu = 0

if and only if there exists a vector potential ψ ∈
[
H1(Ω)

]3
such that

u = curlψ.

Furthermore, ψ can be chosen such that divψ = 0.

2. Let u ∈ ker(div). Then there exists a unique vector potential ψ ∈ H(curl,Ω) such that

curlψ = u, divψ = 0, and ψ · n = 0.

3. Let u ∈ ker(div) and trn,∂Ω(u) = 0. Then there exists a unique vector potential ψ ∈
H(curl,Ω) such that

curlψ = u, divψ = 0, and trτ ,∂Ωψ = ψ × n|∂Ω = 0.

We only mention that in both cases (2. and 3.) the vector potential can be derived as the
solution of a boundary value problem for the Laplace operator. Note that Theorem 3.13
implies

ker(div) = curl(H(curl,Ω)).

A substantial tool within the analysis of the Maxwell equations is the Helmholtz-decomposition:
Every vector field in L2(Ω)3 can be decomposed into a divergence- and a curl-free function,
which can be specified by means of vector and scalar potentials.

Theorem 3.14 (Helmholtz decomposition). Every vector field u ∈ L2(Ω)3 has an orthogonal
decomposition

u = ∇ϕ+ curlψ, with φ ∈ H1(Ω) and ψ ∈ H(curl,Ω).

Here, φ in H1(Ω)/R being the solution of the Laplace-problem −∆φ = −divu ; the
vector potential ψ ∈ H(curl,Ω) is as in Theorem 3.13. For other choices of the vector
and scalar potential in the Helmholtz decomposition we refer to Amrouche et al. [4],
Girault-Raviart [49] or Dautray-Lions [40].

For stating the De Rham Complex we need one last result on the image of the divergence
operator.

Lemma 3.15. The divergence operator is surjective from H(div,Ω) onto L2(Ω) as well as
from H0(div,Ω) onto L2,0(Ω) := {q ∈ L2(Ω)

∣∣ ∫
Ω q dx = 0}.

Proof. For f ∈ L2(Ω) we choose u = ∇ψ ∈ L2(Ω) with ψ ∈ H1
0 (Ω) solution of the Dirichlet

problem
(div(∇ψ), φ) = −(∇ψ,∇φ) = (f, φ) ∀φ ∈ H1

0 (Ω).

Since divu = f , there holds u ∈ H(div). For f ∈ L2,0(Ω) we choose u = ∇ψ ∈ L2(Ω) with
ψ ∈ H1(Ω) being the solution of the Neumann problem

(div(∇ψ), φ) = −(∇ψ,∇φ) = (f, φ) ∀φ ∈ H1(Ω).

Since u · n|∂Ω
= ∇ψ · n|∂Ω

= 0 and divu = f , there holds u ∈ H0(div).
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3.2.1 The de Rham Complex and Exact Sequences

The relation between the functional spaces through their differential operators can be sum-
marized in the de Rham Complex, which reads as

R
id−→ H1(Ω)

∇−→ H(curl,Ω)
curl−→ H(div,Ω)

div−→ L2(Ω)
0−→ {0}. (3.14)

For domains Ω ⊂ R
2 the De Rham Sequence shortens to

R
id−→ H1(Ω)

∇−→ H(curl,Ω)
curl−→ L2(Ω)

0−→ {0}, (3.15)

respectively

R
id−→ H1(Ω)

Curl−→ H(div,Ω)
div−→ L2(Ω)

0−→ {0}. (3.16)

The main property of the de Rham Complex is the coincidence of ranges and kernels of
consecutive operators.

Corollary 3.16. The de Rham Complexes (3.14)-(3.16) form exact sequences, also knnown
as complete sequences. This means that the range of each operator coincides with the kernel
of the following operator.

In fact the exactness of the sequence summarizes the results of Theorem 3.12, Theorem 3.13,
and Lemma 3.15, namely the coincidence of the following range and kernel spaces:

ker(∇) = R, (3.17a)

ker(Curl) = ∇H1(Ω), (3.17b)

ker(div) = curl(H(curl,Ω)), (3.17c)

L2(Ω) = div(H(div,Ω)), (3.17d)

for 3 dimensional spaces, whereas in 2 dimensional spaces there holds

ker(∇) = R, (3.18a)

ker(Curl) = R, (3.18b)

ker(curl) = ∇H1(Ω), (3.18c)

ker(div) = CurlH1(Ω), (3.18d)

L2(Ω) = curl(H(curl,Ω)), (3.18e)

L2(Ω) = div(H(div,Ω). (3.18f)

Remark 3.17 (De Rham Complex with essential boundary conditions). In case of essential
boundary conditions on ∂Ω, the restricted sequence

R
id−→ H1

0 (Ω)
∇−→ H0(curl,Ω)

curl−→ H0(div,Ω)
div−→ L2,0(Ω)

0−→ {0}, (3.19)

where L2,0(Ω) := {q ∈ L2(Ω)
∣∣ ∫

Ω q dx = 0}, is still exact.
In the two-dimensional setting the exactness of the shortened de Rham Complexes (3.15) and
(3.16) still holds in the case of essential boundary conditions.

In case that the domain Ω is more complex, i.e. involves holes or if mixed boundary conditions
are imposed, the de Rham Complex need not be exact: the range of an operator is a subset of
the kernel of the following map, but the kernel and the range spaces need not coincide. There is
a low dimensional subspace of kernel functions which cannot be represented as gradient fields
of a scalar potential. The dimension of this space depends on the topological properties of Ω.
The issue of so-called cohomology spaces is treated in Amrouche et. al. [4], Bossavit [25]
and Hiptmair [56].
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3.3 Abstract Variational Problems: Existence and Uniqueness

In this section, we briefly recall the main existence and uniqueness results for variational
problems. We will then apply these theorems to our classes of problems for Maxwell’s
equations.

Let V and W denote Hilbert-spaces provided with the scalar products (·, ·)V , (·, ·)W . The
induced norms are denoted by ‖ · ‖V , ‖ · ‖W . By V ∗ we refer to the dual space, and the duality
pairing is denoted by 〈·, ·〉. A mapping a(·, ·) : V ×W → C is called a sesquilinear form if

a(c1u1 + c2u1, v) = c1a(u1, v) + c2a(u2, v) ∀ c1, c2 ∈ C, ∀u1, u2 ∈ V, v ∈ W,
a(u, c1v1 + c2v1) = c1a(u, v1) + c2a(u, v2) ∀ c1, c2 ∈ C, ∀u ∈ V, v1, v2 ∈ W,

where c1 denotes the complex conjugate of c1.

The following properties are at the core of the basic results below:

Definition 3.18. A sesquilinear form is called

1. bounded if

|a(u,w)| ≤ α‖u‖V ‖w‖W ∀u ∈ V, ∀w ∈ W.

2. coercive if V = W and,

∃β > 0 : |a(u, u)| ≥ β ‖u‖2
V ∀u ∈ V.

3.3.1 Coercive variational problems

We investigate variational problems of the form

Problem 3.19. For given f ∈ V ∗, find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V. (3.20)

Existence and uniqueness of a solution is guaranteed by

Theorem 3.20 (Lax-Milgram). Let a : V ×V → C denote a bounded and coercive sesquilinar
form. Then, for any continuous linear form f ∈ V ∗, there exists a unique solution u ∈ V
satisfying

a(u, v) = f(v) ∀ v ∈ V, and ‖u‖V ≤ α

β
‖f‖V ∗ ,

where α and β are as in Definition 3.18.

3.3.2 Mixed formulations

In the context of magnetostatic problems we utilize a mixed formulation of the variational
problem. We consider mixed problems – also called saddle-point problems – of the following
type:

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,
b(u, q) = g(q) ∀ q ∈ W.

(3.21)

The equivalent to the results of the Lax-Milgram Theorem is given by the following result.
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Theorem 3.21 (Brezzi). Let V and W be Hilbert-spaces, and the sesquilinear forms a :
V × V → C and b : V ×W → C fulfill the following properties:

1. The sesquilinear forms are bounded, i.e.

∃α1 ≥ 0 : |a(v, w)| ≤ α1‖v‖V ‖w‖V ∀v, w ∈ V,
∃α2 ≥ 0 : |b(v, q)| ≤ α2‖v‖V ‖q‖W ∀ v ∈ V ∀ q ∈ W.

2. b(·, ·) satisfies the Babuska-Brezzi condition, i.e.

∃β2 > 0 : sup
v∈V

b(v, q)

‖v‖V
≥ β2‖q‖W ∀ q ∈ W. (3.22)

3. a(·, ·) is ker b-coercive, i.e.

∃β1 > 0 |a(v, v)| ≥ β1‖v‖2
V ∀ v ∈ ker b, (3.23)

where ker b := {u ∈ V
∣∣ b(u, q) = 0 ∀ q ∈W}.

Then there exists a unique solution (u, p) ∈ V ×W of (3.21) satisfying the a-priori estimates

‖u‖V ≤ 1

β1
‖f‖V ∗ +

1

β2

(
1 +

α1

β1

)
‖g‖W ∗ ,

‖p‖W ≤ 1

β2

(
1 +

α1

β1

)
‖f‖V ∗ +

α1

β2
2

(
1 +

α1

β1

)
‖g‖W ∗ .

3.4 Variational formulation of electromagnetic problems

We will now utilize the definitions and results of the previous sections to state the electro-
magnetic problems discussed in Chapter 2 in a variational form, and to prove existence and
uniqueness of solutions. Throughout we assume Ω to be a bounded Lipschitz domain. The
general structure of the derivation of variational formulations is to multiply the partial differ-
ential equations by a suitable test function, integrate over Ω, and apply integration by parts
(Green’s formula).

3.4.1 The electrostatic problem: A Poisson problem

In the electrostatic regime, the four Maxwell equations can be reduced to a single Poisson
equation for the scalar potential φ of the electric field intensity E, i.e.,

−div(ǫ∇φ) = ρ in Ω,

φ =gD on ΓD,

∂φ

∂n
=gN on ΓN , ∂Ω = ΓD ∪ ΓN ,

It is well-known that subspaces of H1(Ω) are appropriate for the variational formulation in
this case. By including the Dirichlet boundary conditions in the ansatz space, we arive at

Problem 3.22. Find φ ∈ H1
gD,D

= {φ ∈ H1(Ω)
∣∣ trφ

∣∣
ΓD

= gD} such that

∫

Ω
ǫ(x)∇φ(x) · ∇ψ(x) dx =

∫

Ω
ρ(x)ψ(x) dx+

∫

ΓN

ǫ(x) gN (x)ψ(x) ds ∀ψ ∈ H1
0,D(Ω).
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For bounded permittivity, i.e. 0 < ǫ0 ≤ ǫ ≤ ǫ1 almost everywhere, the bilinear form a(φ, ψ) :=∫
Ω ǫ∇φ · ∇ψ dx is

• bounded with |a(φ, ψ)| ≤ ǫ1‖φ‖V ‖ψ‖V .

• coercive, since a(φ, φ) ≥ c−1
F ǫ0‖φ‖2

1 owing to Poincaré’s-Friedrichs’ inequality

‖φ‖0 ≤ cF ‖∇φ‖1 ∀φ ∈ H1
0,D(Ω)

where we assumed measRd−1(ΓD) > 0.

Corollary 3.23. Suppose that the permittivity is bounded by 0 < ǫ0 ≤ ǫ(x) ≤ ǫ1, the boundary

data satisfy gD ∈ H
1
2 (ΓD) with measRd−1(ΓD) > 0 and gN ∈ H− 1

2 (ΓN ), and ρ ∈ H−1(Ω).
Then Theorem 3.20 (Lax-Milgram) guarantees the existence of a unique solution φ ∈ H1

gD,D
(Ω)

for the variational electrostatic potential problem 3.22.

For pure Neumann problems, i.e. ΓN = ∂Ω, the solution of the electrostatic problem is
unique only up to constants. Uniqueness can be restored by imposing a gauging condition,
e.g.

∫
Ω φdx = 0. The electric field E can be recovered by E = −∇φ. Note that by Theorem

3.12 we have E ∈ H(curl) and curlE = 0.

3.4.2 The magnetostatic problem

Next we consider the curl-curl problem (2.34): As it becomes clear from the variational
formulation below, the appropriate spaces (incorporating the boundary conditions (2.36),
(2.37)) are subspaces of H(curl,Ω).

Problem 3.24. Find u ∈ HgD,D(curl,Ω) :=
{
v ∈ H(curl,Ω) : v × n = gD on ΓD

}
such

that ∫

Ω
µ−1 curlu curlv dx =

∫

Ω
j v dx ∀v ∈ H0,D(curl,Ω). (3.25)

Note that we assume the impressed currents j to be consistent here, i.e. to satisfy the
continuity equation

div j = 0 in Ω and j · n = 0 on ∂Ω. (3.26)

The bilinear form a(u,v) =
∫
Ω curlu curlv dx is not coercive, since for all φ ∈ H1

0,D(Ω) there
holds a(u,∇φ) = 0, while ‖∇φ‖curl = ‖∇φ‖0. Therefore, we cannot apply the Lax-Milgram
Theorem directly. As in the potential problem with pure Neumann boundary conditions
above, uniqueness and coercivity can be restored by appropriate gauging. For simplicity, we
assume for the moment homogeneous boundary conditions (e.g., the boundary conditions are
incorporated in the right hand side by homogenization). The Coulomb gauging condition
divu = 0 with u · n = 0 then reads

(u,∇φ) = 0, ∀φ ∈W = H1(Ω).

Hence we look for a solution u which is orthogonal to gradients. In case of Dirichlet data, we
alternatively set W = H1

0 (Ω).
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Mixed formulation of the magnetostatic problem

We incorporate the gauging condition u ∈
(
∇H1(Ω)

)⊥
by reformulating the magnetostatic

problem as a mixed variational problem.

Problem 3.25. Find (u, φ) in V ×W := H0(curl,Ω) ×H1
0 (Ω) such that

∫

Ω
µ−1 curlu · curlv dx+

∫

Ω
v · ∇φdx =

∫

Ω
j · v dx ∀v ∈ H0,D(curl,Ω), (3.27a)

∫

Ω
u · ∇ψ dx = 0 ∀ψ ∈ H1

0 (Ω). (3.27b)

We further assume that the permeability is bounded by 0 < µ0 ≤ µ(x) ≤ µ1, and denote the
involved bilinear forms by a(u, v) :=

∫
Ω µ

−1 curlu · curlv dx and b(v, ψ) :=
∫
Ω v · ∇ψ dx.

In order to be able to apply Brezzi’s Theorem we have to prove the ker b-coercivity of a(·, ·).
For this purpose we require the following theorem.

Theorem 3.26 (Friedrichs’ inequality for H(curl)). Let Ω be a simply-connected Lipschitz
domain.

1. Suppose v ∈ H(curl,Ω) is orthogonal to gradient functions, i.e. (v,∇ψ) = 0 for all
ψ ∈ H1(Ω). Then

‖v‖0 � ‖ curlv‖0.

2. Suppose v ∈ H0(curl,Ω) is orthogonal to gradient functions, i.e. (v,∇ψ) = 0 for all
ψ ∈ H1

0 (Ω). Then the same estimate holds.

For a proof we refer to Lemma 3.4 and Lemma 3.6 in Girault-Raviart [49].

Applying the H(curl) Friedrichs’ inequalities, the bilinear forms of the magnetostatic problem
can be shown to satisfy the following properties.:

• The bilinear forms a(·, ·) and b(·, ·) are bounded, i.e., |a(u,v)| ≤ µ0‖u‖V ‖v‖V and by
|b(v, ψ)| ≤ ‖u‖V ‖ψ‖W .

• b(·, ·) satisfies the Babuska-Brezzi condition, as there is

sup
v∈V

∫
Ω v · ∇ψ dx
‖v‖curl

(∗)
≥
∫
Ω ∇ψ · ∇ψ dx
‖∇ψ‖curl

(∗∗)
≥ ‖∇ψ‖0

(∗∗∗)
� ‖ψ‖1

by the choice v = ∇ψ (∗), ‖∇ψ‖curl = ‖∇ψ‖0 (∗∗), and Friedrichs’ inequality for H1(Ω)
(∗ ∗ ∗).

• a(·, ·) is ker b-coercive, i.e. for all u ∈ V satisfying (u,∇φ) = 0 ∀φ ∈ H1(Ω) there holds

a(u,u) ≥ µ−1
1 ‖ curlu‖

(∗)
≥ µ−1

1 (1 + c−1
F,curl) ‖u‖curl.

The main step (*) in this estimation is justified by Friedrichs’ inequality for H(curl)
stated in Theorem 3.26.

Existence and uniqueness for the variational problem in mixed formulation 3.25 now follows
by Brezzi’s theorem 3.21:
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Corollary 3.27 (Solution theory of mixed and standard magnetostatic problem). Let the
permeability satisfy 0 < µ0 ≤ µ(x) ≤ µ1, and the source term j ∈ H(curl)∗ satisfy (3.26).
Then

1. Brezzi’s theorem 3.21 ensures the existence and uniqueness of a solution (u, φ) ∈ V ×W
to the magnetostatic problem in mixed form (3.27).

2. the solution of the mixed problem is of the form (u, φ) = (u, 0) with u solving the
standard problem (3.25) with divu = 0 and u · n = 0.

3. the estimate ‖u‖curl � ‖j‖V ∗ holds.

Proof. Let (u, φ) ∈ V ×W denote the unique solution (implied by Brezzi’s theorem) of the
mixed problem (3.27). Testing (3.27a) with gradient functions ∇ψ ∈ ∇W ⊂ V yields that
φ ∈W solves the Laplace equation. Having in mind that a(u,∇ψ)+b(∇ψ, φ) =

∫
Ω ∇ψ·∇φdx,

we obtain
∫

Ω
∇ψ · ∇φdx =

∫

Ω
j · ∇ψ dx

=

∫

Ω
div j ψ dx+

∫

∂Ω
j · nψ dx = 0 ∀ψ ∈W.

The source term vanishes since j was assumed to be consistent, i.e. div j = 0, j · n = 0.
Since in case of the Neumann problem W = H1(Ω)/R and in case of the Dirichlet problem
W = H1

0 (Ω), we obtain a unique solution φ = 0 ∈ W . Hence, the solution of the mixed
problem (3.27) is of the form (u, φ = 0).
Substituting (u, φ = 0) in the mixed problem the first equation (3.27a) yields that u solves
the magnetostatic problem in standard form (3.25). The second equation (3.27b) implies that

we achieve u ∈
(
∇H1(Ω)

)⊥
.

While the mixed formulation provides analytic results on existence and uniqueness of solutions
in an elegant manner, a numerical realization has certain drawbacks: first the number of
unknowns is increased by switching from Problem 3.24 to 3.25. Additionally, the resulting
saddle point problems are usually more difficult to solve. In view of a numerical realization
we therefore discuss another regularized version of the magnetostatic problem.

Regularized magnetostatic problem

We choose a regularization parameter ε > 0 and define the regularized magnetostatic
problem as

Problem 3.28. Find uε ∈ V s.t.
∫

Ω
curluε curlv dx+ ε

∫

Ω
uεv dx =

∫

Ω
jv dx ∀v ∈ V. (3.28)

As we will see, the regularized Problem 3.28 has the following properties:

• The Lax-Milgram theory is applicable, i.e. the involved bilinear form is coercive.

• The solution uε of the regularized problem converges to a solution u solving the standard
problem with ε→ 0.
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Let us denote the regularized bilinear form by aε(u,v) :=
∫
Ω curluε curlv dx+ ε

∫
Ω u

εv dx.

aε(u,u) ≥ µ−1
1 (curlu, curlu) + ε(u,u) ≥ min{µ−1

1 , ε} ‖u‖2
curl ∀u ∈ H(curl,Ω). (3.29)

Corollary 3.29. Under the assumptions of Corollary 3.27 and a positive regularization pa-
rameter ε > 0 the bilinearfrom aε(u,v) is coercive. Hence, the Lemma of Lax-Milgram (The-
orem 3.20) provides the unique solvability of the regularized magnetostatic problem (3.28).

The result follows easily since there holds

aε(u,u) ≥ µ−1
1 (curlu, curlu) + ε(u,u) ≥ min{µ−1

1 , ε} ‖u‖2
curl ∀u ∈ H(curl,Ω). (3.30)

In order to show that uε converges to a uniquely determined solution u of Problem 3.24 as
ε → 0, we utilize the mixed formulation. Consider the following mixed formulation of the
regularized problem (3.28): Find (uε, φε) in V ×W := H0(curl,Ω) ×H1

0 (Ω) such that

∫

Ω
µ−1 curluε · curlv dx+ ε

∫

Ω
uεv dx+

∫

Ω
v · ∇φε dx =

∫

Ω
j · v dx ∀v ∈ V, (3.31a)

∫

Ω
uε · ∇ψ dx = 0 ∀ψ ∈W. (3.31b)

Corollary 3.30. Let the assumptions of Corollary 3.27 hold. Then the following assertions
hold:

1. The regularized mixed problem (3.31) has a unique solution (uε, φε = 0) ∈ V × W

satisfying ‖uε‖V � ‖j‖V ∗ and uε ∈
(
∇W

)⊥
.

2. If (uǫ, φǫ) denotes the unique solution of the regularized mixed problem, then uε solves
the regularized standard problem (3.28).

3. Suppose that (u, φ = 0) denotes the solution of the original mixed problem (3.27). Then

‖u− uε‖V � ε‖j‖V ∗ . (3.32)

Proof.

1. Under the assumptions of Corollary 3.27 Brezzi’s theorem ensures the existence of a
unique solution (uε, φε) of the mixed problem (3.31).
Testing the first equation (3.31a) on the subspace ∇W ⊂ V and taking into account the
consistency (3.26) of the source term we achieve

ε

∫

Ω
uε∇ψ dx+

∫

Ω
∇ψ · ∇φε dx = 0 ∀ψ ∈W.

Since uε is orthogonal on gradients due to (3.31b), we obtain a homogenous Laplace
equation for φε, i.e. φε = 0. Since the constants in the inf-sup-condition and in the
ker b-coercivity are independent of ε the stability estimate is implied by one of Brezzi’s
theorem.

2. Setting φε = 0 in the mixed formulations implies that uε solves the regularized standard
problem with uε ∈ (∇H1

0 (Ω))⊥.
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3. Let (u, φ) and (uε, φε) denote the solutions of the exact and the perturbed mixed prob-
lem. Then (u− uε, φ− φε) ∈ V ×W satisfies
∫
Ω µ

−1 curl(u− uε) · curlv dx +
∫
Ω v · ∇(φ− φε) dx = ε

∫
Ω u

ε · v dx ∀v ∈ V,
∫
Ω(u− uε) · ∇ψ dx = 0 ∀ψ ∈W,

i.e. the exact mixed formulation with consistent right hand-side εuε. Due to Brezzi’s
theorem (u − uε) is bounded by the source term, i.e. ‖u − uε‖V ≤ ε‖uε‖V ∗ . The
estimate of item 1, namely ‖uε‖V � ‖j‖V ∗ (where the constant is independent of ε)
implies the desired estimate.

Remark 3.31. For a numerical realization it will be important to construct solvers for Prob-
lem 3.28 that are robust in the parameter ε, in particular as ε→ 0.

3.4.3 The time-harmonic electromagnetic and magneto-quasi-static prob-
lems

Now we turn to a variational formulation of the problem

curlµ−1 curlu+ κu = j,

µ−1 curlu× n = gN on ΓN ,

u× n = gD on ΓD,

which includes the time-harmonic eddy-current problem where κ = iωσ as well as the time-
harmonic electromagnetic wave equation in conducting media with κ = iωσ − ǫω2 for σ > 0
and ω > 0. In both cases the parameter κ ∈ C\R

−.

Problem 3.32. Find u ∈ V := Hg,D(curl,Ω) satisfying
∫

Ω
µ−1 curlu · curl v̄ dx+

∫

Ω
κu · v̄ dx =

∫

Ω
j · v̄ dx+

∫

ΓN

(n× gN ) · v̄ ds ∀v ∈ V. (3.33)

The sesquilinear form a(u,v) =
∫
Ω µ

−1 curlu · curl v̄ dx +
∫
Ω κu · v̄ dx has the following

properties:

• a(·, ·) is bounded if the parameters σ, κ are bounded, i.e., for all u,v ∈ H(curl,Ω) there
holds

|a(u,v)| ≤ ‖µ−1‖∞|u|curl|v|curl + ‖κ‖∞‖u‖0‖v‖0

� ‖u‖curl‖v‖curl.

• a(·, ·) is coercive: For complex κ = κR + iκI with κI 6= 0 there exits α = αR + iαi ∈ C

with |α| > 0 such that

|α||a(u,u)| ≥ |Re(αa(u,u)| ≥ |αRµ−1(curlu, curl ū) + (αRκR − αiκi)(u, ū)

� ‖u‖2
curl.

The choice α = µ+ iµκR−1
κi

implies αRκR−αiκi = 1 and αRµ
−1 = 1. Coercivity for the

case κ = κR > 0 was already discussed in the regularized magnetostatic case.

Corollary 3.33. Let the boundary data satisfy gD ∈ H− 1
2 (ΓD) and gN ∈ H− 1

2 (ΓN ), and
assume j ∈ H(curl,Ω)∗. Then the Lax-Milgram Theorem implies the unique solvability of the
variational problem (3.33).
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Non-conducting regions σ = 0

In non-conducting regions, the eddy-current problem 3.32 degenerates to the magnetostatic
one and can be treated with similar measures. In particular, we may introduce a regu-
larized version by either setting 0 < σnc ≪ σc or by adding the regularization term ǫ

∫
Ωnc

u · v̄.

We conclude this section by recalling the appropriate function spaces for the various variables:

• the electric and magnetic field intensity: E ∈ H(curl,Ω), H ∈ H(curl,Ω)

• the electric and magnetic fluxes: D ∈ H(div,Ω), B ∈ H(div,Ω).

• the scalar potential φ ∈ H1(Ω) with E = ∇φ,

• the vector potential A ∈ H(curl,Ω) with B = curlA.
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Chapter 4

The Finite Element Method

In this chapter, we concentrate on standard finite element methods, namely the h-version
FEM. We will shortly recall the main ingredients for the FEM and recall the main approx-
imation results. We then introduce the classical low-order FE-spaces for H1(Ω), H(div,Ω)
and H(curl,Ω), namely

• the low-order scalar elements for H1,

• the lowest-order Nédélec elements of first kind and second kind for H(curl), and

• the lowest-order Raviart-Thomas elements, which in 3D are also called Raviart-Thomas-
Nédélec elements, and Brezzi-Douglas-Marini elements for H(div).

The low order elements will be used also in the construction of the high order elements in the
next chapter. We will show that by careful construction, the exact sequence property discussed
in Section 3.2.1 carries over to the sequence of finite element spaces, locally (elementwise) as
well as globally.

4.1 Basic Concepts

4.1.1 Galerkin Approximation

Galerkin projection provides a general technique for the construction of discrete approxima-
tions to the solution of variational problems

Find u ∈ X : a(u, v) = f(v) ∀v ∈ X. (4.1)

The infinite-dimensional space X is now replaced by a sequence of finite-dimensional spaces
Xh, which yields the discrete variational problems,

Find uh ∈ Xh : a(uh, vh) = F (vh) ∀vh ∈ Xh. (4.2)

In this presentation we investigate conforming methods, where Xh ⊂ X. The index h typically
refers to a discretization parameter. As we will show below, the discrete solution uh ∈ Xh

converges to the solution u ∈ X with h → 0 under reasonable assumptions. We expand the
solution uh in terms of a basis (ϕi

)
1≤i≤N of Xh, i.e.,

uh =

N∑

i=1

uhi ϕi.

35
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It suffices to test the variational problem (4.2) only with the basis functions, which yields the
Galerkin system

Au = f .

The system matrix A ∈ R
N×N , load vector f ∈ R

n, and solution vector u ∈ R
N are defined

by
A =

(
a(ϕi, ϕj)

)
1≤i,j≤N , f =

(
f(ϕj)

)
1≤j≤N , and u =

(
uhi
)
1≤i≤N . (4.3)

The Finite Element method (FEM) is a special Galerkin method, based on the the following
construction of finite-dimensional subspaces Xh:

• The domain Ω is covered by a triangulation Th, i.e., a finite union of non-overlapping
polyhedral elements K.

• The spaceXh consists of piecewise polynomials, i.e., the restriction of a function vh ∈ Xh

onto an element K ∈ Th is a polynomial.

• Xh has a basis {φi} with local supports, i.e., each basis function φi is non-zero only on
a few elements.

The latter implies that system matrix A is sparse.

4.1.2 The Triangulation

We assume the domain Ω to be a bounded polygonal or polyhedral domain with Lipschitz
continuous boundary.

Definition 4.1. A triangulation (mesh) Th is a finite non-overlapping subdivision Th =
{Ki}i∈I of Ω into elements Ki of simple geometry. A triangulation is called regular, if

1. the elements are non-overlapping, i.e. interior(Ki) ∩ interior(Kj) = ∅ if i 6= j,

2. the triangulation Th is a covering of Ω, i.e.
⋃
Ki∈T Ki = Ω,

3. the intersection Ki ∩Kj of two different elements (i 6= j) is either empty, or a vertex,
or an edge or a face of both elements. (Hanging nodes are not allowed.)

We will frequently use the following notations

the set of vertices V = {Vi}, the set of edges E = {Ei},
the set of faces F = {Fi}, the set of cells Th = {Ki}.

The (local) sets of vertices, edges and faces belonging to the element K are denoted by VK ,
EK , and FK .

4.1.3 The Finite Element

Following Brenner-Scott [31], we require three basic definitions for construction of finite
elements. The classical definition is the following, cf., e.g., Ciarlet [35]:

Definition 4.2 (Finite Element). Let

1. the element domain K ⊂ R
n be a bounded closed set with non-empty interior and piece-

wise smooth boundary,
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2. the space of shape functions PK be a finite-dimensional space of functions on K,

3. the set of nodal variables ΣK = {NK
1 , N

K
2 , . . . , N

K
k }, also referred to as degrees of

freedom, be a basis for P ′
K , where P ′

K denotes the dual space of PK .

Then we call the triple (K,PK ,ΣK) a finite element.

The main effort in the construction of a finite element is to verify its unisolvence, i.e. the
basis property of item 3. This can be done by showing the simpler, but equivalent property:

If v ∈ PK with NK
i v = 0 for i = 1, . . . , k then v ≡ 0.

Definition 4.3 (Nodal basis). Let (K,PK ,ΣK) be a finite element. The basis {φ1, φ2, . . . , φk}
of PK which is dual to the set of nodal variables ΣK , i.e. Ni(φj) = δij, is called the nodal
basis of PK .

4.1.4 The reference element and its transformation to physical elements

A key ingredient in the design, analysis and numerical realization of the FEM is the mapping
trick: The physical (global) finite elements (K,PK ,ΣK) are defined as transfromations of a
reference (master) element (K̂,PK̂ ,ΣK̂), i.e., a reference geometry K̂ of simple shape (e.g. 1D:
segment; 2D: triangle, quadrilateral; 3D: tetrahedron, prism, hexahedron). This construction
has several advantages, e.g., many computations (e.g., numerical integration, derivation) can
be performed a-priori on the reference element.

Figure 4.1: Mapping of reference element K̂ to physical element K

Suitable transformations
ΦK : K̂ → K (4.4)

are continuously differentiable, one-to-one and onto maps. If x̂ denotes a coordinate system
on the reference element K̂, then x = ΦK(x̂) is the corresponding coordinate system on the
physical element K.

The Jacobian matrix of the transformation ΦK with respect to the reference coordinates and
its determinant are denoted by

FK(x̂) :=

(
∂ΦK,i

∂x̂j
(x̂j)

)

1≤i,j≤d
and JK(x̂) := det

(
FK(x̂)

)
.

Since ΦK has to be one-to-one and onto, we have JK(x̂) does not change sign on K̂. A special
but important case of element transformation is the affine linear map, i.e.,

ΦK(x̂) := BKx̂+ bK , BK ∈ R
d
d, bk ∈ R

d
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where FK(x̂) = BK and JK(x̂) = detBK are constant over K̂. Using affine mappings ensures
that polynomials are mapped to polynomials of the same degree, which simplifies the analysis
of the FEM considerably. We will only consider affine transformations in this work.

The local mesh size h(x) for x = ΦK(x̂) can be defined by

h(x) := ‖FK(x)‖ and hK := sup
x∈K

h(x).

Definition 4.4. A triangulation Th is called quasi-uniform, if hK ≃ h for all elements K
in Th. Th is called shape-regular, if the condition number of the Jacobian is bounded for all
elements, i.e.,

‖FK(x)‖‖F−1
K (x)‖ � 1 ∀K ∈ Th, ∀x ∈ K. (4.5)

For our considerations below we need to know how tangential and normal vectors are mapped
between the reference and the physical elements.

Transformation of tangential and normal vectors Let n̂(x̂) and τ̂ (x̂) denote the outer
normal vector and a tangential vector for x̂ ∈ ∂K̂, respectively. Then the corresponding unit
normal and tangential vector on the physical element K are given by

n(x) =
F−T
K (x̂)n̂(x̂)

‖F−T
K (x̂)n̂(x̂)‖

and τ (x) =
FK(x̂)τ̂ (x̂)

‖FK(x̂)τ̂ (x̂)‖

for x = ΦK(x̂) ∈ ∂K.

4.1.5 Simplicial elements and barycentric coordinates

From now on, we restrict ourselves to a triangulation by simplicial elements, i.e., triangles or
tetrahedra. The simplex K ⊂ R

d is defined as the convex hull of (d + 1) vertices VK ⊂ V.
It will turn out to be useful to replace the Euclidian coordinates of the point x ∈ R

d by
barycentric coordinates λi = λi(x) with respect to the (d+ 1) vertices Vi ∈ VK .

Definition 4.5. Let the simplex K ∈ R
d be the convex hull of vertices (Vi)1≤i≤d+1. The

barycentric coordinate λi(x) with respect to the vertex Vi is defined as the unique linear
polynomial

λi ∈ P 1(K) such that λi(Vj) = δij ∀1 ≤ j ≤ d+ 1. (4.6)

As an immediate consequence we obtain that
∑d+1

i=1 λi(x) = 1, ∀ x ∈ K. Using the element-
wise definition (4.6), the barycentric coordinate λi(x) associated with the vertex Vi naturally
extends to a global function on Ω with the following properties:

λi ∈ C(Ω) with supp(λi) =
⋃

K:Vi∈K
K and λi(Vj) = δij ∀Vj ∈ V. (4.7)

For d = 2, the local reference (master) simplex K̂ ⊂ R
d is the triangle

K̂ := {x̂
∣∣ 0 ≤ x̂i ≤ 1, 0 ≤ x̂1 + x̂2 ≤ 1}

with λ̂1(x̂) = 1 − x̂1 − x̂2, λ̂2(x̂) = x̂1, λ̂3(x̂) = x̂2 and for d = 3. We use the tetrahedron

K̂ := {x̂
∣∣ 0 ≤ x̂i ≤ 1, 0 ≤ x̂1 + x̂2 + x̂3 ≤ 1}

with λ̂1(x̂) = 1 − x̂1 − x̂2 − x̂3, λ̂2(x̂) = x̂1, λ̂3(x̂) = x̂2, λ̂4(x̂) = x̂3.
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4.2 Approximation properties of conforming FEM

We assume the variational problem (4.1) to be coercive. Then the Lax-Milgram theorem
states the existence of a unique solution u ∈ X to (4.1) as well as the existence of a unique
discrete solution uh ∈ Xh to the discrete problem (4.2) (due to Xh ⊂ X).

The basis of error estimates for coercive problems is Céa’s Lemma, which states that the
discretization error ‖u− uh‖X is proportional to the approximation error:

Theorem 4.6 (Céa ). Let Xh be a sequence of subspaces of the Hilbert-space X. Suppose
that the variational problem (4.1) fulfills the assumptions of Theorem 3.20 (Lax-Milgram).
Let u ∈ X denote the exact solution to (4.1) and uh ∈ Xh the solution to the corresponding
discrete problem (4.2).
Then the discretization error can be estimated by the approximation error as follows:

‖u− uh‖X ≤ α

β
inf

vh∈Xh

‖u− vh‖X , (4.8)

where α is the continuity constant and β is the coercivity constant of a(·, ·) on X.

For the time being, we present the classical approximation result for H1(Ω), as used e.g. for
the Poisson problem.

Theorem 4.7 (Approximation error in H1(Ω)).

1. Let Th a shape-regular triangulation Th of Ω with affine linear element transformations.

2. Let Xh be chosen by the space of continuous, piecewise polynomials oder k:

Xh :=
{
vh ∈ C(Ω)

∣∣ vh |K ∈ P k(K) ∀K ∈ Th
}
.

3. Assume a regular solution u belonging to (Hk+1(Ω))3.

Then the approximation error in the H1-norm can be estimated by

inf
vh∈Xh

‖u− vh‖Hm(Ω) � hk+1−m|u|Hk+1(Ω),

for m = 0, 1.

Choosing the discrete space Xh by continuous, piecewise polynomials, we achieve convergence
by refining the mesh, i.e. h→ 0. The order of approximation can be improved by increasing
the polynomial degree k, but as long as we increase k uniformly on the whole mesh, the
benefit is limited by the global regularity of the exact solution u ∈ X.

For the time being, this result suffices as motivation for the choice of piecewise polynomial
FE-spaces for approximating the exact solution. Note that in general approximation error
estimates are obtained by estimating the interpolation error, which will be presented in Section
4.4.
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4.3 An exact sequence of conforming finite element spaces

In the sequel we consider the construction of piecewise polynomial, conforming finite element
spaces Xh ⊂ X of functions over Ω (X usually denotes some Sobolev space), i.e.,

Xh =
{
vh ∈ X

∣∣ vh |K ∈ P k(K) ∀K ∈ Th
}
,

and Th denotes a regular triangulation of the domain Ω. We want to construct the spaces Xh

in such a way, that the exact sequence property discussed in Section 3.2.1 carries over from
the continuous spaces to the discrete spaces. In three space dimensions, this means

R
id−→ H1(Ω)

∇−→ H(curl,Ω)
curl−→ H(div,Ω)

div−→ L2(Ω)
0−→ {0}

⋃ ⋃ ⋃ ⋃

R
id−→ Wh

∇−→ Vh
curl−→ Qh

div−→ Sh
0−→ {0}.

(4.9)

In the two dimensional setting we consider the corresponding shortened sequences, cf. (3.15)
and (3.16).

4.3.1 The classical H1-conforming Finite Element Method

In this subsection, we introduce the classical lower-order finite elements used for H1-
conforming methods.

Definition 4.8 (The linear H1-conforming finite element). The classical lowest-order H1-
conforming finite element for the simplex K ∈ R

d (a segment for d = 1, a triangle for d = 2,
and a tetrahedron for d = 3), is defined by

• the local space PK = P 1(K) of dimension dim(P 1(K)) = d+ 1,

• the (d + 1) vertex-based degrees of freedom, which amount to point-evaluation at the
vertices, i.e.

NV
i : v −→ v(Vi) ∀Vi ∈ VK .

Definition 4.9. The second-order H1-conforming finite element on a simplex K ∈ R
d, d =

2, 3 is defined by

• the local space PK = P 2(K) with dim(P 2(K)) =

{
6 for d = 2,
10 for d = 3,

• two types of degrees of freedom (dofs):

– the lowest-order, also denoted as vertex-based dofs:

NV
i : v → v(Vi) for 1 ≤ i ≤ d+ 1

– one edge-based degree of freedom over each edge Eα ∈ EK (see [42]):

NE
α : v →

∫

Eα

∂v

∂s

∂qe
∂s

ds,

with edge-bubble qe ∈ P 2
0 (E) and

∫
Eα
q2e ds = 1.
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In classical finite element methods, as described, e.g. in Ciarlet [35], so-called Lagrange-type
elements are commonly used, i.e., the degrees of freedom are associated with evaluation
of a function or its derivatives at several nodes located on the element. In view of an
implementation of higher-order methods the above formulation will turn out to be more
natural.

For practical implementation, we first construct a local basis (shape functions) on the reference
element K̂. By (4.6), the barycentric coordinates form a (nodal) basis for the lowest-order
H1-conforming element, i.e., we choose

φ̂Vi (x̂) = λ̂i(x̂) for 1 ≤ i ≤ d+ 1, (4.10)

which obviously span P 1(K̂).

As nodal shape functions for the second-order element we use

lowest-order functions: φ̂Vi (x̂) = λ̂i(x̂) ∀ 1 ≤ i ≤ d+ 1, and (4.11a)

quadratic edge-bubbles: φ̂Eα (x̂) = λ̂e1(x̂)λ̂e2(x̂) ∀Eα = [e1, e2] ∈ Ê . (4.11b)

Having defined the shape functions locally only on a reference element K̂, we map the functions
by a conforming transformation onto the physical elementK ∈ Th. The following lemma states
that for scalar functions this can be realized by a simple change of variables.

Lemma 4.10 (H1-conforming transformation). Let ΦK : K̂ → K be a continuously differen-
tiable, invertible and surjective map , and û ∈ H1(K̂) be a scalar function. Then the change
of variables

u := û ◦ Φ−1
K (4.12)

implies u ∈ H1(K) with
∇u = F−T

K ∇̂û ◦ Φ−1
K . (4.13)

The local shape functions on the physical element K are hence defined by

φVi (x) = λi(x) for Vi ∈ VK , (4.14a)

φEα (x) = λe1(x)λe2(x) for Eα = [Ve1 , Ve2 ] ∈ EK . (4.14b)

To obtain the global finite element shape functions in Wh we have to piece the element-
by-element defined shape-functions together. This is done by identifying the local degrees of
freedom with the global ones. The standard element pull-back transformation (4.12) preserves
the degrees of freedom of H1-conforming finite elements, i.e. NV

i (u) = N̂V
i (û) and NE

i (u) =
N̂E
i (û) for u ◦ ΦK = û. By identification of the vertex-based and/or edge-based degrees of

freedom corresponding to element interfaces we obtain the global finite element spaces as
follows:

Wh,1 :=
⊕

Vi∈V
span{φVi },

Wh,2 :=
⊕

Vi∈V
span{φVi }

⊕

Ei∈E
span{φEi }.

Due to (4.7) barycentric coordinates are continuous across element interfaces. Hence, the
above shape functions (4.14) match continuously at element interfaces. Owing to Corollary
3.5 this implies H1-conformity, i.e. for k = 1, 2 :

Wh,k = {w ∈ H1(Ω)
∣∣ w|K ∈ P k(K) ∀K ∈ Th}.
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4.3.2 Low-order H(curl)-conforming Finite Element Methods

In curl− curl problems arising from electromagnetics, one is usually not only interested in
the primal variable, but in the corresponding differential field. For example, in the vector
potential formulations (2.28) the electric field intensity E = ∂

∂tA and the magnetic field
intensityH = µ−1 curlA are the quantities of interest. It is therefore desirable to approximate
the fluxes with high accuracy. This motivates the use of the following families of H(curl)-
conforming finite elements:

• Nédélec element of second kind of order k, which involves a local FE-space of full poly-
nomial order:

N II
k (K) := (P k(K))d. (4.15)

• Nédélec element of first kind of order k, which involves a local space containing P k(K),
enriched (in a minimal way) such that the curl of the involved functions also spans
P k(K):

N I
k (K) := P k(K)d ⊕ {q ∈ (P̃k+1(K))d

∣∣ x · q = 0}, (4.16)

where P̃k+1(K) denotes the set of homogenous polynomials of degree k+1. This setting
implies

(P k(K))d ⊂ N I
k (K) ⊂ (P k+1(K))d and (P k+1(K))d = N I

k (K) ⊕∇P̃k+2(K).

In this section, we consider the low-order finite element spaces where the local spaces are either
N I

0 (K) or N II
1 (K). Both spaces involve finite element functions having piecewise constant

curl-fields. As we will see below, these spaces are also natural in the sense that they can be
used to build an exact sequence.

Definition 4.11 (Nédélec element of first kind of order 0). The lowest order edge-element on
a triangle, respectively a tetrahedron, K is given by

• the local space N I
0 (K) defined as

for d = 2 : N I
0 (K) :=

{
a + b

( y
−x

) ∣∣a ∈ R
2, b ∈ R

}
with dim(N I

0 (K)) = 3,

for d = 3 : N I
0 (K) :=

{
a + b × x

∣∣a,b ∈ R
3
}

with dim(N I
0 (K)) = 6.

• the edge-based degrees of freedom:

NN0
α : v →

∫

Eα

v · τ dx for α = 1, . . . , |EK |,

i.e. the line integrals of the tangential component over each edge Eα ∈ EK .

The local space N I
0 (K) lies between the full polynomial spaces of order 0 and 1, i.e.

(
P 0(K)

)3 ⊂ N I
0 (K) ⊂

(
P 1(K)

)3
with curlN I

0 (K) = (P 0(K))3.

We choose the lowest-order shape functions corresponding to the 1-form Whitney element, cf.
Bossavit [25].
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Lemma 4.12. The nodal basis of N I
0 (K) is realized by the edge-based shape functions

ϕN0
α = ∇λα1λα2 − λα1∇λα2

for each edge Eα = [Vα1 , Vα2 ] ∈ EK . Moreover, the shape functions have constant tangential
trace on the edges of K, i.e.,

ϕN0
α · τ |Eβ

=
1

|Eβ|
δαβ , for Eα, Eβ ∈ EK , (4.17)

in particular NN0
β (ϕN0

α ) =
∫
Eβ
ϕN0
α · τ dx = δαβ.

Proof. We reformulate the local space as N I
0 (K) =

{
Bx + b |B = −BT ∈ R

d
d

}
. Since the

shape functions ϕN0
α are linear, we can express ϕN0

α (x) = Ax+a with A = ∇(ϕN0
α ) = ∇λα1 :

∇λα2 − ∇λα2 : ∇λα1 , which is skew-symmetric. Hence, ϕN0
α ∈ N I

0 (K). Next we consider a

trivial vector field v =
∑|EK |

α=1 cαϕ
N0
α = 0. This implies v·τ |Eα

= 0 on all edges. In combination
with (4.17) we obtain cα/|Eα| = 0,∀Eα ∈ EK and hence the linear independence of the shape
functions. Due to the counting argument we have dim(N I

0 (K)) = |EK | and hence

span{ϕN0
α : Eα ∈ EK} = N I

0 (K).

To show (4.17), we consider an edge Eβ = [Vβ1 , Vβ2 ] where τ denotes the associated tangential
vector. Then ∇λk · τ |Eβ

= 1
|Eβ |

(
−δkβ1 + δkβ2

)
and λk = 0 on Eβ if k /∈ Eα. We obtain

ϕN0
β · τ |Eβ

=
1

|Eβ|
(λβ1 + λβ2)|Eβ

=
1

|Eβ|
. (4.18)

Concerning the remaining edges, i.e. Eα 6= Eβ there exists a vertex Vαk
∈ Eα s.t. Vk /∈ Eβ,

which implies ∇λαk
· τ |Eβ

= 0 as well as λαk
|Eβ

= 0 and hence ϕN0
α |β = 0. Evaluating the

line-integral of (4.17) over several edges Eβ finally yields the nodality of the basis.

Definition 4.13 (Lowest-order Nédélec elements of second kind). The Nédélec element of
second kind of order p = 1 on a simplex K is defined by

• the full-order space N II
1 (K) =

(
P 1(K)

)d
of dimension 6 for d = 2 and 12 for d = 3,

• the first and second moment of the tangential components over each edge Eα ∈ EK , i.e.

Nk
α : v →

∫

Eα

v · τ qk dx for k = 0, 1,

where {qk} is a basis for P 1(Eα) and q0 = 1.

Lemma 4.14. For an edge Eα = [Vα1 , Vα2 ] ∈ EK , α = 1, . . . , |EK |, define

ϕN0
α = ∇λα1λα2 − λα1∇λα2 , and (4.19a)

ϕEα = ∇
(
λα1λα2

)
(4.19b)

Then the set {ϕN0
α ,ϕEα } of shape functions is a basis for the Nédélec element N II

1 (K) of
second kind:
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Proof. Following the proof of Lemma 4.12 we obtain the extension of 4.18 as

ϕN0
α · τ |Eβ

= 1
|Eα|(λα1 + λα2)|Eβ

= 1
|Eα| δαβ

ϕEα · τ |Eβ
= 1

|Eα|(λα1 − λα2)|Eα
δαβ

with (λα1 − λα2) being linear on Eα. This implies the linear-independence of the shape
functions. Verifying the counting argument dim(P 1(K))d = 2|EK | concludes the proof.

Since the edge-based shape functions, of the element of second type, are gradient functions,
there obviously holds

curlN I
0 (K) = curlN II

1 (K).

H(curl)-conforming element transformation. The conforming transformation of vec-
torial shape functions on the reference element K̂ onto shape functions defined on a phys-
ical element K is more involved than in the scalar case. Note that in order to guarantee
H(curl)-conformity, we want that the degrees of freedom are preserved by the transformation.
Moreover, for establishing a local exact sequence property, we have to ensure that gradient
fields on the reference element are mapped onto gradient fields on the physical element. In
view of (4.13), we suggest the following transformation:

Lemma 4.15 (H(curl)-conforming transformation). Let ΦK : K̂ → K be a continuously
differentiable, invertible and surjective map, and û ∈ H(curl, K̂). Then the transformation

u := F−T
K û ◦ Φ−1

K (4.20)

implies u ∈ H(curl,K) with

(curlxu) = J−1
K FK curlx̂ û ◦ Φ−1

K (4.21)

for K ⊂ R
3. In two dimensions we obtain instead curlxu = J−1

K curlx̂ û ◦ Φ−1
K .

A proof of the lemma can be found in Monk [70] (Lemma 3.57, Corollary 3.58).

In the following we collect some important properties of the transformation above:

1. Tangential traces along edges transform as

(u · τ ) ◦ ΦK |Ê =
(
F−T
K û · FT

K τ̂

‖FT
K τ̂‖

)
|Ê

=
(
û · τ̂ 1

‖FT
K τ̂‖

)
|Ê
.

Taking into account the transformation of line integrals we obtain

Nk
i (u) =

∫

ΦK(Ê)
u · τ qkds =

∫

Ê
û · τ̂

‖FK τ̂‖
q̂k ‖F TK τ̂‖ dŝ = N̂k

i (û),

where qk ◦Φk := q̂k. Hence, the degrees of freedom are preserved by the transformation.

2. Gradient fields p̂ ∈ ∇̂H1(K̂) are mapped onto gradient fields p ∈ ∇H1(K), since for all
û = ∇̂ŵ:

u ◦ ΦK = F−T
K û = F−T

K ∇̂ŵ = (∇w) ◦ ΦK

with w ◦ ΦK := ŵ and w ∈ H1(K).



4.3. AN EXACT SEQUENCE OF CONFORMING FINITE ELEMENT SPACES 45

Applying the conforming transformation (4.20) on the shape functions ϕ̂N0
α , ϕ̂Eα defined on

the reference element K̂ we can deduce the shape functions ϕN0
α ,ϕEα on the physical element

K. This can be verified by performing a change of variables x = Φk(x̂) in the shape functions
(4.19) and taking into account the transformation of gradient fields according to Lemma 4.10
as follows:

ϕN0
α (x) = ∇λα1(x)λα2(x) − λα1(x)∇λα2(x)

=
(
F−T
K ∇̂λ̂α1

)
(x̂) λ̂α2(x̂) − λ̂α1(x̂)

(
F−T
K ∇̂λ̂α2

)
(x̂)

= F−T
K (x̂)

(
∇̂λ̂α1 λ̂α2 − ∇̂λ̂α2 λ̂α1

)
(x̂)

= F−T
K (x̂) ϕ̂N0

α (x̂),

ϕEα (x) = ∇(λ1λ2)(x) = F−T
K (x̂) ∇̂

(
λ̂α1 λ̂α2

)
(x̂)

= F−T
K (x̂) ϕ̂Eα (x̂).

Global shape functions and H(curl)-conforming FE-space In order to obtain global
FE-spaces we identify the degrees of freedom corresponding to the global edges of the mesh,
i.e. we glue the shape functions together:

Vh,0 :=
⊕

Ei∈E
span{ϕN0

i },

V II
h,1 :=

⊕

Ei∈E
span{ϕN0

i ,ϕEi }.

The H(curl)-conformity of the element can be verified by the following argument. Suppose
that v =

∑
ciϕi ∈ PK(K). The associated finite element is H(curl)-conforming: whenever

the degrees of freedom associated with an interface (an edge Eα or respectively a face Fβ)
are zero, the tangential trace of v vanishes on the interface, i.e. v · τ

∣∣
Eα

= 0, or resp.

(v×n)
∣∣
Fα

= 0. From the proofs of Lemma 4.12 and Lemma 4.14 we know that the edge-based
shape functions associated with the interfaces are the only shape functions with non-vanishing
tangential trace on the interface. Therefore, the tangential trace on faces (only d = 3) and
edges is realized by the shape functions associated with this interface. Since the global FE-
space is obtained by identification of the corresponding coefficients at the interfaces, we obtain
tangential continuity of the global shape functions.

We note that one has to take the global edge-orientation (the orientation of the tangential
vector) into account within the setting of global shape functions. If the global edge has the
opposite orientation than the transformed global one, the sign of the transformed shape
function on the corresponding element has to be changed. This can be done by allowing ±1
entries in the connectivity matrix during the assembling process.

Summarizing, we obtain tangential continuity over element interfaces and owing to Corollary
3.8 we obtain two H(curl)-conforming FE-spaces:

Vh,0 =
{
v ∈ H(curl)(Ω)

∣∣ v |K ∈ N I
0 (K) ∀K ∈ Th

}
,

V II
h,1 =

{
v ∈ H(curl)(Ω)

∣∣ v |K ∈ (P 1(K))d ∀K ∈ Th
}
.

Since the lowest-order degrees of freedom of H(curl)-conforming elements are associated with
the edges of the mesh, it is common to call the Nédélec elements the edge elements.
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4.3.3 Low-order H(div)-conforming Finite Elements Methods

Due to similar considerations as for the H(curl)-space we introduce the following two types
of H(div)-conforming elements, differing in the approximation of divergence fields:

• the Brezzi-Douglas-Marini (BDMk) element of order k with the local FE-space

BDMk(K) := (P k(K))d, (4.22)

• the Raviart-Thomas (RT k) element of order k with the enriched local FE-space

RT k(K) := (P k(K))d ⊕ x P̃k(K) (4.23)

with divRT k(K) = P k(K). In three dimensions, the Raviart-Thomas element is also
called Raviart-Thomas-Nédélec element.

Note that the spaces RT k(K) and BDMk(K) contain the same divergence-free vectors. This
time, the triangular and tetrahedral cases have to be treated separately.

H(div)-conforming elements in two dimensions The two-dimensional case can be han-
dled by a simple rotation of 90 degrees of the H(curl)-conforming element.

Definition 4.16. 1. The lowest-order Raviart-Thomas element (of order k = 0) on a
triangle K is defined by

• the local space RT 0(K) =
{
a+ bx

∣∣ a ∈ R
2, b ∈ R

}
with dim(RT 0(K)) = 3,

• the total flux over each edge Eα ∈ EK , i.e.,

Nα : v →
∫

Eα

v · n dx α = 1, 2, 3.

2. The linear BDM -element (of order k = 1) on a triangle K is defined by

• the full-polynomial local space BDM1(K) = (P 1(K))2,

• two degrees of freedom associated with each edge Eα ∈ EK , namely

Nα : v →
∫

Eα

v · n qkdx for k = 0, 1,

with (qk)k=1,2 spanning P 1(Eα).

For a hierarchical definition of BDM-elements of higher order it will be important to choose
q0 = 1. We will assume this also for the linear case. As already mantioned above, the fluxes
of these elements span the same spaces, i.e.,

divRT 0(K) = divBDM1(K) = P 0(K),

and the nodal shape functions can be derived by rotating by 90 degrees the nodal shape
functions of the Nédélec element, which yields

ψRT 0
α = λα1 Curlλα2 − Curlλα1 λα2 ,

ψEα = Curl
(
λα1λα2

)
,

for each edge Eα = [Vα1 , Vα2 ] ∈ EK .
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H(div)-conforming elements in three dimensions
We consider only the lowest-order element RT 0(K) here, and leave the treatment of BDMk

elements to the next chapter.

Definition 4.17. The classical, lowest-order, H(div)-conforming element on a tetrahedron
K is defined by

• the local space RT 0(K) =
{
a+ bx

∣∣ a ∈ R
3, b ∈ R

}
with dim(RT 0(K)) = 4,

• the lowest-order degrees of freedom associated with faces, i.e. the total normal fluxes
over each Fα ∈ FK :

Nα : v →
∫

Fα

v · n dx for 1 ≤ α ≤ 4.

For the lowest-order Raviart-Thomas element we obtain

(
P 0(K)

)3 ⊂ RT 0(K) ⊂
(
P 1(K)

)3
with divRT 0 = P 0(K).

Since the degrees of freedom are associated with the faces of the mesh, such elements (of
arbitrary order) are often called face elements. The lowest-order face-based shape functions
can be realized by 2-form Whitney-elements as described in Bossavit [25].

Lemma 4.18. Associating with each face F̂α ∈ FK̂ the shape function

ψ̂
RT 0

α = λ̂f1∇̂λ̂f2 × ∇̂λ̂f3 + λ̂f2∇̂λ̂f3 × ∇̂λ̂f1 + λ̂f3∇̂λ̂f1 × ∇̂λ̂f2 , (4.24)

where Fα = [f1, f2, f3], yields a nodal basis for RT 0(K̂).

The flux of ψ̂
RT 0

α across the face F̂α is 1 and vanishes across all other faces, i.e.

∫

F̂α

ψ̂
RT 0

β · n̂ dx̂ = δαβ , (4.25)

if the counter-clockwise rotation of the vertices [f1, f2, f3] points in the direction of the outer
normal vector n̂.

Proof. The outer normal vector n̂ on the face F̂α, determined by the vertex-triple [f1, f2, f3],
can be expressed by n̂ = −∇̂λ̂f4/|∇̂λ̂f4 | where f4 denotes the vertex on the tetrahedron

opposite to the face [f1, f2, f3]. Using λ̂1 + λ̂2 + λ̂3 + λ̂4 = 1 in K̂ and λ̂4 = 0 on Fα the
relation |∇̂λ̂4| = |Fα| implies

ψ̂
RT 0

α · n̂ |F̂α
=
(
∇̂λ̂f1 × ∇̂λ̂f2 · ∇̂λ̂f3

)
1

|∇̂λ̂f4
| =

(
∇̂λ̂f1 × ∇̂λ̂f2 · ∇̂λ̂f3

)
1

|Fα| .

Since ∇̂λ̂f1 × ∇̂λ̂f2 · ∇̂λ̂f3 = 1 if the counter-clockwise rotation of [f1, f2, f3] points out of K̂
(otherwise it is −1), integration over Fα yields (4.25) for α = β.
Now let f1 denote the vertex opposite to F̂β with outer unit normal vector n̂β =

−∇̂λ̂f1/|∇̂λ̂f1 |. Then there holds

ψ̂
RT 0

α · n̂β = (λ̂f1 ∇̂λ̂f2 × ∇̂λ̂f3) · ∇̂λ̂f1) = 0 for α 6= β,

since λ̂f1 = 0 on F̂β.
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H(div)-conforming transformation
We plan to construct global basis functions forH(div, T ) again by a conforming transformation
of basis functions on the reference element K̂. The following transformation preserves curl-
fields, cf. (4.21):

Lemma 4.19 (H(div)-conforming transformation). Let ΦK : K̂ → K be a continuously
differentiable, invertible and surjective mapping. Given a vector function p̂ ∈ H(div, K̂) the
Piola transformation

p := J−1
K FK p̂ ◦ Φ−1

K ,

also called the contravariant transformation, implies p ∈ H(div,K) with

divp = J−1
K divx̂ p̂ ◦ Φ−1

K .

The proof of this result can be found in Monk [70, Lemma 3.59]. The Piola transformation
has the following desired properties:

1. Normal traces transform as

(
u · n

)
◦ ΦK |F̂ =

(
J−1
K FKû · F−T

K n̂

‖F−T
K n̂‖

)
|F̂

=
(
û · n̂ 1

JK‖F TKn̂‖
)
|F̂

Taking into account the transformation of surface integrals, i.e.

∫

A
dA =

∫

Â
|JK | ‖F−T

K n̂‖ dÂ,

we see that the lowest-order degrees of freedom are invariant with respect to the Piola
transformation: ∫

Fα

p · n dx = sign(JK)

∫

F̂α̂

p̂ · n̂ dx̂.

2. Curl fields p̂ ∈ curlx̂H(curl, K̂) are mapped onto curl fields p ∈ curlH(curl,K):

p ◦ ΦK = J−1
K FK p̂ = J−1

K FK curlx̂ v̂ = curlv ◦ ΦK .

3. The Piola transformation preserves p̂ = ∇̂û× ∇̂v̂ for scalar functions û, v̂ ∈ H1(K̂) :

p ◦ ΦK = J−1
K FK p̂ = J−1

K FK
(
∇̂û× ∇̂v̂

)
= (F−T

K ∇̂û) × (F−T
K ∇̂v̂)

=
(
∇u×∇v

)
◦ΦK .

4. In the case of an affine linear transformation, the Raviart-Thomas space RT k(K) is
invariant with respect to the Piola transformation (see Brezzi-Fortin [32]).

Applying the Piola transformation to the lowest-order Raviart Thomas shape functions on
the reference element, we obtain the following shape functions on the physical element K:

ψRT 0
α = J−1

K F−T
K ψRT 0

α ◦ Φ−1
K

= λf1∇λf2 ×∇λf3 + λf2∇λf3 ×∇λf1 + λf3∇λf1 ×∇λf2 . (4.26)

with normal flux
∫
Fα
ψRT 0
β · n dx = δαβ across the face Fα.
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Global shape functions and H(div)-conformity Identifying the degrees of freedom
associated with the faces of the mesh leads to the global FE-space

Qh,0 :=
⊕

Fi∈F
span{ψRT 0

i }.

The H(div)-conformity of the physical elements associated with RT 0(K) can be verified
as follows: Let q ∈ RT 0(K) with q · n = 0 on the face Fj . In order to verify H(div)
conformity we only have to show that all degrees of freedom (dofs) associated with this face
vanish, i.e. NRT 0

j (q) = 0. Now observe that 0 = q =
∑

Fi∈F N
RT 0
i (q)ψRT 0

i and furthermore

0 = trFj (q · n) = NRT 0
j (q)trFj (ψ

RT 0
j ) = NRT 0

j (q) 1
|Fj | .

The normal flux through the interface of two adjacent elements is determined by the degree
of freedom associated with this face. Since we associated the degrees of freedom explicitly
with the fluxes over the faces, the global shape functions have continuous normal components
by construction. Hence the global FE-space is a subspace of H(div), i.e.

Qh,0 = {q ∈ H(div,Ω)
∣∣ q |K ∈ RT 0(K) ∀K ∈ Th}.

4.3.4 The lowest-order L2-conforming Finite Element Method

In contrast to the finite element spaces discussed previously, the L2-conforming space requires
no continuity across the element interfaces. In principle, L2-conforming elements can be
constructed in an analogy toH1-conforming elements, but without regarding continuity across
element boundaries. We just sketch the such a construction:

Definition 4.20. The L2-conforming element of order k on a triangle or tetrahedron K is
defined by

• the local space P k(K),

• the cell-based degrees of freedom:

NC
l : p→

∫

K
p ql dx 0 ≤ l ≤ k

with (ql)0≤l≤k a basis of P k(K)

For a hierarchical construction (higher order) it will be important that {qk} is a hierarchical
basis of P k(K), in particular q0 = 1. The nodal lowest-order shape function can be realized
as

ϑi =
1

|Ki|
∀Ki ∈ Th. (4.27)

Classically one uses the standard element pull-back transformation (4.12) for scalar functions
to define the basis functions on the physical element K. But in view of the global exact
sequence property we define the L2-conforming transformation by the conforming transfor-
mation of divergence fields defined in Lemma 4.19 as follows (cf. Demkowicz et al. [44]).

Lemma 4.21 (L2-conforming transformation). Let ΦK : K̂ → K be a continuously dif-
ferentiable, invertible and surjective mapping. Given a function q̂ ∈ L2(K̂) we define its
L2-conforming transformation by

q = J−1
K q̂ ◦ Φ−1

K . (4.28)
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Since no continuity across element interfaces is required, the global element space can be
locally, i.e.

Sh,0 :=
⊕

Ki∈Th

span{ϑCi } =
{
g ∈ L2(Ω)

∣∣ g|K ∈ P 0(K) ∀K ∈ Th
}
. (4.29)

4.3.5 Discrete exact sequences

In order to show the exactness of the sequence (4.9) of the global FE-spaces, we first show
that the associated local sequence defined on the reference element K̂ is exact.

Exact sequences on the reference element level involving spaces of the first family

Lemma 4.22. Concerning the reference tetrahedron K̂ we obtain that the following sequence
of local FE-spaces associated with the first kind of low order finite elements is exact:

R
id−→ P 1(K̂)

∇−→ N I
0 (K̂)

curl−→ RT 0(K̂)
div−→ P 0(K̂), (4.30)

as illustrated in Figure 4.2.

R
id−→

1+3

∇−→

3+3

curl−→

3+1

div−→

1+0

0−→ {0}

Figure 4.2: This sequence for the elements of the first family with vertex-based(black), edge-
based(red), face-based(green) and element-based(blue) dofs is exact. The range of an opertor
has the same dimension as the kernel of the following operator.

This can be easily verified by two steps:

1. The range of a differential operator is included in the kernel of the following one:

∇P 1(K̂) = P 0(K̂)3 ⊂ N I
0 (K̂), hence ∇P 1(K̂) ⊂ ker(curlN I

0 (K̂)),

curlN I
0 (K̂) = P 0(K̂)3 ⊂ RT 0(K̂), hence curlN I

0 (K̂) ⊂ ker(divRT I
0(K̂)),

divRT 0(K̂) = P 0(K̂).

2. We recall the algebraic property of discrete spaces and linear transformations D that

dim(Xh) = dim(ker(D)) + dim(range(D)). (4.31)

A simple counting argument now shows that equality holds instead of only inclusion,
i.e., range(div) = span{1}, range(∇) = ker(curl), and range(div) = ker(curl); cf. Figure
4.2.

In the two-dimensional case we obtain the following shortened sequences, involving the lowest-
order elements of first kind:
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Lemma 4.23. For the triangular reference element K̂ the shortened sequences of local lowest
order FE-spaces (as illustrated in Figure 4.3 and Figure 4.4)

R
id−→ P 1(K̂)

∇−→ N I
0 (K̂)

curl−→ P 0(K̂)
0−→ {0}, (4.32)

and

R
id−→ P 1(K̂)

Curl−→ RT 0(K̂)
div−→ P 0(K̂)

0−→ {0} (4.33)

are exact.

This follows with arguments to those above, by using

∇N0(K̂) = P 0(K̂)2 ⊂ N0(K̂) and curlN0(K̂) = P 0(K̂),

CurlP 1(K̂) = P 0(K̂)2 ⊂ RT 0(K̂) and divRT 0(K̂) = P 0(K̂),

and comparing the dimensions of the ranges, kernels and spaces; cf. Figure 4.3 and Figure
4.4.

R
id−→

1+2

∇−→
2+1

curl−→
1+0

0−→ {0}

Figure 4.3: 2-dimensional exact sequence involving lowest-order Nédélec element (of first kind)
and splitting of space into kernel and range of the consecutive operator

R
id−→

1+2

Curl−→

2+1

div−→
1+0

0−→ {0}

Figure 4.4: 2-dimensional exact sequence involving the lowest-order Raviart-Thomas element

Remark 4.24. In the proposed sequences of local FE-spaces involving the lowest-order
H(curl)- and H(div)-conforming finite elements of the first kind, the polynomial degree is
only decreased by 1 throughout the whole de Rham Complex. As we will see in the next chap-
ter, this holds true also for corresponding high-order simplicial finite elements of first kind.

Exact sequences property for the second family on the reference element level

Analogous considerations imply exact sequences involving H(curl)- and H(div)-conforming
elements of the second family. In two dimensions the following shortened exact sequences hold.

Lemma 4.25. For the triangular reference element K̂ the following two sequences of local
spaces involving either the Nédélec element of second kind or the Raviart-Thomas element
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(BDM1) of second kind are exact:

R
id−→ P 2(K̂)

∇−→ N II
1 (K̂) = P 1(K̂)

curl−→ P 0(K̂)
0−→ {0}, (4.34)

R
id−→ P 2(K̂)

Curl−→ BDM1(K̂) = P 1(K̂)
div−→ P 0(K̂)

id−→ {0}. (4.35)

(Compare Figure 4.5 and Figure 4.6.)

R
id−→

1+5

∇−→
5+1

curl−→
1+0

0−→ {0}

Figure 4.5: 2-dimensional exact sequence involving the linear Nédélec element of second kind
and splitting into kernel and range of consecutive differential operator

R
id−→

1+5

Curl−→

5+1

div−→
1+0

0−→ {0}

Figure 4.6: 2-dimensional exact sequence involving the linear BDM element and splitting into
kernel and range of consecutive differential operator

We observe that in the De Rham sequences, which involve triangular finite elements of the
second family, the polynomial degree decreases by order 2 throughout the sequence. In three
dimensions, the de Rham Complex involves the application of three consecutive differential
operators. Therefore, if one uses spaces of full polynomial degree on tetrahedra, the polynomial
degree lowers by 3 throughout the sequence. This leads to the following sequence involving
Nédélec and Raviart-Thomas spaces of the second kind.

Lemma 4.26. Let K̂ denote the tetrahedral reference element. The following sequence of
local spaces involving only full polynomial spaces

R
id−→ P 3(K̂)

∇−→ (P 2(K̂))3 = N II
2 (K̂)

curl−→ (P 1(K̂))3 = BDM1(K̂)
div−→ P 0(K̂)

0−→ {0}
(4.36)

is exact.

This sequence of spaces is the one involving spaces with lowest degree while still ensuring full
polynomial degree and exactness.

The exactness of the three sequences stated in Lemma 4.25 and Lemma 4.26 can be proved
with the same arguments as above: By construction the range of each operator is a subspace
of the following space. Equality then follows again by a counting argument; cf. Figure 4.5,
4.6, and 4.7).

Remark 4.27. If we use a conforming transformation onto the physical elements due to
Lemma 4.10, Lemma 4.15, or Lemma 4.19 respectively, the exact sequence () on the reference
element implies that the exactness still holds on the local spaces of the physical elements.
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R
id−→ ��

1+9

∇−→

9+3

curl−→

3+1

div−→

1+0

0−→ {0}

Figure 4.7: Exact sequence involving tetrahedral Nédélec element of the second kind.

Global exact sequence property of discrete FE-spaces

As already outlined above, the use of conforming transformations provides that the exactness
is provided for the local spaces defined on the physical elements. Moreover, due to the
conforming construction the exactness then also holds for the global finite element spaces.

We summarize results from Bossavit [23], Bossavit [25] (Proposition 5.5), and Arnold-

Falk-Winther [7]:

Theorem 4.28 (Exactness of global discrete sequence). Let Ω be a simply-connected domain
with connected boundary, and let the physical finite elements be constructed by conforming
transformations (cf. Lemma 4.10, Lemma 4.15, and Lemma 4.19). Then the sequences of the
conforming global FE-spaces corresponding to (4.30)

R
id−→Wh,1

∇−→ Vh,0
curl−→ Qh,0

div−→ Sh,0
0−→ {0}

and corresponding to (4.36)

R
id−→Wh,2

∇−→ V II
h,1

curl−→ Qh,0
div−→ Sh,0

0−→ {0}

are exact.
In two dimensions, the following shortened sequences corresponding to (4.32) or (4.34)

R
id−→Wh

∇−→ Vh
curl−→ Sh

0−→ {0}

and corresponding to (4.33) or (4.35)

R
id−→Wh

Curl−→ Qh
div−→ Sh

0−→ {0}

are exact.

Remark 4.29 (Exact sequences involving essential boundary conditions). Essential boundary
conditions can be taken into account in a similar manner as in the continuous case, cf. Remark
3.17. The exactness of the resulting sequences follows then by the same arguments as in the
Neumann case.

4.3.6 Element matrices and assembling of FE-matrices

For an efficient computation, the FE-matrices are assembled from element-matrices AK
α,β for

all K ∈ Th. The assembling of the global matrix is done via a connectivity matrix C which
assigns local to global degrees of freedom.
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The global Galerkin system matrix as well as the global load vector, as defined in (4.3), are
assembled as follows:

A =
∑

K∈Th

(
CK
)T
AKCK , f =

∑

K∈Th

(
CK
)T

fK

with connectivity matrices

CKi,α =

{
±1 if local dof α is identified with global dof i,
0 otherwise.

The sign factors in the entries of the connectivity matrix ±1 account for the global edge-
orientation (the orientation of the tangential vector) or for the global face-orientation (the
direction of the normal vector) and are necessary to enable conformity. The element matrices
AK , and the element load vector fK are stated below. Note that due to the local support of
the shape functions, the connectivity matrices as well as the system matrix A are sparse.

The calculation of the element stiffness matrix and the element load vector is done by inte-
gration on the reference element while taking into account the element transformations. We
shortly outline the procedure for the electromagnetic model problems we have in mind.

Electrostatic problem

In view of Section 3.4.1, we are looking for solutions u ∈ Wh ⊂ H1
D(Ω) of the variational

problem ∫

Ω
∇u∇v dx+

∫

Ω
κuv dx =

∫

Ω
fv dx ∀v ∈Wh.

For discretization we use H1-conforming finite elements. The element matrices and vectors
can be computed by taking into account the transformation of scalar and gradient functions
(cf. Lemma 4.10) in the following way:

AK
αβ =

∫

K
∇φα∇φβ dx+

∫

K
κφα φβ dx

=

∫

K̂

(
F−T
K ∇φ̂α

) (
F−T
K ∇φ̂β

)
J dx̂+

∫

K̂
κφ̂α φ̂β J dx̂,

fKα =

∫

K
fφα dx =

∫

K̂
fφ̂α J dx̂,

where {φ̂α} denotes the shape functions on the reference element.

Magnetostatic problem

We recall the variational formulations of the magnetostatic problem, cf. Section 3.4.2, and
hence consider the following model: Find u ∈ Vh ⊂ H(curl,Ω) such that

∫

Ω
µ−1 curlu curlv dx+

∫

Ω
κuv dx =

∫

Ω
j v dx ∀v ∈ Vh.
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Utilizing the H(curl)-conforming transformations (cf. Lemma 4.15) the element matrices and
vectors can be computed on the reference element as follows:

AK
αβ =

∫

K
µ−1 curlϕα curlϕβ dx+

∫

K
κϕαϕβ dx

=

∫

K̂
µ−1J−1

(
FK curl ϕ̂α

) (
FK curl ϕ̂β

)
dx̂+

∫

K̂
κ
(
F−T
K ϕ̂α

) (
F−T
K ϕ̂β

)
J dx̂,

in three spatial dimensions. In two dimensions we obtain instead

AK
αβ =

∫

K̂
µ−1J−1 curl ϕ̂α curl ϕ̂β dx̂+

∫

K̂
κ
(
F−T
K ϕ̂α

) (
F−T
K ϕ̂β

)
J dx̂.

The element vector allows a unique representation for K ∈ R
3 and R

2:

fKα =

∫

K
j ϕα dx =

∫

K̂
j
(
F−T
K ϕ̂α

)
J dx̂.

Here {ϕ̂α} denote the shape functions on the reference element, spanning a local H(curl)-
conforming FE-space on K̂.

4.4 Commuting Diagram and Interpolation Error Estimates

The commuting diagram, which links the global and discrete sequences of spaces, plays an
important role in the error analysis of finite element approximations. In view of emphasizing
once more the importance of exact sequences, we shortly sketch some ideas and the main
results of interpolation operators and the connected error estimates. An extensive analysis
on commuting diagrams can be found in Bossavit [25] for nodal interpolation operators,
Clémént-type interpolation operators in Schöberl [81] and projection-based interpolation
in Demkowicz-Buffa [43].

In the error analysis of finite-element methods as well as for implementing boundary conditions
we use interpolation operators which map a (Sobolev) space X into the discrete FE-spaces Xh,
i.e. ΠX : X → Xh. In particular we are interested here in the following choice of spaces X:
W ⊂ H1(Ω), V ⊂ H(curl,Ω), Q ⊂ H(div,Ω) or S ⊂ L2(Ω). A special case of interpolation
operators is realized by the degrees of freedom, namely

ΠX(v) =

N∑

i=1

Ni(v)ϕi

with span{ϕi : i = 1, . . . , N} = X.
One essential drawback of nodal interpolation operators is that that they are not well-defined
on the whole function spaceH1(Ω), H(curl), orH(div), since not all traces, which are involved
in the degrees of freedom, are properly defined on the whole space, e.g. point-evaluation in
2D or 3D, is not well-defined in H1(Ω).
Interpolation operators which require less smoothness are Clémént type operators, which
involve non-local averaging over certain patches. For instance, the Clémént type operator for
H1-problems is defined by averaging over the patch of elements associated with one vertex
instead of point-evaluation in this vertex.
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Let us consider a sequence of conforming finite-element spaces (W , V , Q, S) and interpo-
lation operators Πi. We summarize all the involved operators and spaces in the following
(commuting) diagram:

H1(Ω)
∇−→ H(curl,Ω)

curl−→ H(div,Ω)
div−→ L2(Ω)

⋃ ⋃ ⋃ ‖
W V Q S

ΠW

y
ΠV

y
ΠQ

y
ΠS

y

Wh
∇−→ Vh

curl−→ Qh
div−→ Sh

This diagram is said to commute, if for sufficiently smooth functions the following hold:

ΠV∇w = ∇ΠWw ∀w ∈W ⊂ H1(Ω),

ΠQ curlv = curlΠV v ∀v ∈ V ⊂ H(curl,Ω),

ΠS div q = div ΠQq ∀q ∈ Q ⊂ H(div,Ω).

Such relations can be derived for certain choices of interpolation operators via Stokes and
Green’s theorems. In the following theorem we collect some results on nodal interpolation
error estimates, which are frequently used in approximation error estimates.

Theorem 4.30 (Nodal interpolation error estimates). The nodal interpolation operators are
well defined on the spaces

W = H
3
2
+δ(Ω),

V =
{
v ∈

(
H

1
2
+δ(Ω)

)3 ∣∣ curlv ∈
(
H

1
2
+δ(Ω)

)3}
,

Q =
{
v ∈

(
H

1
2
+δ(Ω)

)3 ∣∣ div v ∈ L2(Ω)
}

with δ > 0.

Let Th denote a regular tetrahedral mesh width meshwidth h.

1. Let Wh be the H1-conforming FE-space of order k, and ΠW denote the corresponding
nodal interpolation operator. If w ∈ (Hs(Ω))3 for 3

2 + δ ≤ s ≤ k + 1, then

‖w − ΠWw‖1 � hs−1‖w‖s.

2. Let ΠV denote the nodal interpolation operator corresponding to the FE-space Vh of
Nédélec elements of the first kind and order k. If v ∈ (Hs(Ω))3 and curl v ∈ (Hs(Ω))3

for 1
2 + δ ≤ s ≤ k + 1, then there holds

‖v − ΠV v‖0 � hs
(
‖v‖s + ‖ curlv‖s

)
and ‖ curl(v − ΠV v)‖0 � hs

(
‖ curlv‖s

)
,

see Monk [70](Theorem 5.41, Remark 5.42) and Hiptmair [56] (Theorem 3.14, Corol-
lary 3.17).

3. Let Qh denote the FE-space of Raviart-Thomas-Nédélec elements of order k, and ΠQ be
the corresponding nodal interpolation operator. If q ∈ (Hs(Ω))3 and 1

2 + δ ≤ s ≤ k + 1,
then

‖q − ΠQq‖0 � hs‖q‖s and ‖div q − ΠQq‖0 � hs‖q‖s
hold, see Monk [70](Theorem 5.25, Remark 5.26).
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Similar results also exist if Vh and Qh are chosen out of the second exact sequence, cf. (4.36).
However, there the approximation order of v and q is one order better than that of curlv and
div q, respectively, due to the choice of polynomial spaces.
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Chapter 5

High Order Finite Elements

In the previous chapter we introduced the classical Finite Element Method, namely h-FEM,
where the polynomial degree on all elements is fixed to a uniform order, typically p = 1 or
p = 2. Convergence is achieved by local or global refinement of the underlying mesh Th,
denoted as h-refinement, and the error in the numerical solution decays algebraically.
The idea of p-version finite element methods is to use a fixed triangulation and obtain conver-
gence by increasing the polynomial order – p-refinement. In case of an analytic solution the
p-version FEM yields exponential convergence rates in the energy norm, cf., e.g., Babuska-

Szabo-Katz [12]. In case of piecewise analytic solutions with singular behavior near corners,
edges or boundary layers, also the p-version yields only algebraic convergence.
The hp-method now combines the two ideas: Exponential convergence can be regained by
the combination of (geometric) h-refinement and local increase of the polynomial order.
Such a strategy is then called hp-refinement. For a survey on hp-refinements we refer to
Melenk [68] and Szabo-Düster-Rank [86].

This chapter is devoted to the construction of conforming hierarchical hp-finite element
approximations for the vector-valued spaces H(curl,Ω) and H(div,Ω). As we will see in
our numerical tests, regular geometric h-refinement towards singular corners, singular edges
and/or boundary layers naturally leads to various element topologies, involving in particular
not only simplices.

Our goal is to provide a general strategy for constructing a sequence of hierarchical finite
element spaces allowing for arbitrary and variable polynomial order on a mixture of common
element topologies in one single mesh. A main point in such a construction is to ensure the
exact sequence property of discrete spaces in a more localized sense. To achieve this, we
explicitly use higher-order kernel functions of the natural differential operator (in this space)
within the construction of the FE-basis, see also the previous chapter. For instance, in the
construction of an H(curl)-conforming basis we include gradient functions. The framework
we are going to present, is particularly well suited for a practical implementation, and is
extendable to anisotropic polynomial orders.

The construction of finite element spaces presented below is based on the following contribu-
tions:

• In Webb [95] an H(curl)-conforming finite element basis is provided by taking the
gradient fields of H1-conforming shape functions and then extending the basis to the

59
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full polynomial space. The shape functions are formulated as monomials of the affine
coordinates. To avoid very ill-conditioned matrices Gram-Schmidt orthogonalization is
used, which is conveniently proposed up to polynomial order 3.

• A first general hierarchical construction strategy of H(curl)-conforming and H(div)-
conforming finite elements for arbitrary polynomial order on tetrahedral elements is
presented in Ainsworth-Coyle [2].

• In Karniadakis-Sherwin [60] H1-conforming spaces which yield a general construc-
tion for all common element topologies, are suggested. This is obtained by using an
underlying tensor-product structure also for simplicial elements, based on the work of
Dubiner [46].

• The study of the de Rham diagram of hp-finite element spaces, presented in Demkow-

icz et al. [44] and the implementation of H(curl)-conforming hp-finite elements on
hexahedral meshes, as presented in Rachowicz-Demkowicz [76].

Our construction provides a more general version of the exact sequence property of the
discrete global spaces, which we call the local exact sequence property, and formulate in
Theorem 5.32. This local exact sequence is a key property in our design of cheap and robust
preconditioners for curl-curl problems in Chapter 6.

To avoid confusion,we point out in advance that we distinguish between three levels of the
exact sequences of discrete spaces:

1. the exact sequence of the local FE-spaces defined on the reference element K, which we
use for motivating the choice of the appropriate local spaces,

2. the (discrete) global exact sequence of the global FE-spaces (cf. Corollary 5.34), which
is the classical one,

3. the local exact sequence of the discrete global spaces (cf. Theorem 5.32), which is a
generalization of the global exact sequence. By this we mean that the exact sequence
property even holds for the subspaces of a partially local space splitting.

5.1 High-order FE-spaces of variable order

The classical definition of the degrees of freedom as introduced in Nédélec [72, 73] is stated
for uniform polynomial order p all over the mesh and does not generalize to finite element
spaces with varying polynomial order. One of our aims is to be able to vary the polynomial
order locally, i.e., in the sense of assigning to each edge, face and cell in the mesh an arbitrary
polynomial degree, while still ensuring conformity as well as the exactness of the discrete de
Rham complex.

We start with a discussion of using the degrees of freedom for constructing conforming finite
element spaces with varying polynomial order distribution over the mesh. The following
definition of degrees of freedom, enabling variable order tetrahedral elements and providing
commuting interpolation operators, is due to Demkowicz et al. [44].
We consider a bounded Lipschitz polyhedral domain Ω, which is covered by a regular tetra-
hedral mesh Th. Let p = (pE1 , . . . pE6 , pF1 , . . . , pF4 , pC) denote the polynomial degrees corre-
sponding to edges, faces and the cell of the tetrahedral element K ∈ Th.



5.1. HIGH-ORDER FE-SPACES OF VARIABLE ORDER 61

H1-conforming hp FE-spaces

Let us define the following local finite element space:

Wp(K) := Pp(K) :=
{
w ∈ P pC

∣∣ w|F ∈ P pF (F )∀F ∈ FK , w|E ∈ P pE (E)∀E ∈ EK
}
. (5.1)

In order to make this definition reasonable we enforce a minimum order rule, i.e., for each
face F ∈ FK there holds

pC ≥ pF ≥ pE ∀ edges E on F. (5.2)

Following Demkowicz et al. [44] we define the hp-degrees of freedom as follows:

• Vertex-based degrees of freedom are defined by the point-evaluations

NV
i (φ) = φ(Vi) ∀Vi ∈ VK

• Edge-based degrees of freedom for each edge E ∈ EK :

NE
i (φ) =

∫

E

∂φ

∂s

∂vi
∂s

ds for {vi}2≤i≤pE spanning P pE
0 (E).

• Face-based degrees of freedom for each face F :

NF
i (φ) =

∫

F
∇Fφ · ∇F vi dx for {vi}1≤i≤nF , a basis of P pF

0 (F ),

with nF = 1
2(pF+1)(pF+2) and the surface gradient is defined as ∇F v := n×(∇v)|F ×n.

• Cell-based degrees of freedom

NC(φ) =

∫

K
∇φ · ∇v dx for {vi}1≤i≤nC , a basis of P pC

0 (T )

with nC = 1
6(pC + 3)(pC + 2)(pC + 1).

This choice defines a unisolvent and H1-conforming finite element, see Monk [70]. The
degrees of freedom can be used to define an interpolation operator ΠW : W → Wh, which is
well-defined for W = Hs(Ω) for s > 3

2 . Under the assumption of uniform order p on all edges,
faces and cells, and for w ∈ Hs(Ω) with s ≥ 2 the following interpolation error estimate holds:

‖w − ΠWw‖H1(Ω) � hmin{p,s−1}p1−s‖w‖s.

H(curl)-conforming hp-FE space

In order to obtain H(curl)-conformity, we define the local space such that the tangential traces
on edges and faces belong to polynomial spaces of some given order

Vp(K) :=
{
v ∈

(
P pC (K)

)3 ∣∣ trτ ,F (v) ∈ P pF (F )∀F ∈ FK , trτ ,E(v) ∈ P pE (E)∀E ∈ EK
}
,

(5.3)
where we denote the tangential traces onto edges as trE,τ(v) = trE(v · τ ) and onto faces as
trF,τ(v) = trF (n × (v × n)). In case of a minimum order rule (5.1), the polynomial space
Vp(K) is well-defined and there holds ∇Wp+1(K) ⊂ Vp(K).
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• Edge-based degrees of freedom:

NE
i (u) =

∫

E
u · τvi ds for {vi}0≤i≤pE , a basis of P pE (E).

• Face-based degrees of freedom:

NF
i (u) =

∫

F
curlF u curlF vi dA for {vi} s.t. {curlF vi} is a basis of curlF

(
P
pF
0,τ(F )

)
,

NF
i (u) =

∫

F
u · vi dA for {vi} a basis of ∇F

(
P pF +1

0 (F )
)
.

with curlF v = curlv · n and P pF
0,τ(F ) := (P pF (F ))2 ∩H0(curl, F ).

• Cell-based degrees of freedom:

NC
i (u) =

∫

K
curlu · curlvi dx for {vi} s.t. {curlvi} is a basis of curl

(
P
pC
τ ,0(K)

)
,

NC
i (u) =

∫

K
u · vi dx for {vi} a basis of ∇

(
P pC+1

0 (K)
)
.

with P pC
0,τ(K) := (P pC (K))3 ∩H0(curl,K).

These degrees of freedom define an H(curl)-conforming unisolvent finite element. Inter-
polation error estimates for the corresponding commuting projection-based interpolation
operators are presented in Demkowicz-Buffa [43].

Below, we will explicitly construct edge-base, face-based, and cell-based basis functions, which
fit into this framework.

H(div)-conforming hp-FE space

The H(div)-conforming local space of order p = (pF1 , ..., pF4 , pC) is defined as a vector-valued
polynomial space, where the normal traces on the faces of the element are polynomials of
order pFE

:
Qp(K) =

{
v ∈ P pC (K)

∣∣ (v · n)|F ∈ P pF ∀F ∈ FK
}
. (5.4)

Again, for the spaces to be well-defined, we have to require that

pF ≤ pC ∀F ∈ FK .
The degrees of freedom are defined as follows:

• Face-based degrees of freedom:

NF
i (q) =

∫

F
q · nvi dA for {vi} basis of P pF (F ).

• Cell -based degrees of freedom:

NC
i (q) =

∫

K
div q div vi dx for {vi} s.t. {div vi} is a basis of div

(
P
pC
n,0(K)

)
,

NC
i (q) =

∫

K
q · vi dx for {vi} a basis of curl

(
P
pC+1
τ ,0 (K)

)
,

with P pC
n,0(K) := P pC (K)3 ∩H0(div,K).
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The above construction gives rise to an H(div)-conforming unisolvent finite element. Interpo-
lation error estimates for commuting projection-based interpolation operators corresponding
to the above defined degrees of freedom are presented in Demkowicz-Buffa [43].

5.2 Construction of conforming shape functions

In the following we present a general approach for the conforming approximation of the
sequence of spaces, namely, H1(Ω), H(curl,Ω), H(div) and L2(Ω). Our main concern lies in

• enabling arbitrary and non-uniform polynomial order possibly varying for each edge,
face, cell,

• a strategy which is applicable for all common elements, such as triangles, quadrilaterals,
hexahedra, tetrahedra and prisms and, therefore, can be used on hybrid meshes (e.g.
coming from geometrically refined meshes)

• fulfilling the local exact sequence property as formulated in Theorem 5.32.

While eluding the application of interpolation operators, we are not concerned with the
definition of the degrees of freedom. Instead, we explicitly define the polynomial local finite
element spaces and construct H1-,H(curl)-, H(div)-conforming polynomial bases spanning
the local space.

The construction of the H1-conforming shape functions is rather familiar. We start with
Vertex-Edge-Face(only in 3d)-Cell based shape functions in tensor-product structure (possibly
degenerated in case of simplicial elements) as introduced by Dubiner [46] and Karniadakis-

Sherwin [60]. In our approach we take care of the exact sequence property already during the
construction of the basis functions, in particular, we use gradient fields of higher-order H1-
functions and curl-fields of higher-order H(curl)-functions to construct Nédélec-Edge-Face-
Cell (N0-E-F -C) based, respectively Raviart-Thomas-Face-Cell (RT 0-F -C) based conforming
finite elements. The idea is visualized in Figure 5.1. We point out in advance, that the lowest-
order space will always play a special role and therefore has to be treated separetely.

5.2.1 Preliminaries

Orthogonal polynomials

We intend to present a general method for constructing linearly independent shape functions
based on tensor products of one-dimensional orthogonal polynomials. Although we mainly
use Legendre-type polynomials later on, also other orthogonal polynomial bases spanning
P p([−1, 1]) respectively P p0 ([−1, 1]) could be used in our constructions, e.g. Gegenbauer, Ja-
cobi, Hermitian polynomials. The main aspect of the choice of a special polynomial family
is the type of orthogonality, and the possibility of fast and recursive point-evaluation, which
are key ingredients for an efficient numerical implementation. Orthogonality influences the
sparsity and the condition number of the involved element matrices, whereas the fast eval-
uation procedures can be exploited in fast assembling techniques, i.e. in sum factorization
techniques mentioned in Karniadakis-Sherwin [60] section 4.1.5. For details on orthogonal
polynomials we refer to the classical textbook by Szego [88].
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Figure 5.1: Vertex-Edge-Cell-based H1-conforming shape functions on triangles and their
gradient fields. Edge-based and face-based gradient fields are used as edge-based and as
subset of face-based H(curl)-conforming shape functions.

Legendre polynomials, denoted by (ℓi)0≤i≤p are L2(−1, 1)-orthogonal polynomials span-
ning P p([−1, 1]). In particular, they satisfy the orthogonality relation

∫ 1

−1
ℓi(x)ℓj(x) dx =

2

2i+ 1
δij .

Due to the three-term recurrence relation

ℓ0(x) = 1,
ℓ1(x) = x,

(n+ 1)ℓn+1(x) = (2n+ 1)ℓn(x)x− nℓn−1(x), n ≥ 1

efficient and stable point evaluation is possible. The derivatives of Legendre polynomials can
be computed by an analogous 3 term recurrence. If both, the Legendre polynomials and their
derivatives, are needed at the same time, we recommend to use the reccurence

ℓn(x) =

(
d

dx
ℓn+1(x) −

d

dx
ℓn−1(x)

)

together with the one for the Legendre polynomials. We only mention, that Legendre poly-
nomials are a special case of Jacobi polynomials (see Appendix A.3).

Integrated Legendre polynomials, denoted by (Ln)2≤i≤p, are defined as follows:

Ln(x) :=

∫ x

−1
ℓn−1(ξ) dξ for x ∈ [−1, 1] and n ≥ 2.

They are mutually orthogonal with respect to the H1-seminorm, i.e.,
∫ 1

−1
L′
i(x)L

′
j(x) dx = 0 for i 6= j.
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Figure 5.2: Legendre polynomials of order 1 to 5

Moreover, the polynomials Ln, n ≥ 2 vanish at the interval bounds, i.e. Ln(−1) = Ln(1) = 0
and span P p0 [−1, 1]. Once more, there holds a three-term-recurrence allowing fast point-
evaluations:

L1(x) = x,
L2(x) = 1

2(x2 − 1),
(n+ 1)Ln+1(x) = (2n− 1)xLn(x) − (n− 2)Ln−1(x) for n ≥ 2.

Here, L1(x) was added to allow for a general recursion relation. Note that L1(x) 6=
∫ x
−1 l0(y)dy.
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Figure 5.3: Integrated Legendre polynomials of polynomial order 2 to 6

An interesting property of the integrated Legendre polynomials is that they are almost or-
thogonal also with respect to the L2 inner product, i.e.,

∫ 1

−1
Li(x)Lj(x) dx = 0 only for |i− j| > 2.

Scaled Legendre-type polynomials For the construction of tensor-product-based shape
functions on triangular faces and tetrahedral cells we will use the Scaled Legendre Polynomials

ℓSn(x, t) := tnℓn
(x
t

)
for x ∈ [−t, t], t ∈ (0, 1]
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and the Scaled Integrated Legendre Polynomials

LS
n(x, t) := tnLn

(
x
t

)

=
∫ x
−t ℓ

S
n−1(s, t) ds for n ≥ 2.

Note that the limit in zero is well defined and limt→0 ℓ
S
n(x, t) = 0 for n ≥ 2. The scaling

parameter t = 1 yields the Legendre or respectively the Integrated Legendre polynomials.
Thanks to the multiplication with the monomial tn, the functions are free of fractions and stay
polynomial of order n, i.e. ℓSn ∈ Pn(T ) and LS

n ∈ Pn0 (T ) for T = [−1,−1] × [0, 1]. Moreover,
we obtain the following three-term recurrence relations:

ℓS0 (x, t) = 1,
ℓS1 (x, t) = x,

(n+ 1)ℓSn+1(x, t) = (2n+ 1)x ℓSn (x) − n t2ℓSn−1(x), for n ≥ 2,

for the scaled Legendre polynomials, and

LS
1 (x, t) = x,

LS
2 (x, t) = 1

2(x2 − t2),
(n+ 1)LS

n+1(x, t) = (2n− 1)xLS
n (x) − (n− 2) t2 LS

n−1(x) for n ≥ 3

for the scaled integrated Legendre polynomials, respectively.

The orientation problem

One difference of (hierarchical) higher order methods to the well-known Lagrange-type ele-
ments is that the degrees of freedom not longer refer exclusively to point-evaluations. In order
to enforce continuity over element-interfaces (edges and faces), the orientation of edges and
faces becomes important (see Figure 5.4). There are two possibilities to deal with this fact:
either one takes the local edge/face orientation into account in the global assembling process,
or one introduces a globally unique orientation of edges and faces, which is available on the
local-element level.
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Figure 5.4: Edge-based basis function with correct and converse edge orientation

The first approach is quite simple in 2D, where the problem of locally converse running edges
can be easily resolved by a flip of signs of the related edge-based shape functions during the
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global assembling process. For tetrahedra, however, such a procedure is rather sophisticated:
one has to define two types of reference elements, onto which all global elements can be
rotated. See Ainsworth-Coyle [2] for details.

In this work we address the orientation problem by introducing reference elements which
are parameterized by the global vertex indices of the corresponding physical element. By
introducing a unique edge and face orientation based on the global vertex indices, the
global orientation is also locally available on each edge/face. Let K̂ be a reference element
of arbitrary shape. On the local element level we assume to have access to the global
vertex-indices V K

α ∈ VK of the local vertices α ∈ {1, ..., nV } = VK̂ .

We define the edge orientation always pointing from the vertex with the higher global vertex
number to the one with the lower one. This means, if the element-edge E connects the local
vertices αE1 and αE2 , we achieve the edge-orientation on the element-level as from the local
vertex e1 to the local vertex e2 with

e1 := arg maxα∈{αE
1 ,α

E
2 }{vKα },

e2 := arg minα∈{αE
2 ,α

E
3 }{vKα }, i.e. vKe1 > vKe2 . (5.6)

We refer to an oriented edge by brackets, e.g., E = [e1, e2] ∈ EK̂ .

The triangular face orientation of the element-face F including the three local vertices
αF1 , α

F
2 , α

F
3 is defined in the following way: First we set

f1 := arg maxα∈{αF

1
,αF

2
,αF

3
}{vK

α },
f3 := arg minα∈{αF

1
,αF

2
,αF

3
}{vK

α },
f2 := 3 − mod3(f1 + f3),

i.e. vK
f1
> vK

f2
> vK

f3
. (5.7)

Then we refer to an oriented triangular face by F = [f1, f2, f3] ∈ FK̂ .

The unique orientation of a local quadrilateral face F = {αF1 , αF2 , αF3 , αF4 } ∈ FK̂ is defined
similarly: we start at the vertex f1 with maximal global vertex number and then proceed in
the direction of the adjacent vertex which has the highest vertex number, i.e., we set

F = [f1, f2, f3, f4] s.t.





f1 := arg maxα∈{αF

1
,αF

2
,αF

3
,αF

4
}{vK

α },
f3 opposite f1 on F,

vf2
> vf4

.

(5.8)

The local vertex f2 is either a horizontal or vertical neighbor of f1, vice versa for vertex f4.

Remark 5.1. Taking into account the orientation, is necessary for enforcing conformity
in the construction of global hierarchical high-order finite element spaces. In the following
we construct conforming local high-order shape functions on a reference element, which is
parameterized by the global vertex numbers. However, the presented construction of local
bases is not affected by the choice of orientation.

If one chooses the strategy proposed by Ainworth-Coyle [2], one simply has to exchange
the edge orientations, denoted by [e1, e2], and face orientations, denoted by [f1, f2, f3] or
[f1, f2, f3, f4] by the local edge and face orientation of the considered reference element.
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5.2.2 The quadrilateral element

We define the quadrilateral reference element as Q = [0, 1]× [0, 1]. Analogous to the construc-
tion of shape functions for simplicial shape functions in terms of barycentric coordinates, we
state a general construction of shape functions in terms of the of the bilinear functions λi,
equal one at the vertex i and zero at all other vertices, and the linear functions σi for the
quadrilateral Q as follows:
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2

3

(1,0)

(1,1)

4

1
(0,0)

(0,1)

λ1 := (1 − x)(1 − y)
λ2 := x(1 − y)
λ3 := xy
λ4 := (1 − x)y

σ1 := (1 − x) + (1 − y)
σ2 := x+ (1 − y)
σ3 := x+ y
σ4 := (1 − x) + y

(5.9)

This notation will simplify the construction of the spaces H(curl) and H(div) later on, and
is also helpful in the numerical realization.

The edge E = [e1, e2] pointing from vertex e1 to e2 can be parameterized over the interval
I = [−1, 1] by

ξE = σe2 − σe1 ∈ [−1, 1].

The unit tangential vector τE and the outer unit normal vector nE of the edge E can be
deduced by

τE =
1

2
∇(σe2 − σe1) and nE = ∇(λe1 + λe2) for E = [e1, e2]. (5.10)

We will later extend functions on the edge E into the domain Q. For this purpose, we define
the linear edge-extension parameter

λE = λe1 + λe2 ∈ [0, 1],

which is one on E and zero on the edge opposite of E.

We construct now a sequence of local finite element spaces with uniform polynomial order
k ≥ 1 of the following form:

R
id−→ Qk+1(Q)

∇−→ Qk,k+1(Q) ×Qk+1,k(Q)
curl−→ Qk(Q)

0−→ {0} (5.11)

and
R

id−→ Qk+1(Q)
Curl−→ Qk+1,k(Q) ×Qk,k+1(Q)

div−→ Qk(Q)
0−→ {0}, (5.12)

cf. (3.15), (3.16) for the corresponding sequences on the continuous level.

The H1-conforming quadrilateral element

We construct the H1-conforming space as a Vertex-Edge-Cell (V -E-C) based hierarchical
polynomial space:
For the vertex-based shape functions we choose the lowest order bilinear functions

φVi (x) = λi(x), for i = 1, . . . , 4.

Edge-based shape functions associated with the edge E = [e1, e2] are constructed by
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1. specification of pE−1 linearly independent polynomials on the edge such that {trE(φEi )}i
span P pE

0 (E). This is achieved by the reparameterization of the edge E by ξE on
I = [−1, 1] and using a basis {Li}2≤i≤pE of P p0 (I), which need not to be necessarily
Integrated Legendre polynomials, i.e.,

trE(φEi )(x) = Li+2(ξE(x)) for 0 ≤ i ≤ pE − 2,

2. polynomial lifting of the edge values into the interior of the element such that φEi ∈
P pE (Q) with vanishing trace on the three remaining edges. For the sake of simplicity,
we will use a linear extension by λE , i.e.,

φEi (x) = Li+2

(
ξE(x)

) (
λe1(x) + λe2(x)

)
for 0 ≤ i ≤ pE − 2.

We define Cell -based shape functions which vanish on the whole boundary ∂K and span
Q0
k(Q). This is achieved by the following tensor-product construction:

φCij(x) := Li+2(2x− 1)Lj+2(2y − 1) for 0 ≤ i, j ≤ pC − 2.

Summarizing, we have

Hierarchical H1-conforming quadrilateral element of variable order p = ({pE}, pC)

Vertex-based functions

for i = 1, ..., 4 : φV
i = λi

Edge-based functions

for m = 1, 2, 3, 4: Suppose the edge Em = [e1, e2].

for ≤ i ≤ pEm
− 2 : φEm

i = Li+2(σe2
− σe1

) (λe1
+ λe2

)

Cell-based functions

for 0 ≤ i, j ≤ pC − 2 : φC
ij = Li+2(2x− 1)Lj+2(2y − 1)

We define the local spaces W V (Q) := span((φVm)1≤m≤4),

WEm
pEm

(Q) := span((φEm
i )1≤i≤pEm−1), m = 1, ..., 4,

WC
pC

(Q) := span((φCij)1≤i,j≤pC ),

and, finally the local FE-space on the quadrilateral for variable polynomial degree p =
(pE1 , pE2 , pE3 , pC) by

Wp(Q) := W V (Q) ⊕
4⊕

m=1

WEm
pEm

(Q) ⊕WC
pC

(Q). (5.13)

Theorem 5.2. The V -E-C-based shape functions presented above define an H1-conforming
finite element basis on the quadrilateral Q. In particular, they are linearly independent and
for uniform polynomial order p = pEm = pC there holds Wp(Q) = Qp(Q).

Proof. We consider that a trivial element v can be constructed via a linear combination of
shape functions, i.e.,

v =

4∑

i=1

cVi φ
V
i +

4∑

m=1

pEm−1∑

i=1

cEm
i φEm

i +

pI−1∑

i,j=1

cCijφ
C
ij = 0.
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To prove linear independence of the basis, we have to show that all coefficients are zero:
We know that the only shape function not vanishing in the vertex Vi is the one associated
with this vertex, i.e. v(Vi) = 0 implies cVi = 0.
Next we restrict v to each edge Em. Since the cell-based shape functions vanish on all
edges as well as all edge-based shape functions associated with Ek 6= Em vanish on Em, we
obtain trEm(v) = trEm

( ∑pEm−1
i=1 cEm

i φEm
i

)
= 0. Since the edge-based functions are linearly

independent and span P 0
pE

(Em) on the edge, the coefficients cEm
i are zero.

Considering traces of the cell-based shape functions along horizontal or vertical lines:

v(x, y) =
∑

i,j cijLi(2x− 1)Lj(2y − 1) =
∑

i c̃iLi(2x− 1) = 0

implying c̃i :=
∑

j cijLj(2y − 1) = 0 for all y ∈ [0, 1], we can reduce the analysis of the
linear-independence to the 1D case.
Hence, we obtain linear independence of all shape functions.
For uniform polynomial order p, every shape function lies in Qp(Q) by construction. By a
simple counting argument we obtain that the stated shape functions are a basis of Qp(Q):

|Wp(Q)| = |W V (Q)| +∑4
m=1 |WEm

p (Q)| + |WC
p (Q)|

= 4 + 4(p− 1) + (p− 1)2 = (p+ 1)2, and
|Qp(Q)| = (p+ 1)2.

Remark 5.3. 1. For p = pC ≥ pEm the shape functions form a basis for

Wp(Q) =
{
w ∈ P p(Q) : trE(w) ∈ P pEm (Em) for m = 1, ..., 4

}
.

2. The common construction of the shape functions by Integrated-Legendre polynomials
(Li)2≤i≤p. is not necessary. In view of conditioning and sparsity of the resulting
FE-matrices one can exchange the family of Integrated polynomials by other bases of
P p0 ([−1, 1]).

3. For pC ≥ pEm, the construction of edge-based shape functions is not limited to the linear
extension. One can choose any lifting of the edge onto P pEm (Q) satisfying vanishing
trace on the remaining edges.

H(curl)-conforming shape functions for quadrilaterals

In view of the exact sequence property, we want to construct an H(curl)-conforming finite
element basis for a local FE-space Vp(Q) such that

∇Wp+1(Q) ⊂ Vp(Q).

For uniform polynomial order p, this leads to the choice Wp+1(Q) = Qp+1(Q), and hence

Vp(Q) = Qp+1,p(Q) ×Qp,p+1(Q) with dimVp(Q) = 2(p+ 2)(p+ 1).

The lowest-order shape functions are chosen to be shape functions for the lowest-order Nédélec
element, asking for the tangential component to be one on the associated edge, and zero on
all other edges. This can be written in the compact form

ϕN0
m =

1

2
∇(σe1 − σe2).(λe1 + λe2) for Em = [e1, e2].
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The functions lie in Q0,1(Q) ×Q1,0(Q). Since the tangential vector of the edge Em = [e1, e2]
is given by τEm = 1

2∇(σe2 − σe1), the tangential trace on an edge Ek is

trτEk
,Ek

(ϕN0
m ) = (λe1

+ λe2
) τEm

· τEk
=

{
0 on Ek ⊥ Em,
δm,k · 1 on Ek || Em.

The higher-order edge-based H(curl)-conforming shape functions can be chosen as gradient-
fields of the corresponding H1-conforming edge-based shape functions, i.e. for 0 ≤ i ≤ pEm −1

ϕEm
i (x) = ∇φEm

i (x) for φEm
i ∈WEm

pEm+1(Q).

Since the trace of a scalar edge-based shape function on the edge Ek fulfills

trEk
(φEm

i ) =

{
Li+2 on Ek = Em

0 on Ek, k 6= m
with span{Li+2}i=0,...,pEm−1 = P

pEm+1
0 (Em),

the tangential components of the gradients satisfy

trτ ,Ek
(ϕEm

i )(x) = ∂
∂τEk

φEm(x) =

{
2L

′

i+2(ξE(x)) on Em = Ek
0 on Ek, k 6= m

Note that there holds ϕEm
i ∈ Qi+1,i+2(Q) ×Qi+2,i+1(Q), and due to the linear independence

of the Integrated Legendre polynomials we obtain

span{trτ ,Em(ϕEm
i ) : 0 ≤ i ≤ pEm − 1} = P pEm (Em)/R.

We pursue this strategy also for construction of the cell-based shape functions. The gradients
of cell-based shape functions {φCij}i,j=0,...,p−1 spanning Qp+1

0 (Q) form p2 linearly independent

functions in Qp,p+1(Q)×Qp+1,p(Q) having zero tangential trace on the element boundary ∂Q.
Therefore, we start by choosing

ϕC1
ij = 2L

′

i+2(2x− 1)Lj+2(2y − 1)ex + 2Li+2(2x− 1)L
′

j+2(2y − 1)ey.

Having a closer look at the contributing terms to the gradient functions, namely
L

′

i+2(2x − 1)Lj+2(2y − 1)ex and Li+2(2x − 1)L
′

j+2(2y − 1)ey, we observe that each term on
its own fulfills the requirements of cell-based shape functions, i.e., they lie in the required
polynomial space Qp,p+1(Q) ×Qp+1,p(Q) and have zero tangential trace, since either ex⊥τE
or Lj+2(2y − 1) = Lj+2(±1) = 0 on any edge E. Moreover, the functions defined by the
two contributions are obviously linearly independent. Therefore, we can add any linearly
independent combination of the two terms to the set of cell-based shape functions. We suggest

ϕC2
ij = L

′

i+2(2x− 1)Lj+2(2y − 1)ex − Li+2(2x− 1)L
′

j+2(2y − 1)ey.

Finally, also the functions

(Li+2(2y + 1)ex)0≤i≤p−1 and (Li+2(2x− 1)ey)0≤i≤p−1,

have zero tangential trace on the boundary, and they are linearly independent of the other
cell-based shape functions chosen so far, since they are the only ones which are constant either
in x- or in y- direction.

Summarizing we arrive at the following set of shape functions:
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Hierarchical quadrilateral H(curl)-element of variable order p = ({pE}, pC)

Edge-based shape functions

for m = 1, 2, 3, 4: edge Em = [e1, e2]

Lowest-order edge shape function

ϕN0

m = 1
2∇
(
σe2

− σe1

)
(λe1

+ λe2
)

Higher-order edge-based functions (gradient fields)

for 0 ≤ i ≤ pEm
− 1 ϕEm

i = ∇
(
Li+2(σe2

− σe1
) (λe1

+ λe2
)
)

Cell -based functions

Type 1: (gradient fields):

for 0 ≤ i, j ≤ pC − 1 ϕC1

ij = ∇
(
Li+2(2x− 1)Lj+2(2y − 1)

)

Type 2:

for 0 ≤ i, j ≤ pC−1 ϕC2

ij = L
′

i+2(2x− 1)Lj+2(2y − 1) ex − Li+2(2x− 1)L
′

j+2(2y − 1) ey

Type 3:

for 0 ≤ i ≤ pC − 1 ϕC3

i = Li+2(2y − 1) ex

ϕC3

i+pC
= Li+2(2x− 1) ey

We define N0(Q) := span((ϕN0

m )1≤m≤4), V Em

pEm
(Q) := span((ϕEm

i )0≤i≤pEm
−1),

V C1

pC
(Q) := span((ϕC1

ij )0≤i,j≤pC−1), V C2

pC
(Q) := span((ϕC2

ij )0≤i,j≤pC−1),

V C3

pC
(Q) := span((ϕC3

i )0≤i≤2pC−1),
and the local FE-space for the quadrilateral of variable polynomial degree p =
(pE1 , pE2 , pE3 , pC) by

Vp(Q) := N0(Q) ⊕
4⊕

m=1

V Em
pEm

(Q) ⊕ V C
pC

(Q). (5.14)

Theorem 5.4. The N0-E-C based shape functions defined above, form a local H(curl)-
conforming finite element basis on the quadrilateral Q. In case of uniform polynomial degree
p = pC = pEm for all edges Em they are a basis for Qp,p+1(Q) ×Qp+1,p(Q).

Furthermore, there hold the following relations:

∇WEm
pEm+1(Q) = V Em

pEm
(Q) for all edgesEm, m = 1, ..., 4,

and
∇WC

pC+1(Q) = V C1
pC

(Q) ⊂ V C
pC

(Q).

Proof. The linear independence of the pEm edge-based shape functions is implied by their con-
struction as gradient fields of linearly independent polynomials with degree greater than 2.
In combination with the lowest-order Nédélec function their tangential traces span PpEm

(Em)
on the edge Em, and are zero on all other edges. Concerning the cell-based functions, we con-
structed 2(pC+1)(pC+2) linearly independent shape functions in QpC ,pC+1(Q)×QpC+1,pC (Q)
with vanishing trace on all edges.
The hierarchical N0 −Em−C construction for the tangential components implies the overall
linear independence: assume that v = 0 can be built by an arbitrary linear combination of
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the shape functions, i.e.

v =

4∑

m=1

[
cN0
m ϕ

N0
m +

∑

i

cEm
i ϕEm

i

]
+
∑

ij

cCijϕ
C
ij = 0

In the first step we consider the tangential traces over the edges, i.e. trτ ,Em(v) = 0, which
implies all edge-associated coefficients cEm

i to be zero due to the linear independence of edge-
based functions. The remaining contribution to v is then spanned only by cell-based functions,
which are a set of linearly independent polynomials. Hence, all coefficients in the linear
combination have to vanish, and we obtain the linear independence of the shape functions.
By a counting argument we have

|Vp(Q)| = |V N0
Q | +∑4

m=1 |V Em
Q | + |V I

Q|
= 4 + 4p+ 2p(p+ 1) = 2(p+ 2)(p+ 1), and

|Qp,p+1(Q) ×Qp+1,p(Q)| = 2(p+ 2)(p+ 1),

and hence the shape functions span the whole space Qp,p+1(Q) ×Qp+1,p.

In case pEm ≤ pC for all m = 1, . . . 4 the H(curl)-conforming local FE-space reads

Vp(Q) =
{
ϕ ∈ Qp+1,p(Q) ×Qp,p+1(Q)

∣∣ trE(ϕ) · τE = trτ ,Em
(ϕ) ∈ P pEm (Em), m = 1, . . . , 4

}
.

Remark 5.5 (H(div)-conforming shape functions for the quadrilateral element Q). In two
dimensions the H(div)-conforming shape functions can be generated out of the H(curl)-
conforming ones with a rotation by 90 degrees. By this, we achieve:

Hierarchical quadrilateral H(div)-element of variable order p = ({pE}, pC)

Edge-based shape functions: for m = 1, 2, 3, 4: edge Em = [e1, e2]

ψRT 0

m = 1
2 Curl

(
σe2

− σe1

)
(λe1

+ λe2
)

ψEm

i = Curl
(
Li+2(σe2

− σe1
) (λe1

+ λe2
)
)

0 ≤ i ≤ pEm
− 1

Cell -based functions:

ψC1

ij = Curl
(
Li+2(2x− 1)Lj+2(2y − 1)

)

= 2
(
L

′

i+2(2x− 1)Lj+2(2y − 1) ey − Li+2(2x− 1)L
′

j+2(2y − 1) ex

)
, 0 ≤ i, j ≤ pC − 1

ψC2

ij = L
′

i+2(2x− 1)Lj+2(2y − 1) ey + Li+2(2x− 1)L
′

j+2(2y − 1) ex, 0 ≤ i, j ≤ pC − 1

ψC3

i = Li+2(2y − 1) ey, 0 ≤ i ≤ pC − 1

ψC3

i+pC
= Li+2(2x− 1) ex, 0 ≤ i ≤ pC − 1

5.2.3 The triangular element

The triangular reference element is defined by

T := {(x, y)
∣∣0 ≤ x, y ≤ 1, x+ y ≤ 1},

which involves the vertices V1 = (0, 0), V2 = (1, 0), and V3 = (0, 1). The shape functions will
be formulated in terms of barycentric coordinates.
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1 2

3

(0,1)

(1,0)(0,0)

y

x

λ1 := 1 − x− y,

λ2 := x,

λ3 := y.

(5.15)
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By viewing the triangle as a collapsed quadrilateral, as suggested in Dubiner [46] and
Karniadakis, Sherwin [60], we can construct a tensorial-type basis also for triangles in a
similar manner as for quadrilaterals.

The Duffy transformation

D : Q = [−1, 1]2 → T
(ξ, η) → (x, y)

defined as
x = 1

4(1 + ξ)(1 − η)

y = 1
2(1 + η)

transforms the quadrilateral Q to the triangle T (see Figure 5.5). Using the inverse of the
Duffy transformation, we can parameterize the triangle T by

ξ = 2 x
1−y − 1 = λ2−λ1

λ1+λ2
∈ [−1, 1],

η = 2y − 1 = 2λ3 − 1 = 1 − 2λ1 − 2λ2 ∈ [−1, 1],

where, as above λ1, λ2, λ3 denote the barycentric coordinates of the triangle.

y

x1

(0,0)

2

(1,0)

3

(0,1) D−1 : (x, y) → (ξ, η)

D : (ξ, η) → (x, y)

ξ

η

21

34

(−1,−1) (1,−1)

(1,1)(−1,1)

Figure 5.5: Collapsed coordinate system: triangle as degenerated quadrilateral

The horizontal lines η(λ3) = η = const. in the triangle are then mapped by ξ(λ1, λ2) onto
[−1, 1], while ξ = ξ = const. yields a parameterization of the lines radiating out of the top
vertex V3 over [−1, 1], see Figure 5.5. Due to the transformation above, we can reparameterize
an edge E = [e1, e1] connecting the vertices e1, e2 and all lines running parallel to E (bounded
by the two other edges) over the reference interval [−1, 1] by

ξE =
λe2 − λe1
λe1 + λe2

.

The outer normal vector nE and tangential vector τE of an edge E = [e1, e2] with e3 denoting
the opposite vertex can be expressed in barycentric coordinates by

nE = −∇λe3 = ∇(λe1 + λe2).

We now construct local finite element spaces on the triangle T according to the sequences

R
id−→ Pp+1(T )

∇−→ Pp(T )
curl−→ Pp−1(T )

0−→ {0}

respectively

R
id−→ Pp+1(T )

Curl−→ Pp(T )
div−→ Pp−1(T )

0−→ {0},
cf. (3.15), (3.16) in the continuous setting.



5.2. CONSTRUCTION OF CONFORMING SHAPE FUNCTIONS 75

The H1-conforming triangular element

In the following we introduce a V -E-C-based hierarchical local finite element basis based on
the collapsed tensor-product representation of the triangle as used in, e.g., Dubiner [46],
Karniadakis-Sherwin [60]. For uniform polynomial order, the basis will span

Wp(T ) = P p(T ) with dimVp(T ) =
1

2
(p+ 1)(p+ 2).

As in the quadrilateral case, the vertex-based shape functions are chosen as the lowest-order
shape functions spanning P 1(T ), i.e.,

φVi (x) = λi(x) for i = 1, 2, 3.

For edge-based shape functions we choose the scaled Integrated Legendre polynomials of order
2 ≤ i+ 1 ≤ pEm

φEm
i := LS

i+2(λe2 − λe1 , λe1 + λe2) = Li+2

(λe2 − λe1
λe1 + λe2

)
(λe1 + λe2)

i+2. (5.16)

W shortly summarize the main properties of these functions:

• The functions φEm
i are zero in all vertices, i.e. φEm

i (Vk) = 0, k = 1, . . . , 3.

• Since trEk
(φEm
i ) =

{
Li+2(ξE) if Ek = Em

Li+2(±1)(λe1 + λe2)
i+2 = 0 if Ek 6= Em

on any edge Ek ∈ EK ,

the traces of the edge-based shape functions span P p0 (Em) on the corresponding edge
Em, while vanishing on the other two edges.

• The extension of edge functions Li+2(ξ) onto the triangle by multiplication with factor
(λe1 +λe2)

i+2 corresponds to an extension by ((1− η)/2)i+2 in the quadrilateral coordi-
nates (Duffy transformation). Hence we refer to this extension as monomial extension.

Finally we define the cell-based shape functions as

φC(i,j) = LS
i+2(λ2 − λ1, λ1 + λ2)λ3 ℓj(2λ3 − 1) (5.17)

for 1 ≤ i+ j ≤ pC − 3. These functions have following properties:

• They are bubble functions in P p0 (T ). The trace vanishes on ∂T , since λ2−λ1
λ1+λ2

= ±1 on
the edges opposite vertex 1, 2 and λ3 vanishes on the edge opposite to vertex 3.
The monomial extension, which is performed by using Scaled Integrated Legendere
polynomials, implies that φC(i,j) ∈ P p0 (T ).

• By the inverse Duffy transformation we can interprete the cell-based shape functions in
terms of the quadrilateral coordinates (ξ, η) which yields

(
ϕCij ◦ D

)
(ξ, η) = Li+2(ξ)

(
1 − η

2

)i+2 η + 1

2
ℓj(η). (5.18)

• In particular, on the horizontal lines of the triangle, i.e. λ3 = const., the functions can
be written as an Integrated Legendre polynomial, since

φCij |η=const.
= cij Li+2

(
λ1 − λ2

λ1 + λ2

)
∈ P i+2

0 ([−1, 1])

with cij = λ3 ℓj(2λ3 − 1) (1 − λ3)
i+2 (confer Figure 5.5).
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• On ”ray” lines of the triangle, i.e. λ2−λ1
λ1+λ2

= const., we obtain

φCij |ξ=const.
= ci λ3 ℓj(2λ3 − 1) (1 − λ3)

i+2 ∈ P j+i+3([−1, 1])

with ci = Li+2(
λ1−λ2
λ1+λ2

).

Summarizing, we obtain the following set of shape functions.

Hierarchical H1-conforming shape functions on the triangular element T
of variable order p = ({pE}, pC)

Vertex-based functions

for i = 1, 2, 3 : φV
i = λi

Edge-based functions

for m = 1, 2, 3: edge Em = [e1, e2]

for 0 ≤ i ≤ pEm
− 2 : φEm

i = LS
i+2(λe2

− λe1
, λe1

+ λe2
)

Cell -based functions

for 0 ≤ i+ j ≤ pC − 3, i, j ≥ 1 :

φC
(i,j) = LS

i+2(λ2 − λ1, λ1 + λ2)λ3 ℓj(2λ3 − 1)

We define the local block spaces via WV (T ) := span((φV
i )1≤m≤4),

WEm

pEm
(T ) := span((φEm

i )0≤i≤pEm
−2),

WC
pC

(T ) := span((φC
i,j)0≤i+j≤pC−3),

and the local FE-space of variable polynomial order p = (pE1 , pE2 , pE3 , pC)

Wp(T ) := W V (T ) ⊕
3⊕

m=1

WEm
pEm

(T ) ⊕WC
pC

(T ). (5.19)

Theorem 5.6. The local V -E-Cshape functions defined above are H1-conforming and linearly
independent. For uniform order p = pEm = pC they form a basis for P p(T ).

Proof. It remains to prove the linear independence of the shape functions. We consider the
following arbitrary linear combination:

w =

3∑

i=1

cVi φ
V
i +

3∑

m=1

pEm−2∑

i=1

cEm
i φEm

i +
∑

i, j ≥ 0
i + j ≤ pC − 3

cCijφ
C
ij = 0.

Restricting w to the vertices Vi yields cVi = 0. On edge Em the only non-zero functions,
except for the vertex-based functions, are those associated with this edge. Hence, we obtain
trE(w) =

∑
i c
E
i trE(φEm

i ) = 0, which yields cEm
i = 0 for all i due to the linear-independence

of {φEm
i } on Em.

Hence, there are only cell-based contributions in the expansion of w left. Thanks to the
tensor-product representation (5.18), the cell-based shape functions are linear-indpendent.
This yields linear-independence of the whole set of shape functions.
The V -E-C-based construction implies H1-conformity, e.g. considering an edge E = [e1, e2]:
only the two vertex-based shape functions associated with e1 and e2 and the edge-based
shape functions corresponding to E, have non-zero trace.

In the case of uniform polynomial order all shape functions are in P p(T ) by construction. The
counting argument
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|Wp(T )| = |W V (T )| +∑3
i=1 |WEm

pEm
(T )| + |WC

pC
(T )|

= 3 + 3(p− 1) + 1
2(p− 2)(p− 1) = 1

2(p+ 1)(p+ 2), and

|P p(T )| = 1
2(p+ 2)(p+ 1)

verifies that for uniform order p we achieve a local basis of P p(T ).

Jacobi-based shape functions We already mentioned that the construction scheme of the
FE-basis functions is independent of the special choice of the type of the involved orthogonal
polynomials. On the contrary, the conditioning of the involved FE-matrices as well as the
fast evaluation of shape functions depends essentially on the chosen polynomial type. We
can improve the conditioning and sparsity of the FE-matrices by exploiting the orthogonality
within the hierarchical blocks.

As an alternative to the Legendre-type polynomials, let us consider now Jacobi polynomials

P
(α,β)
n as defined in Appendix A.3 for the construction of the cell-based shape functions. A

first simple, but motivating suggestion for the basis functions, which is similar to the one
given in Dubiner [46], is

φC(i,j) = λ1λ2 P
S,(2,2)
i (λ1 − λ2, λ1 + λ2)λ3 P

(2i+5,2)
j (2λ3 − 1)

for 0 ≤ i+ j ≤ pC − 3. Due to the inverse Duffy transformation we obtain

(φC(i,j) ◦ D)(ξ, η) = (1 − ξ)(1 + ξ)(1 − η)2 P
(2,2)
i (ξ)

(1 − η

2

)i 1 + η

2
P

(2i+5,2)
j (η).

Using this identity in the computation of the L2-inner product on the triangle we achieve

∫

T

φC
(i,j) φ

C
(k,l) dx =

∫ 1

−1

∫ 1

−1

(
φC(i,j) ◦ D

)
(ξ, η)

(
φC(k, l) ◦ D

)
(ξ, η)

1

8
(1 − η)dξ dη

=
1

2

∫ 1

−1
(1 − ξ)2(1 + ξ)2P

(2,2)
i (ξ)P

(2,2)
k (ξ) dξ

×
∫ 1

−1
(
1 − η

2
)i+k+5(1 + η)2P

(2i+5,2)
j (η)P

(2k+5,2)
l (η) dη

= cij δik δjl

Hence, this set of cell-based functions is L2-orthogonal.
In case we are interested in sparsity of the stiffness matrix, it is suggested in Beuchler-

Schöberl [17] to choose

φC(i,j) = LS
i+2(λ1 − λ2, λ1 + λ2) P̂

(2i+1,0)
j+1 (2λ3 − 1),

where we use integrated Jacobi polynomials P̂
(α,β)
j+1 (x) satisfying P̂

(α,β)
j (−1) = 0. This choice

yields

∫
T (∇φC(i,j))T ∇φC(k,l) dx = 0 for |i− k| > 2 or |i− k + j − l| > 2

and therefore, we again obtain sparsity of the stiffness matrix.
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Tensor-product representation of cell-based H1-conforming shape functions. In
the construction of H(curl)- and H(div)-conforming shape functions we will frequently make
use of the following product representation of H1-conforming cell-based shape functions:

φCij(x, y) = ui(x, y) vj(y) for i, j ≥ 0, i+ j ≤ pC − 3, (5.20)

with ui ∈ P i+2(T ) vanishing on the edges E1 = [1, 3] and E2 = [2, 3] and vj ∈ P j+1(T )
vanishing on E3 = [1, 2]. Within the family of Legendre-type functions, this can be provided
by

ui(x, y) := LS
i+2(λ1 − λ2, λ1 + λ2), vj(y) := λ3ℓj(2λ3 − 1), (5.21)

or equivalently in the Duffy-transformed quadrilateral coordinates

ui
(
D(ξ, η)

)
= Li+2(ξ)

(
1 − η

2

)i+2

, vj
(
D(ξ, η)

)
=

1 + η

2
ℓj(η). (5.22)

H(curl)-conforming triangular element

We define the local FE-space Vp with ∇Wp+1 ⊂ Vp such that, for uniform polynomial order
p,

Vp(T ) =
(
P p(T )

)2
with dim(P p(T ))2 = (p+ 2)(p+ 1)

holds. Note that we have ∇P p+1(T ) ⊂ Vp(T ). In the construction of the basis we first choose
gradients of the edge- and cell-based shape functions of Wp+1 as shape functions in the
H(curl)-conforming FE-basis and then extend the shape functions to span the full polynomial
spaces on edges and cells, where the latter is defined by

P
pC
0,τ(T ) :=

{
q ∈

(
P pC(T )

)2
: trτ ,∂T (q) = 0

}
.

Let us now start with the construction of shape functions for uniform polynomial order p:
First we choose the low-order shape functions as the lowest-order Nédélec type I functions

ϕN0
m = λe1 ∇λe2 −∇λe1 λe2 on each edge Em = [e1, e2]

with
(
τEk

·ϕN0
m

)
|Ek

= δmk.

The higher order edge-based Nédélec shape functions can be chosen as the gradients of the
H1-conforming scalar functions of order p

ϕEm
i = ∇φEm

i for i = 0, . . . , p− 1.

The verification that
{
trE(ϕEm

i ) · τEm : 0 ≤ i ≤ pEm − 1
}

spans P pEm (Em)/R was already
done in the quadrilateral case. Moreover, we obtain zero tangential trace on all edges Ek with
k 6= m.
It remains to define appropriate cell-based shape functions: taking the gradients of cell-based
H1-conforming shape functions up to order p+ 1 yields 1

2(p− 1) p linearly independent shape
functions in P p

0,τ(T ). In view of the exact sequence property, we therefore choose the first
type of H(curl)-conforming cell-based shape functions as:

ϕ
C,1
(i,j)(x, y) = ∇φC(i,j)(x, y) = ∇ui(x, y) vj + ui(x, y)∇vj(y) (5.23)

for 0 ≤ i+ j ≤ p− 2 and i, j ≥ 0.
For defining further cell-based shape functions we take the underlying product representation
(5.20) of scalar functions into account. Let us first consider the contributions to the gradient
fields in more detail.
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Lemma 5.7. Let ui := LS
i+2(λ2 − λ1, λ1 + λ2) and vj := λ3 lj(2λ3 − 1). Then the set

{∇ui vj , ui∇vj , 0 ≤ i+ j ≤ p− 2} forms p (p+ 1) linearly independent functions in P p
0,τ(T ).

Proof.

1. The trace of ui vanishes on the two edges opposite to vertex V1 and V2, since λ2−λ1
λ1+λ2

= ±1
there. The trace of vj vanishes on the edge opposite to vertex V3, since λ3 = 0. Hence,
the tangential trace of ui∇vj and vj∇ui vanishes on all edges. Since ui ∈ P i+2(T ) and
vj ∈ P j+1(T ), we obtain ui∇vj ,∇ui vj ∈ P p

0,τ(T ).

2. To show linear independence we first consider the two sets of functions separately.
In order to compute gradients on the transformed quadrilateral, we need the Jacobian

of the inverse Duffy transformation, i.e. F−T
D =

(
4

1−η 0

(ξ + 1) 2
1−η 2

)
. This yields:

∇xvj(x)ui(x, y) = F−T
D ∇(ξ,η)vj

(
D(ξ, η)

)
ui(x, y)

= 2
(
lj(η)

1+η
2

)′ (1−η
2

)i+2
Li+2(ξ)e2,

which implies that {ui∇vj}i,j is a set of linearly independent functions.

Concerning {∇ui vj}i,j we consider the derivative in direction of the horizontal lines,
denoted by τH , more precisely:

τH · ∇ui(x, y) vj(y) = ( 4
1−η )vj

∂
∂ξui(D(ξ, η))

= L′
i+2(ξ)

(1−η
2

)i+1 1+η
2 lj(η)

(5.24)

which are linearly independent for all 0 ≤ i+ j ≤ p− 2.

We can easily verify that the two sets of shape functions are linearly indepen-
dent by taking into account that vj is constant on horizontal lines, which implies
τH · ∇vj(y)ui(x, y) = 0.

Due to the linear independence, we can use for the second type of cell-based Nédélec shape
functions any combination of ∇ui vj and ui∇vj , which is linearly independent of ϕC,1(i,j), e.g.,

ϕC2
ij = ∇ui vj − ui∇vj for 0 ≤ i+ j ≤ p− 2.

Finally, we define a third family of cell-based shape functions which is linearly independent
of the first two ones by

ϕC3
j =

(
∇λ1 λ2 − λ1 ∇λ2

)
vj for 0 ≤ j ≤ p− 2.

Here also the lowest-order Nédélec function ∇λ1 λ2 − λ1 ∇λ2 is involved, and the functions
ϕC3
j are constant along horizontal lines.

The following table collects the suggested H(curl)-conforming shape functions for the trian-
gular master element T of variable order.
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Hierarchical high-order triangular H(curl)-conforming element
of variable polynomial order p = ({pE}, pC)

Edge-based shape functions

for m = 1, 2, 3: edge Em = [e1, e2]

Low-order functions:

ϕN0

m = ∇λe1
λe2

− λe1
∇λe2

Higher order edge-based functions (gradient fields):

for 0 ≤ i ≤ pEm
− 1

ϕEm

i = ∇(LS
i+2(λe1

− λe2
, λe2

+ λe1
))

Cell-based shape functions:

We define ui := LS
i+2(λ2 − λ1, λ1 + λ2),

vj := λ3ℓj(2λ3 − 1).

for 0 ≤ i+ j ≤ pC − 2, i, j ≥ 0 :

Type 1 (Gradient fields): ϕ
C,1
(i,j) = ∇(ui vj) = ∇ui vj + ui ∇vj

Type 2: ϕ
C,2
(i,j) = ∇ui vj − ui ∇vj

Type 3: ϕ
C,3
(0,j) = (∇λ1 λ2 − λ1 ∇λ2) vj

We define the local N0-E-C-based spaces via

V N0(T ) := span((ϕN0
i )1≤m≤3),

V Em
pEm

(T ) := span((ϕEm
i )0≤i≤pEm−1),

V C
pC

(T ) := span((ϕCi,j)0≤i+j≤pC−2)

The local FE-space of variable polynomial order p = (pE1 , pE2 , pE3 , pC) then is

Vp(T ) := V V (T ) ⊕
3⊕

m=1

V Em
pEm

(T ) ⊕ V C
pC

(T ).

Theorem 5.8. The N0-E-C-based shape functions, summarized in the table above, are
H(curl)-conforming and linearly independent. For uniform polynomial order p = pEm = pC ,
we obtain a local H(curl)-conforming FE-basis for Vp(T ) = (P p(T ))2.
Furthermore, there holds ∇Wp ⊂ Vp, and the construction involving gradient functions pro-
vides

∇WEm
pEm+1(T ) = V Em

pEm
(T ) as well as ∇WC

pC+1(T ) ⊂ V C
pC

(T ).

Proof. The edge-based shape functions are gradients of the corresponding (H1) edge-based
scalar functions (up to order pEm + 1). Hence, we obtain that ϕEm

i ∈ (P pEm (T ))2, their
tangential trace span P pEm

(Em)/R on Em, and tangential traces vanishes on Ek, k 6= m. This
implies linear independence within the set of all edge-based functions, including lowest-order
Nédélec functions ϕN0

m .

Due to Lemma 5.8 the set of cell-based functions of type 1 and type 2 span {∇ui vj , ui∇vj} and
are linearly independent. The functions ϕC3

j = ϕN0
3 vj of the third type belong to (P pC (T ))2.
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Moreover, there holds trτ ,∂T (ϕC3
j ) = 0, since the tangential trace of ϕN0

3 vanishes on the not-
associated edges E1 and E2 and because the tangential trace of vj vanishes on E3 = [V1, V2].
Considering equation (5.24), we observe that along the horizontal lines the function ∇ui vj
are at least linear, while ∇vj ui vanishes on horizontal lines (λ3 = const.). Since ϕN0

3 and
vj are constant along the horizontal lines, we obtain linear-independence within the set of
cell-based shape functions. Moreover, the set of all cell-based shape functions spans P pC

0,τ(T ).
Since the shape functions associated with an edge Em are linearly independent, and they are
the only functions with non-vanishing trace on the edge Em, and the cell-based functions
are linearly independent, we obtain the linear independence of the whole set of shape func-
tions listed in the table above. The first argument also implies H(curl)-conformity, since the
tangential trace on an edge depends only on shape functions corresponding to the edge.
For uniform polynomial order p, all shape functions belong to (P p(T ))2 by construction. Due
to the linear-independence, a simple counting argument again yields Vp = P p(T ):

|Vp(T )| = |V N0(T )| +∑3
i=1 |V Em

p (T )| + |V C
p (T )|

= 3 + 3p+
(
(p− 1)p+ p− 1

)
= (p+ 1)(p+ 2), and

|P p(T )2| = (p+ 2)(p+ 1)

Remark 5.9. 1. Owing to relation (A.7) the gradient of scaled (Integrated) Legendre poly-
nomials can be expressed as

∇ui(x, y) = 2ℓSi+1(λ2 − λ1, λ1 + λ2) ex

+
(
ℓSi+1(λ2 − λ1, λ1 + λ2) + ℓSi (λ2 − λ1, λ1 + λ2) (λ1 + λ2)

)
ey,

∇vj(x, y) =
(

2λ3ℓ
′
j(2λ3 − 1) + ℓj(2λ3 − 1)

)
ey.

2. The suggested construction principle for H(curl)-conforming shape functions does not
depend on the special choice of the type of the chosen orthogonal polynomials. We only
need the tensor-product-based construction of the H1-functions. For example, using
Jacobi-type shape functions yields φC(i,j) = ui(λ1−λ2, λ1 +λ2) v(i,j)(λ3). Here, we choose

the shape functions of type 3 as ϕC,3(0,j) = (∇λ1 λ2 − λ1 ∇λ2)v(0,j).

In two dimensions, the H(div)-conforming shape functions are obtained by the rotation by
90 degrees of the H(curl)-conforming ones:

Hierarchical high-order triangular H(div)-conforming element
of variable polynomial order p = ({pE}, pC)

Edge-based shape functions

for m = 1, 2, 3: edge Em with vertices {e1, e2}
ψN0

m = Curlλe1
λe2

− λe1
Curlλe2

ψEm

i = Curl(LS
i+2(λe1

− λe2
, λe2

+ λe1
)), for 0 ≤ i ≤ pEm

− 1

Cell-based shape functions

ψC1

i,j = Curlui vj + ui Curl vj , for 0 ≤ i+ j ≤ pC − 2

ψC2

i,j = Curlui vj − ui Curl vj , for 0 ≤ i+ j ≤ pC − 2

ψC3

j = (Curlλ1 λ2 − λ1 Curlλ2)vj , for 0 ≤ j ≤ pC − 2

with ui := LS
i+2(λ2 − λ1, λ1 + λ2) and vj := λ3ℓj(2λ3 − 1).
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5.2.4 The hexahedral element

We define the reference hexahedron as H := [0, 1]3. Similarly to the quadrilateral element, we
will state the shape functions in terms of the trilinear functions λi, equal one at the vertex i
and zero at all other vertices. We also introduce additional linear functionals σi associated
with the vertex Vi:

5

32

(0,0,1) (1,1,0)

4

(0,1,0)

1
(0,0,0)

(1,1,1)(1,0,0)

(1,1,1)(1,0,1)

6 7

8

x

y

z λ1 = (1 − x)(1 − y)(1 − z), σ1 = (1 − x) + (1 − y) + (1 − z),

λ2 = x(1 − y)(1 − z), σ2 = x+ (1 − y) + (1 − z),

λ3 = xy(1 − z), σ3 = x+ y + (1 − z),

λ4 = (1 − x)y(1 − z), σ4 = (1 − x) + y + (1 − z),

λ5 = (1 − x)(1 − y)z, σ5 = (1 − x) + (1 − y) + z,

λ6 = x(1 − y)z, σ6 = x+ (1 − y) + z,

λ7 = xyz, σ7 = x+ y + z,

λ8 = (1 − x)yz, σ8 = (1 − x) + y + z.

These vertex-based functions allow us to construct edge-based and face-based shape functions
in a unified manner.

• Each edge E = [e1, e2] can be parameterized by

ξE := (σe2 − σe1) over [−1, 1].

The tangential vector associated with the edge E is then given by τE = 1
2∇(σe2 − σe1).

The edge extension parameter λE := λe1 + λe2 is one on the edge E and zero on all
other edges parallel to E.

• Each face F = [f1, f2, f3, f4], where the vertices f3 and f1 are not connected by an edge,
can be parameterized via

(
ξF , ηF

)
:=
(
σf1 − σf2 , σf1 − σf4

)
over [−1, 1] × [−1, 1].

The linear face extension parameter λF = λf1 + λf2 + λf3 + λf4 is equal to 1 on the
corresponding face F and zero on the opposite face. The outer normal vector of F can
be computed via nF = −∇λF .

Remark 5.10. The auxiliary functions corresponding to the vertices on an edge or a face,
provide all necessary information for constructing the corresponding edge-based or face-based
shape functions. We only have to state them for one edge and one face, and then apply the
same construction for all edges and faces. This can also be utilized in a numerical imple-
mentation. Since the same strategy is used for tetrahedra and prisms, we can easily ensure
conformity on hybrid meshes.

We denote the tensor-product polynomial space on the hexahedron H by

Qp1,p2,p3(H) :=
{
q1(x) · q2(y) · q3(z)

∣∣ qi ∈ P pi([0, 1]), i = 1, 2, 3
}
, (5.25)

Qp(H) := Qp,p,p(H). (5.26)

For a uniform polynomial order p we try to establish a local exact sequence

R
id−→ Qp+1,p+1,p+1(H)

∇−→




Qp,p+1,p+1(H)
Qp+1,p,p+1(H)
Qp+1,p+1,p(H)


 curl−→




Qp+1,p,p(H)
Qp,p+1,p(H)
Qp,p,p+1(H)


 div−→ Qp,p,p(H)

0−→ {0}.

(5.27)
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H1-conforming hexahedral element

We aim to construct an H1-conforming hierarchical V -E-F -C basis, which in case of uniform
polynomial order p spans Wp = Qp(H). Extending the quadrilateral shape functions by linear
extension into the interior of the hexahedron H and adding tensor-product shape functions
spanning QpC

0 (H) yields the following collection:

Hierarchical hexahedral H1-element of variable order p = (pEm
, pFm

, pC)

Vertex-based functions for i = 1, ..., 8 : φV
i = λi

Edge-based functions

for m = 1, . . . , 12 : Suppose the edge Em = [e1, e2].

for 0 ≤ i ≤ pEm
− 2 φEm

i = Li+2(σe1
− σe2

) (λe1
+ λe2

)

Face-based functions
for m = 1, ...6: Suppose the face Fm = [f1, f2, f3, f4].

for 0 ≤ i, j ≤ pFm
− 2 φFm

(i,j) = Li+2(ξF )Lj+2(ηF )λF

with λF :=
∑4

α=0 λfα
and (ξF , ηF ) := (σf1

− σf2
, σf1

− σf4
)

Cell-based functions

for 0 ≤ i, j, k ≤ pC − 2 φC
(i,j,k) = Li+2(2x− 1)Lj+2(2y − 1)Lk+2(2z − 1)

We define the lowest-order space as W V (H) := span
(
(φVi )1≤i≤8

)
and denote the span of

edge-based (associated with Em) by W
pEm
Em

(H), the span of face-based (associated with Fm)

functions by W
pFm
Fm

(H), and the span of cell-based functions by W
pFm
C (H). The local FE-space

spanned by the whole set of shape functions on H up to order p = ({pEm}, {pFm}, pC) is given
by

Wp(H) = W V (H) ⊕
12⊕

m=1

W
pEm
Em

(P) ⊕
6⊕

m=1

W
pFm
Fm

(H) ⊕W pC
C (H).

Theorem 5.11. The shape functions stated in the table above are linearly independent and
H1-conforming. For uniform polynomial order p = pEm = pFk

= pC , they form a basis of
Qp(H).

Proof. The vertex functions are in Q1(H) and linearly independent, since φVi (Vj) = δi,j .
The edge-extension (λe1+λe2) is independent of ξE = σe2−σe1 , and hence the edge-based shape
functions φEm

i ∈ QpEm (H), and their traces on the corresponding edge Em span P
pEm
0 (Em)

while being zero on all other edges.
The face-extension λF is constant on planes parallel to the face Fm, hence the face based
functions are in QpFm (H). Obviously, their traces on Fm span P pFm (Fm), while being zero on
all other faces.
Finally, the cell-based functions, defined using the tensor products, span Qpc

0 (H).
To show linear independence and H1-conformity, we assume that the trivial function 0 = w ∈
Wp can be assembled with the basis functions, i.e.

w =
∑

i

cVi φ
V
i +

∑

Em∈EH

∑

i

cEm
i φEm +

∑

Fm∈FH

∑

i,j

cFm
ij φ

Fm

(i,j) +
∑

i,j,k

cCijkφ
C
(i,j,k) = 0.

Restricting w successively to the vertices, then to the edges, then to faces we obtain cVi = 0,
cEm
i = 0, cFm

ij = 0 and finally cCijk = 0 for all i, j, k. The H1-conformity follows with similar
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arguments as in the quadrilateral case by the special construction, since, e.g. on a face the
only non-zero shape functions are the ones associated with the four involved vertices, the
four involved edges and the face itself.

In case of uniform polynomial order p a counting argument shows

|Wp(H)| = |W V | +∑1
m=1 2|WEm

p | +∑6
m=1 |WFm

p | + |WC
p |

= 8 + 12(p− 1) + 6(p− 1)2 + (p− 1)3 = (p+ 1)3, and
|Qp(H)| = (p+ 1)3,

and hence the shape functions span the whole Qp(H).

H(curl)-conforming shape functions for hexahedral elements

Since we want to ensure that ∇Wp+1 ⊂ Vp, we choose for uniform polynomial degree p the
finite element space corresponding to the following part of the sequence (5.27)

Qp+1(H)
∇−→ Qp,p+1,p+1(H) ×Qp+1,p,p+1(H) ×Qp+1,p+1,p(H).

We choose lowest-order, higher-order edge-based and face-based shape functions in analogy
to the quadrilateral case. The extension onto the hexahedron requires linear extension by
multiplication with λE := λe1 + λe2 and λF :=

∑4
i=1 λfi

, and consideration of the edge- and
face-orientations similar to the H1-conforming case.
The construction of cell-based shape functions again involves several types: as first class we
choose the gradient functions of the H1-conforming shape functions:

ϕ
C,1
(i,j,k) = ∇φC,∇(i,j,k) = ∇

(
Li+2(2x− 1)Lj+2(2y − 1)Lk+2(2z − 1)

)

= 2ℓi+1(2x− 1)Lj+2(2y − 1)Lk+2(2z − 1)ex

+2Li+2(2x− 1)ℓj+1(2y − 1)Lk+2(2z − 1)ey

+2Li+2(2x− 1)Lj+2(2y − 1)ℓk+1(2z − 1)ez,

for 0 ≤ i, j, k ≤ pC − 2.
The three terms in the representation above form a set of 3(p − 1) linearly independent
functions with vanishing tangential trace on ∂H, since for any face either ex, ey or ez is
normal to the considered face or one of the integrated Legendre polynomials is evaluated at
±1.
Hence, we can choose arbitrary linearly independent combinations of the three summands
to obtain linearly independent cell-based shape functions. In particular, we set ϕC,2(i,j,k) =

diag(1
2 ,−1

2 ,
1
2)ϕC,1(i,j,k) and ϕC,2

pC+(i,j,k) = diag(1
2 ,

1
2 ,−1

2)ϕC,1(i,j,k) for 0 ≤ i, j, k ≤ pC − 2.

Finally, the following 3(pC − 1)2 functions are linearly independent of any of the functions
above:

ϕ
C,3
(i,j,k) = Lj+2(2y − 1)Lk+2(2z − 1) ex,

ϕ
C,3
(i,j,k) = Li+2(2x− 1)Lk+2(2z − 1) ey,

ϕ
C,3
pC+(i,j,k) = Li+2(2x− 1)Lj+2(2y − 1) ez.

The vanishing of the tangential components on all faces of the hexahedron is shown by the
same argument as given above for the cell-based functions of the second type. Summarizing,
we obtain
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Hierarchical H(curl)-conforming shape functions on the hexahedron H
with variable polynomial order p = ({pEm

}, {pFm
}, pC)

Edge-based shape functions

for edge Em, m = 1, ..., 12 with local edge-ordering Em = {e1, e2}
Lowest-order N0-function

ϕN0

m = 1
2∇(σe1

− σe2
) (λe1

+ λe2
)

Higher order edge-based functions (gradient fields)

for 0 ≤ i ≤ pEm
− 1
ϕEm

i = ∇
(
Li+2(σe1

− σe2
)(λe1

+ λe2
)
)

Face-based functions

for faces Fm, m = 1, ...6 with local face-vertex ordering Fm = {f1, f2, f3, f4}
We define λF :=

∑4
α=0 λfα

and (ξF , ηF ) := (σf1
− σf2

, σf1
− σf4

).

for 0 ≤ i, j ≤ pFm
− 1

Type 1 (gradient fields):

ϕ
Fm,1
(i,j) = ∇

(
Li+2(ξF )Lj+2(ηF )λF

)

Type 2: ϕ
Fm,2
(i,j) =

(
L′

i+2(ξF )Lj+2(ηF )∇ξF − Li+2(ξF )L′
j+2(ηF )∇ηF

)
λF

Type 3: ϕ
Fm,3
(0,j) = Lj+2(ηF )λF∇ξF
ϕ

Fm,3
(i,0) = Li+2(ξF )λF∇ηF

Cell-based functions

for 0 ≤ i, j, k ≤ pC − 1

Type 1 (gradient fields)

ϕ
C,1
ijk = ∇

(
Li+2(2x− 1)Lj+2(2y − 1)Lk+2(2z − 1)

)

Type 2: ϕ
C,2
(i,j,k) = diag(1,−1, 1) ϕC,1

(i,j,k)

ϕ
C,2
p

C
+(i,j,k) = diag(1,−1,−1) ϕC,1

(i,j,k)

Type 3: ϕ
C,3
(0,j,k) = Lj+2(2y − 1)Lk+2(2z − 1) ex

ϕ
C,3
(i,0,k) = Li+2(2x− 1)Lk+2(2z − 1) ey

ϕ
C,3
(i,j,0) = Li+2(2x− 1)Lj+2(2y − 1) ez

We define the lowest-order space as V N0(H) := span
(
(ϕN0

m )1≤m≤12

)
, and denote the span of

edge-based associated with Em by V
pEm
Em

(H, the span of face-based functions associated with

the face Fm by V
pFm
Fm

(H), and the span of cell-based functions by V
pFm
C (H). The local FE-

space spanned by the whole set of shape functions on H up to order p = ({pEm}, {pFm}, pC)
is denoted by

Vp(H) := VN0(H) ⊕
12⊕

m=1

V
pEm
Em

(H) ⊕
6⊕

m=1

V
pFm
Fm

(H) ⊕ V pC
C (H).
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Theorem 5.12. The shape functions listed in the table above are H(curl)-conforming and
linearly independent. Moreover, there holds

∇W V (H) ⊂ V N0(H), ∇WEm
pEm+1(H) = V Em

pEm
(H) ∀1 ≤ m ≤ 12

∇WFm
pFm+1(H) ⊂ V Fm

pFm
(H) ∀1 ≤ m ≤ 6, and ∇WC

pC+1(H) ⊂ V C
pC

(H)

For uniform polynomial order p = pEm = pFm = pC we obtain an H(curl)-conforming basis
spanning

Vp(H) = Qp,p+1,p+1(H) ×Qp+1,p,p+1(H) ×Qp+1,p+1,p(H).

Proof. The linear independence of the edge-based and face-based shape functions can be
deduced from the linear independence of the quadrilateral case. The linear independence of
cell based functions follows from their definition.
Suppose that 0 = v ∈Wp(H) has a representation

v =
∑

Em∈EH
c0mϕ

N0
m +

pEm−1∑

i=0

cEm
i ϕEm

i +
∑

Fm∈FH

nFm∑

i=1

cFm
i ϕFm

i +

nC∑

i=1

cCi ϕ
C
i ,

where span{φFm
i } = V Fm

p (H) and span{φCi } = V C
p (H).

To prove linear independence of the whole set of stated shape functions we set v = 0. Re-
striction to edges yields trτ ,Em(v) = 0. This implies cEm

i = 0, ∀i, since the edge-based shape
functions are the only ones with non-vanishing tangential trace on Em. By restriction to the
faces we obtain trτ ,Fm(v) =

∑nFm
i=1 cFm

i ϕFm
i = 0, and due to the linear independence of face-

based functions cFm
i = 0, since the remaining cell-based part consists of linearly independent

functions, we obtain cCi = 0,∀i.
H(curl)-conformity: If all dofs associated with a face Fm vanish, i.e. cFm

i = cEk
i = cCk = 0

for Ek on Fm, then due to the N0-E-F -C-based construction trτ ,Fm(v) = 0. An analogue
statement holds for edges.

Finally, in case of uniform polynomial order p, all shape functions belong to Qp,p+1,p+1(H)×
Qp+1,p,p+1(H) × Qp+1,p+1,p(H). Due to their linear independence the following counting ar-
gument concludes the proof:

|Vp(H)| = |V N0 | +∑1
m=1 2|V Em

p | +∑6
m=1 |V Fm

p | + |V C
p |

= 12 + 12p+ 12p(p+ 1) + 3p(p+ 1)2 = 3(p+ 2)2(p+ 1), and

|Qp,p+1,p+1 ×Qp+1,p,p+1 ×Qp+1,p+1,p| = 3(p+ 2)2(p+ 1).

H(div)-conforming shape functions for hexahedral elements

In view of the sequence (5.27), we intend to construct a basis for local H(div)-conforming
FE-space in such a way that, for uniform polynomial order p, it spans

Qp = Qp+1,p,p(H) ×Qp,p+1,p(H) ×Qp,p,p+1(H).
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The lowest-order Raviart-Thomas function corresponding to the quadrilateral face Fm =
[f1, f2, f3, f4] are given by

ψRT 0
m = nFm λF = −∇λF λF .

Since the linear face extension λF := λf1 + λf2 + λf3 + λf4 is independent of (ξF , ηF ), there
holds ψRT 0

m ∈ Q1,0,0 ×Q0,1,0 ×Q0,0,1(H), and additionally trFk
(ψRT 0

m · nFk
) = δm,k.

The face-based shape functions can be chosen as curls of face-based H(curl)-based func-
tions: Since trn,Fm(curl(ϕ)) = n · curl((trτ ,Fm(ϕ)) = curlFm((trτ ,Fm(ϕ)(ξF , ηF )). Hence,
if qi(ξF , ηF ) = trτ ,Fm(ϕi) span Qp,p+1/R ×Qp+1,p/R then curl(qi) span Qp,p/R. The curl of
the gradient functions is zero, i.e. there remains (p+ 1)2 − 1 linearly independent curl-fields,
whose normal traces span Qp,p(Fm)/R on the corresponding face Fm.
The first choice of cell-based shape functions are the curl-fields of cell-based H(curl)-
conforming shape functions of order pC . The curl-fields of type 2 and type 3 H1-conforming
shape functions, are constructed by linear combination of the following functions:

Li+2(2x− 1) ℓj+1(2y − 1) ℓk+1(2z − 1) ex,
ℓi+1(2x− 1)Lj+2(2y − 1) ℓk+1(2z − 1) ey,
ℓi+1(2x− 1) ℓj+1(2y − 1)Lk+2(2z − 1) ez,

and

Li+2(2x− 1) ℓj+1(2y − 1) ex, ℓi+1(2x− 1)Lj+2(2y − 1) ey, ℓi+1(2x− 1)Lk+2(2z − 1) ez,
Li+2(2x− 1) ℓk+1(2z − 1) ex, Lj+2(2y − 1) ℓk+1(2z − 1) ey, ℓj+2(2y − 1)Lk+2(2z − 1) ez,

for 0 ≤ i, j, k ≤ pC−1. All these functions are linearly independent and are in Q(pC+1,pC ,pC)×
Q(pC ,pC+1,pC)×Q(pC ,pC ,pC+1)(H). Moreover, their normal traces vanish on ∂H, since on a face
F either ei ⊥ nF or the integrated Legendre polynomial is evaluated at ±1. Hence, we can
choose a set of cell-based functions involving 2p2

C+3pC curl-fields and further p2
C+3pC linearly

independent functions which are linearly independent from the curl-fields. Finally, the set can
be further extended by functions

Li+2(2x− 1)ex, Lj+2(2y − 1) ey, Lk+2(2z − 1) ez.

Summarizing, we obtain

Hierarchical H(div)-conforming shape functions on hexahedra
with variable polynomial order p = ({pFm

}, pC)

Face-based functions

for faces Fm, m = 1, ...6 with local face-vertex ordering Fm = [f1, f2, f3, f4]

We define λF :=
∑4

α=0 λfα
and (ξF , ηF ) := (σf1

− σf2
, σf1

− σf4
).

Lowest-order Raviart-Thomas RT 0 function

ψRT 0

m = −∇λF λF

Higher-order face-based functions (divergence-free)

for 0 ≤ i, j ≤ pFm
− 1

ψFm

(i,j) = curlϕFm,2
(i,j) = curl

((
∇Li+2(ξF )Lj+2(ηF ) − Li+2(ξF )∇Lj+2(ηF )

)
λF

)

ψFm

p
Fm

+(0,j) = curlϕFm,3
(0,j) = curl

(
Lj+2(ηF )λF ∇ξF

)

ψFm

p
Fm

+(i,0) = curlϕFm,3
(i,0) = curl

(
Li+2(ξF )λF ∇ξF

)
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Cell-based functions (ξ, η, ζ) := (2x− 1, 2y − 1, 2z − 1).

for 0 ≤ i, j, k ≤ pC − 1

Type 1: (divergence-free)

ψ
C,1
(i,j,k) = curlϕC,2

(i,j,k) = 4Li+2(ξ) ℓk(η) ℓk(ζ) ex − 4ℓi(ξ)ℓj(η)Lk+2(ζ) ez

ψ
C,1
p

C
+(i,j,k) = curlϕC,2

p
C

+(i,j,k) = 4ℓi(ξ)Lj+2(η)ℓk(ζ) ey − 4ℓi(ξ) ℓj(η)Lk+2(ζ) ez

ψ
C,1
2p

C
+(0,j,k) = curlϕC,3

(0,j,k) = 2Lj+2(η) ℓk+1(ζ) ey − 2ℓj+1(η)Lk+2(ζ) ez

ψ
C,1
2p

e
l+(i,0,k) = curlϕC,3

(i,0,k) = 2ℓi+1(ξ)Lk+2(ζ) ez − 2Li+2(ξ) ℓk+1(ζ) ex

ψ
C,1
2p

C
+(i,j,0) = curlϕC,3

(i,j,0) = 2Li+2(ξ) ℓj+1(η) ex − 2ℓi+1(ξ)Lj+2(η) ey

Type 2:

ψ
C,2
(i,j,k) = Li+2(ξ) ℓj(η) ℓk(ζ) ex + ℓi(ξ)Lj+2(η) ℓk(ζ) ey

ψ
C,2
p

C
+(0,j,k) = Lj+2(η) ℓk+1(ζ) ey + ℓj+1(η)Lk+2(ζ) ez

ψ
C,2
p

C
+(i,0,k) = ℓi+1(ξ)Lk+2(ζ) ez + Li+2(ξ) ℓk+1(ζ) ex

ψ
C,2
p

C
+(i,j,0) = Li+2(ξ) ℓj+1(η) ex + ℓi+1(ξ)Lj+2(η) ey

Type 3:

ψ
C,3
(i,0,0) = Li+2(ξ) ex

ψ
C,3
(0,j,0) = Lj+2(η) ey

ψ
C,3
(0,0,k) = Lk+2(ζ) ez

We define QRT 0(H) := span{(ψRT 0
m : 1 ≤ m ≤ 6)} and denote the span of face-based

(associated with Fm) and the span of cell-based shape functions by QFm
pFm

(H) and QCpC
(H)

respectively, and define

Qp(H) := QRT 0(H) ⊕⊕6
m=1Q

Fm
pFm

(H) ⊕QCpC
(H).

Theorem 5.13. The shape functions collected in the above table are linearly independent and
H(div)-conforming. Moreover,

curlV Fm
pFm

(H) ⊂ QFm
pFm

(H), ∀m = 1, . . . , 6, and curlV C
pC

(H) ⊂ QCpC
(H).

For uniform polynomial order p we obtain an H(div)-conforming basis spanning

Qp(H) = Qp+1,p,p(H) ×Qp,p+1,p(H) ×Qp,p,p+1(H).

Proof. The linear independence of face-based shape functions is implied by their choice as
curl-fields of a set of linearly independent functions. Moreover, we already discussed the
linear independence of the set of cell-based shape functions. Since the normal traces of the
p2
Fm

face-based shape functions (including the lowest-order Raviart-Thomas functions) span
QpFm ×QpFm (Fm), while the cell-based functions have zero tangential trace, we obtain linear
independence of all shape functions.
H(div)-conformity is implied by the RT 0-F -C-based construction: all shape functions not
associated to the face Fm have zero tangential trace on the face. Hence, the normal trace on
Fm is only affected by the degrees of freedom associated with the face.
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For uniform order p, all shape functions belong to Qp+1,p,p(H)×Qp,p+1,p(H)×Qp,p,p+1(H) by
construction. A comparison of the dimensions of the spaces under considerations completes
the proof:

|Qp(H)| = |QRT (H)| + 6 |QFm
p (H)| + |QCp (H)|

= 6 + 6(p2 + 2p) + 3p3 + 6p2 + 3p
= 3(p+ 2)(p+ 1)2

Qp+1,p,p(H) ×Qp,p+1,p(H) ×Qp,p,p+1(H) = 3(p+ 2)(p+ 1)2

5.2.5 The prismatic element

We define the reference prism as the tensor product

P := T × [0, 1] = {(x, y, z) : 0 ≤ x+ y ≤ 1, 0 ≤ x, y, z ≤ 1}.

In this section, we provide a general formulation of shape functions corresponding to this
tensor-product representation. We introduce the barycentric coordinates λi corresponding to
the triangle T and µz corresponding to the segment Iz := [0, 1] as follows:

2

4
(1,1,1)

(0,1,0)

(0,0,1)

(1,0,1)

(1,0,0)
6

5

1

(0,0,0) 3

x

y

z

λ1 = 1 − x− y, µ1 = 1 − z,

λ2 = x, µ2 = 1 − z,

λ3 = y, µ3 = 1 − z,

λ4 = 1 − x− y, µ4 = z,

λ5 = x, µ5 = z,

λ6 = y, µ6 = z.

The parametrization of horizonal edges and the corresponding tangential vectors are computed
as for the tetrahedral element, whereas the parametrization of the vertical edges and the
computation of the associated tangential vector follows the construction for the hexahedral
element. Thus, the normal component on a quadrilateral face [f1, f2, f3, f4] can be expressed
by

nF =
1

2
∇λF (5.28)

with λF = λf1 + λf2 + λf3 + λf4 , and on a triangular face [f1, f2, f3] by

nF = −∇µf1 . (5.29)

Corresponding to the tensor-product domain P = T × [0, 1], we introduce the polynomial
space,

Rp1,p2(P) :=
{
q1(x, y) q2(z) : q1 ∈ P p1(T ), q2 ∈ Qp2([0, 1])

}
.

The sequence of polynomial spaces – corresponding to the exact sequence (3.14) on the con-
tinuous level – we intend to construct, is given by

R
id−→ Rp+1,p+1(P)

∇−→




Rp,p+1(P)
Rp,p+1(P)
Rp+1,p(P)


 curl−→




Rp,p(P)
Rp,p(P)

Rp−1,p+1(P)


 div−→ Rp−1,p(P)

0−→ {0}. (5.30)
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H1-conforming shape functions on the prismatic element P
As for the previous topologies, we construct the vertex-, edge- and face-based shape functions
such that the traces on quadrilateral or triangular faces, respectively, coincide with the cell-
based functions of the quadrilateral Q or the triangle T , respectively. This approach will in
particular allow for hybrid meshes and for a locally varying polynomial degree.
On the quadrilateral faces we use linear extension (in terms of µi and λi) of edge-based shape
functions, and on triangular faces we agree on a monomial edge-extension provided by scaled
(integrated) Legendre polynomials (in terms of λi). The construction of cell-based shape
functions is then simple, by considering the tensor-product shape of the prismatic element.
Since the cell based shape functions shall span

WC
pC

:=
{
q1(x, y) q2(z) : q1(x, y) ∈ P

pC,1

0 (T ), q2(z) ∈ Q
pC,2

0 ([0, 1])
}
,

with pC := (pC,1, pC,2), we construct them as products of cell-based triangular shape functions
and cell-based shape functions of the segment Iz = [0, 1]:

φCijk(x, y, z) = φCij(x, y)Lk+2(z) with φCij(x, y) ∈WC
pC

(T ), 0 ≤ k ≤ pC2 − 2.

Putting the various sets of shape functions together we get the following representation:

Hierarchical H1-conforming shape functions for prismatic elements
of variable order p = (pEm

, pFm
, pC)

Vertex-based functions:

for i = 1, . . . , 6 : φV
i = λi µi

Edge-based functions

for m = 1, . . . 6: horizontal edge Em = [e1, e2]

for 0 ≤ i ≤ pEm
− 2 : φEm

i = LS
i+2(λe2

− λe1
, λe1

+ λe2
)µe1

for m = 7, 8, 9 : vertical edge Em = [e1, e2]

for 0 ≤ i ≤ pEm
− 2 : φEm

i = Li+2(2µe1
− 1)(λe1

+ λe2
)

Face-based functions

for m = 1, 2 : triangular face Fm = [f1, f2, f3]

for 0 ≤ i+ j ≤ pFm
− 3 : φFm

(i,j) = LS
i+2(λf1

− λf2
, λf1

+ λf2
)λf3

ℓj (2λf3
− 1)µf1

for m = 3, 4, 5: quadrilateral face Fm = [f1, f2, f3, f4]

with horizontal edge [f1, f
∗
2 ], i.e. f∗2 =

{
f2 if µf1

= µf2

f4 else

for 0 ≤ i, j ≤ pFm
− 2 : φFm

(i,j) = LS
i+2(λf∗

2
− λf1

, λf1
+ λf∗

2
)Lj+2(2µf1

− 1)

Cell-based functions

for 0 ≤ i+ j ≤ pC − 3, 0 ≤ k ≤ pC − 2 :

φC
(i,j,k) = LS

i+2(λ1 − λ2, λ1 + λ2)λ3 ℓj(2λ3 − 1)Lk+2(2µ1 − 1)
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We define the lowest-order space as W V (P) := span
(
(φVi )1≤i≤6

)
and denote the span of

edge-based (associated with Em) by W
pEm
Em

(P), the span of face-based (associated with Fm)

functions by W
pFm
Fm

(P), and the span of cell-based functions by W
pFm
C (P). The local FE-space

spanned by the whole set of shape functions on P up to order p = ({pEm}, {pFm}, pC) is given
by

Wp(P) = W V (P) ⊕
9⊕

m=1

W
pEm
Em

(P) ⊕
5⊕

m=1

W
pFm
Fm

(P) ⊕W pC
C (P).

Theorem 5.14. The stated shape functions are H1-conforming and linearly independent. For
uniform polynomial order p the V -E-F -C-based set of shape functions spans the local FE-space

Wp(P) = Rp,p(P)

and in the case of the minimum rule, i.e. pEm ≤ pFm ≤ pC :

Wp
min

(P) =
{
w ∈ P pC (P)

∣∣ trEm(w) ∈ P
pEm
m (Em) ∀1 ≤ m ≤ 9,

trFm(w) ∈ P pFm (Fm) ∀1 ≤ m ≤ 2,

trFm(w) ∈ QpFm ,pFm (Fm) ∀3 ≤ m ≤ 5
}
.

Proof. Vertex-, edge-, face-based shape functions are obtained by linear and monomial exten-
sion of H1-conforming shape functions on the quadrilateral or the triangular element. The
trace of the various functions on the associated face remains unchanged under the extension.
Hence, linear independence and the full span of the trace on the associated edges and faces
are implied by the considerations for the quadrilateral and triangular elements.
Concerning the cell-based shape functions, the construction through tensor-product of cell-
based triangular shape functions (having zero tangential trace on all quadrilateral faces) with
bubble functions (having zero tangential traces on the remaining triangular faces) in vertical
z-direction implies two properties, namely zero tangential trace on ∂P, as well as linear inde-
pendence within the set of cell-based shape functions.
By the V -E-F -C construction we can easily deduce the linear independence of the whole set
of stated shape functions as well as the H1-conformity in a similar manner as for the hexahe-
dral element.
Finally, for uniform polynomial order p the counting argument

|Wp(P)| = |W V (P)| + 9|WEm
p (P)| +∑2

m=1 |WFm
p (P)| +∑5

m=3 |WFm
p (P)| + |WC

p (P)|
= 6 + 9(p− 1) + (p− 2)(p− 1) + 3(p− 1)2 + 1

2(p− 2)(p− 1)2

= 1
2(p+ 1)2(p+ 2), and

|Rp,p(P)| = |P p(T )| · |Qp([0, 1])| = 1
2(p+ 1)2(p+ 2)

completes the proof.

H(curl)-conforming shape functions on the prismatic element P
In view of the exact sequence property, we are interested in establishing the following inclusion:

Wp+1(P) = Rp+1,p+1(P)
∇−→ Rp,p+1(P) ×Rp+1,p(P) ×Rp+1,p := Vp(P).

Concerning lowest-order shape functions we have to distinguish between horizontal and ver-
tical edges here. The aim is to ensure trτ ,Ek

(ϕN0
Em

) = δm,k, and the extension onto the faces
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should coincide with the extension of the lowest-order shape functions on triangular faces of
tetrahedra and quadrilateral faces of hexahedra. On horizontal edges Em = [e1, e2] this is
provided by

ϕN0
m = (∇λe1 λe2 − λe1 ∇λe2)µe1

whereas on vertical edges Em = [e1, e2] we choose

ϕN0
m = λe1∇µe1 .

The edge-based shape functions up to order pEm can be chosen as gradients of H1-conforming
edge-based shape functions of order pEm + 1.
The face-based and cell-based shape functions can be defined similarly as in three types of
shape functions above.
The following table summarizes H(curl)-conforming shape functions of variable polynomial
order:

H(curl)-conforming shape functions for prismatic elements
of variable polynomial order p = ({pEm

}, pFm
, pC)

Lowest-order Nédélec functions

for m=1,...,6: horizontal edge Em = [e1, e2] ϕN0

m = (∇λe1
λe2

− λe1
∇λe2

)µe1

for m=7,8,9: vertical edge Em = [e1, e2] ϕN0

m = λe1
∇µe1

Higher-order edge-based functions

for m = 1, ..., 6 : horizontal edge Em = [e1, e2]

for 0 ≤ i ≤ pEm
− 1: ϕEm

i = ∇
(
LS

i+2(λe2
− λe1

, λe1
+ λe2

)µe1

)

for m = 7, 8, 9 : vertical edge Em = [e1, e2]

for 0 ≤ i ≤ pEm
− 1: ϕEm

i = ∇
(
Li+2(2µE − 1)λe1

)

Face-based functions

for m = 1, 2 : triangular face Fm = [f1, f2, f3]

We define ui := LS
i+2(λf2

− λf1
, λf1

+ λf2
)

vj := λf3
ℓj(2λf3

− 1)
s.t. φ∇,Fm

(i,j) = uivjµf1
.

for 0 ≤ i+ j ≤ pFm
− 2:

Type 1: (gradient fields) ϕ
Fm,1
(i,j) = ∇

(
uivjµf1

)

Type 2: ϕ
Fm,2
(i,j) =

(
∇ui vj − ui ∇vj

)
µf1

Type 3: ϕ
Fm,3
(0,j) =

(
∇λf1

λf2
− λf1

∇λf2

)
vj µf1

for m = 3, 4, 5: quadrilateral face Fm = [f1, f2, f3, f4] with horizontal edge [f1, f
∗
2 ],

i.e. f∗2 =

{
f2 if µf1

= µf2

f4 else
, and α =

{
1 f2 = f∗2
−1 else

.

We define ui := LS
i+2(λf∗

2
− λf1

, λf1
+ λf∗

2
)

wj := Lj+2(2µf1
− 1)

s.t. φ∇,Fm

(i,j) = ui wj .

for 0 ≤ i, j ≤ pFm
− 1:

Type 1:(gradient fields) ϕ
Fm,1
(i,j) = ∇(ui wj)

Type 2: ϕ
Fm,2
(i,j) = α

(
∇ui wj − ui ∇wj

)
.

Type 3: ϕ
Fm,3
(0,j) = (∇λf1

λf∗

2
− λf1

∇λf∗

2
)wj
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Cell-based functions

We define ui := LS
i+2(λ2 − λ1, λ1 + λ2)

vj := λ3ℓj(2λ3 − 1)
wk := Lk+2(2µ1 − 1)

for 0 ≤ i+ j ≤ pC − 2, 0 ≤ k ≤ pC − 1 :

Type 1:(gradient fields) ϕ
C,1
(i,j,k) = ∇

(
ui vj wk

)

Type 2: ϕ
C,2
(i,j,k) = ∇ui vj wk

ϕ
C,2
p

C
+(i,j,k) = ui ∇vj wk

Type 3: ϕ
C,3
(i,j,0) = ui vj ez

ϕ
C,3
(0,j,k) =

(
∇λ1 λ2 − λ1 ∇λ2

)
vj wk

We define the lowest-order space as V N0(P) := span
(
(ϕN0

m )1≤m≤9

)
, and denote the span of

edge-based associated with Em by V
pEm
Em

(P), the span of face-based functions associated with

the face Fm by V
pFm
Fm

(P), and the span of cell-based functions by V
pFm
C (P). The local FE-

space spanned by the whole set of shape functions on P, up to order p = ({pEm}, {pFm}, pC)
is denoted by

Vp(P) := VN0(P) ⊕
9⊕

m=1

V
pEm
Em

(P) ⊕
5⊕

m=1

V
pFm
Fm

(P) ⊕ V pC
C (P).

Theorem 5.15. The basis functions defined above are linearly independent and H(curl)-
conforming. There holds

∇WEm
pEm

+1(P) ⊂ V Em
pEm

(P) for m = 1, . . . , 9, ∇WFm
pFm

+1(P) ⊂ V Fm
pFm

(P) for m = 1, . . . , 5,

and ∇WC
pC+1(P) ⊂ V C

pC
(P).

Moreover, for uniform polynomial order p the set of shape functions span

Vp(P) = Rp,p+1(P) ×Rp,p+1(P) ×Rp+1,p(P).

Proof. We already verified the linear independence of the set of edge-based shape functions
as well as of the set of face-based shape functions. It remains to show linear independence
of the cell-based shape functions. Due to the tensor-product-based construction this can be
deduced from the linear independence of the H1-conforming and H(curl)-conforming shape
functions for the triangular element as follows.

First, we consider the functions in M1 = {∇ui vj wk, ui∇vjwk∇wk + (∇λ1λ2 − λ1∇λ2)wk},
which are built as products of H(curl)-conforming cell-based triangular shape functions
ϕTij(x, y) of Theorem 5.6 and linearly independent functions wk(z). Hence, we obtain lin-
ear independence of the functions in M1.

Next consider the set M2 = {uivj∇wk = uivjw
′
kez, uivjez}, which again consists of linearly

independent functions due to the tensor-product construction, and the linear independence
of ui vj , cf. Theorem 5.6. Since ez · ϕ = 0 for ϕ ∈ M1, we obtain linear independence of the
functions

{uivj∇wk, ui∇vj wk, ∇ui vjwk, φ
N0

[1,2](x, y)wk, uivjez, }

which have vanishing tangential trace on ∂P . This implies the linear independence of the
complete set of cell-based shape functions.
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Thanks to the N0-E-F -C-based construction, linear independence of all shape functions as
well as the H(curl)-conformity follows. Moreover, for uniform polynomial order we conclude
again with a simple counting argument:

|Vp(P)| = 9(p+ 1) + 2(p+ 1)(p− 1) + 3(2p2 + 2p)
+3

2(p+ 1)p(p− 1)
= 1

2(p+ 1)(p+ 2)(3p+ 7), and

|
(
Rp,p+1 ×Rp,p+1 ×Rp+1,p

)
(P)| = (p+ 1)(p+ 2)2 + 1

2(p+ 1)(p+ 2)(p+ 3)
= 1

2(p+ 1)(p+ 2)(3p+ 7).

Remark 5.16. In the case of the minimum order rule, i.e., pEm ≤ pFm ≤ pC , the shape
functions span the following local FE-space

Vp
min

(P) =
{
v ∈ XpC (P)

∣∣ trτ ,Em(v) ∈ P pEm (Em) ∀1 ≤ m ≤ 9,

trτ ,Fm(v) ∈ (P pFm (Fm))2 ∀1 ≤ m ≤ 2,

trτ ,Fm(v) ∈
(
QpFm ,pFm+1 ×QpFm+1,pFm

)
(Fm) ∀3 ≤ m ≤ 5

}
,

with Xp(P) := Rp,p+1(P) ×Rp,p+1(P) ×Rp+1,p(P).

H(div)-conforming shape functions for the prismatic element P

Similarly to the previous cases, the lowest order Raviart-Thomas shape functions can be
chosen as lowest order shape functions by linear extension of the element normal vector into
the interior of the element:

ψRT 0
m = µf1 n = −∇µf1 µf1 for triangular faces and

ψRT 0
m = 1

2λF n = −1
4∇λFλF for quadrilateral faces,

due to the representation of the normal vector stated in (5.28) and (5.29).

The higher-order face-based shape functions can be chosen as the curl-fields of the set of
H(curl)-conforming face-based shape functions of V Fm

pFm+1(P) which are linearly independent

from gradient functions. Since c1 curlF (q1) + c2 curlF (q2) = 0 implies ∃φ s.t. c1q1 + c2q2 +
∇φ = 0, the linear independence of the proposed curl-field shape functions follows directly
from the linear independence of the H(curl)-conforming shape functions, and their linear
independence from the gradient fields. Moreover, the normal trace of the constructed functions
span QpFm (Fm)/R on quadrilateral faces, and P pFm (Fm)/R on triangular faces, respectively,
which can be seen by a comparison of the dimension of the involved spaces.

The first set of cell-based functions is provided by the curl-fields of H(curl)-conforming shape
functions. Considering the terms involved by these curl-fields in more detail, we can extract
the following linearly independent cell-based shape functions, which are already extended to
span the full set of cell-based functions.

Lemma 5.17. Let ui = ui(x, y) := LS
i+2(λ2 − λ1, λ1 + λ2), vj = vj(y) := λ3ℓj(2λ3 − 1),

wk = wk(z) := Lk+2(2µ1−1) and N0(x, y) := ∇λ1 λ2−∇λ2 λ1, and let us define the following
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sets of polynomials:

M1 :=
{
∇ui ×∇vj wk, curl(N0(λ1, λ2)vj)wk, ezwk

}
0≤i+j≤p,0≤i,j,k≤p

= {curl(x,y)(ui∇(x,y)vj)wk ez, curl(x,y)(ϕ
N0

[1,2](x, y) vj)wkez, wkez
}

with ϕN0

[1,2](x, y) := ∇(x,y)λ1 λ2 −∇(x,y)λ1 λ2,

M2 :=
{
∇wk ×∇ui vj , N0(λ1, λ2) ×∇wk vj , ez ×∇ui vj , N0(λ1, λ2) × ez vj

}
0≤i+j≤p−2,k≤p−1

,

M3 :=
{
∇wk ×∇vj ui, ∇vj × ez ui

}
0≤i+j≤p−2,k≤p−1

=
{
w′
k(z) v

′
j(y)ui ex, v

′
j(y)ex},

The union of M1 ∪M2 ∪M3 defines a set of linearly independent vector-fields with vanishing
normal trace on ∂P. Moreover, there holds

(
P p(P)

)3 ∩H0(div,P) = spanM1 ⊕ spanM2 ⊕ spanM3.

Proof. Due to the inclusion in
(
P p(P)

)3
as well as the vanishing of tangential traces on ∂P,

we only show linear independence of M1 ∪M2 ∪M3.

1. First, we show linear independence of functions in M1: Since these functions are
constructed as the products of curl-fields of H(curl)-conforming triangular-face shape
functions, whose linear independence we had proved in the course of the construction
of face-based shape functions, and a set of linearly independent functions in the
z-component, their linear independence follows directly.

2. The functions of M3 are linearly independent by construction.

3. Multiplying the vector fields of M3 with ey yields (informally written) {∂xui, (1− y)} ·
{w′

k, 1} · vj yielding linear independence.

4. We observe that the vector-fields from each set Mi are linearly independent, when
restricted to the i-th component. Hence, we obtain the linear independence of M1 ∪
M2 ∪M3.

Observing that dim(M1)+dim(M2)+dim(M3) = 1
2(3p2−2)(p+1) = dim(P p

0,τ(P)) completes
the proof.

Hierarchical H(div)-conforming shape functions for prismatic elements
of variable order p = (pFm

, pC)

Lowest-order Raviart-Thomas functions

for m = 1, 2 : triangular face Fm = [f1, f2, f3]: ψRT 0

m = −∇µf1
µf1

for m = 3, . . . , 5 : quadrilateral face Fm = [f1, f2, f3]:

Set λF =
∑4

i=1 λfi
.

ψRT 0

m = − 1
4∇λFλF
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Face-based functions (div-free)

for m = 1, 2 : triangular face Fm = [f1, f2, f3]

We define ui := LS
i+2(λf2

− λf1
, λf1

+ λf2
)

vj := λf3
ℓj(2λf3

− 1)µf1

s.t. φ∇,Fm

(i,j) = uivj .

for 0 ≤ i+ j ≤ pFm
− 2:

ψFm

(i,j) = curlϕ
curl,(Fm,2)
(i,j) = 2∇vj ×∇ui

ψ
Fm,1
p

Fm
+(0,j) = curlϕ

curl,(Fm,3)
p

Fm
+(0,j) = ∇vj ×

(
∇λf1

λf2
−∇λf2

λf1

)
+ 2∇λf2

×∇λf1
vj

for m = 3, 4, 5: quadrilateral face Fm = [f1, f2, f3, f4] with horizontal edge [f1, f
∗
2 ],

i.e. f∗2 =

{
f2 if µf1

= µf2

f4 else
, and α =

{
1 f2 = f∗2
−1 else

.

We define ui := LS
i+2(λf∗

2
− λf1

, λf1
+ λf∗

2
)

wk := Lk+2(2µf1
− 1)

s.t. φ∇,Fm

(i,j) = ui vj .

for 0 ≤ i, k ≤ pFm
− 1:

ψFm

(i,k) = curlϕ
curl,(Fm,2)
(i,k) = 2α∇wk ×∇ui

ψFm

p
Fm

+(0,j) = curlϕ
curl,(Fm,3)
(0,j) = curl

(
(∇λf1

λf∗

2
− λf1

∇λf∗

2
)Lk+2(2µf1

− 1)
)

Cell-based functions

We define ui := LS
i+2(λ2 − λ1, λ1 + λ2)

vj := λ3ℓj(2λ3 − 1)
wk := Lk+2(2µ1 − 1)

s.t. φ∇,C

(i,j,k) = ui vj wk.

for 0 ≤ i+ j ≤ pC − 2, 0 ≤ k ≤ pC − 1

Type 1:(div-free) ψ
C,1
(i,j,k) = curlϕ

curl,(C,1)
(i,j,k) = ∇wk ×∇ui vj −∇ui ×∇vj wk

ψ
C,1
p

C
+(i,j,k) = curlϕ

curl,(C,2)
(i,j,k) = ∇ui ×∇vj wk −∇vj ×∇wk ui

ψ
C,1
2p

C
+(0,j,k) = curlϕ

curl,(C,3)
(0,j,k) = 2vjwk ez −N0(λ1, λ2) ×∇(vj wk)

ψ
C,1
2p

C
+(i,j,0) = curlϕ

curl,(C,3)
(i,j,0) = ∇(uivj) × ez

Type 2: ψ
C,2
(i,j,k) = ∇ui ×∇vj wk

ψ
C,2
p

C
+(0,j,k) = N0(λ1, λ2) ×∇vj wk

ψ
C,2
p

C
+(i,j,0) = ∇ui × ez vj

Type 3: ψ
C,3
(0,0,k) = wk ez

ψ
C,3
(0,j,0) = N0(x, y) × ez vj

with N0(λ1, λ2) := (∇λ1λ2 − λ1∇λ2).

We define the lowest-order space as QRT 0(P) := span
(
(ψRT 0

m )1≤m≤5

)
, and denote the span

of face-based functions associated with Fm by Q
pFm
Fm

(P), and the span of cell-based functions

by Q
pFm
C (P). The local FE-element space is given by

Qp(P) := QRT 0(P) ⊕
5⊕

m=1

Q
pFm
Fm

(P) ⊕Q
pFm
C (P).

Theorem 5.18. The set of shape functions defined above is linearly independent and H(div)-
conforming. For uniform polynomial order p the shape functions are a basis of the local
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FE-space

Qp = Rp,p(P) ×Rp,p(P) ×Rp−1,p+1(P).

Proof. The linear independence of lower- and higher-order face based functions, which span
either QpFm+1,pFm ×QpFm ,pFm+1(Fm) if Fm is a quadrilateral or P pFm (Fm) if Fm is a triangular
face, has already been shown.

Since the cell-based shape functions are linearly independent combinations of linearly indepen-
dent polynomial vector fields, cf. Lemma 5.17, also the set of cell-based functions is linearly
independent.

The RT 0-F -C-based construction implies the linear independence of all shape functions as
well as their H(div)-conformity.

In case of uniform polynomial order p a comparison of the dimension of the involved spaces

|Qp(P)| = 5 + 2(1
2(p− 1)(p+ 2)) + 3(p2 + 2p) + 1

2(3p2 − 2)(p+ 1)

|(Rp,p(P))2 ×Rp−1,p+1(P)| = (p+ 1)2(p+ 2) + 1
2p(p+ 1)(p+ 2) = 1

2(p+ 1)(p+ 2)(3p+ 2)

completes the proof.

Remark 5.19. In the case of the minimum order rule, i.e. pEm ≤ pFm ≤ pC , the shape
functions span the following local FE-space

Vp
min

(P) =
{
v ∈ XpC (P)

∣∣ trn,Fm(v) ∈ (P pFm−1(Fm))2 ∀1 ≤ m ≤ 2,

trn,Fm(v) ∈
(
QpFm+1,pFm ×QpFm ,pFm+1

)
(Fm) ∀3 ≤ m ≤ 5

}
,

with XpC (P) := RpC ,pC (P) ×RpC ,pC (P) ×RpC−1,pC+1(P).

In the end, we now consider the tetrahedron.

5.2.6 The tetrahedral element

We define the reference tetrahedron as

T =
{

(x, y, z)
∣∣ x, y, z ≥ 0, 0 ≤ x+ y + z ≤ 1

}
,

which is the convex hull of the four vertices V1 = (0, 0, 0), V2 = (1, 0, 0), V3 = (0, 1, 0), and
V4 = (1, 1, 1). Similarly as for the triangle, the shape functions can be formulated in terms of
the barycentric coordinates λi, which are defined as follows:

2

4

(0,1,0)

(0,0,1)

(1,0,0)

1

(0,0,0)

x

y

z

3

λ1 = 1 − x− y − z,

λ2 = x,

λ3 = y,

λ4 = z.

The outer normal vector on the face Fm = [f1, f2, f3] is given by

nFm = −∇λo = ∇λF with λF := λ1 + λ2 + λ3,

where λo is the coordinate corresponding to the vertex opposite to the face Fm.
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To obtain a tensorial basis also for tetrahedral elements, we utilize the 3-dimensional version
of the Duffy transformation, i.e.,

D : H → T
(ξ, η, ζ) 7→ (x, y, z)

with

x = 1
8(1 + ξ)(1 − η)(1 − ζ)

y = 1
4(1 + η)(1 − ζ)

z = 1
2(1 + ζ)

.

The tetrahedron T is then interpreted as a collapsed hexahedron H. The inverse map is given
by

ξ = 2 x
1−y−z − 1 = λ2−λ1

λ2+λ1
∈ [−1, 1],

η = 2 y
1−z − 1 = 2λ3−(1−λ4)

1−λ4
= λ3−(λ1+λ2)

λ1+λ2+λ3
∈ [−1, 1],

ζ = 2z − 1 = 2λ4 − 1, ∈ [−1, 1].

We only mention that in Karniadakis-Sherwin [60] the collapsing procedure is done step-
wise from the hexahedra to a prism, then to a pyramid, and finally to the tetrahedron by
succesively applying the 2-dimensional Duffy transformation (quadrilaterals to triangles).
For the space of FE-shape functions we choose

P p(T ) :=
{
xiyjzk : 0 ≤ i+ j + k ≤ p, i, j, k ≥ 0

}
, (5.31)

and we set to define the local finite element spaces in such a way that in the case of uniform
polynomial order they correspond to the sequence

R
id−→ P p+1(T )

∇−→ P p(T )
curl−→ P p−1(T )

div−→ P p−2(T )
0−→ {0}. (5.32)

The H1-conforming tetrahedral element

As for the triangle, the vertex-based shape functions can be chosen as the barycentric coordi-
nates, i.e., φVi = λi for i = 1, 2, 3, 4, satisfying φVi (Vj) = δij . As already seen in the low order
construction, the vertex functions span P 1(T ).
The edge-based shape functions associated with Em = [e1, e2] are also chosen similarly as for
triangles, i.e.

φEm
i = LS

i+2(λe2 − λe1 , λe2 + λe1) for 0 ≤ i ≤ pEm − 2.

This yields trEm(φEm
i ) = Li+2(λe2 − λe1) = Li+2(ξE), where ξE = λe2 − λe1 is the edge-

parameterization over the interval [−1, 1]. The scaled Legendre-polynomials provide a mono-
mial extension of the edge values into the interior of the tetrahedron by involving a multipli-
cation with (λe1 + λe2)

i+2. This ensures φEm
i ∈ P i+2(T ), and also guarantees zero tangential

traces on all other edges. Moreover, the set of edge-based shape functions spans P
pEm
0 (Em)

on the associated edge.
The face-based functions are chosen to coincide with the cell-based shape functions of the
triangular element T on the face Fm and use an appropriate extension to the domain. In
particular, we set

φFm

(i,j) = LS
i+2(λf1 − λf2 , λf1 + λf2) λf3 ℓ

S
j (2λf3 − λF , λF ),

where we used the face extension parameter λF = λf1 + λf2 + λf3 . This construction imme-
diately implies linear independence and furthermore,

span
{
trFm(φFm

(i,j)) : i+ j ≤ pFm − 3, i, j ≥ 0
}

= P
pFm
0 (Fm).
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Concerning the extension of face values into the interior of the element, the scaled Legendre
polynomial provides a monomial extension by λjF (as illustrated in Figure 5.6) as follows:

φFm

(i,j) = LS
i+2(λf1 − λf2 , λf1 + λf2)λf3 ℓj

(2λf3
−λF

λF

)
λjF .
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Figure 5.6: Monomial face extension

Finally, we propose cell-based functions in collapsed tensor-product-structure of the form

φC(i,j,k)(x, y, z) = ui(x, y, z) vj(y, z)wk(z)

with factors

ui(x, y, z) := LS
i+2

(
λ1 − λ2, λ1 + λ2

)
, (5.33a)

vj(x, y, z) = vj(y, z) := λ3 ℓ
S
j

(
2λ3 − (1 − λ4)

1 − λ4

)
, (5.33b)

wk(x, y, z) = wk(z) := λ4ℓk(2λ4 − 1), (5.33c)

for i+ j + k ≤ pC − 4, 0 ≤ i, j, k. In terms of the hexahedral coordinates (ξ, η, ζ) ∈ [−1, 1]3

(see figure 5.7) this amounts to

(
ui ◦ D

)
(ξ, η, ζ) = Li+2(ξ)

(
1 − η

2

)i+2(1 − ζ

2

)i+2

, (5.34a)

(
vj ◦ D

)
(ξ, η, ζ) =

1 + η

2
ℓj(η)

(
1 − ζ

2

)j+1

, (5.34b)

(
wk ◦ D

)
(ξ, η, ζ) =

1 + ζ

2
ℓk(ζ). (5.34c)

The linear independence of the cell-based functions now follows easily, and carries over onto
the tetrahedron. Moreover, since there holds (ui ◦ D)(±1, η, ζ) = 0, (vj ◦ D)(ξ,−1, ζ) = 0, as
well as (wk ◦ D)(ξ, η,−1) = 0, we obtain vanishing trace on ∂T .

Summarizing, we define the following set of shape functions:
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y

x

z

y

x

z

y

x

z

Figure 5.7: Degenerated tensor-product on the tetrahedron: iso-planes where ξ = const.,
η = const., or ζ = const.

H1-conforming shape functions for the tetrahedral element T
of variable polynomial order p = ({pEm

}, {pFm
}, pC)

Vertex-based functions: φV
i = λi for i = 1, 2, 3, 4

Edge-based functions:

for m = 1, . . . , 6: edge Em = [e1, e2]

for 0 ≤ i ≤ pEm
− 2

φEm

i = LS
i+2(λe1

− λe2
, λe1

+ λe2
)

Face-based functions:

for face Fm = [f1, f2, f3], m=1,...,4

We define λF := λf1
+ λf2

+ λf3
.

for 0 ≤ i+ j ≤ pFm
− 3,

φFm

(i,j) = LS
i+1(λf1

− λf2
, λf1

+ λf2
)λf3

ℓSj (2λf3
− λF , λF )

Cell -based function:

for 0 ≤ i+ j + k ≤ pC − 4

φC
(i,j,k) = LS

i+2(λ1 − λ2, λ1 + λ2) λf3
ℓSj (2λ3 − (1 − λ4), 1 − λ4)λf4

ℓk(2λ4 − 1)

We define the lowest-order space as W V (T ) := span
(
(φVi )1≤i≤4

)
, and denote the span of edge-

based functions associated with Em by W
pEm
Em

(T ), the span of face-based functions associated

with Fm by W
pFm
Fm

(T ), and the span of cell-based functions by W
pFm
C (T ).

The local FE-space spanned by the whole set of shape functions on T up to order p =
({pEm}, {pFm}, pC) is given by

Wp(T ) := W V (T ) ⊕
6⊕

m=1

W
pEm
Em

(T ) ⊕
4⊕

m=1

W
pFm
Fm

(T ) ⊕W pC
C (T ).

Theorem 5.20. The shape functions collected in the table above are linearly independent and
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H1-conforming. For uniform polynomial order p, the shape functions span the local FE-space

Wp(T ) = P p(T ).

Proof. We have already discussed the linear independence of the set of edge-based, face-
based, and of cell-based shape functions. The linear independence of the whole set of shape
functions can be verified with similar arguments as in the hexahedral case, i.e., by consecutive
consideration of function traces on edges, faces and cells. The same arguments imply the
H1-conformity. Comparing the dimensions of the involved spaces, namely

|Wp(T )| = 4 + 6(p− 1) + 2(p− 2)(p− 1) + 1
6(p− 3)(p− 2)(p− 1)

= 1
6(p+ 3)(p+ 2)(p+ 1), and

|P p(T )| = 1
6(p+ 3)(p+ 2)(p+ 1)

implies that Wp(T ) = P p(T ) in case of uniform polynomial order p.

Remark 5.21. 1. In the case of the minimum order condition (5.2), the shape functions
span the local space

Wp
min

(T ) =
{
w ∈ P pC (T )

∣∣ trEm(w) ∈ P
pEm
m (Em) ∀1 ≤ m ≤ 6,

trFm(w) ∈ P pFm (Fm) ∀1 ≤ m ≤ 4
} . (5.35)

2. The Legendre-type polynomials used in the construction of shape functions can be re-
placed by other families of orthogonal polynomials, e.g., Jacobi-type polynomials can be
used to improve the condition number and sparsity of the resulting FE-matrices. In the
case of Jacobi polynomials, the polynomial degrees of the factors are not chosen indepen-
dently, i.e. one obtains ui, v(i,j), w(i,j,k). Still, the construction principle of H(curl)- and
H(div)-conforming shape functions, which we present in the following for Legendre-type
polynomials carries over also to other classes of polynomials.

The H(curl)-conforming tetrahedral element

Motivated by the previous constructions, we choose for the lowest-order edge-based shape
functions the lowest-order Nédélec shape functions of the first kind.

The H(curl)-conforming edge-based shape functions are chosen as the gradient fields of edge-
based H1-conforming shape functions up to order pEm + 1. Hence, by Theorem 5.20 we get
linear independence and obtain that the tangential traces on the associated edge Em span
P pEm (Em)/R, whereas they vanish on all other edges.

The face-based shape functions can be derived similarly as for the H(curl)-conforming trian-
gular elements, namely by involving summands of gradient fields of face-based H1-conforming
functions as follows:

∇ui vj + ui∇vj , ∇ui vj − ui∇vj , (∇λf1λf2 − λf1 ∇λf2) vj

with ui := LS
i+2(λf1 − λf2 , λf1 + λf2), vj := λf3 ℓ

S
j (λf3 − λF , λF ) for 0 ≤ i, j, i+ j ≤ pFm − 2.

On the associated face Fm = [f1, f2, f3], the tangential traces of these functions coincide
with the cell-based H(curl)-conforming shape functions for the triangular element up to order
pFm . Hence, we obtain linear independence of the face-based functions from the correspond-
ing considerations on triangles. Moreover, by construction, the above functions belong to
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(
P pFm (T )

)3
. Their tangential traces span P

pFm
τ ,0 (Fm) on the corresponding face, whereas the

traces vanish on Fk 6= Fm, since there either ui = 0 or vj = 0.

Concerning cell-based shape functions, we first consider the gradients of the scalar cell-based
shape functions

∇φC,1(i,j,k) = ∇ui vj wk + ui∇vj wk + ui vj ∇wk 0 ≤ i+ j + k ≤ pC − 3,

where the factors ui, vj , wk are chosen according to (5.33). The set of gradient fields can be
enriched in the following way:

Lemma 5.22. Suppose ui := LS
i+2(λ2 − λ1, λ1 + λ2), vj := λ3 ℓ

S
j (2λ3 − (1 − λf4), wk :=

λ4 ℓk(2λ4 − 1), and ϕN0

[1,2] = (∇λ1 λ2 − λ1 ∇λ2). Then the set

V C
p (T ) := span{∇ui vj wk, ui∇vj wk, ui vj ∇wk, ϕN0

[1,2] vjwk : 0 ≤ i, j, k, i+ j + k ≤ p− 3}

contains 1
2(p + 1)(p − 1)(p − 2) linearly independent functions in

(
P p(T )

)3
with vanishing

tangential trace on ∂T .

Proof. 1. The trace of ui as well as the tangential trace ϕN0

[1,2] vanishes on the faces opposite
vertex V1 and vertex V2. Moreover, the trace of vj vanishes on the face opposite V3, and
wk is zero on the face opposite V4. Hence, the tangential trace of ϕ ∈ V C

p (T ) vanishes
on the whole of ∂T .

2. We can easily show linear independence by utilizing the tensor-product construction:

(a) The vector fields {ϕ(i,j,k) = ui vj ∇wk}ijk are linearly independent:
Since wk only depends on z, the linear independence can be deduced analogously
to the linear independence of the H1-conforming cell-based shape functions.

(b) The vector fields {∇ui vj wk, ui∇vj wk, ϕN0

[1,2] vjwk} are linearly independent: We

restrict the vector fields to planes Tz(λ̄4), where λ̄4 is constant and hence also wk is
constant. The tangential trace on the triangular faces Tz(λ4) (with n = −∇λ4) of
the vector fields ∇ui vj wk, ∇vj uiwk and ϕN0

[1,2] vj wk coincides (up to scaling and

a constant) with the cell-based shape functions of the H(curl)-triangular element
T . Hence, by Theorem 5.6 and Theorem 5.8, we obtain linear independence of
∇ui vj wk, ∇vj uiwk and ϕN0

[1,2] vj wk for all i, j.
Considering

ṽ =
∑

i,j,k c
1
ijk∇ui vj wk + c2ijk∇vj uiwk + +c4jkϕ

N0

[1,2] vj wk = 0

we obtain by restriction to planes Tz(λ4) that there holds

c̃lij =
∑

k

clijkwk = 0 for l = 1, 2, 4, ∀i, j

and for any λ4 ∈ (0, 1). Due to the linear independence of wk in the z-component
we obtain clijk = 0 for l = 1, 2, 4.
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(c) Let the trivial function v = 0 be constructed by a combination of basis functions,
i.e.,

v =
∑

i,j,k

c1ijk∇ui vj wk + c2ijk∇vj uiwk + c3ijkvj ui∇wk + c4jkϕ
N0

[1,2] vj wk = 0.

By considering the tangential components of v on planes Tz(λ4) (where ∇Tzwk =
0), we obtain clijk = 0 for all l = 1, 2, 4 due to the linear independence of (b). The
remaining part of v is a linear combination of linearly independent vector fields.
Hence, c3ijk = 0, which implies the overall linear independence.

The proposed basis functions are summarized in the following table:

H(curl)-conforming shape functions for the tetrahedron T
of variable order p =

(
{pEm

}, {pFm
}, pC

)

Edge-based functions

for m = 1, . . . 6: edge Em = [e1, e2]

Lowest-order Nédélec function: ϕN0

m = ∇λe1
λe2

− λe1
∇λe2

Higher-order edge-based functions (gradient fields):

for 0 ≤ i ≤ pEm
− 1 : ϕEm

i = ∇
(
LS

i+2(λe1
− λe2

, λe1
+ λe2

)
)

Face-based functions

for m = 1, . . . , 4: face Fm = [f1, f2, f3]

We define ui := LS
i+2(λf1

− λf2
, λf1

+ λf2
),

vj := λ3ℓ
S
j (2λf3

− λF , λF ),

s.t. φFm = ui vj .

for 0 ≤ i+ j ≤ pFm
− 2:

Type 1 (gradient fields): ϕ
Fm, 1
(i,j) = ∇

(
ui vj

)

Type 2: ϕ
Fm,2
(i,j) = ∇ui vj − ui ∇vj

Type 3: ϕ
Fm,3
(0,j) =

(
∇λf1

λf2
− λf1

∇λf2

)
vj

Cell-based functions

We define ui := LS
i+2(λ1 − λ2, λ1 + λ2),

vj := λ3 ℓ
S
j (2λ3 − (1 − λ4), 1 − λ4),

wk := λ4 ℓk(2λ4 − 1),

s.t. φFm = ui vj wk.

for 0 ≤ i+ j + k ≤ pC − 3:

Type 1 (gradient fields): ϕ
C,1
(i,j,k) = ∇φC

(i,j,k) = ∇
(
ui vj wk

)

Type 2: ϕ
C,2
(i,j,k) = ∇ui vj wk − ui ∇vi wk + ui vj ∇wk

ϕ
C,2
p

C
+(i,j,k) = ∇ui vj wk + ui ∇vi wk − ui vj ∇wk

Type 3: ϕ
C,3
(0,j,k) =

(
∇λ1 λ2 − λ1 ∇λ2

)
vj wk

We define the lowest-order space as VN0(T ) := span
(
(ϕN0

m )1≤m≤6

)
, and denote the span

of edge-based functions associated with Em by V
pEm
Em

(T ), the span of face-based functions

associated with Fm by V
pFm
Fm

(T ), and the span of cell-based functions by V
pFm
C (T ).
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The local FE-space spanned by the whole set of shape functions on T up to order p =
({pEm}, {pFm}, pC) is given by

Vp(T ) := VN0(T ) ⊕
6⊕

m=1

V
pEm
Em

(T ) ⊕
4⊕

m=1

V
pFm
Fm

(T ) ⊕ V
pFm
C (T ).

Theorem 5.23. The N0-E-F -C-based shape functions presented in the table above, are
linearly independent and H(curl)-conforming. Moreover, they contain gradient fields
∇Wp+1(T ) ⊂ Vp(T ), i.e.,

∇WEm
pEm+1(T ) = V Em

pEm
(T ) ∀m = 1, . . . , 6, ∇WFm

pFm+1(T ) ⊂ V Fm
pFm

(T ) ∀m = 1, . . . 4,

∇WC
pC+1(T ) ⊂ V C

pC
(T ).

For uniform polynomial order p the shape functions span the local FE-space

Vp(T ) =
(
P p(T )

)3
with P p+1(T )

∇−→ P p(T ).

Proof. The edge-based shape functions (gradient fields) are linearly independent due to The-
orem 5.20. Their tangential traces span P pEm (Em) and vanish on all other edges Ek 6= Em.
The face-based shape functions are linearly independent and their tangential traces on Fm
span P

pFm
τ ,0 (Fm) with zero tangential trace on all edges and all faces Fk 6= Fm.

Due to Lemma 5.22 we obtain linear independence of the cell-based shape functions and the
vanishing of their tangential trace on ∂T .
By consecutive consideration of tangential traces on edges and faces we can deduce the linear
independence of the whole set of shape functions. The H(curl)-conformity follows with the
same arguments.
Finally, for uniform polynomial order p all shape functions belong to

(
P p(T )

)3
by construc-

tion. Comparing the dimensions of the involved spaces, i.e.,

|Vp(T )| = 6(p+ 1) + 4(p− 1)(p+ 1) +
1

2
(p− 2)(p− 1)(p+ 1) =

1

2
(p+ 1)(p+ 2)(p+ 3)

|
(
P p(T )

)3| =
1

2
(p+ 1)(p+ 2)(p+ 3)

we conclude that the shape functions form a basis for Vp(T ) =
(
P p(T )

)3
.

Remark 5.24. If the minimum order condition (5.2) holds, the stated shape functions span
the local space

Vp
min

(T ) =
{
v ∈

(
P pC (T )

)3 ∣∣ trτ ,Em(v) ∈ P pEm (Em) ∀1 ≤ m ≤ 6,

trτ ,Fk
(v) ∈

(
P pFk (Fk)

)2 ∀1 ≤ k ≤ 4
}
.

(5.36)

H(div)-conforming shape functions for tetrahedral elements

We want to construct the local FE-space of order p in such a way that

curlVp(T ) ⊂ Qp(T ).

This requires that the normal trace (on faces) of the local space spans P pFm−1(Fm), and

the cell-based space spans
(
P pC−1(T )

)3 ∩H0(div, T ). In view of the sequence of polynomial
spaces (5.32), we choose the FE-space by

Qp(T ) =
(
P p−1(T ))3
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in case of uniform polynomial order p. We remind the reader that the classical defintion
of the H(div)-conforming local space of order p on the tetrahedral element, coincides with(
P p(T )

)3
and corresponds to Qp+1(T ) in our notation.

The lowest-order shape functions are provided by the lowest-order Raviart-Thomas functions
with constant normal trace on the corresponding face and zero trace normal on all other faces,
cf. Lemma 4.18.
The higher-order face-based H(div)-conforming shape functions can be chosen as the curl-
fields of the face-based H(curl)-conforming shape functions except for gradient fields. This
yields 1

2(pF − 1)(pF + 2) linearly independent shape functions, where the normal traces span
P pFm−1(Fm)/R on Fm, while vanishing on all other faces.
We choose the curl-fields of H(curl)-conforming cell-based shape functions as subset of the
cell-based shape functions:

curlϕC,2(i,j,k) = 2ui∇vj ×∇wk − 2∇ui ×∇vj wk
curlϕC,2

pC+(i,j) = 2∇wk ×∇ui vj − 2ui∇vj ×∇wk
curlϕC,3(0,j,k) = −

(
∇λ1λ2 − λ1∇λ2

)
×∇

(
vjwk

)
− 2∇λ1 ×∇λ2 vj wk

The main properties of these sets of functions are summarized in the following lemma.

Lemma 5.25. Let ui := LS
i+2(λ2−λ1, λ1+λ2), vj := λ3 ℓ

S
j (2λ3−(1−λf4), wk := λ4 ℓk(2λ4−1),

and ϕN0

[1,2] = (∇λ1 λ2 −λ1 ∇λ2) and ψRT 0

[1,2,3] := λ1 ∇λ2 ×∇λ3 +λ2 ∇λ3 ×∇λ1 +λ3 ∇λ1 ×∇λ2.
We use the notation

M1 :=
{
∇ui ×∇vk wk, curl(ψN0

[1,2]vj)wk,ψ
RT 0

[1,2,3]wk
∣∣ i, j, k ≥ 0, i+ j + k ≤ p− 3

}

M2 :=
{
∇wk ×∇ui vj ,ψN0

[1,2] ×∇wk vj
∣∣ i, j, k ≥ 0, i+ j + k ≤ p− 3

}

M3 :=
{
∇vj ×∇wk ui

∣∣ i, j, k ≥ 0, i+ j + k ≤ p− 3
}
.

Then the functions in M1 ∪M2 ∪M3 are linearly independent. Moreover, there holds

P
p−1
n,0 (T ) = span(M1) ⊕ span(M2) ⊕ span(M3).

Proof. By construction, all involved functions belong to P p(T ) and have vanishing normal
trace on ∂T . We show linear independence by looking at linear combinations q = c1ψ1 +
c2ψ2 + c3ψ3 = 0 with ψi ∈Mi.

1. Restricting q to the normal trace corresponding to planes Tz where z = const. yields
trn,Tz(q) = c1trn,Tz(ψ1) = 0, since trn,Tz(ψ3) = trn,Tz(ψ2) = 0.
We observe that up to scaling, the normal traces of the functions in M1 correspond to
the face-based H(div)-conforming shape functions on the triangle/face [1, 2, 3]. Since
the vector-fields in M1 are constructed as products of (scaled, but linearly independent)
face-based H(div)-conforming shape functions on planes z = const., and a set of linearly
independent polynomials wk in z, we obtain linear independence of the functions in M1.
Furthermore, we obtain c1 = 0 in the linear combination of q.

2. Next, we restrict q to planes Tη, where η = const. Since there holds ∇vj × ∇wk = 0
on Tη, we obtain trn,Tη(q) = c2φ2 = c2,1∂xuiw

′
z + c2,2ϕ

N0

[1,2] · exuiw′
z(1 − z)j = 0. Here,
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linear independence follows as in the proof of Lemma 5.7 by replacing vj with w′
k and

utilizing the fact that ∂xui is at least linear in x, while ϕN0

[1,2] ·ex is constant in x. Hence,
we obtain c2 = 0.

3. We conclude by showing the linear independece of M3:
Taking the scalar product with ex yields (∇vj × ∇wk ui) · ex = ∂yvjw

′
kui. The linear

independence can be shown by forming partial derivatives and following the proof of
the linear independence of H1-conforming cell-based shape functions. Hence, we obtain
c3=0.

Since the shape function in M1∪M2∪M3 are linearly independent, counting dim(P p
n,0(T )) =

1
2p(p

2 − p− 2) concludes the proof.

We summarize the shape functions in the following table:

H(div)-conforming shape functions for the tetrahedron T
of variable order p = ({pFm

}, pC)

Face-based functions

for m = 1, . . . , 4 face Fm = [f1, f2, f3]

Raviart-Thomas functions

ψRT 0

m = λf1
∇λf2

×∇λf3
+ λf2

∇λf3
×∇λf1

+ λf3
∇λf1

×∇λf2

Higher-order face based functions (divergence-free)

We define ui := LS
i+2(λf1

− λf2
, λf1

+ λf2
),

vj := λ3ℓ
S
j (2λf3

− λF , λF ),

s.t. φ∇,Fm = ui vj .

for 0 ≤ i+ j ≤ pFm
− 2

ψFm

(i,j) = curlϕFm,2
(i,j) = −2∇ui ×∇vj

ψFm

p
Fm

+(0,j) = curlϕFm,3
(0,j) = −

(
∇λf1

λf2
− λf1

∇λf2

)
×∇vj − 2∇λf1

×∇λf2
vj

Cell-based functions

We define ui := LS
i+2(λ1 − λ2, λ1 + λ2),

vj := λ3 ℓ
S
j (2λ3 − (1 − λ4), 1 − λ4),

wk := λ4 ℓk(2λ4 − 1),

s.t. φ∇,Fm = ui vj wk.

for 0 ≤ i+ j + k ≤ pC − 3

Type 1: (div-free)

ψ
C,1
(i,j,k) = curlϕC,2

(i,j,k) = 2ui ∇vj ×∇wk − 2∇ui ×∇vj wk

ψ
C,1
p

C
+(i,j,k) = curlϕC,2

p
C

+(i,j) = 2∇wk ×∇ui vj − 2ui ∇vj ×∇wk

ψ
C,1
2p

C
+(0,j,k) = curlϕC,3

(,j,k)

= −
(
∇λ1λ2 − λ1∇λ2

)
×∇

(
vjwk

)
− 2∇λ1 ×∇λ2 vj wk

rrcl
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Type 2: ψ
C,2
(i,j,k) = ui ∇vj ×∇wk

ψ
C,2
(0,j,k) = (∇λ1 λ2 − λ1 ∇λ2) ×∇wk vj

Type 3: ψ
C,3
(0,0,k) = ψRT 0

[1,2,3]wk

with ψRT 0

[1,2,3] := λ1 ∇λ2 ×∇λ3 + λ2 ∇λ3 ×∇λ1 + λ3 ∇λ1 ×∇λ2.

We define the lowest-order space as QRT 0(T ) := span
(
(ψRT 0

m )1≤m≤4

)
, and denote the span

of face-based (associated with Fm) functions by Q
pFm
Fm

(T ), the span of cell-based functions by

Q
pFm
C (T ) and the local FE-element space by

Qp(T ) := QRT 0(T ) ⊕⊕4
m=1Q

pFm
Fm

(T ) ⊕Q
pFm
C (T ).

Theorem 5.26. The RT 0-F -C-based shape functions listed in the table above, are linearly
independent and H(div)-conforming. Moreover, they include gradient fields, i.e.,

curlV Fm
pFm

(T ) ⊂ QFm
pFm

(T ) ∀m = 1, . . . 4 and curlV C
pC

(T ) ⊂ QCpC
(T ).

For uniform polynomial order p the shape functions span the local FE-space

Qp(T ) =
(
P p−1(T )

)3
with P p+1(T )

∇−→ P p+1(T )
curl−→ P p−1(T ).

Proof. We already have shown the linear independence of the face-based shape functions,
since they are curl-fields of a set of linearly independent functions which are above all lin-
early independent to gradient fields. In combination with the lowest-order shape functions,
their tangential traces span P pFm−1(Fm) on the associated face Fm, while vanishing on the
remaining faces.
The cell-based shape functions are constructed as linearly independent combinations of lin-
early independent cell-based vector-fields, cf. 5.25. Hence, they are linearly independent and
span P pC−1

0,n (P).
Due to the hierarchical RT 0-F -C constructions, we can deduce linear indpendence of the
whole set of shape functions. In the case of uniform polynomial order p, we conclude by
counting the dimensions of the involved spaces:

|Qp(T )| = 4 + 2(p− 1)(p+ 2) +
1

2
p(p2 − p− 2) =

1

2
p(p+ 1)(p+ 2), and

|(P p−1(T ))3| =
1

2
p(p+ 1)(p+ 2).

Remark 5.27. If the minimum order condition (5.2) holds, the shape functions span the local
space

Qp
min

(T ) =
{
q ∈

(
P pC−1(T )

)3 ∣∣ trn,Fm(q) ∈ P pFm−1(Fm) ∀1 ≤ m ≤ 4
}
. (5.37)

5.2.7 Nédélec elements of the first kind and other incomplete FE-spaces

In the case of simplicial elements, the presented H(curl)- and H(div)-conforming finite ele-
ments are Nédélec elements of second kind or Brezzi-Douglas-Marini elements, resectively. As
outlined in Chapter 4, the flux fields of these spaces are approximated with one degree less
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than the primal variables. The same approximation order is provided by Nédélec elements of
the first kind and Raviart-Thomas-Nédélec elements, respectively.
Due to the explicit usage of differential fields in the construction of basis functions we can
easily extend our concepts also to the higher-order Nédélec elements of the first kind and
higher-order Raviart-Thomas-Nédélec elements. In the following we shortly summarize some
results for the three-dimensional case; the two-dimensional case follows easily then.

We denote the span of H(curl)-conforming face-based shape functions of first, second, and
third type associated with the face Fm by V Fm,1

pFm
(K), V Fm,2

pFm
(K), V Fm,3

pFm
(K), and the span of

H(curl)-conforming cell-based shape of first, second and third type by V C,1
pC (K), V C,2

pC (K),

V C,3
pC (K). The local space of Nédélec element of first kind of order p is now defined by

N I
p(K) := VN0(K) ⊕

⊕

Em∈EK

V Em
pEm

(K) ⊕
⊕

Fm∈FK

V Fm,1
pFm

(K) ⊕ V Fm,2
pFm+1(K) ⊕ V Fm,3

pFm+1(K)

⊕ V C,1
pC

(K) ⊕ V C,2
pC+1(K) ⊕ V C,3

pC+1(K),

and the basis functions are chosen in a similar manner as outlined above.
We note that the reduced spaces do not exactly coincide with the classically defined Nédélec
elements of first kind which are rotational invariant. In neither of both cases the resulting
FE-basis is orthogonal on the reduced gradient fields. In both variants the spaces of the
curl-fields coincide as well as the orders of approximation obtained for the functions and its
curl.
Similarly, we denote the span of H(div)-conforming cell-based shape of first, second and
third type by QC,1pC (K), QC,2pC (K), QC,3pC (K), and define the local space of the Raviart-Thomas-
Nédélec element of order p as follows:

RT p(K) := QRT 0(K) ⊕
⊕

Fm∈FK

QFm
pFm

(K) ⊕QC,1pC
(K) ⊕QC,2pC+1(K) ⊕QC,3pC+1(K).

Again the choice of basis functions is very similar to the one outlined in detail above.
In the case of uniform polynomial order p, these definitions are related to the corresponding
classical elements, if we take into account that on simplicial elements the classical H(div)-
conforming space of order p ≥ 1 refers to the H(div)-conforming space p+ 1 in our notation.

Note that since the differential fields are explicitly realized in the FE-basis, we can achieve any
order of approximation for the function and for its differential field, separately, by defining
incomplete spaces as presented above. For instance, this will be used in gauging strategies
in Chapter 6, where we reduce all higher-order gradient shape functions in the H(curl)-
conforming FE-basis.

5.2.8 Elements with anisotropic polynomial order distribution

In applications, one may be interesting in highly-anisotropic elements. These arise, e.g., from
geometric h-refinement, when handling thin structures within the computational domain or
plates and shells. In such cases, there is no need to support full polynomial degree in all
directions. Hence, one is interested in allowing variable polynomial order, in particular for
tensor-product elements, i.e., on hexahedra and prisms. Since the tensor product structure
was explicitly used in the construction the shape functions, such anisotropic polynomial dis-
tributions can easily be realized.
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First, each quadrilateral face is assigned two polynomial degrees pF = (pF,1, pF,2), and each
hexahedral cell may have three polynomial degrees pC = (pC,x, pC,y, pC,z). Then the definition
of conforming shape functions can easily be extended to anisotropic polynomial order by
using different ranges for the indices corresponding to different directions, i.e., 1 ≤ i ≤ pF1 ,
1 ≤ j ≤ pF2 on quadrilateral faces, and 1 ≤ i ≤ pCx , 1 ≤ j ≤ pCy , 1 ≤ k ≤ pCz for hexahedral
cells. Prismatic elements are treated similarly.

Note that assigning two polynomial degrees pF = (pF,1, pF,2) to a quadrilateral face, the fixed
face orientation establishes automatically the conformity on the global level.

5.3 Global Finite Element Spaces

In this section we show that, based on the local finite element spaces defined on reference
elements, the construction of H1-, H(curl)-, and H(div)-conforming global finite element
spaces on a triangulation Th is straightforward. We assume that the triangulation is regular,
cf. Section 4.1.2, but may involve a mixture of element topologies, i.e., hexahedra, tetrahedra,
and prisms in a three-dimensional setting, respectively quadrilaterals and triangles in the
two-dimensional case. We will only treat the three-dimensional case in detail, but the same
constructions and results also hold for the simpler two-dimensional case. Moreover, we assume
that the element mappings ΦK : K̂ → K satisfy the properties as defined in Section 4.1.4, and
utilize the notation introduced there. By restricting ourselves to affine element mappings, the
polynomial degree of shape functions is not increased by the mapping to physical coordinates.
In the course of this section we mark all quantities concerning the reference element by the
hat marker (̂ ), and use the following notation for local patches:

ωV :=
⋃

K∈Th: V ∈VK

K, ωE :=
⋃

K∈Th: E∈EK

K, ωF :=
⋃

K∈Th: F∈FK

K, (5.38)

which are associated with a vertex V ∈ V, an edge E ∈ E , a face F ∈ F , respectively. Each
edge E ∈ E , face F ∈ F , and cell K ∈ Th in the mesh is assigned a polynomial degree pE , pF ,
respectively pC ; the polynomial degrees are collected in a vector p.

The construction of global basis functions in the physical domains works as follows: first we
define the shape functions locally (elementwise) by conforming transformation of functions
on the reference domain. The global functions, which have support only on local patches, are
then defined by taking the union of the contributing element shape functions. As we will see,
global conformity is established easily due to our special constructions.

5.3.1 The H1-conforming global finite element space

Shape functions φ defined on a physical element K ∈ Th are defined by the H1-conforming
mapping of shape functions φ̂ ∈Wh,p(K̂) onto the reference element K̂. Due to Lemma 4.10
we have

φ := φ̂ ◦ Φ−1
K .

We associate the vertices, edges, and faces of each physical element with the corresponding
entities in the global mesh, and we identify the mapped shape functions (with support on
the physical element K) with the restriction of the global basis functions (with support on a
patch). Such an identification is meaningful, since the vertices, edges, and faces on interele-
ment boundaries coincide for adjacent physical elements. Here the global orientation of edges
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and faces on the reference element level plays an important role. We arrive at a global space

Wh,p(Th) := Wh,1(Th) ⊕
⊕

E∈E
WE
pE

(Th) ⊕
⊕

F∈F
WF
p (Th) ⊕

⊕

K∈Th

WK
pK

(Th) (5.39)

with lowest-order, edge-based, face-based, and cell-based spaces as follows

Wh,1(Th) := span
{
φVi : ∀Vi ∈ V

}
,

WE
pEm

(Th) := span
{
φEi : 0 ≤ i ≤ pE − 2

}
having support on ωE ,

WF
pF

(Th) := span
{
φFi : 0 ≤ i < NH1(Fm, pF )

}
having support on ωF ,

WK
pC

(Th) := span
{
φCi : 0 ≤ i < NH1(K, pC)

}
having support on K,

where NH1(F, pF ) and NH1(K, pC) denote the number of H1-conforming degrees of freedom
associated with the face F and to the cell K, respectively. These depend on the polynomial
degree as well as on the topology of the face or cell. The number of degrees of freedom on the
edges is uniquely determined by the polynomial degree pE .

Theorem 5.28. The space Wh,p(Th) defined in (5.39) is an H1(Ω)-conforming finite element
space.

Proof. The shape functions on reference elements are constructed in such a way that they
coincide at vertices, on edges and on faces even after transformation to physical coordinates.
Since the shape functions associated with an interfaces between elements (a vertex, an edge,
or a face) are the only ones with non-vanishing trace on the interface, and the orientation
is treated globally (cf. Section 5.2.1), the global basis functions match each other on inter-
element boundaries.

5.3.2 The H(curl)-conforming global finite element space

We define the restriction of a global basis function ϕ onto a physical element K ∈ Th through
the H(curl)-conforming mapping of the shape function ϕ̂ ∈ Vh,p(K̂) defined on the reference

element K̂. According to Lemma 4.15 we have

ϕ := F−T
K ϕ̂ ◦ Φ−1

K .

The identification of topological entities on the local and global levels works as in the H1 case.
By numbering the mapped shape functions sequentially on each edge, face, and cell we arrive
at the following representation of the global space:

Vh,p(Th) := Vh,N0(Th) ⊕
⊕

E∈E
V E
pE

(Th) ⊕
⊕

F∈F
V F
p (Th) ⊕

⊕

K∈Th

V K
pK

(Th). (5.40)

The lowest-order, edge-based, face-based and cell-based spaces are defined as follows

Vh,1(Th) := span
{
ϕN0
E : ∀E ∈ E

}
,

V E
pE

(Th) := span
{
ϕEi : 0 ≤ i ≤ pE − 1

}
having support on ωE ,

V F
pF

(Th) := span
{
ϕFi : 0 ≤ i < NH(curl)(F, pF )

}
having support on ωF ,

V K
pC

(Th) := span
{
ϕCi : 0 ≤ i < NH(curl)(K, pC)

}
having support on K,

where NH(curl)(F, pF ) and NH(curl)(K, pC) denote the number of H(curl)-conforming degrees
of freedom associated with the face F and with the cell K, respectively, depending on the
local polynomial degrees and the topology of the face or cell.
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Theorem 5.29. The space Vh,p(Th) is H(curl)-conforming, i.e., a subspace of H(curl). There
holds

∇Wh,p+1(Th) ⊂ Vh,p(Th) (5.41)

in particular

∇Wh,1(Th) ⊂ Vh,N0(Th), (5.42a)

∇WE
pE+1(Th) = V E

pE
(Th), ∇WF

pF +1(Th) ⊂ V F
pF

(Th), ∇WC
pC+1(Th) ⊂ V C

pC
(Th), (5.42b)

for all E ∈ E, for all F ∈ F and for all K ∈ K even for non-uniform polynomial degrees.

Proof. The shape functions for all reference topologies have been constructed in such a way
their tangential traces on edges and faces coincide. Moreover, only shape functions associated
with the interface of elements contribute to the tangential trace on common edges and/or
the common face. Due to the use of global orientations for edges and faces, the orientation
matches also locally on the interfaces which ensures tangential continuity of the mapped basis
functions across inter-element boundaries.
The properties (5.42) are easily verified by the construction of the basis functions: The lowest-
order space was already considered in Chapter 4. The explicit usage of gradient functions
within the construction of the finite-element basis on the reference element implies that the
inclusions hold on reference elements. By using H(curl)-conforming transformations for the
construction of the shape functions on physical elements, we ensure that the gradient fields
on the reference element are mapped onto the gradient fields on the physical element, which
yields

∀φ ∈WE
pE+1(Th) ∃ϕ ∈ V E

pE
(Th) :ϕ = ∇φ

∀φ ∈WF
pF +1(Th) ∃ϕ ∈ V F

pF
(Th) :ϕ = ∇φ

∀φ ∈WC
pC+1(Th) ∃ϕ ∈ V C

pC
(Th) :ϕ = ∇φ

for all edges E ∈ E , all faces F ∈ F , and all cells K ∈ Th. Hence, ∇Wh,1(Th) ⊂
Vh,N0(Th), ∇WE

pE+1(Th) ⊂ V E
pE

(Th) and ∇WE
pE+1(Th) ⊂ V E

pE
(Th). The counting argument

dim
(
∇WE

pE+1(Th)
)

= dim
(
V E
pE

(Th)
)

= pEm yields the coincidence of the edge-based spaces.
Finally, (5.42) implies (5.41).

Remark 5.30. If one does not use gradient fields explicitly in the construction of H(curl)-
conforming shape functions, the following may be observed: The inclusion (5.41) concerning
the global spaces only holds in the case when the polynomial degrees on edges, faces and cells
satisfy the minimum order rule

∀F ∈ F ∀E ∈ E on F : pE ≤ pF ,

∀K ∈ Th ∀F ∈ FK : pF ≤ pK .
(5.43)

The space splitting of higher-order gradients (5.42b) does not hold in general, not even in case
of a uniform polynomial degree.

5.3.3 The H(div)-conforming global finite element space

The restriction of global basis functions ψ onto a physical element K ∈ Th is defined via the
Piola transformation

ψ := J−1
K FK ψ̂ ◦ Φ−1

K ,
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of shape functions ψ̂ ∈ Qh,p(K̂) from the reference element K̂. Numbering the global basis
functions sequentially on each edge, face and cell yields the global space

Qh,p(Th) := Qh,RT 0(Th) ⊕
⊕

F∈F
QFpF

(Th) ⊕
⊕

K∈Th

QKpC
(Th) (5.44)

with the lowest-order, edge-based, face-based and cell-based spaces defined as follows

Qh,1(Th) := span
{
ψRT 0
F : ∀F ∈ F

}
,

QFpFm
(Th) := span

{
ψFi : 1 ≤ i ≤ NH(div)(Fm, pFm)

}
having support on ωF ,

QKpC
(Th) := span

{
ψCi : 1 ≤ i ≤ NH(div)(K, pC)

}
having support on K,

where NH(div)(Fm, pFm) and NH(div)(K, pC) denote the number of H(div)-conforming degrees
of freedom associated with the face Fm and to the cell K, respectively.

Theorem 5.31. The global space Qh,p(Th) is an H(div)-conforming finite element space.
Moreover, there holds

curlVh,p(Th) ⊂ Qh,p(Th). (5.45)

In particular

curlVh,N0(Th) ⊂ Qh,RT 0(Th), (5.46a)

curlV F
pF

(Th) = QFpF
(Th), curlV C

pC
(Th)⊂ QCpC

(Th) (5.46b)

for all F ∈ F and for all K ∈ K.

Proof. We follow the proof of Theorem 5.29: The normal traces of the local shape functions
on faces coincide for all types of the reference topologies. Due to the H(div)-conforming
transformation and the global orientation of local edges and local faces, we obtain continuity
of the normal traces on inter-element boundaries.

Formuly (5.46) was already considered for lowest-order space in Chapter 4. The explicit
usage of gradient functions within the construction of the finite element basis on the reference
element implies that the inclusions 5.46 hold on the reference element. Similar statements for
the physical elements follows again from the construction using the conforming transformation,
i.e., we obtain

∀ϕ ∈ V F
pF

(Th) ∃ψ ∈ QFpF
(Th) :ψ = curlϕ

∀ϕ ∈ V C
pC

(Th) ∃ψ ∈ QCpC
(Th) :ψ = curlϕ

for all faces F ∈ F and all cells K ∈ Th. This implies the inclusions of the various local curl
spaces stated (5.46b). Counting the dimensions yields dim | curlV F

pF
(Th)| = dim |QFpF

(Th)|.
Finally, (5.46) implies (5.45), which completes the proof.

Observations similar to those in Remark 5.30 also hold for the H(div)-conforming spaces.

5.3.4 The L2-conforming global finite element space

For the sake of completeness, we also address the L2-conforming spaces briefly. The L2-
conforming global FE-space is defined by divergence-fields of the proposed H(div)-conforming
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basis functions. In particular, we use constants on the elements as lowest-order basis functions,
and construct the higher-order cell-based functions as divergence-fields

ϑ̂0 = 1, ϑ̂i := div(ψ̂i)

for ψ̂i ∈ QCp (K̂) being linear-independent to curl-fields. We use the transformation of
divergence-fields according to Lemma 4.19 to define the basis function on the physical
element K: ϑ = J−1

K ϑ̂ ◦ Φ−1
K .

In the case of L2-conforming finite element spaces there are no continuity requirements across
inter-element boundaries, hence, there is no need to associate any global degrees of freedom
with the boundary of the element. This implies the following global FE-space

Sh,p(Th) = div
(
Qh,p(Th)

)
= div

(
Qh,RT 0(Th)

)
⊕
⊕

K∈K
div
(
QKp (Th)

)
, (5.47)

which coincides with the classical L2-conforming global FE-spaces used within the de Rham
sequence. By the exact sequence property of the lowest-order global FE-spaces, cf. Theorem
4.28, we obtain Sh,0(Th) = div

(
Qh,RT 0(Th)

)
. Moreover, SCpC

(K̂) = div
(
QCpC

(K̂)
)

can be

easily verified by the definition of SCpC
(K̂) and a counting argument.

5.4 The Local Exact Sequence Property

The global finite element spaces were constructed as direct sums of the lowest-order space and
spaces having only local support on edge-patches, on face-patches or single elements. Due to
the special construction of the finite element spaces we obtain exact sequences on a finer level.
The following theorem summarizes the results of Theorem 5.28 and Theorem 5.29.

Theorem 5.32 (The local exact sequence property). Let Ω denote a simply-connected domain
with connected boundary, Th be a regular mesh, and let pE, pF , and pC denote the polynomial
orders associated with edges E ∈ E, faces F ∈ F , and cells K ∈ Th. For ease of notation we
collect the polynomial degrees in a vector p.

If the sequence of global lowest-order spaces (cf. Theorem 4.28)) is exact, then the sequence
of conforming finite element spaces provided by (5.39), (5.40), (5.44), and (5.47) satisfies the
following local exact sequence property:

W V
h,1(Th)/R

∇−→ V N0
h (Th) curl−→ QRT 0

h (Th) div−→ Sh, 0(Th) 0−→ {0}

WE
pE+1(Th)

∇−→ V E
pE

(Th) curl−→ {0} ∀E ∈ E

WF
pF +1(Th)

∇−→ V F
pF

(Th) curl−→ QFpF
(Th) div−→ {0} ∀F ∈ F

WK
pK+1(Th)

∇−→ V K
pK

(Th) curl−→ QKpK
(Th) div−→ SKpK

(Th) 0−→ {0} ∀K ∈ Th.

Proof. Due to Theorem 5.28 and Theorem 5.29 we only have to verify that the divergence
operator is surjective from QKpK

(Th) onto SKpK
(Th), which follows by counting the space di-

mensions.
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Remark 5.33. The local exact sequence property is also fulfilled if we use Nédélec elements of
the first kind and Raviart-Thomas-Nedelec finite elements, or finite elements with anisotropic
polynomial order distribution.
A general set of H(curl)-conforming and H(div)-conforming shape functions, which does ex-
plicitly use differential fields in the construction of the local basis, or at least not provide the
analogue of the local exact sequence property on the reference element K̂. Then the sequence
(5.48) of global finite element spaces is only exact, if the polynomial order distribution all over
the mesh satisfies the minimum order rule (5.43).

Corollary 5.34 (Exactness of the global discrete sequence). The local exact sequence property
implies that the sequence of the constructed conforming global FE-spaces is exact, i.e.

R
id−→Wh,p+1(Th) ∇−→ Vh,p(Th) curl−→ Qh,p(Th) div−→ Sh,p(Th) 0−→ {0}.

(5.48)

Assuming the local exact sequence property is one of main issues of this thesis. Besides the
advantage of arbitrary and variable polynomial order distribution over the mesh, we will rely
on this property in the course of designing robust preconditioners for curl− curl problems as
well as reduced basis approaches in the next chapter.



Chapter 6

Iterative Solvers for
Electromagnetic Problems

This chapter is devoted to stable and efficient solution strategies for linear systems arising from
H(curl)-conforming discretizations for a general curl-curl-problem curlµ−1 curlu+κu = f . In
general, these linear systems are of huge dimension and ill-conditioned. Hence, direct solving
is out of question and even impossible due to memory and time resources. We have to use
iterative solvers involving preconditioning.
Unfortunately, standard solution techniques, which yield successive, stable and efficient lin-
ear solvers for H1(Ω)-problems, usually fail on curl-curl problems. Even classical multigrid
techniques (Hackbusch [52], Bramble-Zhang [30]), which provide one of the most efficient
solvers for elliptic problems, result in poor convergence rates. Moreover, standard solvers
deteriorate for small L2-coefficients 0 < κ≪ 1.
The problem can be traced back to the large kernel of the curl-operator. On irrotational
fields the curl-curl problem reduces to the identity operator, while acting as second-order
differential operator on solenoidal fields. By the choice of appropriate smoothers, respecting
the Helmholtz decomposition, multigrid techniques regain their efficiency. We refer to the
pioneering works by Hiptmair [59], [55], and Arnold-Falk-Winther [6], [7].
In the following, we focus on the design of parameter(κ)-robust preconditioners, which in
addition also provide appropriate smoothers for multigrid schemes. By means of an addi-
tive Schwarz framework the parameter-robustness is guaranteed, if the local decomposition
of the FE-space also represents a correct splitting of the kernel of the curl-operator. We
exploit the local exact sequence property to ensure a correct space splitting even for simple
decompositions.

6.1 Basic concepts of iterative solvers

We consider a finite element space V , an associated FE-basis {φi : 1 ≤ i ≤ N} and the
corresponding finite dimensional variational problem:

Find u ∈ V such that
a(u, v) = f(v) ∀v ∈ V. (6.1)

Due to the Galerkin isomorphism (cf. Chapter 4) the discrete variational problem is equivalent
to the linear system: Find u ∈ R

N such that

Au = f, (6.2)

115
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for A ∈ R
N×N and f ∈ R

N defined by Aij := a(φi, φj), f i := f(φi), and u =
∑N

i=1 uiφi.

For a detailed exposition on iterative solvers and preconditioning, we refer to textbooks as
Braess [27], Grossmann-Roos [51] and Hackbusch [53]. In the following, we briefly recall
some of the main aspects.
The convergence rate of iterative solvers, such as Richardson’s method and the conjugate gra-
dient (CG) method, mainly depends on the the condition number κ(A ) := ‖A ‖‖A−1‖ of the
matrix A . Hence, these solvers can be tremendously improved by means of a preconditioned
system C−1A .
Suppose A and C to be symmetric, positive definite matrices. A good preconditioner C to a
matrix A must satisfy following two properties:

• the matrix-vector product w = C−1d can be computed fast,

• C is spectrally equivalent to A , i.e.

γ1u
TC u ≤ uTAu ≤ γ2u

TC u (6.3)

with a small condition number κ(C−1A) ≤ γ2
γ1

of the preconditioned matrix.

A customary and efficient method for solving symmetric positive definite linear systems is
the preconditioned conjugate gradient method (PCG). The iteration number behaves then as

O
(√
κ(C−1A )

)
in the case of a fixed error bound. The convergence rate is

√
κ(C−1A )−1√
κ(C−1A+1

.

In case of non-symmetric and indefinite problems one uses Krylov-based subspace methods,
such as the generalized minimal residual method (GMRES) or the stabilized bi-orthogonal
gradient method (BI-CGSTAB). We refer to standard textbooks on iterative solvers for sparse
linear systems as e.g. Saad [77], van der Vorst [91].

6.1.1 Additive Schwarz Methods (ASM)

The additive Schwarz technique provides an abstract framework for the design of precondition-
ers based on the splitting of the underlying finite element space. For a detailed description
we refer to textbooks such as Smith et al. [84] and Toselli-Widlund [90]. The short
overview below follows the latter one.
We consider the finite dimensional variational problem (6.1) with a positive definite bilinear
form a : V × V → R. This is equivalent to the linear operator equation

Au = F in V ∗

with A : V → V ∗ defined by 〈Au, v〉 = a(u, v) and F ∈ V ∗ defined by 〈F, v〉 = f(v), where
〈·, ·〉 denotes the duality product in V ∗ × V .
We consider a family of finite element spaces {Vi} := {Vi, i = 0, . . . ,M} and prolongation
operators

Ri : Vi −→ V. (6.4)

The corresponding adjoint operators will be denoted by RTi . We assume that the whole space
can be decomposed in prolongated local spaces:

V =

M∑

i=0

RiVi. (6.5)
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This splitting need not be unique.
On each space Vi we introduce a symmetric, positive definite local bilinear form

ci(·, ·) : Vi × Vi → R. (6.6)

In operator notation, we use Ci : Vi → V ∗
i , which is defined by 〈Ciui, vi〉 = ci(ui, vi) for

ui, vi ∈ Vi. The bilinear form ci(·, ·) should provide a local approximation of a(·, ·).
Moreover, we define the subspace solution operator Ti : V → Vi satisfying

ci(Tiu, vi) = a(u,Rivi). (6.7)

The solution operator equals to Ti = C−1
i RTi A. Due to the symmetry and the positive-

definiteness of the original bilinear form and the local ones, the operator RiTi : V → V is
self-adjoint with respect to a(·, ·).
We define the global preconditioner C : V → V ∗ by its inverse. In an additive Schwarz
framework this is defined by the additive operator

C−1 =

M∑

i=0

RiC
−1
i RTi . (6.8)

This yields the preconditioned operator of the form

T := C−1A =

M∑

i=0

RiTi. (6.9)

A natural choice for the local bilinear form (6.6) is given by the restriction of the original
bilinear form to the local spaces:

ci(ui, vi) := a(Riui, Riui), and Ci = RTi ARi, respectively. (6.10)

This means that the local problems on Vi are solved exactly, and the operator Ti provides
the a(·, ·)-orthogonal projection onto the subspace RiVi ⊂ V .

The following theorem plays a central role in additive Schwarz theory. A proof can be found
in Zhang [97] (Lemma 4.1).

Theorem 6.1. The additive Schwarz preconditioner is well defined by its inverse. Moreover,

the norm generated by the additive Schwarz preconditioner ‖u‖C := (Cu, u)
1
2
V is equal to the

splitting norm, i.e the quadratic forms satisfy

(Cu, u)V = inf
u=
∑

ui∈Vi

Riui

Ci(ui, ui) ∀u ∈ V. (6.11)

In particular, this lemma applies for deducing spectral bounds γ1, γ2 of the preconditioned
problem, i.e.

γ1 inf
u=
∑

ui∈Vi

Riui

Ci(ui, ui) ≤ A(u, u) ≤ γ2 inf
u=
∑

ui∈Vi

Riui

Ci(ui, ui). (6.12)

If only a finite number of subspaces RiVi overlap, we obtain γ2 = O(1).
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In practice, one prefers the multiplicative Schwarz method (MSM) instead of the additive
one, see Bramble-Zhang [30]. There one defines T := I − ΠM

i=0(I − Ti) instead of (6.9),
but uses the symmetric operator T ∗T . Although one can only show that the symmetric
multiplicative Schwarz method is not worse than the additive one, in most cases it leads to
faster convergence. The additive version corresponds to Block-Jacobi iterations, whereas the
multiplicative one to Block-Gauss-Seidel iterations.

A prominent class of Schwarz preconditioners is provided by multigrid/multilevel pre-
conditioners. These techniques have become very popular in the last decades, since
they lead to optimal convergence rates with respect to the degrees of freedom. Since in
electromagnetics the keypoint is the choice of the correct Schwarz smoother on each level,
we permit ourselves to refer to the literature for the issue of multigrid techniques in the sequel.

6.1.2 A two-level concept for linear equations originating from hp-FEM
discretization

We proceed with establishing a hierarchical two-level concept for the splitting of finite element
spaces. As a start, we introduce the method for H1(Ω) problems. An analog concept will be
used later for solving H(curl)-problems.
The hierarchical V -E-F -C-based construction of the conforming FE-spaces (cf. Chapter 5)
naturally provides a simple space splitting for the FE-space W ⊂ H1(Ω) :

W = W1,h(Th) +
∑

E∈E
WE
pE+1(Th) +

∑

F∈F
WF
pF +1(Th) +

∑

K∈Th

WK
pK+1(Th) (6.13)

By this, we introduce the following two-level concept for solving the discretized equations:

• The lowest-order FE-subspace W1,h plays a special role. We use it as the coarse space,
which carries the global information.
On the coarse level we can exploit the full range of well-developed h-version precon-
ditioners, e.g. multigrid techniques. If the coarse system is of modest size, i.e. if the
underlying mesh is sufficiently coarse, we can also use an exact solver.

• On the fine level (the high-order FE-space) we use a Block-Jacobi (ASM) or Gauss-Seidel
(MSM) smoother according to the hierarchic V -E-F -C-based splitting.

The V -E-F -C-based splitting (6.13) provides a natural, simple decomposition. The quality
of the preconditioner can be improved by bigger overlaps of the above local spaces at the
cost of higher complexity. For instance, in Schöberl et al. [82] we suggest various overlaps
combined with some variants of adding monomials of the lowest-order shape functions and
achieve h and p robust condition numbers for H1(Ω) problems.
Further on, we can improve the condition number by static condensation of the cell-based
degrees of freedom.

6.1.3 Static Condensation

Static condensation is a customary tool in solving linear equations arising from the hierarchical
hp finite element discretization (cf. the textbooks of Schwab [83] and Melenk [68]). The
main idea is to exploit the local support of the cell-based shape functions. In the following,
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we classify two sets of degrees of freedom, or two sets of shape functions, respectively: the
cell-based ones and the remaining ones. The latter we call exterior (ex) degrees of freedom
(exterior shape functions). We can rewrite the linear system (6.2) as

(
Aex ex Aex C

AC ex ACC

)(
uex

uC

)
=

(
f ex

fC

)
. (6.14)

The local support of the cell-based global FE-functions is only the associated element itself.
Hence, the cell-based degrees of freedom corresponding to two different elements do not couple.
The cell-based submatrix ACC of the stiffness matrix is block-diagonal:

ACC = diag
(
ACCK1

, . . . , ACCKn

)
for Ki ∈ Th and n = |Th|.

If we perform the Schur-complement with respect to the submatrix ACC within the linear
system (6.14), we can extract the condensed system

Ãuex = f̃ (6.15)

with Ã := Aex ex −Aex C
(
ACC

)−1
AC ex and f̃ := f ex −AexC

(
ACC

)−1
fC .

The cell-based degrees of freedom can eventually be calculated via

uC =
(
ACC

)−1(
fC −AC exuex

)
.

In a practical implementation, the Schur complement is computed locally on the element
level and only the condensed element matrices are assembled into the global matrix.

The application of static condensation provides two main advantages:

• The resulting global condensed linear system is of much smaller dimension: the con-
densed element matrices are of dimension O(pd−1) compared to O(pd) in case of the
original element matrices.

• In general, the condensed system matrix is better conditioned. Providing the Schur
complement means an orthogonalization of the external shape functions to the cell-
based ones (cf. Karniadakis-Sherwin [60] (Subsection 4.2.3)).

Equipped with the main concepts of preconditioning we turn now to iterative solvers and
preconditioners for H(curl)-problems.

6.2 Parameter-Robust Preconditioning for H(curl)

We consider a conforming finite element space V ⊂ H0,D(curl,Ω). By this, we define a finite
dimensional variational problem:
Find u ∈ V such that

aκ(u,v) = f(v) ∀v ∈ V (6.16)

involving the bilinear form

aκ(u,v) :=

∫

Ω
curlu curlv + κuv dx (6.17)
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and the linear form

f(v) :=

∫

Ω
j v dx.

The impressed current density j is assumed to be divergence-free, i.e. div j = 0. Note, that
the restriction to homogenous Dirichlet and homogenous Neumann data is done only for the
sake of simplicity to avoid the technical treatment of boundary integrals and inhomogeneous
Dirichlet data.

Due to the Galerkin isomorphism (cf. Chapter 4) the discrete variational problem (6.16) is
equivalent to the linear system in R

N×N of the form

Au = f with A := K + κM ∈ R
N×N (6.18)

with Kij :=
∫
Ω curlϕi · curlϕj dx, M ij :=

∫
Ωϕi ·ϕj dx, and fi :=

∫
Ω f ·ϕi dx

for {ϕi : 1 ≤ i ≤ N} denoting the finite element basis of V .

The parameter κ is problem-dependent, see the discussion in Section 2.4. We call a precondi-
tioner C of A robust in κ, if the spectral bounds γ1, γ2 in

γ1C(u,u) ≤ aκ(u,u) ≤ γ2C(u,u)

are independent of the parameter κ.

In the following, we are mainly concerned with the design of κ-robust preconditioners for
positive and possibly small κ ≪ 1. This corresponds to the following list of problems of
interest:

• the magnetostatic problems and non-conducting regions of magneto-quasi-static prob-
lems, where the parameter κ originates from a small regularization parameter (cf. Sub-
section 3.4.2 and Subsection 6.4.1)

• the magneto-quasi-static problem (κ = iωσ), where we need good preconditioners for
A κ = K + |κ|M (cf. Subsection 6.4.2),

• the Maxwell eigenvalue problem, where we need a κ-robust preconditioners for
A κ = K + κM with κ > 0 in each iteration step (cf. Chapter 7).

First, we analyze why classical preconditioners fail on the H(curl)-problems. Next, we in-
troduce the successful smoothers of Arnold-Falk-Winther and Hiptmair, which can be chosen
for solving the coarse grid system in a correct and robust way. We use an abstract result
of Schöberl [80] on robust preconditioning for parameter dependent problems and refor-
mulate it for H(curl)-problems. We verify that the local exact sequence property implies
parameter-robustness even for simple Schwarz preconditioners.

6.2.1 Two Motivating Examples

We consider the magnetostatic problem with small regularization parameter 0 < κ ≪ 1 on
the lowest-order FE-space V = V N0

h (Th).
Find u ∈ V N0

h (Th) such that
∫

Ω
curlu · curlv dx+ κ

∫

Ω
u · v dx =

∫

Ω
j · v dx ∀v ∈ V N0

h (Th). (6.19)
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We refer to the parameter-dependent bilinear form with aκ(·, ·). In the following, we state
two simple Schwarz preconditioners and their asymptotic behavior as κ gets small:

1. The standard diagonal Jacobi-preconditioner is provided by the simple space splitting

V N0
h (Th) =

∑

E∈E
span{ϕN0

E }. (6.20)

This yields a parameter-dependent condition number even for the preconditioned sys-
tem, namely

κ(C−1
diagA

κ) = O(h−2κ−1). (6.21)

2. The Arnold-Falk-Winther block-Jacobi preconditioner is provided by a space decompo-
sition with respect to the vertex patches (as visualized in the figure for the 2D case):

V N0
h (Th) =

∑

v∈V
span{ϕN0

E : E ∈ E so that v on E}. (6.22)

This choice provides a parameter-independent condition number

κ(C−1
AFWA

κ) = O(h−2). (6.23)

A numerical experiment

We consider problem (6.19) on the unit cube Ω = [0, 1]3, which is covered with a mesh of 12
tetrahedra. In Figure 6.1 we illustrate the condition number of the preconditioned system
matrix C−1

diagA and C−1AAFW for varying parameters κ from 1 to 10−6 and uniform mesh
refinements in h.
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Figure 6.1: Condition numbers of regularized magnetostatic problem, applying a standard
Gauss-Seidel preconditioner (left) and an AFW-block Gauss-Seidel preconditioner (right, κ-
robust) for varying regularization parameters κ with uniform h-refinement.

We observe that in practice, the condition number of the standard Gauss-Seidel-preconditioner
already suffers from modest values of κ. The AFW smoother is apparently robust in κ.
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Analysis of the two ASM preconditioners

For analyzing the parameter-dependency of the discussed preconditioners, we have to provide
some inverse estimates first:

Remark 6.2 (Some inverse estimates). We assume a shape-regular triangulation of Ω ⊂ R
d

(cf. Chapter 4) so that

‖F TK‖ � h−1
K , ‖F−T

K ‖ � hK , and |JK | ≃ hdK . (6.24)

Let {φi} and {ϕN0
E }, respectively, refer to the conforming nodal FE-basis functions of Wh,1(Th)

and V N0
h (Th), respectively. Assuming conforming transformations we can estimate norms of

the finite element basis functions using (6.24) by

‖φi‖2
L2(K) � hdK , ‖ϕN0

E ‖2
L2(K) � hd−2

K ,

‖∇φi‖2
L2(K) � hd−2

K , ‖ curlϕN0
E ‖2

L2(K) � hd−4
K .

Concerning the H1-conforming and H(curl)-conforming degrees of freedom, we obtain inverse
estimates by conforming transformation to the reference element (hat marker), then perform-
ing the estimate and afterwards conforming back-transformation onto the physical element.
Let K be a physical element sharing either the vertex Vi or the edge E.

∣∣w(Vi)
∣∣2 =

∣∣ŵ(V̂α)
∣∣2 � ‖ŵ‖2

L2(K̂)
� h−dK ‖w‖2

L2(K),
∣∣∣∣
∫

E
uE · τ ds

∣∣∣∣
2

=

∣∣∣∣
∫

Ê
ûÊ · τ̂ dŝ

∣∣∣∣
2

� ‖ûÊ‖2
L2(K̂)

� h2−d
K ‖uE‖2

L2(K).

Moreover, we will need the discrete analog of the Friedrichs’ inequality (cf. Theorem 3.26) as
stated in Monk [70] (Lemma 7.20)

Lemma 6.3 (Discrete Friedrichs’ inequality for H(curl)). Let Ω be a simply-connected Lips-
chitz domain. Suppose v ∈ Vh,p(Th) ⊂ H(curl,Ω) is orthogonal to discrete gradient functions,
i.e. (v,∇ψ) = 0 for all ψ ∈ Wh,p+1(Th) ⊂ H1(Ω). Then there exists a constant cF > 0
independent of h such that

‖v‖0 ≤ cF ‖ curlv‖0.

Proof of the condition number estimate (6.21) for the Jacobi-preconditioner.
The quadratic form of the splitting norm corresponding to (6.20) evaluates to the unique
splitting

u =
∑

E∈E
uE with uE =

∫

E
u · τ ds ·ϕN0

E .

Let K be an element sharing an edge E. Using the inverse estimates from Remark 6.2, we
obtain

‖uE‖2
Aκ,K =

(∫

E
u · τ ds

)2(
‖ curlϕN0

E ‖2
L2(K) + κ‖ϕN0

E ‖2
L2(K)

)

�
(
h−2 + κ

)
‖u‖2

L2(K)

(∗)

�
( 1

h2 κ
+ 1
)(
‖ curlu‖2

L2(K) + κ‖u‖2
L2(K)

)
.

The notation for energy norm ‖ · ‖Aκ,K indicates that the integrals in the bilinear form aκ(·, ·)
are evaluated on the physical element K.
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In H1-problems we can get rid of the κ-dependency within the step (∗) by Friedrichs’
inequality. But in H(curl) Friedrichs’ inequality only holds for the subspace orthogonal to
gradients.

Summing up over all edges, and taking into account that only a finite number of edge patches
overlap, we obtain

Cdiag(u,u) =
∑

E∈E
‖uE‖2

Aκ �
( 1

h2 κ
+ 1
)(
‖ curlu‖2

L2(K) + κ‖u‖2
L2(K)

)
.

Proof of the condition number estimate (6.23) for the AFW-block Jacobi-preconditioner.
The key of the AFW-subspace splitting is that it provides also a correct splitting of gradient
fields in ∇Wh,1(Th).
We consider the Helmholtz-decomposition (cf. Theorem 3.14) of u ∈ V N0

h (Th):

u = q + ∇w with w ∈Wh,1(Th) ⊂ H1(Ω), ∀ v ∈Wh,1(Th) : (q,∇v)0 = 0. (6.25)

and analyze the solenoidal and the irrotational field, separately.

Concerning the decomposition of gradient field ∇w, we consider first the decomposition of w
with respect to the H1-conforming shape functions {φi}, namely w =

∑
vi∈V w(vi)φi. Since

∇φi ∈ Vi, we obtain a decomposition of the gradient field ∇w in Vi:

∇w =
∑

vi∈V
∇wi with ∇wi = w(vi)∇φi ∈ Vi.

We consider now a physical element K, sharing vertex vi, and use the inverse inequality from
Remark 6.2, to obtain

‖∇wi‖2
Aκ,K = κ‖∇wi‖2

L2(K) � h−2κ‖w‖2
L2(K).

Summing up we obtain

∑

vi∈V
‖∇wi‖2

Aκ � h−2κ‖w‖2
L2(Ω)

(∗∗)

� h−2κ‖u‖2
L2(Ω) � h−2‖u‖2

Aκ . (6.26)

Note that we have used Friedrichs’ inequality for H1(Ω) in (∗∗) and have exploited the
L2-orthogonality of the decomposition in the sense of ‖u‖2

0 = ‖q‖2
0 + ‖∇w‖2

0.

Now, we consider the solenoidal part q ∈ (∇Wh, 1)⊥ with curl q = curlu. Since the decompo-
sition into Nédélec basis functions ϕN0

i provides a finer decomposition of the AFW-splitting,
we can use the estimate from the proof of the Jacobi-preconditioner. But here, we can use
Friedrichs’ inequality

‖q‖0 � ‖ curl q‖ = ‖ curlu‖. (6.27)

in the estimate (∗), which yields
∑

vi∈V
‖qi‖2

Aκ
�
(
h−2 + κ

)
‖q‖2

L2(Ω) � h−2‖ curlu‖2
0 + κ‖u‖2

0

�
(
h−2 + 1

)(
‖ curlu‖2

0 + κ‖u‖2
0

)
�
(
h−2 + 1

)
‖u‖2

Aκ . (6.28)
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Concluding, we consider the decomposition ui = qi + ∇wi and combine the two estimates
(6.26) and (6.28). This yields

inf
u=

P

ui

‖ui‖2
Aκ �

(
h−2 + 1

)
‖u‖2

Aκ .

The AFW-decomposition provides a correct space splitting of gradient fields in the following
sense ∑

vi∈V
∇Wh,1 ∩ Vi = ∇Wh,1.

The h−2-dependency of condition number can be tackled by multigrid methods.

6.2.2 The smoothers of Arnold-Falk-Winther and Hiptmair

The two preceeding examples demonstrate the importance and necessity of applying an
appropriate smoother for H(curl)-problems. The operator scales differently on the solenoidal
and the irrotational fields. Appropriate smoothers can be designed by means of a Schwarz
splitting of the underlying Nédélec FE-space, which respects the Helmholtz-decomposition.
Only then can associated multigrid/multilevel methods work efficiently.

We assume an H(curl)-conforming Nédélec space Vh,p(Th) of uniform order p, and an appro-
priate H1-conforming FE-space Wh,p+1(Th), which satisfy the global exact sequence property,
i.e. ∇Wh,p+1(Th) ⊂ Vh,p(Th).
Up to the author’s knowledge, there are two established and commonly used techniques for
designing appropriate smoothers which can be defined using the discussed space splittings
within the Schwarz framework:

• The Arnold-Falk-Winther (AFW) smoother is based on an overlapping space splitting
according to the vertex patches:

Vh,p =
∑

v∈V
Vωv with Vωv := {u ∈ V : supp(u) ⊂ ωv}, (6.29)

where ωv denotes the vertex patch as defined in (5.38) (cf. Arnold-Falk-

Winther [7]).

• The space splitting suggested by Hiptmair explicitly respects the Helmholtz decompo-
sition:

Vh,p =
∑

E∈E
V E +

∑

v∈V
∇W v (6.30)

with the subspaces W v := {w ∈ Wh,p+1 : supp{w} ⊂ ωv} corresponding to the vertex-
patch ωv as defined in (5.38) and V E := {v ∈ Vh,p : supp{v} ⊂ ωE} corresponding to
the edge-patch ωE .
The smoothing iteration corresponding to the explicit splitting of gradient fields can be
performed by a solver on the scalar potential problem. For a detailed description see
Hiptmair-Toselli [58].
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Unfortunately, we observe that as the polynomial degree p increases, these local spaces can
grow quite large. For instance, the suggested vertex-patch space involved in the AFW-splitting
is spanned by the following shape functions

V v =
⊕

Em∈E : v on Em

{
V Em

pEm
⊕ span

{
ϕN0

Em

}}
⊕

⊕

Fm∈F : v on Fm

V Fm

pFm
⊕

⊕

K∈Th : v on K

V C
pC
.

At this point, we can exploit the local exact sequence property of the shape functions discussed
in Chapter 5, which ensures parameter-robust preconditioning even for simple space splittings.
Toward this goal, we will need a more general result on Schwarz preconditioners for parameter-
dependent problems.

6.2.3 Schwarz methods for parameter-dependent problems

In the following, we present a key result stated and proved in Schöberl [80] (Theorem
4.2), which provides a general framework for defining robust Schwarz preconditioners driven
by parameter dependent problems in structural mechanics. In advance, we remark that we
present a simplified version of this theorem with Q = L2(Ω) and ‖ · ‖Q,0 = ‖ · ‖c = ‖ ·
‖0 on curlV , cooresponding to the problem setting in H(curl)).

Theorem 6.4 (Robust one-level ASM preconditioners for parameter-dependent problems).
We consider a finite-dimensional Hilbert space V . Let Aκ : V × V → R be a parameter-
dependent coercive bilinear form

Aκ(u, v) = a(u, v) + κ−1(Λu,Λv)L2 (6.31)

with

• an energy norm, which for κ = 1 is equivalent to the norm of the underlying space, i.e.

‖ · ‖A1 ≃ ‖ · ‖V , (6.32)

• a continuous linear operator
Λ : V → L2(Ω)

with a non-trivial nullspace V0 := kerΛ and that satisfies the inverse estimate

∀q ∈ ΛV ∃v ∈ V : ‖v‖V ≤ c3(h)‖q‖0. (6.33)

Let {Vi} be a local space splitting with finite overlap such that the kernel V0 can be split locally
into kernel functions, i.e.

V =

M∑

i=0

Vi and V0 =

M∑

i=0

(Vi ∩ V0). (6.34)

Furthermore, we assume that the local splittings of the functions u ∈ V and u0 ∈ V0 can be
estimated in ‖ · ‖V as follows

inf
u=
∑

ui∈Vi

ui

M∑

i=0

‖ui‖2
V ≤ c1(h)‖u‖2

V , (6.35)

inf
u0=

∑
u0,i∈Vi∩V0

u0,i

M∑

i=0

‖u0,i‖2
a ≤ c2(h)‖u0‖2

V . (6.36)
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Then the additive Schwarz preconditioner C built on the space splitting {Vi} fulfills

(c1(h) + c2(h)c3(h)
2)−1C(u,u) � Aκ(u,u) ≤ NoC(u,u) ∀u ∈ Vh,p(Th) (6.37)

with bounds c1(h) and c2(h) independent of the parameter 0 < κ � 1. The constant No denotes
the maximal number of overlapping subspaces.

The main achievement of this theorem is that for a subspace splitting which provides (6.34)
we obtain parameter-robustness and that the spectral bounds of the preconditioned problem
hold with the estimates of the splitting norms, separately for u and the kernel functions u0

for κ = 1.

We set Λ := curl. Then (6.33) holds by choosing v such that q = curlv with (v,w) = 0, ∀w
and using the discrete Friedrichs’ inequality for H(curl)

‖v‖2
0 ≤ cF (p)‖ curlv‖2

0 ∀v ∈ (V ∩ ker(curl))⊥. (6.38)

Hence, we can directly deduce a result on parameter-robust preconditioners for the variational
problem (6.20) in H(curl).

Corollary 6.5 (Parameter-robust ASM preconditioner for H(curl)).
Let Vh,p(Th) ⊂ H(curl,Ω) denote a Nédélec FE-space of order p and Wh,p+1(Th) ⊂ H1(Ω)
an appropriate scalar FE-space of order p + 1 with ker(curl, Vh,p(Th)) = ∇Wh,p+1(Th) and
∇Wh,p+1(Th) ⊂ Vh,p(Th).
We consider following subspace splitting of the FE-spaces, assuming finite overlap:

Wh,p(Th) =

MW∑

j=0

Wj and Vh,p(Th) =

M∑

i=0

Vi.

If

∀Wj ∃Vi : ∇Wj ⊂ Vi (6.39)

and if the local splitting of the functions in Vh,p and the involved gradient fields provide the
estimates

inf
u=
∑

ui∈Vi

ui

M∑

i=0

‖ui‖2
H(curl) ≤ c1(h,p)‖u‖2

H(curl), (6.40)

inf
w=
∑

wj∈Wj

wj

∑

j=0

MW ‖∇wj‖2
0 ≤ c2(h,p)‖∇w‖2

0, (6.41)

then the additive Schwarz preconditioner C built on the space splitting {Vi}, applied to the
parameter-dependent curl-curl-problem (6.16), is robust in κ:

(c1(h,p) + c2(h,p)(1 + cF )2)−1C(v, v) � Aκ(v, v) ≤ NoC(v, v) ∀v ∈ V. (6.42)

with cF the constant from the discrete Friedrichs’ inequality (6.38) is independent of h and p
(see Demkowicz-Buffa [43] and Gopalakrishnan-Demkowicz [50]).
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6.2.4 Parameter-robust ASM methods and the local exact sequence prop-
erty

In the following, we apply Corollary 6.5 first for general H1-conforming and H(curl)-
conforming FE-spaces satisfying the local exact sequence property and next for FE-spaces
based on the finite element shape functions presented in Chapter 5.

Corollary 6.6.

1. Let the FE-spaces Wh,p+1(Th) ⊂ H1(Ω) and Vh,p(Th) ⊂ H(curl,Ω) satisfy the local exact
sequence property (Theorem 5.32). Then any space splitting {Vi} of the Nédélec space
Vh,p(Th)} built on the (possibly finer) N0-E-F -C-based splitting

Vh,p = V N0
h (Th) +

∑

E∈E
V E

pE+1(Th) +
∑

F∈F
V F

pF +1(Th) +
∑

K∈Th

V K
pK+1(Th) (6.43)

fulfills (6.39) and specifies a parameter-robust ASM preconditioner.

2. Let Wh,p+1(Th) ⊂ H1(Ω) be defined by (5.39) and Vh,p(Th) ⊂ H(curl,Ω) defined by
(5.39), i.e. the Nédélec FE-basis explicitly contains the gradients of the higher-order ba-
sis functions of the scalar FE-basis. Then any Nédélec space splitting

∑
i Vi = Vh,p(Th)}

which is built on a two-level concept, where the lowest-order space V N0
h (Th) is either

solved exactly or is split corresponding to the Arnold-Falk-Winther splitting (6.29) or
to the one of Hitpmair (6.30) fulfills (6.39) of Corrollary 6.5 and implies a parameter-
robust ASM preconditioner.

Of course, the choice of the local subspaces influences the condition number through h and p
dependency. But, a splitting based on the FE-basis, suggested in Chapter 5, automatically
respects the Helmholtz-decomposition for higher-order FE-subspaces. To achieve parameter-
robustness we only have to care about the correct splitting of lowest-order space within the
design of appropriate smoothers.

The following numerical experiment verifies the κ-robustness using the H(curl)-conforming
FE-basis of Chapter 5.

Numerical experiments

We consider Aκ(u,v) =
∫
Ω curlu curlv dx +

∫
Ω κuv dx on the unit cube Ω = [0, 1]3, which

is covered by a triangulation of 12 tetrahedra. We use a Schwarz preconditioner with the
N0-E-F -C-based space splitting (6.43). On the lowest-order space V N0

h (Th) we use a direct
solver.
We run the experiment for two parameters κ = 1 and κ = 10−6. Alternatively, we apply static
condensation of the cell-based degrees of freedom.
Due to the local exact sequence property the space splitting recovers the gradient fields in the
sense of (6.39). As stated by Corollary 6.5, we can observe in Figure 6.2 that the condition
number is not affected by the choice of the parameter κ.
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Figure 6.2: Robustness of condition numbers of parameter-dependent curl− curl problem on
the unit cube for κ = 1 (left) and κ = 10−6 (right)

6.3 Reduced Nédélec Basis and Special Gauging Strategies

In this section, we review the gauging strategy of magnetostatic problems, which also apply in
non-conducting regions of magneto-quasi-static problems. We start with the initial variational
formulation: Find u ∈ V ⊂ H(curl) such that

∫

Ω
curl u curlv dx =

∫

Ω
jv dx, ∀v ∈ V.

The solution of the curl− curl problem is determined up to gradients. In the following, we
suggest a practical method for gauging high-order gradient functions.

The idea is simple and practical convenient, if we assume theH(curl)-conforming finite element
basis, suggested in Chapter 5, which explicitly involves (higher-order) gradient functions:

• The higher-order gradients can be gauged by locally skipping the corresponding degrees
of freedom and basis functions in the higher-order edge-based, face-based and cell-based
finite element subspaces.

• On the lowest-order subspace, we follow the former strategy of adding a regularization
term.

The reduced Nédélec basis Following Subsection 5.2.7 we introduce the reduced local
FE-space on the element K as

V red
p

(K) := V N0(K) ⊕
⊕

Fm∈FK

V Fm,2
pFm

(K) ⊕ V Fm,3
pFm

(K) ⊕ V C,2
pC

(K) ⊕ V C,3
pC

(K). (6.44)

and the corresponding reduced global finite space V red
hp (Th).

Here, we have skipped the higher-order gradient functions spanning the local subspaces
V Em
pEm

(K), V Fm,1
pFm

(K), and V C,1(K)). We remark that, in general, the reduced finite element
space is not orthogonal to higher-order gradient fields. Moreover, the skipping of gradient
functions can be done separately on each edge, face and cell, hence we can perform reduced
basis gauging only on single subdomains as required for magneto-quasi-static problems in-
volving subdomains corresponding to non-conducting materials.
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Gauging on the lowest-order space Gauging with respect to lowest-order shape func-
tions is performed by adding a zero-order term with small regularization parameter. Hence,
in practice, it is sufficient to apply only a low-order integration formula within the integration
of the element mass matrix denoted by (·, ·)L2(Ω),red.
Note, that for gauging in lowest-order spaces, the spanning tree technique, which is based on a
graph theoretic treatment (cf. Bossavit [25], Section 5.3), provides an alternative. But, since
we are equipped with κ-robust preconditioners gauging by regularization is more suitable, in
particular from the implementational point of view.

The discrete variational problem on the reduced FE-space Hence, for magnetostatic
problem or for non-conducting regions of magneto-quasi-static problems we state the discrete
problem in the reduced FE-basis with a regularization parameter 0 < κ≪ 1 as follows.

Find u ∈ V red
h,p (Th) such that

∫

Ω
curl u curlv dx+ κ(u,v)L2(Ω),red =

∫

Ω
jv dx, ∀v ∈ V red

h,p (Th). (6.45)

We remark that the resulting magnetic induction field B = curlu, in which we are mainly
interested, is unchanged by the choice of the full FE-basis or the reduced FE-basis.

We observe two main advantages in using the reduced FE-basis:

• More than one third of degrees of freedom can be saved (for p ≥ 1), which results in a
decrease of the non-zero entries in the system matrix to 55 %.

• As to be observed in the following numerical experiments, the condition numbers highly
improves within the reduced FE-basis setting.

Numerical experiment Again, we consider the unit cube covered with a mesh of 6 tetra-
hedra. In Figure 6.3 we present the condition numbers of the preconditioned system C−1

redAred

computed in the reduced bases to the ones computed in the full FE-basis. In both cases,
we use N0-E-F -C-based multiplicative Schwarz preconditioners using a direct solver on the
coarse level. We run our tests for uniform p-refinement and choose the regularization term
by κ = 10−6. Optionally, we use static condensation of the cell-based degrees of freedom. We
observe a considerable improvement of the condition numbers in case of the reduced basis
gauging.

6.4 Numerical Results

In the following, we are concerned with the numerical evidence of κ-robust preconditioning
and reduced basis gauging within more involved problems.
We choose a two-level Schwarz solver analogous to the one stated in (6.1.2), which is based
on the local N0-E-F -C-based splitting and uses either exact solvers on the coarse level, i.e.
on the space of lowest-order Nédélec functions, or h-version multigrid methods with Arnold-
Falk-Winther smoothers, if the problem size of the coarse system increases.
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Figure 6.3: Condition numbers using full basis vs. reduced basis on unit cube with/without
static condensation

6.4.1 The magnetostatic problem

We consider the magnetostatic boundary value problem

curlµ−1 curl A = j,

where j denotes the given current density with div j = 0, and A is the vector potential of the
magnetic flux B = curl A. For gauging, we add a small zero-order term (with κ = 10−6µ−1)
to the operator. In order to show the performance of the constructed shape functions we
compute the magnetic field induced by a cylindrical coil.
The mesh generated by NETGEN (cf. Schöberl [79]) contains 2029 curved tetrahedral
elements. Figures 6.4 and 6.5, show the magnetic field lines and the absolute value of the
magnetic flux simulated with H(curl)-elements of uniform degree p = 6.

We have chosen various uniform polynomial degrees p, and compared the number of unknowns
(dofs), the condition numbers of the preconditioned system, the required iteration numbers
of the PCG for an error reduction by 10−9, and the required computation time on a Dual
Processor Intel Xeon 64Bit 2,8 GHz machine. We run the experiments once keeping the
gradient shape functions, and a second time skipping them. The computed B-field is the
same for both versions. One can observe a considerable improvement of the required solver
time in the Table 6.1.
We run the experiments a third and a fourth time, but extend the solution algorithm by
static condensation of the cell-based degrees of freedom. Again, one observes a considerable
improvement, when using the reduced basis (cf. Table 6.2).
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Figure 6.4: Magnetic field induced by the coil, order p=6.

Figure 6.5: Absolute value of the magnetic flux B = curlA (zoom to coil), order p=6.
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p dofs grads κ(C−1A) iter solvertime
2 19707 yes 16.99 31 1.5 s
2 10676 no 6.64 23 0.4 s
3 50820 yes 46.17 49 6.6 s
3 29084 no 15.48 34 1.6 s
4 104350 yes 102.07 69 27.8 s
4 61744 no 26.27 44 5.5 s
5 186384 yes 210.34 96 94.8 s
5 112714 no 43.52 54 16.7 s
6 303009 yes 406.11 127 314.0 s
6 186052 no 67.48 63 43.5 s
7 460312 yes 751.06 171 923.3 s
7 285816 no 95.08 72 106.6 s
8 664380 yes 1033.05 201 2080.8 s
8 416064 no 128.61 82 272.4 s

Table 6.1: Performance of solver: full vs. reduced basis (no static condensation)

p dofs grads κ(C−1A) iter solvertime
2 19707 yes 16.99 31 1.2 s
2 10676 no 6.64 23 0.4 s
3 50820 yes 42.81 46 5.2 s
3 29084 no 13.79 32 1.3 s
4 104350 yes 79.86 62 20.2 s
4 61744 no 21.01 39 3.2 s
5 186384 yes 135.70 78 51.5 s
5 112714 no 27.45 44 6.9 s
6 303009 yes 207.02 91 120.3 s
6 186052 no 33.33 48 13.5 s
7 460312 yes 295.79 103 244.5 s
7 285816 no 38.63 51 24.2 s
8 664380 yes 398.03 114 430.1 s
8 416064 no 43.38 54 41.7 s

Table 6.2: Performance of solver: full vs. reduced basis with static condensation
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6.4.2 The magneto quasi-static problem: A practical application

The intention of this section is to verify the applicability of the constructed FE-basis, the
parameter-robust preconditioners and the reduced basis gauging (in non-conducting regions)
in a practical industrial application. We consider the industrial problem setting of computing
the eddy currents within a bus bar, a common device in transformers.
We consider the magneto-quasi-static problems, i.e., Problem 3.32 Find u ∈ V :=
H0,D(curl,Ω) satisfying

∫

Ω
µ−1 curlu · curl v̄ dx+

∫

Ω
κu · v̄ dx =

∫

Ω
j · v̄ dx ∀v ∈ V. (6.46)

with κ = iωσ with given frequency ω and given conductivity coefficient σ ≥ 0.
In non-conducting domains we perform gauging by a small regularization parameter
σ = ε≪ µ−1.

A solver strategy for the magneto-quasi-static problem

We briefly outline the chosen strategy for solving the magneto-quasi-static system:

• In non-conducting domains, e.g. air, where σ = ε due to regularization or σ ≪ µ−1 we
can apply the reduced basis gauging strategy. We simply skip the higher-order gradients
in the FE-basis on edges, faces and cells belonging to non-conducting domains.

• For solving Aκu = f with K + κM we use a complex PCG method, i.e. PCG with
complex-valued matrices and a complex-valued search parameter.

• The preconditioner for Aκ = K + κM is chosen to be a κ-robust preconditioner of the
system Ãκ = K + |κ|M .

A detailed description and justification of the solution algorithm provided by the second and
the third item can be found in Bachinger et al. [14], [13]. Concerning the solution of
symmetric complex-valued systems we further refer to Clemens-van Rienen-Weiland [36]
and Clemens-Weiland [37].

Numerical Simulation of Eddy-currents in a bus bar

We want to simulate the eddy currents which are originated in a bus bar of a power trans-
former.
Since we are only interested in simulating the eddy currents in the bus bar we separate it
from the transformer by cutting the bars. Hence, we have to construct artificially a current
distribution in the non-resolved domain, which models the current distribution of the original
problem. This can be done by solving a scalar Neumann problem where the Neumann data
is specified by the prescribed normal currents on the cutting planes of the bars and vanishing
on the remaining boudary. This results in a current density j in the outer domain, which we
use in the right hand side of the magneto-quasi-static problem (6.46). Note that the obtained
current density is not divergence-free.

Figure 6.6 shows the eddy-currents in the bus bar of a transformer for polynomial order p = 3.
In the air domain we use the reduced basis with polynomial order p = 3. The mesh consists
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Figure 6.6: Eddy currents in a bus bar

p partially reduced basis dofs solver time

2 no 249297 968 s
2 yes 193502 768 s

3 no 645932 4824 s
3 yes 503601 3682 s

Table 6.3: Comparison of degrees of freedom and solver times by using a partially reduced
basis for the bus bar eddy-current problem

of 26094 tetrahedral elements.
In Table 6.3 we compare the numbers of degrees of freedom and the solution time of the
magneto-quasi-static problem running the experiment once using the full FE-basis and a
second time using the partially reduced basis gauging in the non-conducting outer domain.



Chapter 7

The Maxwell Eigenvalue Problem

The numerical solution of eigenvalue problems is in general more challenging than the one of
boundary value problems. Eigenvalue problems for Maxwell’s equations involve even further
difficulties, in particular due to large kernels of the involved operators, e.g., the curl-operator.
The discretization with H(curl)-conforming finite elements is highly important in order
to avoid spurious (non-physical) eigenvalues within the computed spectrum. Moreover,
the involved H1-conforming and H(curl)-conforming FE-spaces have to satisfy the exact
sequence property.

The numerical analysis of Maxwell eigenvalue problems (cf. e.g. Boffi et al [20], Monk et

al. [71], Caorsi et al. [34], Boffi et al. [21],[19], and Kikuchi [61]) and preconditioned
eigensolvers (cf. e.g. Knyazev-Neymeyr [64], Knyazev [62], and Neymeyr [74]) is
very challenging and subject of ongoing research. A rigorous analysis is available only for
subproblems, and many approaches are justified mainly by numerical evidence.

The aim of this section is to present a reasonable approach for attacking Maxwell eigenvalue
problems. We will see that the local exact sequence property, which holds for our construction
of conforming FE-spaces, has certain advantages in the solution of the eigenvalue problems,
in particular in efficient preconditioning. We will finally demonstrate the performance of the
proposed algorithm by solving a benchmark problem involving highly-singular eigensolutions.
For the numerical solution we will also use anisotropic hp-discretizations and geometric mesh
refinement.

7.1 Formulation of the Maxwell Eigenvalue Problem

An important problem in electromagnetics is the simulation of bounded cavities, which are
characterized by

• a bounded domain filled with non-conducting dielectric materials (σ = 0, ρ = 0) with
strictly positive, piecewise constants µ and ǫ,

• surrounding perfectly conducting materials, e.g. metallic surfaces.

By reflection at the perfectly conducting walls, standing waves can be excited within the cavity.
Therefore, even with homogenous boundary conditions and no sources in form of charges or
currents, non-trivial solutions arise at special, so-called resonant frequencies. The problem

135
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of determining resonant frequencies ω 6= 0 and the corresponding eigenmodes satisfying the
time-harmonic Maxwell equations is the following:
Find the electric field E, the magnetic field H and resonant frequencies ω > 0 satisfying

curlE + iωµH = 0, (7.1a)

curlH − iωǫE = 0, (7.1b)

div(µH) = 0, (7.1c)

div(ǫE) = 0. (7.1d)

For simplicity, we assume the material parameters µ and ǫ to be strictly positive scalars.
The surrounding perfect electric conductor yields homogenous Dirichlet boundary condition
for the tangential components of the electric field, which in turn corresponds to homogenous
Neumann condition for the magnetic field. By eliminating either the magnetic or the electric
field, we can reduce the system (7.1) to one of the following problems:

The electric eigenvalue problem: Find resonant frequencies ω 6= 0 and the related elec-
tric fields E such that

curlµ−1 curlE = ω2ǫE in Ω, (7.2a)

div ǫE = 0 in Ω, (7.2b)

E × n = 0 on ∂Ω. (7.2c)

The magnetic eigenvalue problem: Find ω 6= 0 and the related magnetic fields H such
that

curl ǫ−1 curlH = ω2µH in Ω, (7.3a)

divµH = 0 in Ω, (7.3b)

(ǫ−1 curlH × n) × n = 0 on ∂Ω. (7.3c)

In the following, we focus only on the electric formulation, but similar considerations also
apply to the magnetic case.

Variational formulation of the eigenvalue problem:

Problem 7.1. Find λ 6= 0 and u ∈ H0(curl,Ω) such that

∫

Ω
µ−1 curlu curlv dx = λ

∫

Ω
ǫuvdx ∀v ∈ H0(curl,Ω). (7.4)

Note that this formulation does not explicitly involve the divergence conditions (7.2b) and
(7.3b). But testing (7.4) with gradient fields v = ∇φ ∈ ∇H1(Ω) yields λ(u,∇φ)0. Hence,
eigenvectors corresponding to non-zero eigenvalues are L2-orthogonal to gradient fields.

We summarize the main properties of the electric eigenvalue problem (cf. Monk [70] Theorem
4.18):

1. The eigenvalue λ = 0 (which is excluded in our definition of the problem) corresponds
to the infinite space of gradient functions ∇H1(Ω).
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2. The discrete set of eigenvalues λi 6= 0 correspond to eigenfunctions ui with divui = 0
solving the eigenvalue problem (7.4). The eigenvalues form an increasing sequence

0 < λ1 ≤ λ2 ≤ · · · ր ∞,

where every λi > 0 has finite multiplicity.

We want to mention that H(curl,Ω) is not compactly embedded in
(
L2(Ω)

)3
, which makes

the statement on the behavior of the spectrum difficult. On the other hand, the embedding
of H0(curl,Ω) ∩ ker(div) in

(
L2(Ω)

)3
is compact, and standard results apply. This already

indicates that kernel functions will play an important role in the consideration of Maxwell
eigenvalue problems.

Galerkin approximation of the eigenvalue problem: We choose an H(curl)-
conforming FE-space Vh,p(Th) ⊂ H0(curl,Ω), and formulate the discrete Maxwell eigenvalue
problem as follows:

Find λh > 0 and uh ∈ Vh,p(Th) such that

∫

Ω
µ−1 curluh curlvh dx = λh

∫

Ω
ǫuh vhdx ∀v ∈ Vh,p(Th). (7.5)

There is an ongoing debate on how to involve the divergence condition in the solution
of the eigenvalue problem. Here, we address this point by excluding the zero eigenvalues
within the definition of the eigenvalue problem, and projection onto the complement of
gradient fields. Alternatively, one of the following approaches could be used: utilizing a
mixed-formulation as introduced in Boffi [21]; introduction of Lagrange-Multiplier, cf.
Kikuchi [61]; adding a term which penalizes the divergence as suggested in Wang et al. [93].

Before we discuss numerical schemes in more detail, we make some brief remarks concerning
the convergence analysis of FE-discretizations of Maxwell eigenvalue problems, which is still
fairly incomplete:

A Galerkin approximation is called spectrally correct (cf. Caorsi et al. [34]), if all discrete
eigenvalues of (7.5) converge to exact eigenvalues of (7.5), and vice versa, all exact eigenvalues
are approximated by discrete ones respecting their multiplicity.

By the discrete compactness of Galerkin approximations, a convergence proof for h-version
FEM, including edge-elements of general order, is given in Monk et al. [71]. Concern-
ing general hp-discretizations in three dimensions, the required discrete compactness of FE-
approximations is not fully proved yet, up to our knowledge.

The algebraic Maxwell eigenvalue problem: By means of the Galerkin isomorphism
we deduce the generalized algebraic eigenvalue problem equivalent to (7.5):

Find λ > 0 and u ∈ R
N s.t. Au = λMu. (7.6)

The matrices are defined by Aij = (curlϕi, curlϕj)0 and Mij = (ϕi,ϕj)0, and the solution
vector u is given by u =

∑
uiϕi, where {ϕi : 1 ≤ i ≤ N} is a FE-basis of Vh,p(Th). We obtain

that A ∈ R
N×N is symmetric positive semi definite but has a large nullspace associated with

the gradient fields, and M ∈ R
N×N is symmetric positive definite.



138 CHAPTER 7. THE MAXWELL EIGENVALUE PROBLEM

7.2 Preconditioned Eigensolvers

System matrices originating from Finite Element discretization of second-order partial differ-
ential equations are typically of huge size and ill-conditioned. Due to the large dimension,
classical eigensolvers which rely on factorizations of the system matrices can therefore not be
applied. On the other hand, also classical matrix-free iterative schemes cannot be used for
an efficient solution, due to the ill-conditioned matrices. We refer to Bai et al. [15] for an
overview of the full range of classical and iterative eigensolvers.
In recent years, preconditioned eigensolvers have attracted significant interest, particularly
for the solution of elliptic eigenvalue problems; we refer to D’yakonov [47], Knyazev [62]
and Neymeyr [74] in this context. Note however, that even for symmetric positive definite
generalized eigenvalue problems, sharp non-asymptotic convergence estimates are only avail-
able for the simplest iterative scheme, i.e., for the preconditioned inverse iteration, which will
be defined below.
In the following, we focus on gradient type preconditioned eigensolvers, which offer some
advantages:

• The implementation can be matrix-free, since they only use matrix-vector products of
the system matrices or the preconditioner.

• They involve and can exploit the same preconditioners as used for solving the corre-
sponding linear systems.

• The iterative schemes are simple and easy to implement.

We start with considering symmetric positive-definite eigenvalue problems originating, e.g.,
from self-adjoint elliptic partial differential equations, and then turn back to the Maxwell
problems we have in mind.

The symmetric positive definite generalized eigenvalue problem: Let A and M be
real, symmetric, positive definite N -by-N matrices. We consider the following (algebraic)
eigenvalue problem:

Find an eigenvalue λ ∈ R and a non-zero eigenvector u ∈ R
N such that

Au = λMu. (7.7)

We briefly recall some basic results:

1. The generalized eigenvalue problem (7.7) admitsN positive eigenvalues λi with arbitrary
multiplicity such that

0 < λ1 ≤ λ2 ≤ · · · ≤ λN . (7.8)

The corresponding eigenvectors ui can be chosen to be mutually M -orthogonal, i.e.
uTi Muj = δij , with uTi Auj = λiδij .

2. All stationary points ui of the Rayleigh quotient

λ(u) :=
uTAu

uTMu
for u 6= 0, (7.9)

are eigenvectors, and λi = λ(ui) the corresponding eigenvalues.
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7.2.1 Preconditioned gradient type methods

Gradient type methods for eigenvalue problems are based on the idea of minimizing the
Rayleigh-quotient. Since ∇λ(u) = 2

uTMu

(
Au − λ(u)Mu)

)
, the resulting iterative scheme is

given by
un+1 = un − τ

(
Aun − λ(un)Mun

)
. (7.10)

The optimal a-priori choice for τ is such that the Rayleigh quotient is minimized, i.e. τopt :=
arg minτ>0 λ

(
un − τ(Aun − λ(un)Mun)

)
.

We assume that our matrices arise from FE-discretization of second order differential opera-
tors, and hence we have to deal with the case that A is ill-conditioned by implementing an
appropriate preconditioner. Let C ∈ R

N×N be a symmetric positive definite preconditioner
for the matrix A satisfying

γ1u
TCu ≤ uTAu ≤ γ2u

TCu,

with spectral bounds γ1, γ2 ∈ (0, 1]. A preconditioned gradient type method then has the form

ui+1 = ui − τC−1
(
Aui − λ(ui)Mui

)
. (7.11)

We shortly comment on the choice of the scaling parameter τ :

• The preconditioned inverse iteration is defined by the choice τ := 1.

• The preconditioned steepest descent method is defined by choosing the optimal scaling
parameter τopt in the following way. We define the new iterate un+1 as the minimizer of
the Rayleigh-quotient on the two-dimensional subspace

span

{
ui, C−1

(
A− λ(ui)M

)
ui
}
. (7.12)

This can be done via the Rayleigh-Ritz subspace method, which requires the solution
of the following 2-by-2 projected eigenvalue problem:

Find the smallest Ritz-value λmin > 0 and the corresponding Ritz-vector
ymin ∈ R

2 solving

XTAXy = λXTMXy with X =
[
ui, C−1(A− λ(ui)M)ui

]
∈ R

N×2.
(7.13)

By setting ui+1 = Xymin we obtain an optimal subspace iteration in the sense that we
implicitly chose the optimal parameter τ = τopt in (7.11).

The following estimate for the preconditioned steepest descent method has been obtained in
Knyazev-Neymeyr [65] via the ones for preconditioned inverse iteration.

Theorem 7.2. Let λ1 ≤ ... ≤ λN denote the the discrete spectrum of the generalized EVP
(7.7) and assume that λ(ui) ∈ [λk, λk+1). Then λ(ui+1) computed by iterate (7.11) of the
steepest descent method satisfies either λ(ui+1) < λk, or λ(ui+1) ∈ [λk, λ(ui)). In the latter
case, there holds

λ(ui+1) − λk
λk+1 − λ(ui+1)

≤ q2
λ(ui) − λk
λk+1 − λ(ui)

with convergence factor

q := 1 − 2

κ
(
C−1A

)
+ 1

(
1 − λk

λk+1

)
.
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In the following, we expand the local space (7.12) in order to improve the iterative scheme.
The locally optimal preconditioned conjugate gradient method was introduced in
Knyazev [63]. Motivated by the preconditioned conjugate gradient method for solving linear
systems, Knyazev suggested to enlarge the local space (7.12) with the approximate eigenvector
from the previous iteration. The new eigenvector approximation ui+1 is chosen to minimize
the Rayleigh-quotient within the three-dimensional subspace

span

{
ui−1, ui, C−1

(
A− λ(ui)M

)
ui
}
.

Since the previous iterate ui−1 and the current iterate ui get closer and closer as the iteration
proceeds, the Gram-matrices of the Rayleigh-Ritz eigenvalue problem can get more and more
ill-conditioned. We address this fact by utilizing an auxiliary vector pi instead of the previous
iterate ui−1: Let (λmin, ymin = (y1, y2, y3)

T ) ∈ R
+ × R

3 denote the minimal Ritz-pair of

XTAXy = λXTMXy with X =
[
ui, wi, pi

]
. (7.14)

Then, we choose
pi+1 = diag(0, 1, 1)Xymin = ui+1 − y1 u

i.

This approach yields the same local space, i.e.,

ui+1 ∈ span

{
ui−1, ui, C−1

(
A− λ(ui)M

)
ui
}

= span

{
pi, ui, C−1

(
A− λ(ui)M

)
ui
}
. (7.15)

Numerical evidence, cf. Knyazev [63], suggests that the ill-conditioning of the Gram-matrices
is partially resolved in this way. Otherwise, we apply an A-orthogonalization step first. Con-
cerning initial values for the iteration, we start with some vector u0 and perform the steepest
descent method to obtain an initial vector for p1.
We want to note that the only convergence result for the LOPCG method is that the method
converges at least as fast as the preconditioned gradient methods (7.11), i.e., the bounds of
Theorem 7.2 apply. However, besides the Jacobi-Davidson method, the block version of the
LOPCG algorithm is accepted to be one of the most efficient preconditioned eigenvalue solvers
for symmetric-positive definite generalized EVPs arising from FEM-discretization. We refer
to Knyazev [63] and Arbenz-Geus [5] for detailed numerical results.

7.2.2 Block version of the locally optimal preconditioned gradient method

Block methods (also called subspace iterations) enable us to compute groups of eigenvalues
within a special part of the spectrum simultaneously, e.g., the smallest eigenvalues and corre-
sponding eigenvectors. The Rayleigh-Ritz method can easily be extended to a multiple-vector
iterative scheme. The main advantages of iterating sets of vectors simultaneously are the fol-
lowing. First, multiple eigenvalues can be calculated in a correct and stable way. Secondly, we
can expect much faster convergence, since the error estimates of subspace methods involve the
ratio λi/λm+1 (m is the subspace dimension and i ≤ m) instead of λ1/λ2, see e.g. Bramble

et al. [28].

The basic algorithm for the LOBPCG method

Starting values:

A set of m ≥ 1 initial vectors U0 = [u0
1, ..., u

0
m] ∈ R

N×m.
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Perform one step of (7.13) to obtain U1 = Xymin and P 1 = diag(0, 1)Xymin ∈ R
N×n.

LOBPCG-iteration: for i = 1, · · · ,m

1. Compute the preconditioned residuals W i = C−1(AU i −MU iΛi)
with Λi = diag(λ(ui1), . . . , λ(uiN )

)
.

2. Solve the 3m-by-3m Rayleigh-Ritz-problem with y ∈ R
3m

XTAXy = λXTMXy with X = [U i,W i, P i].

3. Take the m smallest Ritz-Pairs (λ1, Xy1), ..., (λm, Xym) and set

U i+1 = [Xy1, ..., Xym] and P i+1 =
[
diag(0, 1, 1)Xy1, ...,diag(0, 1, 1)Xym

]
.

7.3 Preconditioned Eigensolvers for the Maxwell Problem

We intend to apply the LOBPCG method to the solution of the Maxwell eigenvalue problem
(7.6). Note that, similar to iterative linear system solvers, the large kernel of the curl-operator
makes the problem more difficult:

1. The curl-curl system matrix A is only positive-semidefinite. Apparently, we cannot
apply the algorithms presented above directly.
Solution: We shift the spectrum of the problem by some positive value σ and arrive at
the following positive-definite eigenvalue problem:

(
A+ σM

)
u =

(
λ+ σ

)
Mu. (7.16)

The corresponding gradient type iteration reads

ui+1 = ui − τC−1
A+σM

(
A+ σM − (λ(ui) + σ)M

)
ui

= ui − τC−1
A+σM

(
A− λ(ui)M

)
ui. (7.17)

with λ(u) = uTAuT

uTMuT denoting the Rayleigh-quotient of the original problem.

Due to the results of Chapter 6, we already have σ-robust preconditioners for A+ σM
at hand.

2. Iterative scheme, like the gradient type methods, tend to recover the eigenvectors corre-
sponding to the small eigenvalues first. This affects the positive-semidefinite EVP (7.6)
as well as the shifted problem (7.16).
Solution: By projecting the iterates ui+1 into the complement of the kernel functions,
this problem can be resolved, cf. Hiptmair-Neymeyr [57] for the preconditioned in-
verse iteration.

For the remainder of this section we investigate a combination of the LOBPCG method with
(in)exact projection onto the complement of the kernel functions.
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7.3.1 Exact and inexact projection onto the complement of the kernel func-
tion

We leave the algebraic context for a moment, and first consider the projection operators for the
discrete FE-spaces in the operator framework. We want to construct the projection operator

of Vh,p(Th) onto the complement of the discrete gradient functions
(
∇Wh,p+1(Th)

)⊥
.

Lemma 7.3 (Exact Projection). We consider the finite element spaces V := Vh,p(Th) and
W := Wh,p+1(Th) with ∇W ⊂ V as introduced in Chapter 5. Let B∇ : W → ∇W denote
the gradient operator, MV : V → V ∗ denote natural embedding operator and K∆ : W → W ∗

denote the Laplace-operator.
Then the L2-orthogonal projection operator

P⊥
ker(A) : V →

(
∇W

)⊥

onto the complement of the gradient functions is given by

P⊥
ker(A)u =

(
I −B∇K

−1
∆ B∗

∇MV

)
u ∀u ∈ Vh,p.

Proof. We consider the L2-orthogonal projection onto the kernel of the curl-operator

Pker(A) : V → ∇W

The action of the projection operator on an element u ∈ V can be written in variational form:

For u ∈ V find a function w ∈W such that Pker(A)u = ∇w, i.e.,

(∇w,∇φ)0 = (u,∇φ)0 ∀φ ∈W. (7.18)

This is equivalent to

〈K∆w, φ〉W ∗×W = 〈MV u,B∇φ〉V ∗×V = 〈B∗
∇MV u, φ〉W ∗×W .

Setting P⊥
ker(A)u = u−B∇w yields the stated result.

For the preconditioned eigensolver with projection, we have to apply this projection for each
iterate in order to avoid that the approximated eigenvector converges to a kernel vector. As
can be seen from above, the exact L2-orthogonal projection requires the solution of a Poisson
problem in each iteration step, which usually is much too expensive. We propose to use an
inexact projection instead, requiring only an approximative inverse of the Laplace-operator;
for details on this approach we refer to Hiptmair-Neymeyr [57].

Definition 7.4 (Inexact Projection). Let C∆ denote a scaled preconditioner for the Laplace-
operator K∆ such that ‖K∆‖ ≤ ‖C∆‖. We define the inexact projection operator P̃⊥

ker(A) :

V → V (corresponding to the exact projection operator P⊥
ker(A)) by

P̃⊥
ker(A)u :=

(
I −B∇C

−1
∆ B∗

∇MV

)
u ∀u ∈ V.

Here we used the notation of the previous lemma.
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7.3.2 A preconditioned eigensolver for the Maxwell problem with inexact
projection

We return now to the matrix notation, i.e., the algebraic version of the Maxwell eigenvalue
problem (7.6), and use the notation introduced for the discrete operators in the previous
section now also for the matrix notation. Hence, the (in)exact projection operator can be
defined like above.

The inexact projection is realized by repeated application (k ≥ 1) of the inexact projector
P̃⊥

ker(A). The basic iteration step of the inexact inverse iteration method with inexact projection
is then given by

ui+1 =
(
P̃⊥

ker(A)

)k (
I − C−1

A+σM (A+ λ(ui)M)
)
ui

=
(
I −B∇C

−1
∆ B∗

∇MV

)k (
I − C−1

A+σM (A+ λ(ui)M)
)
ui, (7.19)

where MV denotes the mass matrix with respect to the H(curl)-conforming FE-space V and
B∇ denotes the matrix corresponding to the discrete gradient operator, i.e., the representation
of gradient fields within the basis of V . Note that in general, the generation of this matrix
is non-trivial. However, as we will see below, due to the special choice of basis functions,
assembly is rather simple.
We observe that preconditioned gradient methods with inexact projections involve both a
curl-curl-preconditioner CA+σM as well as a Laplace preconditioner C∆.

The basic algorithm: LOBPCG with inexact projection

Initial setting:

Choose initial vectors U0 =
(
P̃⊥

ker(A)

)k
U0 ∈ R

N×m.

Perform one step of (7.13) to obtain U1 =
(
P̃⊥

ker(A)

)k
Xymin

and P 1 =
(
P̃⊥

ker(A)

)k
diag(0, 1)Xymin ∈ R

N×m.

The (i+ 1)-iteration:

1. Compute the preconditioned residuals W i = C−1
A+σM (AU i − MU iΛi) with Λi =

diag(λ(ui1, . . . u
i
N )
)

2. Solve the 3m-by-3m Rayleigh-Ritz-problem with y ∈ R
3m

XTAXy = λXTMXy with X = [U i,W i, P i].

3. Take the m smallest Ritz-Pairs (λ1, Xy1), ..., (λm, Xym) and set

U i+1 =
(
P̃⊥

ker(A)

)k
[Xy1, ..., Xym],

P i+1 =
(
P̃⊥

ker(A)

)k[
diag(0, 1, 1)Xy1, ...,diag(0, 1, 1)Xym

]
.

Concerning the practical implementation, the repeated application of the inexact projection
after each iteration is performed by the application of k steps of a preconditioned iterative
solver in the potential space. The scaling of the Poisson-preconditioner required in 7.4 is
provided by using a multiplicative Schwarz preconditioner C∆.
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7.3.3 Exploiting the local exact sequence property

The discrete gradient matrix

By means of the local exact sequence property, the discrete gradient matrix is block-diagonal
with respect to the low-order, single edge-based, face-based and cell-based blocks. Assuming
a reordering of the degrees of freedom corresponding to edges, faces and cells we obtain

B∇ = diag
(
B∇, 0, B∇, EE , B∇, FF , B∇, CC

)
, (7.20)

where B∇, EE , B∇, FF , B∇, CC are again block-diagonal corresponding to each single edge,
each single face and each single cell of the triangulation. Since higher-order gradient fields are
explicitly used in the construction of the new H(curl)-conforming FE-basis, stated in Chapter
5, several blocks further simplify to the identity matrix I:

B∇, EE = I, (7.21)

B∇, FF = diag
(
diag(I, 0, 0), . . . ,diag(I, 0, 0)

)
, (7.22)

B∇, CC = diag
(
diag(I, 0, 0), . . . ,diag(I, 0, 0)

)
. (7.23)

The lowest-order discrete gradient operator B∇, 0 is given by

(
B∇,0

)
i,j

=





1 if Ei = [e1, e2] and j = e2
−1 if Ei = [e1, e2] and j = e1

0 else

which can be seen by considering the lowest-order degrees of freedom of the Nédélec basis:
For a w ∈ Wh,0(Th) ⊂ H1(Ω) there holds ∇w =

∑
Vj∈V wj∇φj =

∑
E w̃iϕi with wj = w(Vj)

and w̃i =
∫ e2
e1

∇w · τ dx = w(Ve2) − w(Ve1) = we2 − we2 .

Remark 7.5. In case of a general H1-conforming and H(curl)-conforming finite element
basis, the calculation of the discrete gradient operator requires the inversion of the element
mass matrix on each element.

Review of the applied H(curl) preconditioner

The best choice for preconditioning the residual Aui−λ(ui)Mui, would be to apply the pseudo-
inverse A†, which would naturally include also the projection to the complement of the kernel.
Note that application of the approximative inverse C−1

A+σM may introduce artificial kernel

components. This can be suppressed by applying the reduced basis preconditioner Cred
A+σM

instead. Due to our special construction of the FE-basis (cf. Section (6.3)), the reduced
space preconditioner can be realized easily. Although we cannot give a rigorous mathematical
justification that the reduced basis preconditioner is a better approximation for the pseudo-
inverse, this choice is at least as good the original one. The reduced basis preconditioner is
however typically much less ill-conditioned and its application requires much less numerical
effort.

7.4 Numerical Results

In the following we verify the performance of our chosen finite element basis in combination
with the Locally Optimal Block PCG method with (in)exact projection by means of various
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benchmark problems. We consider the electric eigenvalue problem, Problem 7.1, with ho-
mogenous Dirichlet conditions and constant material parameters ǫ = 1 and µ = 1:

Find λ 6= 0 and u ∈ H0(curl,Ω) such that

∫

Ω
µ−1 curlu curlv dx = λ

∫

Ω
ǫuvdx ∀v ∈ H0(curl,Ω). (7.24)

On the webpage of Monique Dauge [39] a convenient range of benchmark problems for
above Maxwell eigenvalue problem is provided. The focus lies on considering geometries with
re-entrant corners and edges, where a part of the spectrum is conjectured to correspond to
highly-singular eigenfunctions.

We consider the following two domains:

• The thick L-shape Ω = Ψ2 × (0, 1) with Ψ2 := (−1, 1)2 \ (−1, 0), we obtain singularities
due to the re-entrant corner. For this setting benchmark results are available on
Dauge [39].

• The Fichera corner Ω = (−1, 1)3\(−1, 0)3, where all three re-entrant edges as well as the
re-entrant corner produce singularities. There are no benchmark results yet available,
but we will compare our results with the ones of Costabel-Dauge, stated on the webpage
Dauge [39], and Bramble et al. [29].

In the context of computing Maxwell eigenvalue problems on polyhedral domains we also
refer to Frauenfelder [48] and Ainsworth et al. [3] contributing numerical results on
the Maxwell eigenvalue computation on polyhedral domains.

7.4.1 An h-p-refinement strategy

In order to resolve singularities due to re-entrant corners and edges we use the following hp-
refinement strategy, which is based on marking re-entrant corners and edges a priori in the
geometry as singular.
Our h-p-strategy is the following:

• k steps of geometric h-refinement with a progression factor 0 < q ≤ 0.5 are performed
towards apriori marked faces, edges and corners. The strategy should become clear
considering the example of the thick L-shape domain, illustrated in Figure 7.1. The
optimal progression factor q depends on the solution, but a commonly used choice is
q = 0.17 (see e.g. Melenk [68]).

• Anisotropic distribution of polynomial degrees (p): On each element the level of actual
refinement rx̂i

in each direction x̂i is known, i.e. 0 ≤ rx̂i
≤ k. Let pmin denote the initial

polynomial order. Then we choose the degree px̂i
= pmin + (k − rx̂i

) in the direction x̂i
of the element.

7.4.2 The Maxwell EVP on the thick L-Shape

The eigenvalues on the thick L-shape can be deduced by addressing to its tensor-product
structure, i.e. the Ψ2 × (0, 1), where Ψ2 denotes the two-dimensional L-shaped domain.
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Figure 7.1: Geometric h-refinement towards the re-entrant edge: original prismatic mesh
(left), level 1 (center) and level 2 (right); involving prisms (blue) and hexahedra (yellow).

The eigenvalues on the tensorized L-shape are realized by the sum of a non-zero Neumann
eigenvalue of the 2D L-shape and a Dirichlet eigenvalue on the L-shape domain or the sum of a
Dirichlet eigenvalue on Ψ2 and a non-zero Neumann eigenvalue on (0, 1). Accurate numerical
solutions for the two-dimensional L-shape are available. The following benchmark results for
the 8 smallest eigenvalues on the thick L-shape are due to Dauge [39]:

λ1 = 9.63972384472 λ2 = 11.3452262252 λ3 = 13.4036357679
λ4 = 15.1972519265 λ5 = 19.5093282458 λ6 = 19.7392088022
λ7 = 19.7392088022 λ8 = 19.7392088022

(7.25)

The first, the second and the fifth eigenvalue correspond to the first Dirichlet or Neumann
eigensolutions on the two-dimensional L-shape Ψ2, which has a strong unbounded singularity
in the corner. The third and the fourth eigenvalue refer to an eigenvector, which is in
H1(Ψ2). The eigenvalues number 6, 7, and 8 are related to an analytic eigenvector on the 2
dimensional domain.

We first run the eigenvalue computation for uniform p-refinement on a fixed mesh, namely
the first level of h-refinement depicted in Figure 7.1 with progression factor q = 0.17. The

log-log-plot in Figure 7.2 illustrates the convergence history of the relative errors |λi−λ̃i|
|λi|

of the computed 8 smallest eigenvalues λ̃i with respect to the degrees of freedom (dofs).
As expected when using a p-method, we observe only algebraic convergence rates for the
eigenvalues of rank 1,2, and 5.

In the second test series we repeat the eigenvalue calculations with uniform p-refinement on
fixed meshes generated by various levels of geometric h-refinements (k = 1, . . . 5, q = 0.17).
The convergence history of the mean of the relative errors of the 8 smallest eigenvalues is
presented in Figure 7.3. Finally, we combine the geometric mesh refinement with anisotropic
p-refinement as described above. The envelope of the convergence curve in Figure 7.4 corre-
sponds to the hp-refined eigenvalue computation with refinement factor q = 0.25. We obtain
the conjectured exponential convergence in the number of unknowns even in the presence of
eigenvalues corresponding to highly-singular eigenfunctions.
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Figure 7.2: L-Shape: Average relative errors of the 8 smallest eigenvalues. 1 level of geometric
refinement. Uniform p refinement.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 100  1000  10000  100000

re
l. 

er
ro

r

NDofs

ref-level 1, uniform p
ref-level 2, uniform p
ref-level 3, uniform p
ref-level 4, uniform p
ref-level 5, uniform p

Figure 7.3: L-Shape: Average relative errors of the 8 smallest eigenvalues. Uniform p refine-
ment on fixed geometric refined meshes.
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7.4.3 The Maxwell EVP on the Fichera corner

As already mentioned no benchmark results are available for the Fichera corner. In the
following we contribute with our results. First, we cite the results available on the website
Dauge [39] and in Bramble et al. [29] in Table 7.1.

j λ̃j (Dauge [39]) reliable digits(?) conject. ev

1 3.31380523357 1 3.2??
2 5.88634994607 3 5.88?
3 5.88634994619 3 5.88?
4 10.6945143272 4 10.694
5 10.6945143276 4 10.694
6 10.7005804029 2 10.7??
7 12.3345495948 3 12.32?
8 12.3345495949 3 12.32?

j λ̃j (Bramble [29])

1 3.23432
2 5.88267
3 5.88371
4 10.6789
5 10.6832
6 10.6945
7 12.23653
8 12.23723

Table 7.1: Results by Dauge and Costabel from Dauge [39] with conjectured eigenvalue
and hopefully reliable digits (left table) and results corresponding to Bramble-Kolev-

Pasciak [29] (right table)

Table 7.2 presents the results of our computation of the 8 smallest eigenvalues using the
LOBPCG method with inexact projection in following problem setting:
We started with an initial mesh consisting of 12 tetrahedra and performed 3 levels of geometric
h-refinement. The refined mesh contains hexahedra, tetrahedra and prisms and is depicted in
Table 7.2.
We use the anisotropic polynomial order distribution as described at the beginning of this
section. The degrees on each element vary from p = 3 to p = 6 for the H(curl)-conforming
space, which yields 53982 degrees of freedom, and from p = 4 to p = 7 for the corresponding
potential space H1(Ω), which involves 19318 degrees of freedom. The total solution time on a
Dual Processor Intel Xeon 64Bit 2,8 GHz is 6460 seconds. The number of LOBPCG iterations
is 14. Note that one has to provide an H1-preconditioner with sufficiently smooth blocks to
avoid zero eigenvectors in the solution. The iteration numbers and results are independent
from the choice of the shift parameter σ in the H(curl)-preconditioner. We used the reduced
basis preconditioner, since as already verified in the last chapter it is better conditioned and
faster in its application compared to the one in the full basis.
For visualization we rerun the numerical test for our problem setting with homogenous Neu-
mann boundary conditions and present the computed eigenfunctions corresponding to the
first and the seventh eigenvalue in in Figure 7.5.
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j λ̃j
1 3.21999388904
2 5.88044248619
3 5.88045528405
4 10.6856632462
5 10.6936955486
6 10.6937289163
7 12.3168796291
8 12.3176900965

Table 7.2: The 8 smallest eigenvalues on Fichera corner, computed on left mesh with
anisotropic order of p = 3, . . . 6 (NgSolve). On the left hybrid mesh by 3 levels of hp-refinement
with hexahedra (yellow), prisms (blue), tetrahedra (red).

Figure 7.5: Absolute value of first (left) and seventh (right) eigenfunction (only for visualiza-
tion computed with homogenous Neumann data)
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APPENDIX

A.1 Notations

We use the symbol � for referring to ≤ up to a constant.

Polynomial spaces

Let K ⊂ R
3.

Pp(K) . . . space of polynomials of maximal total degree p, i.e.
Pp(K) = {∑p

i+j+k≤p cijkx
iyjzk

∣∣ cijk ∈ R}.
P̃p(K) . . . set of homogenous polynomials of exact degree p, i.e.

P̃p(K) = {∑i+j+k=p cijkx
iyjzk

∣∣ cijk ∈ R}.
Qp(K) . . . space of polynomials of maximal degree p, i.e.

Qp(K) = {∑p
0≤i,j,k≤p cijkx

iyjzk
∣∣ cijk ∈ R}.

A.2 Basic Vector Calculus

Let α denote a scalar function in x, while v is a vector-valued function.

div(αv) = v · ∇α+ α div v (A.1)

curl(αv) = α curlv + ∇α× v (A.2)

div(curlv) = 0 (A.3)

curl(∇α) = 0 (A.4)

trn,Fm(curl(ϕ)) = n · curl(ϕ) = n · curl(ϕτ τ +ϕnn)
= n ·

(
∇ϕτ × τ + ∇ϕn × n

)
= n · (∇ϕτ × τ )

= curlFm(ϕτ)

A.3 Some more orthogonal polynomials

Jacobi-polynomials , denoted by P
(α,β)
n , are orthogonal polynomials associated with the

weight function (1 − x)α(1 + x)β (for α > −1, β > −1) in the interval [−1, 1]. This means

151
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they fulfill ∫ 1

−1
(1 − x)α(1 + x)β P (α,β)

m P (α,β)
n dx = 0 for m 6= n.

They can be defined by the Rodrigues formula

P (α,β)
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β

dn

dxn
(

(1 − x)α+n(1 + x)β+n
)
.

Fast point-evaluation up to order p is established by the three-term recurrence formula

P
(α,β)
0 = 1,

P
(α,β)
1 = 1

2 (α− β) + 1
2 (α+ β + 2)x,

P
(α,β)
n+1 (x) = (an + bnx)P

(α,β)
n (x) + cnP

(α,β)
n−1 (x),

(A.5)

where the coefficients are given as

an =
(2n+ α+ β + 1)(α2 − β2)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
,

bn =
(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
,

cn = − (n+ α)(n+ β)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
.

The Legendre polynomials are a special case of the Jacobi ones. Choosing α = β = 0 yields

ℓn(x) = P (0,0)
n (x) for x ∈ [−1, 1].

Integrated Legendre polynomials are related to Jacobi polynomials by the relation

Ln(x) = − 1

2(n− 1)
(1 − x2)P

(1,1)
n−2 (x) for x ∈ [−1, 1], n ≥ 2.

Scaled Jacobi polynomials are defined as

PS, (α,β)
n (x, t) := P (α,β)

n

(x
t

)
tn.

We can compute them by the recurrence formula

P
S, (α,β)
n+1 (x, t) = (an t+ bnx)P

S, (α,β)
n (x, t) + cn t

2 P
S, (α,β)
n−1 (x, t) (A.6)

with an, bn, cn as defined in (A.5). We remark that the recurrence formula is free of divisions
by t.
Choosing α = β = 0 yields the scaled Legendre polynomials

ℓSn (x) = PS, (0,0)
n (x).

Jacobi-based bubble functions We can define Jacobi-based polynomials spanning
P 0
p ([−1, 1]) by the set of bubble functions

φj = (1 − x)(1 + x)P
(2,2)
j−2 (x)

is L2-orthogonal in the interval [−1, 1] in the sense of
∫ 1

−1
φiφj dx = 0 for i 6= j.
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Figure A.1: Jacobi-based bubble functions φj of order 2 to 7

A.3.1 Some Calculus for Scaled Legendre Polynomials

By the relation

xL′
n(x) − nLn(x) = L′

n−1(x)

x ℓ′n(x) − n ℓn(x) = ℓ′n−1(x)

we can show that

∇
(
LS
n (s, t)

)
= −L′

n−1

(
s

t

)
tn−1 ∇t+ L′

n

(
s

t

)
tn−1 ∇s (A.7)

= −ℓSn−2(s, t) t∇t+ ℓSn−1(s, t)∇s

holds. The same holds for Legendre polynomials

∇
(
ℓSn (s, t)

)
= −ℓ′n−1

(s
t

)
tn−1 ∇t+ ℓ′n

(
s

t

)
tn−1 ∇s (A.8)

= −(ℓ′n−1)
,S(s, t) t∇t+ (ℓ′n)

,S(s, t)∇s.

A.3.2 Some technical things

∇x(ξ, η, ζ) =




2 2
1−η

2
1−ζ 0 0

(1 + ξ) 2
1−η

2
1−ζ

2
1−ζ 0

(1 + ξ) 2
1−η

2
1−ζ (1 + η) 2

1−ζ 2




∇ui(x, y, z) = ∇
(
LS

i+2(2x− 1 + y + z, 1 − y − z)
)

= ℓSi (λ2 − λ1, λ1 + λ2) (λ1 + λ2)




0
1
1


+ ℓSi+1(λ2 − λ1, λ1 + λ2)




2
1
1




∇vj(y, z) = ∇
(
λ3ℓ

S
j (λ3 − λ1 − λ2, 1 − λ4)

)

= λ3 (ℓ′j−1)
S(λ3 − λ1 − λ2, 1 − λ4) (1 − λ4)




0
0
1




+λ3 (ℓ′j)
S(λ3 − λ1 − λ2), 1 − λ4)




0
2
1


+ ℓSj (λ3 − λ1 − λ2, 1 − λ4)




0
1
0




∇wk(z) = ∇
(
λ4ℓk(2λ4 − 1)

)

=
(
ℓk(2z − 1) + 2ℓ′k(2z − 1)

)
ez
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(
∇ui

)
(D(ξ, η, ζ)) =

(
ℓi(ξ)




0
1
1


+ ℓi+1(ξ)




2
1
1



)(

1−η
2

)i+1( 1−ζ
2

)i+1

(
∇vj

)
(D(ξ, η, ζ)) =

(
ℓ′j−1(η)




0
0
1


+ ℓ′j(η)




0
2
1



)

1+η
2

(
1−ζ
2

)j−1
+ ℓj(η)

(
1−ζ
2

)j



0
1
0




(∇wk)(D(ξ, η, ζ)) =
(
ℓk(ζ) + 2ℓ′k(ζ)

)
ez
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