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A new mixed isogeometric approach to Kirchhoff-Love shells

Katharina Rafetseder∗ and Walter Zulehner∗

March 7, 2018

Abstract

For Kichhoff-Love shell problems a new mixed formulation solely based on standard
H1 spaces is presented. This allows for flexibility in the construction of discretization
spaces, e.g., standard C0-coupling of multi-patch isogeometric spaces is sufficient. In
terms of solution strategies, for iterative solvers efficient methods for standard second-order
problems like multigrid can be used as building blocks of a preconditioner. Furthermore, a
combination of the proposed mixed formulation of the bending part with a popular mixed
formulation of the membrane part in order to avoid membrane locking is considered. The
performance of both mixed formulations is demonstrated by numerical benchmark studies.
Key words. Kichhoff-Love shells, mixed methods, isogeometric shell elements, membrane
locking

1 Introduction

In our previous work [23] a new mixed variational formulation for the Kirchhoff plate bending
problem with the bending moment tensor as additional unknown is derived. The new mixed
formulation satisfies Brezzi’s conditions and is equivalent to the original problem without addi-
tional convexity assumption on the domain. Furthermore, we obtain for polygonal domains an
equivalent formulation of the Kirchhoff plate bending problem in terms of three (consecutively
to solve) second-order elliptic problems. In [24] we extended the approach to domains whose
boundaries are curvilinear polygons.

The aim of this paper is to adapt the ideas of [23] to the more complex situation of
Kirchhoff-Love shells.

Especially for shells, performing analysis directly on the geometry representation provided
by the Computer Aided Design (CAD) model, and, thereby, avoiding unnecessary and costly
geometry approximations is of essential importance. This is enabled by isogeometric analysis
proposed by Hughes and co-workers in [17, 10], where B-Splines or Non Uniform Rational
B-Splines (NURBS) are used for the geometry description as well as for the representation of
the unknown fields.

Another feature of isogeometric discretizations is that they easily allow for inter-element
continuity beyond the classical C0-continuity within so-called patches. This permits the
straight-forward construction of conforming isogeometric Kirchhoff-Love type shell elements,
which are harder to obtain by means of standard Lagrange basis functions, since C1-continuity
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is necessary as second derivatives appear. The contribution [20] was one of the first to exploit
this.

For these approaches application on a single patch is straight-forward. However, for prac-
tical computations involving complex geometries usually geometry representations by means
of several patches (multi-patches) are necessary. Then the continuity between patches is an
issue, for which several techniques have been developed. In [19] the so-called bending strip
method is introduced, in which patches (called bending stripes) of fictitious material with
bending stiffness only in direction transverse to the interface and zero membrane stiffness are
added at patch interfaces. The crucial point is the choice of a reliable penalty parameter, the
bending strip stiffness. Starting from this technique, alternative formulations removing the
penalty parameter dependence have been proposed in [14]. Alternatively, dG (discontinuous
Galerkin) techniques can be used patch-wise, see, e.g., [15], where a variationally consistent
Nitsche formulation, which weakly enforces coupling and continuity constraints among patches,
is derived. Another approach are analysis suitable C1 multi-patch isogeometric spaces, see,
e.g., [18].

Note, all this techniques require special treatment of the patch interfaces. The essential
contribution of this paper consists in a new mixed formulation of Kirchhoff-Love shells, with
the bending moment tensor as new unknown, solely based on standard H1 spaces. Therefore,
classical C0-coupling across patch interfaces is sufficient. In comparison with [23], the obtained
mixed formulation differs in several aspects. In case of plates membrane and bending parts
decouple, which is not the case for shells. Therefore, additionally the membrane part, which
only involves first derivatives has to be taken into account. Furthermore, the bending strain
includes in contrast to plates additional terms beside the Hessian of the transverse displacement
involving geometry quantities and first derivatives of the displacement. In this paper it is
shown how to overcome these difficulties and extend the techniques in [23] to obtain again a
formulation only based on H1 spaces.

A build-in feature of the new mixed mixed formulation is the explicit computation of
the bending moment tensor as separate unknown, which, however, leads to the drawback of
having more unknowns. Beside the gained flexibility in the choice of discretization method,
our mixed formulation also leads to new solution strategies. For the use of iterative solvers
efficient methods for standard second-order problems like multigrid methods can be used as
building blocks of a preconditioner.

It is a well known fact that also isogeometric Kirchhoff-Love shell elements exhibit sig-
nificant membrane locking effects, see, e.g., [13, 12]. Therefore, we consider in this paper a
combination of our new mixed formulation of the bending part with a popular method to avoid
membrane locking by a mixed formulation of the membrane part, see [13]. In the numerical
experiments the combined method works well.

The paper is organized as follows: In Section 2 the Kirchhoff-Love shell formulation is
introduced. Section 3 contains a new mixed formulation and an extension of this approach
to circumvent membrane locking. The new mixed formulation leads in a natural way to the
construction of a new discretization method, which is introduced in Section 4. The paper
closes with numerical experiments in Section 5.

2 Kirchhoff-Love shell formulation

The description of the Kirchhoff-Love shell model is based on the presentations in [8, 6, 5].
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2.1 Differential geometry and shell kinematics

Throughout this paper we use both index notation and absolute notation for the expression
of vectors and tensors. Note, scalars are printed italic and vectors and tensors bold face
italic. Quantities needed in the undeformed and deformed configuration are distinguished
with capital and small letters, respectively. Latin indices take values {1, 2, 3} and Greek
indices {1, 2}. Superscripts indicate contravariant components and subscripts mark covariant
components of vectors and tensors. Furthermore, Einstein’s summation convention is applied
to indices appearing twice within a product.

The 3D shell in the undeformed configuration is described by a mapping X from a param-
eter domain into the three-dimensional physical space, X : Ω× [− t

2 ,
t
2 ]→ R3, where Ω ⊂ R2.

The map X is defined in terms of curvilinear coordinates ξi and is of the form

X(ξ1, ξ2, ξ3) = R(ξ1, ξ2) + ξ3 A3(ξ1, ξ2), (1)

where the mapping R : Ω → R3 defines the midsurface of the shell, A3 is the unit director,
which is normal to the midsurface, and t denotes the constant thickness . The map R will be
assumed to be sufficiently smooth, e.g., C3(Ω), cf. [8].

The covariant base vectors are given by

Aα = ∂αR, A3 =
A1 ×A2

|A1 ×A2|
,

where here and in the following ∂α = ∂ξα . Contravariant base vectors are defined via the
orthogonality condition

Ai ·Aj = δji .

Note that A3 = A3. The covariant and contravariant components Aαβ and Aαβ of the first
fundamental form (metric tensor) of the shell surface, the Christoffel symbols Γσαβ , and the
covariant and mixed components Bαβ and Bβ

α of the second fundamental form of the surface
are then defined as follows:

Aαβ = Aα ·Aβ, Aαβ = Aα ·Aβ, Γσαβ = Aσ · ∂βAα

Bαβ = A3 · ∂βAα, Bβ
α = AβσBσα.

(2)

For later use let us define
√
a =

√
det(Aαβ). We define analogously the above introduced

quantities for the shell in the deformed configuration and denote them by the corresponding
small letters.

The unknown we search for is the displacement u = r−R at each point of the midsurface,
which can be expressed in terms of covariant components ui as follows

u = uiA
i. (3)

We choose to solve for the vector of covariant components u = (ui), since this simplifies the
derivation of our new mixed formulation in Section 3.1. In the following we refer to (u1, u2)
and u3 as tangential and transverse part, respectively.

After linearization, we obtain expressions for the covariant components of the membrane
strain tensor

εαβ(u) =
1

2
(uα|β + uβ|α)−Bαβ u3 (4)
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and the bending strain tensor

καβ(u) = u3|αβ −Bσ
αBσβu3 +Bσ

αuσ|β +Bτ
βuτ |α +Bτ

β |αuτ . (5)

Here, uα|β denotes the covariant derivative uα|β = ∂βuα − Γσαβuσ, u3|αβ the second-order
covariant derivative u3|αβ = ∂αβu3−Γσαβ∂σu3, and Bτ

β |α the covariant derivative of the second
fundamental form

Bτ
β |α = ∂αB

τ
β + ΓτασB

σ
β − ΓσαβB

τ
σ.

For a thorough derivation of this expressions see, e.g., [8].

2.2 Variational formulation

The problem is posed in the parameter domain Ω with boundary Γ. In what follows let
(nα) and τ = (−n2, n1) represent the unit outer normal vector and the unit counterclockwise
tangent vector to Γ, respectively. Furthermore, ∂n denotes the normal derivative and ∂τ the
tangential derivative along Γ. The shell is considered to be clamped on a part R(Γc), simply
supported on R(Γs), and free on R(Γf ), with Γ = Γc ∪ Γs ∪ Γf . We define the displacement
function space W by

W = {v = (vi) ∈ H1(Ω)×H1(Ω)×H2(Ω) : vi = 0, ∂nv3 = 0 on Γc,

v1 = v3 = 0 on Γs}.
(6)

The (primal) variational formulation is given as follows (cf. [8, 6]) : find u ∈W such that∫
Ω

(
t ε(u) : C : ε(v) +

t3

12
κ(u) : C : κ(v)

) √
a dξ = 〈F,v〉 for all v ∈W , (7)

where A : B denotes the double contraction of two tensors A and B and dξ = dξ1dξ2. Here,
the right-hand side is given by 〈F,v〉 =

∫
Ω f ·v

√
a dξ and the contravariant components of

the fourth-order material tensor read

Cαβστ =
E

2(1 + ν)

(
AασAβτ +AατAβσ +

2ν

1− ν
AαβAστ

)
,

where E and ν are Young’s modulus and Poisson’s ratio of the material, respectively.
Following, e.g., [1], here and throughout the paper L2(Ω) and Hm(Ω) denote the standard

Lebesgue and Sobolev spaces of functions on Ω with corresponding norms ‖.‖0 and ‖.‖m for
positive integers m. Moreover, L2(Ω)sym denotes the space of symmetric second-order tensors
given by

L2(Ω)sym = {K : Kαβ = Kβα ∈ L2(Ω)}.

For scalars v, vectors ψ, and second-order tensors K the first order differential operators with
respect to the tangential coordinates ξα are defined as follows:

∇v =

(
∂1v
∂2v

)
, curl v =

(
∂2v
−∂1v

)
,

∇ψ =

(
∂1ψ1 ∂2ψ1

∂1ψ2 ∂2ψ2

)
, Curlψ =

(
∂2ψ1 −∂1ψ1

∂2ψ2 −∂1ψ2

)
,

divψ = ∂1ψ1 + ∂2ψ2, DivK =

(
∂1K11 + ∂2K12

∂1K21 + ∂2K22

)
.
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Moreover, the symmetric Curl is introduced by

symCurlψ =
1

2
(Curlψ + (Curlψ)T ).

3 Two mixed variational formulations

In this section we derive two mixed formulations by introducing stress resultants as new
unknowns.

3.1 M -mixed formulation

We introduce as new unknown the bending moment tensorM , which is related to the bending
strain through the constitutive equation

M =
√
a
t3

12
C : κ(u) = ĈM : κ(u), with ĈM =

√
a
t3

12
C.

Note, in contrast to standard notation we additionally include in M the geometry measure√
a. This leads to the preliminary M -mixed formulation: find M ∈ L2(Ω)sym and u ∈ W

such that ∫
Ω

(Ĉ−1
M : M) : L dξ −

∫
Ω
κ(u) : L dξ = 0

−
∫

Ω
M : κ(v) dξ − c(u,v) = −〈F,v〉

(8)

for all L ∈ L2(Ω)sym and v ∈W , with c(u,v) given by the membrane part

c(u,v) =

∫
Ω
t ε(u) : C : ε(v)

√
a dξ.

In order to make equations more compact, we use in the following at some points the short
notation (., .) for the L2-inner product on Ω instead of an integral and put the material tensor
as subscript, i.e., (Ĉ−1

MM ,L) = (M ,L)Ĉ−1
M

.
The goal of the remainder of this section is to derive a reformulation of (8) allowing us

to replace the displacement space W by a space that uses H1(Ω) for all three components
of the displacement. In our previous work [23] a new mixed formulation for Kirchhoff plates
using H1(Ω) for the vertical deflection is introduced. An extension of this approach to shells is
possible, since the only term involving second-order derivatives is the Hessian of the transverse
displacement u3.

We divide the bending strain κ(v) into the Hessian of the transverse displacement v3 and
the remaining terms that only involve first-order derivatives of v denoted by κ1(v), i.e.,

κ(v) = ∇2v3 + κ1(v).

With this notation we can rewrite the second line in (8) separating the integral involving ∇2v3

and put all remaining terms into the right-hand side 〈G(M , c, F ),v〉 = (M ,κ1(v))+c(u,v)−
〈F,v〉 leading to

−
∫

Ω
M : ∇2v3 dξ = 〈G(M , c, F ),v〉,
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or in strong form
− div DivM = G(M , c, F ). (9)

The main idea is the following ansatz for M :

M = pI +M0,

where div DivM0 = 0 and I is the identity matrix. Plugging in (9) the just stated represen-
tation provides

− div Div(pI) = G(M , c, F ), or equivalently −∆p = G(M , c, F ). (10)

Therefore, it is sufficient to consider p ∈ H1(Ω) for the corresponding weak form. The second
essential ingredient is a characterization of the elements in the kernel of div Div. According to
[3, 16, 21] there is a potential function φ ∈ (H1(Ω))2 such that

M0 = symCurlφ.

Remark 3.1. The first step can be viewed as homogenization. In literature, another form
of homogenization has been considered. The classical Helmholtz decomposition M = ∇2p +
symCurlφ, see, e.g., [3, 16], has the same second component. However, the first component
is different and requires the solution of a fourth-order problem, which brings no benefit. In
contrast, the decomposition introduced here only requires the solution of a second-order Poisson
problem for the first component.

Note the analogy to the well-known characterization of the stress tensor σ with Divσ = 0
by means of the Airy stress function ϕ in 2D

σ = Curl curlϕ,

and a similar result in 3D with the Beltrami stress functions.

Summing up, we have the following representation of M :

M = pI + symCurlφ.

With this representation the preliminary (M ,u) problem in (8) becomes a formulation in
(p,φ,u), later referred to as M -mixed formulation, given as follows: find (p,φ) ∈ V and
u ∈ Q such that

(pI, qI)Ĉ−1
M

+ (symCurlφ, qI)Ĉ−1
M

+ (∇u3,∇q)− (κ1(u), qI) = 0

(pI, symCurlψ)Ĉ−1
M

+ (symCurlφ, symCurlψ)Ĉ−1
M
− (κ1(u), symCurlψ) = 0

(∇p,∇v3)− (pI,κ1(v))− (symCurlφ,κ1(v)) − c(u,v) = −〈F,v〉.

(11)

for all (q,ψ) ∈ V and v ∈ Q. Here, the third line is given by the weak form of (10), where we
plug in the right-hand side G(M , c, F ) the representation ofM . The first two lines follow from
the first line in (8) using an analogous representation of the test functions L = qI+symCurlψ
and splitting of the bending strain κ(u) = ∇2u3 + κ1(u).

The original displacement space W is replaces by the space Q defined by

Q = {v = (vi) ∈ H1(Ω)×H1(Ω)×H1(Ω) : vi = 0 on Γc, v1 = v3 = 0 on Γs}. (12)
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The definition of the right boundary conditions for p and φ is a subtle issue. It turns out that
the space V is given by the subset of (q,ψ) ∈ Q3 × (H1(Ω))2, with

Q3 = {v3 ∈ H1(Ω) : v3 = 0 on Γc ∪ Γs},

satisfying the boundary condition

〈∂τψ,∇v3〉Γ +

∫
Γ
q ∂nv3 ds = 0 for all v3 ∈W3, (13)

where 〈., .〉Γ denotes the duality product on Γ and

W3 = {v3 ∈ H2(Ω) : v3 = 0, ∂nv3 = 0 on Γc, v3 = 0 on Γs}.

By (13) the functions q and ψ are coupled. Therefore, we refer to (13) in the following as
coupling condition. In case ψ is sufficiently smooth, e.g., ∂τψ ∈ L2(Γ), the coupling condition
can be rewritten as∫

Γs∪Γf

(∂τψ ·n+ q)∂nv3 ds+

∫
Γf

∂τψ · τ ∂τv3 ds = 0 for all v3 ∈W3, (14)

where we use the representation ∇v3 = (∂nv3)n + (∂τv3) τ and incorporate the boundary
conditions for v3 ∈W3. This condition reads in explicit form

∂τψ ·n = −q on Γs

∂2
τψ · τ = 0, ∂τψ ·n = −q on Γf .

(15)

Remark 3.2. Note, in Q compared withW only those boundary conditions for the transverse
displacement u3 which are also available in H1(Ω) are prescribed. In the formulation (11) the
originally essential boundary condition ∂nu3 = 0 becomes a natural condition. In the primal
formulation (7) only natural boundary conditions are imposed for the bending moment tensor
M . Those natural boundary conditions corresponding to the normal-normal component of M
and the corner conditions for the normal-tangential component ofM become the essential con-
ditions (15) for (p,φ) and the remaining condition remains natural. For further information
we refer the reader to [23].

Remark 3.3. The mixed formulation (11) is different from the formulation obtained in [23].
In case of plates membrane and bending parts decouple and for the bending part a decomposition
into three consecutively to solve second-order problems is obtained. This is no longer possible
for shells.

Problem (11) has the typical structure of a saddle point problem: find x = (p,φ) ∈ V and
u ∈ Q such that

a(x,y) + b(y,u) = 0 for all y = (q,ψ) ∈ V ,
b(x,v) − c(u,v) = −〈F,v〉 for all v ∈ Q.

As in [23], for the new mixed formulation (11) the following result providing well-posedness
and equivalence to the primal formulation holds:
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Theorem 3.4. Let Ω be simply connected. The mixed formulation (11) is well-posed, i.e.,
existence and uniqueness of a solution ((p,φ),u) ∈ V ×Q is guaranteed. Moreover, u is the
solution of the primal problem (7), with the bending moment tensor M = ĈM : κ(u) given
by M = pI + symCurlφ.

The proof follows along the lines of [23, Theorem 3.6] and is omitted here. For more
details on the mathematical foundation of the new mixed formulation we refer to the thorough
derivation of an analogous mixed formulation for Kirchhoff plates in [23].

3.2 M -N -mixed formulation

In order to alleviate membrane locking one popular concept (among many others) is to consider
a mixed formulation with the membrane force tensor N as new unknown, see, e.g., [13, 7].
An adoption of this approach allows for a well matching extension of the just introduced
formulation.

We additionally introduce as new unknown the membrane force tensor N , which is con-
nected to the membrane strain through the constitutive equation

N =
√
a t C : ε(u) = ĈN : ε(u), with ĈN =

√
a t C.

Note, again we include in N the geometry measure
√
a. This leads to the preliminary M -N -

mixed formulation: find M ∈ L2(Ω)sym, N ∈ L2(Ω)sym and u ∈W such that∫
Ω

(Ĉ−1
M : M) : L dξ −

∫
Ω
κ(u) : L dξ = 0∫

Ω
(Ĉ−1

N : N) : K dξ −
∫

Ω
ε(u) : K dξ = 0

−
∫

Ω
M : κ(v) dξ −

∫
Ω
N : ε(v) dξ = −〈F,v〉

(16)

for all L ∈ L2(Ω)sym, K ∈ L2(Ω)sym and v ∈W . Analogously as above, we can reformulate
the preliminary (M , N , u) problem (16) in terms of (p, φ, N , u), later referred to asM -N -
mixed formulation: find (p,φ) ∈ V , N ∈ L2(Ω)sym and u ∈ Q such that

(pI, qI)Ĉ−1
M

+ (symCurlφ, qI)Ĉ−1
M

+ (∇u3,∇q)− (κ1(u), qI) = 0

(pI, symCurlψ)Ĉ−1
M

+ (symCurlφ, symCurlψ)Ĉ−1
M

− (κ1(u), symCurlψ) = 0

(N ,K)Ĉ−1
N
− (ε(u),K) = 0

(∇p,∇v3)− (pI,κ1(v))− (symCurlφ,κ1(v)) − (N , ε(v)) = −〈F,v〉.

for all (q,ψ) ∈ V , K ∈ L2(Ω)sym and v ∈ Q

4 The discretization method

In this section we first construct a conforming discretization space for the displacement u, i.e.,

Qh ⊂ Q ⊂ (H1(Ω))3.

Note, only C0 basis functions are required, so the continuity requirements are easily satisfied
with standard basis functions. In the following we consider isogeometric B-spline discretization

8



spaces with degree p ≥ 1. For p = 1, the discretization space coincides with the standard
isoparametric finite element space of continuous and piecewise bilinear elements. We define
discretization spaces on patch level and for our formulation continuity between patches does
not require extra attention, since standard C0-coupling is sufficient.

We denote by Sp1,p2α1,α2 the tensor product B-spline space defined as

Sp1,p2α1,α2
= Sp1α1

⊗ Sp2α2
, (17)

where Spα is the one-dimensional B-spline space with degree p and α continuous derivatives
across interior knots; see, e.g, [9, 11] for further information.

We use equal order discretization spaces for the three components of the displacement u
and incorporate the essential boundary conditions, which brings us to the definition:

Qh = (Sp,pα,α)3 ∩Q,

where α = p− 1, i.e., maximum smoothness at interior knots.
For V , the space of the auxiliary variables (p,φ), the construction of a conforming dis-

cretization space is more involved, since the coupling condition (13) has to be taken into
account. Therefore, we first disregard the coupling condition and construct a conforming dis-
cretization space of V̂ = Q3 × (H1(Ω))2. Using equal order discretization spaces for p and φ
we receive

V̂h = (Sp,pα,α × (Sp,pα,α)2) ∩ V̂ .

The space Vh is defined as the subset of yh = (qh,ψh) ∈ V̂h satisfying a discrete version
of the coupling condition (14)

Vh = {yh = (qh,ψh) ∈ V̂h : d(yh,µh) = 0 for all µh = (µτ,h, µn,h) ∈ Λh},

with
d(yh,µh) =

∫
Γs∪Γf

(∂τψh ·n+ qh) µn,h ds+

∫
Γf

∂τψh · τ µτ,h ds. (18)

The test functions (µτ,h, µn,h) are discrete representations of (∂τv3, ∂nv3) for v3 ∈ W3 at Γ.
Therefore, Λh is chosen as the space of restrictions of functions from (Sp−1,p−1

α,α )2 to Γ, where
at corner points of the boundary µτ,h and µn,h have to be coupled appropriately, see [24] for
details. Then the discrete version of (11) reads: find xh = (ph,φh) ∈ Vh and uh ∈ Qh such
that

a(xh,yh) + b(yh,uh) = 0 for all yh = (qh,ψh) ∈ Vh,
b(xh,vh) − c(uh,vh) = −〈F,vh〉 for all vh ∈ Qh.

We do not explicitly build in the coupling condition by constructing a basis of the space Vh,
but incorporate it implicitly, by replacing Vh by V̂h and adding (18) as additional constraint.
Since V̂h, Qh and Λh are finite dimensional, the bilinear forms a, b, c and d can be represented
as matrices Ah, Bh, Ch and Dh acting on vectors of real numbers xh, uh and λh representing
the elements in V̂h, Qh and Λh, respectively, with respect to the chosen basis. In this matrix-
vector notation the resulting system reads

Ahxh +BT
h uh +DT

hλh = 0,

Bhxh −Chuh = fh,

Dhxh = 0,

9



where BT
h and DT

h denote the transposed matrices.
For the second, theM -N -mixed formulation we consider for u and (p,φ) the discretization

introduced above. For the additional unknown, the membrane force N , we use the discretiza-
tion space proposed in the Hybrid Stress (HS) method presented in [13]. The basis for the
contravariant components of N is given by

N11
h ∈ S

p−1,p
α−1,α, N22

h ∈ S
p,p−1
α,α−1, N12

h ∈ S
p−1,p−1
α−1,α−1.

5 Numerical experiments

In the first part of this section we demonstrate that theM -mixed formulation (with the H1(Ω)
conforming discretizations proposed in the previous section) works by testing it with the three
benchmark problems of the well-known shell obstacle course [4], consisting of two cylindrical
shells and one spherical shell. In the second part we show that the M -N -mixed formulation
introduced in Section 3.2 works well.

For all problems in this paper the undeformed midsurface is modeled exactly by non-
uniform rational B-splines (NURBS). For the discretization of the unknowns standard B-spline
spaces are used, see Section 4. Mesh density is characterized by the number of control points
per edge. In case several congruent patches are used to describe the surface the corresponding
number for one patch is used.

The implementation is done in the framework of G+Smo ("Geometry + Simulation Mod-
ules"), an object-oriented C++ library, see https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/
wiki/WikiStart. In all experiments a sparse direct solver is used.

5.1 M -mixed formulation

5.1.1 Scordelis-Lo roof

The problem setup of the Scordelis-Lo roof benchmark is shown in Figure 1a. The structure is
supported with rigid diaphragms at both ends and the side edges are free. This setup is realized
by imposing homogeneous boundary conditions for the displacement of the form ũx = ũz = 0,
leading to the conditions u1 = u3 = 0 for the covariant components of the displacement. The
roof has moderate slenderness R

t = 100, with radius R and thickness t as defined in Figure 1a,
and is subject to a uniform vertical load of g = 90 per unit area. This configuration yields a
membrane dominated load-carrying behavior.

Due to the rectangular topology of the roof domain a single patch representation is quite
natural. The surveyed quantity is the vertical deflection ũz at the midpoint of the free edges.
In [4] the value of the reference solution is reported as 0.3024, this values is calculated using
a very fine mesh.

In Figure 1b the displacement convergence of the M -mixed formulation for p = 1, 2, 3, 4
is shown. As expected, it tuns out that the convergence becomes considerably faster with
higher polynomial degree. For p = 3 and p = 4 already the fourth refinement step with 11
control points per side yields a relative error of less than 1%, whereas the discretizations with
p = 2 and especially p = 1 require a much finer mesh (19 and 400 control points per side,
respectively) to provide the same accuracy.

According to Table 1, for p = 2 the results obtained in [12] for the standard purely
displacement-based 3-parameter Kirchhoff-Love shell formulation (3p) conform well with the
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(a) Problem setup.
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(b) Displacement convergence of M -mixed formulation.

Figure 1: Scordelis-Lo roof.

Control points per edge 5 9 13 20 25 30

p = 1
M -mixed 0.0252 0.0471 0.0665 0.1027 0.1291 0.1528

p = 2
M -mixed 0.1028 0.2636 0.2940 0.2997 0.3003 0.3004
3p (Echter [12]) 0.0440 0.2077 0.2801 0.2975 0.2994 0.3004

Table 1: Scordelis-Lo roof, displacements (M -mixed, 3p).

M -mixed shell elements developed in this paper for fine discretizations but provide worse
results for coarse meshes.

For comparison we consider a second representation of the midsurface using four patches,
as illustrated in Figure 1a. In Figure 2 vertical displacements and bending moments for
the one patch and four patch geometry representation are compared. Visually no difference
like discontinuity across patch interfaces can be seen. As in [13], in order to obtain Mxx the
components of the bending moment tensor defined in the curvilinear coordinate system are first
transformed into a local Cartesian basis with x and z-axis aligned with ξ1- and ξ3-directions,
for details see [5]. The obtained convergence results are quite similar to the ones received for
the one patch geometry representation in Figure 1b, and are therefore not shown.

5.1.2 Pinched hemisphere

The problem setup of the pinched hemisphere benchmark is shown in Figure 3a. The structure
is fixed at the top and free along the bottom circumferential edge. The shell has a slenderness
of Rt = 250, with radius R and thickness t as defined in Figure 3a, and is subject to four radial
point loads F = ±2 at its bottom. This configuration yields a bending dominated behavior
with almost no membrane strains.

The undeformed midsurface is modeled using four patches, as illustrated in Figure 3a. The
investigated quantity is the radial displacement at the points where the loads are applied, with

11



(a) Displacement ũz. (b) Bending moment component M
xx
.

Figure 2: Scordelis-Lo roof, analysis results for one patch (upper) and four patch (lower)
geometry representations.

the value of the reference solution reported as 0.0924 in [4].
In Figure 3b the displacement convergence of the M -mixed formulation for p = 1, 2, 3, 4

is shown. Most observations carry over from the Scordelis-Lo roof benchmark to the pinched
hemisphere. The slowed convergence of low order discretizations with p = 1 and p = 2 becomes
even more amplified. The discretization with p = 2 requires 35 control points per edge (for
each of the four patches) to reach a relative error of less than 1%. The discretization with
p = 1 shows a considerably slower convergence. With a reasonable number of control points
no acceptable accuracy could be achieved. For p = 3 and p = 4 only 13 control points per
edge are needed to obtain the same accuracy.

The reason for the slow convergence in case of p = 1 and p = 2 for the Scordelis-Lo roof
and (even more severe) for the pinched hemisphere is membrane locking, which is mechanically
the inability to represent pure bending without unwanted, parasitic membrane strains, see,
e.g., [5] for more details on membrane locking. Similar results showing evidence of membrane
locking have already been observed in [20, 12]. We will come back to the important issue of
membrane locking in Section 5.2.

5.1.3 Pinched cylinder

The last benchmark of the shell obstacle course is the pinched cylinder. The problem setup
is shown in Figure 4a. The structure is supported with rigid diaphragms at both ends. The
cylinder has moderate slenderness R

t = 100, with radius R and thickness t as defined in
Figure 4a, and is subject to two opposite point loads F = ±1 in the middle. This configuration
yields a severe test for both inextensional bending and complex membrane states.

The undeformed midsurface is modeled using four patches, as illustrated in Figure 4a. The
analyzed quantity is the radial displacement at the points where the loads are applied, with
the value of the reference solution reported as 1.8248 · 10−5 in [4].
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(a) Problem setup.
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(b) Displacement convergence of M -mixed formulation.

Figure 3: Pinched hemisphere.

In Figure 4b the displacement convergence of theM -mixed formulation for p = 1, 2, 3, 4 is
shown. The convergence behavior differs from the ones obtained for the first two benchmarks.
The differences in the results due to the usage of different polynomial orders are significantly
smaller, especially discretizations with p = 2, 3, 4 provide comparable results. Note, already
the first-order discretization shows an acceptable performance.

(a) Problem setup.
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(b) Displacement convergence of M -mixed formulation.

Figure 4: Pinched cylinder.

5.2 Membrane locking and M -N -mixed formulation

In order to investigate membrane locking we consider first a simple model problem consisting
of a cylindrical shell strip, see, e.g.,[5, 13]. The problem setup of this example is shown in
Figure 5a. The structure is clamped along the edge x = 0 and subject to a constant constant

13



line load in radial direction with magnitude qx = 0.1 · t3 at the opposite free edge. This
configuration yields a bending dominated behavior. Therefore, membrane locking has to be
expected in case the applied discrete formulation is not free from membrane locking.

The quantity of interest is the radial displacement at the midpoint of the free edge, with
exact value 0.942 independent of the slenderness R

t , according to an analytical solution based
on Bernoulli beam theory (cf. [13]). In order to ensure comparability with [13] the domain is
discretized with a mesh of 10 elements in longitudinal direction and one element in the other
direction.

In Figure 5b the influence of varying slenderness R
t on the obtained displacement is inves-

tigated for the original M -mixed formulation and the extended M -N -mixed formulation for
p = 1 and p = 2. Both results obtained with theM -mixed formulation show severe membrane
locking. The radial displacement tends to zero as the slenderness R

t is increased. In case of
p = 2 already for a moderate slenderness of R

t = 100 unphysical membrane strains lead to a
considerable underestimation of the tip displacement of approximately 25% and for p = 1 the
behavior is even worse. However, for both polynomial orders the results obtained with the
M -N -mixed formulation indicates that this formulation completely removes the undesired
membrane locking effects.

(a) Problem setup.
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(b) Displacement convergence.

Figure 5: Cylindrical shell strip.

According to Table 2, for p = 2 the results in [13] for the standard purely displacement-
based 3-parameter formulation (3p) and the corresponding formulation with a mixed Hybrid
Stress modification of the membrane part (3p-HS) conform well with the M -mixed and M -
N -mixed shell elements proposed in this paper.

The improved convergence behavior of theM -N -mixed formulation observed in the basic
cylindrical shell strip problem carries over to the Scordelis-Lo roof and pinched hemisphere
benchmark (cf. Section 5.1.1 and Section 5.1.2). In Figure 6a and Figure 6b the displacement
convergence of theM -N -mixed formulation for p = 1, 2, 3, 4 is shown for the Scordelis-Lo roof
and pinched hemisphere benchmark, respectively. For both problems the locking free M -N -
mixed shell element converges considerably faster to the reference value for the same number
of control points compared to theM -mixed element in Figure 1b and Figure 3b. Furthermore,
the differences in the results for different polynomial orders are significantly reduced.
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Slenderness R
t 10 100 1000 10000

p = 2
M -mixed 0.9420 0.7075 0.1156 0.0112
M -N -mixed 0.9454 0.9423 0.9422 0.9422
3p (Echter et al. [13]) 0.9326 0.6635 0.0225 0.0002
3p-HS (Echter et al. [13]) 0.9386 0.9425 0.9425 0.9425

Table 2: Cylindrical shell strip, displacements (M -mixed, M -N -mixed, 3p, 3p-HS).
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(a) Scordelis-Lo roof
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(b) Pinched hemisphere

Figure 6: Displacement convergence of M -N -mixed formulation.

In Table 3 the results of the M -N -mixed formulation are compared to the results for the
3p-HS formulation of Echter [12]. Recall, our formulation does not require an H2-conforming
discretization in contrast to the one in [12]. A quantification of the improvements in numbers
is obtained by comparing Table 3 with Table 1.

6 Concluding remarks and future work

The numerical experiments in Section 5 demonstrate that the proposed M -mixed shell ele-
ment works in well-known benchmark problems. The results for theM -N -mixed formulation
indicate that this formulation is free from membrane locking.

In contrast to Kirchhoff-Love type thin shells, for conforming Reissner-Mindlin shell ele-
ments standard C0-continuous shape functions are commonly used. In order to avoid trans-

Control points per edge 5 9 13 20 25 30

p = 1
M -N -mixed 0.2020 0.2711 0.2869 0.2941 0.2970 0.2978

p = 2
M -N -mixed 0.2737 0.2999 0.3005 0.3006 0.3006 0.3006
3p-HS (Echter [12]) 0.2517 0.3000 0.3005 0.3006 0.3006 0.3006

Table 3: Scordelis-Lo roof, displacements (M -N -mixed, 3p-HS).
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verse shear locking, in [22, 13] an H2 based Mindlin-Reissner formulation obtained by a change
of variables from rotations to transverse shear strains is proposed. This approach, which was
later mathematically analyzed in the context of plates in [2], has the advantage that transverse
shear locking is eliminated on the continuous formulation level, independent of a particular
discretization. An application of our technique to obtain an H1-mixed-formulation to this H2

based Mindlin-Reissner formulation seems possible and would be worth to investigate.
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