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An Automatic Mesh Generator Using Geometric Rules for Two and Three Space
Dimensions.

August 1995

1996
96-1 Ferdinand Kickinger

Automatic Mesh Generation for 3D Objects. February 1996
96-2 Mario Goppold, Gundolf Haase, Bodo Heise und Michael Kuhn

Preprocessing in BE/FE Domain Decomposition Methods. February 1996
96-3 Bodo Heise

A Mixed Variational Formulation for 3D Magnetostatics and its Finite Element
Discretisation.

February 1996

96-4 Bodo Heise und Michael Jung
Robust Parallel Newton-Multilevel Methods. February 1996

96-5 Ferdinand Kickinger
Algebraic Multigrid for Discrete Elliptic Second Order Problems. February 1996

96-6 Bodo Heise
A Mixed Variational Formulation for 3D Magnetostatics and its Finite Element
Discretisation.

May 1996

96-7 Michael Kuhn
Benchmarking for Boundary Element Methods. June 1996

1997
97-1 Bodo Heise, Michael Kuhn and Ulrich Langer

A Mixed Variational Formulation for 3D Magnetostatics in the Space H(rot)∩
H(div)

February 1997

97-2 Joachim Schöberl
Robust Multigrid Preconditioning for Parameter Dependent Problems I: The
Stokes-type Case.

June 1997

97-3 Ferdinand Kickinger, Sergei V. Nepomnyaschikh, Ralf Pfau, Joachim Schöberl
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Local multigrid solvers for adaptive
Isogeometric Analysis in hierarchical spline

spaces

Clemens Hofreither∗ Ludwig Mitter† Hendrik Speleers‡

December 20, 2019

We propose local multigrid solvers for adaptively refined isogeometric dis-
cretization using HB- and THB-splines. We prove robust convergence of the
proposed solvers with respect to the number of levels and the mesh sizes
of the hierarchical discretization space and provide some numerical experi-
ments. Smoothing is only performed in or near the refinement areas on each
level, leading to a computationally efficient method.

The main analytical tools are quasi-interpolators for THB-spline basis
functions and the abstract convergence theory of subspace correction meth-
ods.

1 Introduction

Elliptic partial differential equations with local features such as singularities are typically
solved numerically through the use of adaptive refinement. Historically, much effort has
been put into the development of a more unified approach to the combined process of
adaptive refinement and multigrid solution, which in addition could also be used with
high order methods, see [26, 36] and the references therein. In the context of Isogeometric
Analysis (IgA; see [20]), the development of an adaptive isogeometric method (AIGM) for
solving elliptic second-order partial differential equations with truncated hierarchical B-
splines (THB-splines) of arbitrary degree, different order of continuity and any dimension
has been addressed in [8, 10, 9]. AIGM based on local refinements can be written using
the standard loop of the form

SOLVE → ESTIMATE → MARK → REFINE.
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Apart from SOLVE, these steps have been thoroughly discussed in the aforementioned
papers. The distinct feature of applying multigrid or multilevel solvers to adaptively
refined spaces is that the number of new degrees of freedom may not grow exponentially
with the number of refinement steps, which would be the case for global refinement.
Thus, local smoothing strategies are required in order to achieve optimal computational
complexity, leading to so-called local multigrid methods.

The literature on fast solvers for AIGM schemes is still quite sparse. To our knowledge,
the first work on fast solvers for adaptive IgA was [19], where a multigrid solver for HB-
and THB-spline discretizations was constructed. Here, smoothing was still performed
globally, and no convergence analysis was given. Additive (BPX) solvers for analysis-
suitable T-splines were described in [13], where also the robust convergence with respect
to the mesh size was proved. The construction closely follows that of the corresponding
finite element result in [12].

In the present work, we present the first local multigrid solver for linear systems
associated to the HB- or THB-discretization of elliptic partial differential equations and
present an h-robust convergence analysis. Our construction and analysis are significantly
simpler than the corresponding one for T-splines [13] and directly exploit the inherent
multilevel structure of hierarchical spline spaces. Surprisingly, the resulting theory is
simpler than that of any analogous solvers in the finite element method (FEM) world
[12, 18, 34]. There is a certain similarity to a multigrid scheme used in deal.II which
is described in [21]; however, no convergence analysis is given therein. An important
tool in our analysis is the existence of of a versatile quasi-interpolant for THB-splines
[33, 32].

The theoretical framework for our convergence theory is provided by the theory of sub-
space correction methods [35]. This general approach involves the solving of subproblems
on suitable chosen subspaces and combining these corrections either additively (paral-
lel subspace correction, PSC) or multiplicatively (successive subspace correction SSC).
When applied to a hierarchy of refinement levels, the former lead to additive multilevel
(BPX-like) solvers, whereas the latter lead to multigrid methods. The interpretation of
an abstract multilevel method as an SSC method was introduced in Bramble, Pasciak,
Wang and Xu [6]. The equivalence of certain multigrid methods to SSC methods was also
discussed in Xu [35]. In this setting, smoothing iterations take the role of approximate
subspace solvers.

For adaptive refinement strategies, smoothing must be done locally in a certain sense
in order to maintain optimal computational complexity. It has long been known that, in
order not to degrade the convergence rate, smoothing has to be performed at least for all
basis functions contained in the refined region; this usually means including degrees of
freedom neighboring the newly added ones in the smoothing set [1, 5, 7, 24, 25, 29, 23].
An exception is the hierarchical basis method [2], where only newly added degrees of
freedom are smoothed, but which is limited to two-dimensional problems.

In the present work, we show that smoothing only those fine B-spline functions sup-
ported within the refinement region is sufficient for h-robust convergence.

One can show that if the local smoothing procedure is computationally optimal, these
so-called “local multilevel methods” are of optimal computational complexity in the
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sense that if N is the size of the linear system on the finest level, only O(N) operations
have to be performed for one sweep of this method. Under the same conditions also the
PSC-like BPX preconditioner exhibits optimal computational complexity [4, 15, 28, 27].

The paper is organized as follows. In Section 2 we review the basic features of HB-
and THB-splines and quasi-interpolants (QIs); for the latter, we extend an existing
approximation result. We also describe the isogeometric discretization to be solved and
review the theory of subspace correction methods. In Section 3 we give a decomposition
of hierarchical spline spaces obtained by adaptive refinement and prove its stability and
strengthened Cauchy-Schwarz inequality under suitable smoothing properties. We also
verify these smoothing properties for some standard smoothers. In Section 4 we combine
the previous results in order to give a rigorous convergence analysis of a local multigrid
solver for hierarchical spline spaces and discuss possible extensions.

2 Preliminaries

In this section we review some known results on THB-splines, quasi-interpolants and
convergence theory for abstract subspace correction methods. In addition, in Section 2.2
we give new approximation and stability results for THB-spline quasi-interpolants in
Sobolev space norms which generalize previous results from [33, 32].

2.1 THB-splines

Let D ⊆ Rd, d ∈ N be a closed hyper-rectangle, B0 ⊆ B1 ⊆ . . . ⊆ BN , N ∈ N be nested
d-variate tensor product spline spaces on D spanned by the normalized tensor product
B-spline basis for l = 0, . . . , N ,

Bl := {β(l,i) : i ∈ I l}, I l := {(i1, . . . , id) : ik = 1, . . . , nlk, k = 1, . . . , d}, Bl := spanBl

on corresponding uniform open knot sequences of degree pk ∈ N, k = 1, . . . , d, i.e., the
resulting mesh Gl consists of hyper-cubes (cells) with edge size hl = h02−l, l = 1, . . . , N
for some fixed h0 > 0. The (non-empty) quadrilateral cells Υl ∈ Gl are the Cartesian
product of d open intervals between adjacent grid values. For any coordinate direction
k = 1, . . . , d, each grid value appears in the knot vector as many times as specified by
a certain multiplicity. At any level the multiplicity of each knot may vary between one
(single knots) and pk. To enforce nestedness of the spline spaces we assume the knot
sequences to be also nested, i.e. we assume Bl to be obtained from Bl−1 by dyadic
refinement, hence hl = hl−1/2, l = 1, . . . , N , where hl denotes the uniform grid mesh
size of level l and that every knot of level l− 1 is also present at level l at least with the
same multiplicity in the corresponding coordinate direction.

We also take as given a sequence of nested domains D = Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN being
closed subsets of D, which are defined as the union of the closure of cells that belong to
the tensor product grid Gl−1 of the previous level. By assumption ∂Ωl is aligned with
the knot lines of Bl, l = 0, . . . , N . The union of the associated grids is referred to as the
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hierarchical mesh

G :=

N⋃
l=0

(Gl ∩ Ωl \ Ωl+1), l = 0, . . . , N. (1)

Let us denote by supp f the support of a function f intersected with D.

Definition 2.1 ([17]). Let f ∈ Bl, l ∈ {0, . . . , N − 1} and let

f =
∑

β∈Bl+1

cl+1
β (f)β, cl+1

β (f) ∈ R, (2)

be its representation with respect to Bl+1. The truncation of f with respect to Bl+1 and
Ωl+1 is defined as

l+1
trunc f :=

∑
β∈Bl+1

suppβ 6⊆Ωl+1

cl+1
β (f)β. (3)

Now we can introduce the truncated hierarchical B-spline (THB-spline) basis.

Definition 2.2 ([17]). The THB-spline basis T is recursively defined as

T 0 := {β ∈ B0 : suppβ 6= ∅},

T l+1 := {
l+1

trunc f : f ∈ T l, supp f 6⊆ Ωl+1}
∪ {β ∈ Bl+1 : suppβ ⊆ Ωl+1}, l = 0, . . . , N − 1,

T := T N .

THB-splines are non-negative, linearly independent and form a partition of unity [17].

Lemma 2.1 ([17]). For every τ ∈ T l, l ∈ {0, . . . , N} there exists a unique β ∈ Bl with

τ =
l+1

Truncβ :=
N

trunc
N−1

trunc · · ·
l+1

truncβ, τ |Ωl\Ωl+1 = β|Ωl\Ωl+1 .

With the sets

Bl∗ := {β(l,i) : i ∈ I l∗}, I l∗ := {i ∈ I l : Ωl ⊇ suppβ(l,i) 6⊆ Ωl+1}, Bl∗ := spanBl∗

of active basis functions [16] on level l = 0, . . . , N , the index set I of THB-splines basis
functions can then be defined as

I := {(l, i) : i ∈ I l∗, l = 0, . . . , N}, (4)

and definition 2.2 directly implies the equivalent representation

T = {τ (l,i) : (l, i) ∈ I}, T := span T , with τ (l,i) :=
l+1

Truncβ(l,i). (5)

We see from this construction that the support of any τ ∈ T can be given as the union
of closed cells in G.
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It is a well known fact [17] that without the truncation mechanism, the hierarchical
B-spline (HB-spline) basis spans the same space, i.e.

T = span

(
N⋃
l=0

Bl∗

)
= span{β(l,i) : (l, i) ∈ I}. (6)

Therefore, we will refer to T as a hierarchical spline space when the particular choice of
basis is of no interest.

Definition 2.3 ([32, 33]). For each cell Υ ∈ G in the hierarchical mesh, let δT ,Υ be the
largest difference between the levels of the THB-splines T supported on Υ. The mesh
level disparity δT is defined as the maximum of the values δT ,Υ related to all cells Υ ∈ G.

From this, one can bound the number of overlapping basis functions τ ∈ T on a cell
Υ ∈ G by

cT := (δT + 1)cp, with cp :=
d∏

k=1

(pk + 1),

see [33, 8].

Corollary 2.1 ([8]). Under the above assumptions, one has

|Υ| h |supp τ |, ∀Υ ∈ G,Υ ∩ supp τ 6= ∅,

where |Υ| denotes the d-dimensional measure of Υ ∈ G and the hidden constants in the
above inequalities depend on δT , but not on T ,G or N .

Remark 2.1. All results in this paper can easily be generalized to quasi-uniform meshes
[8], which would demand a more complex notation.

For the rest of this paper, we will always indicate any inequality which does not depend
on the depth N (or, equivalently, on hN or G) of the spline hierarchy with .,&. We
write h, if the relation holds for both . and &.

Definition 2.4. The support extension S(Υ, k) ⊆ Gk of Υ ∈ Gl with respect to k, 0 ≤
k ≤ l, l ∈ {0, . . . , N} is defined as

S(Υ, k) := {Υ′ ∈ Gk : ∃β ∈ Bk, suppβ ∩Υ′ 6= ∅, suppβ ∩Υ 6= ∅}.

By a slight abuse of notation, we will also denote by S(Υ, k) the region occupied by the
closure of elements in S(Υ, k).

2.2 Quasi-interpolants

The subsequent construction, following [32, 33], allows the simple design of quasi-
interpolants (QIs) in T, once a sequence of QIs in the spaces Bl, l = 0, . . . , N is given.
Let f be a function on D. Consider a sequence of one-level QIs

Qlf :=
∑
i∈Il

λ(l,i)(f)β(l,i), l = 0, . . . , N,
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where λ(l,i), i ∈ I l, l = 0, . . . , N are suitable linear functionals. We say that λ(l,i) is
supported on Λ(l,i) iff

f |Λ(l,i) ≡ 0 =⇒ λ(l,i)(f) = 0.

If Λ(l,i) with this property are choosen as small as possible, one refers to Λ(l,i) as the
support of λ(l,i). We define our hierarchical QI in T as

Q : f ∈ L2(D) 7→
∑

(l,i)∈I

λ(l,i)(f)τ (l,i) ∈ T. (7)

Theorem 2.1 ([32, 33]). If each λ(l,i), i ∈ I l, l = 0, . . . , N is supported on Ωl \Ωl+1 and
Qlf = f for any f ∈ Bl, l = 0, . . . , N then

Qf = f, ∀f ∈ T. (8)

Consequently, the construction of a hierarchical QI for THB-splines has been reduced
to the construction of appropriate one-level QIs as outlined in the above theorem. For
the remainder of this paper we make the following assumptions.

QI1 The mesh level disparity δT is bounded independently of the number N of levels in
the hierarchy. This can be guaranteed by suitable refinement strategies, [8].

QI2 The linear functionals λ(l,i), i ∈ I l, l = 0, . . . , N are locally supported,

diam Λ(l,i) ≤ CΛhl, ∀i ∈ I l∗, (9)

where CΛ is a constant independent of hl and diam Λ(l,i) denotes the diameter of
Λ(l,i).

QI3 The linear functionals λ(l,i), (l, i) ∈ I are bounded in the Lq-norm, 1 ≤ q ≤ ∞,

|λ(l,i)(f)| ≤ Cλ(hl)
−d/q‖f‖Lq(Λ(l,i)), ∀(l, i) ∈ I, (10)

where Cλ is a constant independent of hl and ‖.‖Lq(Λ(l,i)) denotes the usual q-

Lebesgue norm on Λ(l,i), (l, i) ∈ I.

QI4 The linear functionals λ(l,i), i ∈ I l, l = 0, . . . , N are choosen so that Ql, l = 0, . . . , N
reproduces the tensor product polynomial space Pρ of degree ρ,

Qlg = g, ∀g ∈ Pρ, (11)

for some ρ = (ρ, . . . , ρ) ∈ Nd0 with 0 ≤ ρ ≤ p.

In the following two examples, we present one-level QIs that satisfy the conditions
(9)-(11).
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Example 2.1. For d = 1 we consider the QI developed in [22, Section 5.3.1] of the form
(7) with

λ(l,i)(f) :=
1

hl

∫ ξln+1

ξln

( p∑
j=0

ai,j

(
x− ξln
hl

)j )
f(x)dx, (12)

where [ξln, ξ
l
n+1) ∈ Gl can be any knot interval in the support of the B-spline β(l,i) of

degree p, and the coefficients ai,j ∈ R, i, j = 0, . . . , p are chosen in a special way. These
functionals clearly satisfy (9) with CΛ = 1, and from [22, Lemma 3] we know that they
also satisfy (10). Finally, from [22, Lemma 2] it follows that (11) is satisfied for each
0 ≤ ρ ≤ p.

Example 2.2. For d > 1 we construct the QI by taking the tensor product of univariate
schemes defined in the previous example 2.1. More precisely, given a d-variate function
f we define the linear functionals as

λ(l,i)(f) := (λ(l,i1) · · ·λ(l,id))(f), ∀(l, i) ∈ I,

assuming that λ(l,ik), k = 1, . . . , d are the linear functionals in (12) operating on functions
of the k-th variable. From the properties of the univariate scheme it follows that also
this multivariate scheme satisfies the conditions (9)-(11).

Suppose Υl ∈ Gl is a cell of a given level l = 0, . . . , N in Ωl \ Ωl+1. One can check
that diam Υl = hl

√
d. We define

ΛΥl := conv
( ⋃

(k,i)∈I:supp τ (k,i)∩Υl 6=∅

Λ(k,i) ∪Υl
)
⊆ S(Υl, l − δT ), (13)

where conv Λ denotes the convex hull of a set Λ ⊆ Rd. Taking into account the bounded
mesh level disparity, we have

diam ΛΥl ≤ CΛΥ
hl,

where CΛΥ
is a constant independent of hl. Let us denote by |.|Wk

q (Λ) the usual seminorm

on the Sobolev space W k
q (Λ). We are now ready to extend the Lq-norm approximation

estimate provided in [32, Corollary 1] as follows.

Theorem 2.2. Under the above assumptions, let Υl ∈ Gl be a cell of level l in Ωl \Ωl+1,
and let ΛΥl be the corresponding set as defined in (13). Let Q satisfy (9)-(11) (e.g.,
be constructed according to example 2.1 and example 2.2). If f ∈ W ρ+1

q (ΛΥl), 1 ≤ q ≤
∞, 0 ≤ ρ ≤ minj=1,...,d pj, then for any α = (α1, . . . , αd), 0 ≤ αj ≤ pj , j = 1, . . . , d one
has

‖Dα(f −Qf)‖Lq(Υl) ≤ Ch
ρ+1−|α|
l |f |

W ρ+1
q (Λ

Υl
)
, (14)

where the constant C is independent of f and hl and |α| =
∑d

j=1 αj.

Proof. By the partition of unity property of the basis, definition (13) and condition (10)
we have

|Qf(x)| ≤ Cλh
−d/q
l ‖f‖Lq(Λ

Υl
), ∀x = (x1, . . . , xd) ∈ Υl,
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where we used the fact that

hl = min
(k,i)∈I:supp τ (k,i)∩Υl 6=∅

hk.

Then, taking the Lq-norm we get

‖Qf‖Lq(Υl) ≤ C1‖f‖Lq(Λ
Υl

). (15)

Now, consider the averaged Taylor polynomial Fρ,BΛ
Υl

defined in [32, Definition 1] with

p = ρ and B = BΛ
Υl

, the ball with largest radius contained in ΛΥl . Using the bound
(15) and the error estimate from [32, Lemma 2] we arrive at

‖Q(f − Fρ,BΛ
Υl
f)‖Lq(Υl) ≤ C1‖f − Fρ,BΛ

Υl
f‖Lq(Λ

Υl
≤ C2

(
diam ΛΥl

)ρ+1
|f |

W ρ+1
q (Λ

Υl
)
.

(16)
The inequality (16) is similar to the inequality [32, (18)] but it has no restrictions on
the relations between the degree ρ, the dimension d and the Lq-norm.

Finally, we follow the same line of arguments as in the proof of [32, Theorem 4]. In
particular, we combine the inequalities in [32, (15)-(17)] with (16), and we get the error
estimate (14). We note that Dαg = 0 for any polynomial g ∈ Pρ whenever αj > ρj for
some j = 1, . . . , d.

2.3 Adaptive isogeometric discretizations

We assume that a computational domain G(D) ⊂ Rd is given via a bijective and suf-
ficiently smooth geometry mapping G : D → G(D) ⊂ Rd, which maps the parameter
domain D = (0, 1)d to the physical domain G(D). In Isogeometric Analysis (IgA) [20],
this mapping is typically given in terms of spline basis functions, G ∈ (B0)d, but its
concrete form is irrelevant to our discussion. The standard IgA approach is then to
transform the variational problem of interest back to the parameter domain. Choosing a
suitable Hilbert space V over D, we obtain a variational problem of the form: for f ∈ V ′,
find u ∈ V such that

a(u, v) = 〈f, v〉, ∀v ∈ V.

Here we assume that the bilinear form on the physical domain G(D) is symmetric,
positive definite, and bounded, which then also holds for a(·, ·) : V × V → R. The
concrete coefficient within the bilinear form a(·, ·) is modified by this transformation.

Our case of interest are adaptive discretizations of such variational problems using HB-
or THB-splines. Thus, let T be a hierarchical spline space as defined in Section 2.1 (e.g.,
obtained by an AIGM scheme as outlined in the introduction) and let V := T ∩H1

0 (D)
denote our finite dimensional trial space, where H1

0 (D) is the Sobolev space H1(D) =
W 1

2 (D) with zero trace at ∂D. We assume here pure Dirichlet boundary conditions for
simplicity, but other boundary conditions pose no problem.

We pass to the operator notation A : V → V ′ by setting 〈Au, v〉 = a(u, v) ∀u, v ∈ V,
resulting in the operator equation Au = f . The main object of this paper is to construct
fast multigrid solvers for this discretized problem.
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2.4 Subspace correction methods

We describe here subspace correction methods and their convergence theory in the ab-
stract setting, which will provide the basis for the convergence analysis of our multigrid
method.

Let (V, (., .)) be a finite dimensional Hilbert space and choose a space decomposition
of V of the form

V =
N∑
i=0

Vi

with subspaces Vi ⊆ V, i = 0, . . . , N ∈ N. For a given u ∈ V, the decomposition
u =

∑N
i=0 ui, ui ∈ Vi is in general not unique.

Let A : V → V ′ be linear, bounded, symmetric and positive definite (s.p.d.), i.e., A is
isomorphic and ‖.‖2A := 〈A., .〉 constitutes a norm, where V ′,V ′i denote the dual spaces of
V,Vi, i = 0, . . . , N , respectively. Throughout this paper, we use the following notation
for i = 0, . . . , N :

• Pi : V → Vi the (energy) projection with respect to (., .)A := 〈A., .〉, i.e.

(Piv, vi)A = (v, vi)A, ∀v ∈ V, vi ∈ Vi, i = 0, . . . , N,

• Ai : Vi → V ′i the restriction of A to the subspace Vi, i.e.

〈Aiui, vi〉 = 〈Aui, vi〉, ∀ui, vi ∈ Vi, i = 0, . . . , N,

• Ri : V ′i → Vi a s.p.d. approximation of A−1
i ,

• Ti : V → Vi the auxiliary operator Ti = RiAiPi = RiA, i = 0, . . . , N .

With a slight abuse of notation we still use Ti to denote the restriction Ti|Vi : Vi → Vi
and T−1

i = (Ti|Vi)−1 : Vi → Vi.
For a given right-hand side f ∈ V ′, our goal is to solve the operator equation

Au = f

for u ∈ V by means of the above space decomposition. There are two common ways to
achieve this:

PSC (Parallel subspace correction method) This method performs corrections on each
subspace in parallel for a given u0 ∈ V,

uk+1 = uk +B(f −Auk), B =

N∑
i=0

Ri,

for k = 0, 1, 2, . . . The error equation reads

u− uk+1 = (I − T )(u− uk), T =

N∑
i=0

Ti = BA, for k = 0, 1, 2, . . .
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SSC (Successive subspace correction method) This method performs the corrections in
a successive way for a given u0 ∈ V,

v0 = uk, vi+1 = vi +Ri(f −Avi), i = 0, . . . , N, uk+1 = vN+1,

for k = 0, 1, 2, . . . The error equation reads

u− uk+1 =
( N∏
i=0

(I − Ti)
)

(u− uk), for k = 0, 1, 2, . . . ,

where
∏N
i=0(I − Ti) := (I − T0)(I − T1) · · · (I − TN ).

Note that in the case of nested spaces Vi ⊆ Vi+1, i = 0, . . . , N −1, SSC is nothing else
but the multigrid V-cycle [35, 36]. The convergence analysis of PSC and SSC according
to [35] rests upon the following two assumptions.

A1 Stable decomposition: For any v ∈ V there exists a decomposition v =
∑N

k=0 vk, vk ∈
Vk, k = 0, . . . , N such that

N∑
k=0

‖vk‖2R−1
k

≤ K0‖v‖2A.

A2 Strengthened Cauchy-Schwarz (SCS) inequality : For any uk, vk ∈ Vk, k = 0, . . . , N
one has

|
N∑
i=0

N∑
j=i+1

(Tiui, Tjvj)A| ≤ K1

( N∑
i=0

(Tiui, ui)A

)1/2( N∑
j=0

(Tjvj , vj)A

)1/2
.

Theorem 2.3 ([35]). Let A1 and A2 be satisfied. Then PSC and SSC satisfy the
convergence results

κ(BA) ≤ K0K1,

‖
N∏
i=0

(I − Ti)‖2A ≤ 1− 2− ω
K0(1 +K1)2

with ω := max
k=0,...,N

ρ(RkAk),

where κ denotes the condition number and ρ the spectral radius.

3 Space decomposition of hierarchical spline spaces

The hierarchical spline space T as defined in Section 2.1 is induced by the domain
hierarchy Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN . As a consequence of Bl(Ωl) ⊇ Bl∗, the nestedness of
Bl, l = 0, . . . , N and (6) we have the representation

T =
N∑
l=0

Bl(Ωl), (17)
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where Bl(Ω) := span{β ∈ Bl : suppβ ⊆ Ω} denotes the space spanned by the tensor
product B-splines of level l = 0, . . . , N whose support is entirely contained in a given set
Ω ⊆ D. Note that these spaces also contain B-spline basis functions which are eliminated
by the Kraft selection mechanism and thus not contained in the basis of the hierarchical
spline space.

The relation (17) provides us with the main space decomposition upon which we will
build a subspace correction method as described in Section 2.4, meaning that smoothing
will only be performed in subspaces of tensor product splines on a single level.

Let T̃l := Bl(Ωl) and introduce the auxiliary hierarchical spline spaces

Tk :=
k∑
l=0

T̃l, k = 0, . . . , N,

such that T0 ⊆ T1 ⊆ . . . ⊆ TN = T, with Ik, Ĩk, Tk, T̃k denoting the active index sets
and bases of Tk, T̃k, k = 0, . . . , N , respectively. Note that Ĩk = Ik \ Ik−1, k = 1, . . . , N .
We also denote the hierarchical meshes as in (1) corresponding to these spaces by Gk.

We have the standard inverse inequality ([3])

‖vk‖2A h |vk|21 . h−2
k ‖vk‖

2
0 ∀vk ∈ T̃k, k = 0, . . . , N, (18)

where ‖.‖0 := ‖.‖L2(D), |.|1 := |.|W 1
2 (D), ‖.‖1 := ‖.‖W 1

2 (D) are the usual Sobolev norms.

In Sections 3.1 and 3.2 we will verify A1 and A2 for the space decomposition (17) on
the basis of a smoothing property on the subspace solvers Rk, k = 0, . . . , N : we assume
that

〈Akvk, vk〉 ≤ ω〈R−1
k vk, vk〉

h−2
k ‖vk‖

2
0 h ‖vk‖2R−1

k

}
∀vk ∈ T̃k, k = 0, . . . , N (SP)

with some constant ω ∈ (0, 2).
In Section 3.3 we will prove this smoothing property for some standard smoothing

iterations.

3.1 Stability of the decomposition

Let Q−1 := 0 and Qk : L2(D) → Tk, k = 0, . . . , N , be THB-spline QIs constructed
according to Theorem 2.1, for instance those given in Example 2.1 and Example 2.2. As
a direct consequence of the construction of Qk one obtains the following property.

Corollary 3.1. Let f ∈ L2(D). Then we have for any k = 0, . . . , N

(Qk −Qk−1)f ∈ T̃k, (Qk −Qk−1)f ≡ 0 on D \ Ω̃k, Ω̃k :=
⋃
τ∈T̃k

supp τ.

We define the auxiliary sets

Λ̃k :=
⋃

Υ∈Gk
Υ∩Ω̃k 6=∅

ΛΥ, Λ̃k ⊇ Ω̃k, k = 0, . . . , N.

11



Remark 3.1. Note that from (13) one has Λ̃k ⊆
⋃

Υ∈Gk
Υ∩Ω̃k 6=∅

S(Υ, k− δ), that is, Λ̃k can be

seen as the support extension with respect to the level k − δ of Ω̃k, k = 0, . . . , N with
equality possible in the tensor product setting.

We have seen in Section 2.1 that at most cT basis functions overlap some Υk ∈ Gk, k ∈
{0, . . . , N}. By virtue of Corollary 2.1 we obtain the estimate∑

Υ∈Gk
Υ∩Ω̃k 6=∅

‖f‖20,ΛΥ
. ‖f‖2

0,Λ̃k
.

Hence, (15) can be used to obtain for k = 0, . . . , N, k′ ∈ {k − 1, k},

‖Qk′f‖20,Ω̃k . ‖f‖2
0,Λ̃k

, f ∈ L2(D), (19)

where we set ‖.‖0,Ω := ‖.‖L2(Ω), |.|1,Ω := |.|W 2
1 (Ω) for arbitrary Ω ⊆ Rd. Following [14, 11],

we have

∀v ∈ BN :

N∑
l=0

h−2
l ‖vl‖

2
0 . |v|21, vl := (Pl −Pl−1)v, (20)

where Pl : L2(D) → Bl denotes the L2-projector into the tensor product spline space
Bl, l = 0, . . . , N and P−1 = 0. We now prove an analogous result for the decomposition
(17) of the hierarchical spline space.

Theorem 3.1. For any v ∈ T there exist vk ∈ T̃k, k = 0, . . . , N such that v =
∑N

k=0 vk
and

N∑
k=0

h−2
k ‖vk‖

2
0 . ‖v‖2A.

Thus, assuming (SP), A1 holds for the space decomposition (17).

Proof. Let v ∈ T be arbitrary and let

vl := (Pl −Pl−1)v ∈ Bl, l = 0, . . . , N,

vk := (Qk −Qk−1)v ∈ T̃k, k = 0, . . . , N.

It follows that

N∑
k=0

vk =
N∑
l=0

vl = v, vk = (Qk −Qk−1)

N∑
l=0

vl = (Qk −Qk−1)

N∑
l=k

vl,

where the last equality follows by the fact that Qk ≡ Qk−1 on Bk−1, k = 1, . . . , N .
Hence, we have from (19)

‖vk‖20,Ω̃k = ‖(Qk −Qk−1)
N∑
l=k

vl‖20,Ω̃k . ‖
N∑
l=k

vl‖20,Λ̃k , k = 0, . . . , N.

12



Since Λ̃k ⊆ D, k = 0, . . . , N we have

‖vk‖20 = ‖vk‖20,Ω̃k . ‖
N∑
l=k

vl‖20,Λ̃k . ‖
N∑
l=k

vl‖20 .
N∑
l=k

‖vl‖20, k = 0, . . . , N.

We now employ the discrete Hardy inequality (see [12, Lemma 4.3]): if ak, bk ≥ 0, k =
0, . . . , N satisfy bk ≤

∑N
l=k al for all k = 0, . . . , N, then for any s ∈ (0, 1) we have

N∑
k=0

s−kbk ≤
1

1− s

N∑
k=0

s−kak.

Applying this result with s = 1/4 to al = h2
0‖vl‖20 and bl = h2

0‖vl‖20, we obtain

N∑
l=0

h−2
l ‖vl‖

2
0 .

N∑
l=0

h−2
l ‖vl‖

2
0,

and the desired result follows with (20).

3.2 Strengthened Cauchy-Schwarz inequality

The hierarchy of tensor product B-spline functions satisfies the following form of a
strengthened Cauchy-Schwarz inequality.

Lemma 3.1 ([13]). Let ui ∈ Bi, vj ∈ Bj , i, j ∈ {0, . . . , N}, j ≥ i. Then we have for
γ = 1/2

(ui, vj)A . γ(j−i)|ui|1h−1
j ‖vj‖0.

In order to prove assumption A2 for our space decomposition, we first note that (SP)
implies, for all v ∈ Vk,

‖RkAkv‖20 h h2
k‖RkAkv‖2R−1

k

= h2
k〈Akv,RkAkv〉 ≤ ωh2

k‖v‖2A,

where the last inequality stems from the spectral equivalence (see, e.g., [35, Lemma 2.1])

〈Akv, v〉 ≤ ω〈R−1
k v, v〉 ∀v ⇐⇒ 〈AkRkAkv, v〉 ≤ ω〈Akv, v〉 ∀v.

This provides us with the assumption for the following result.

Lemma 3.2. Let Rk : V ′k → Vk satisfy

‖RkAkv‖0 . hk‖v‖Ak ∀v ∈ Vk, k = 0, . . . , N.

Then one has for any u, v ∈ V, i, j = 0, . . . , N,

(Tiu, Tjv)A . γ|j−i|/2(Tiu, u)A(Tjv, v)A.

13



Proof. Follows exactly the arguments of the proof of [35, Lemma 6.3], using the state-
ment of Lemma 3.1 (since T̃k ⊆ Bk) in place of the corresponding FEM estimate used
therein.

We can now prove the desired assumption.

Theorem 3.2. Let the smoothers Rk, k = 0, . . . , N, satisfy (SP). Then we have for all
uk, vk ∈ T̃k, k = 0, . . . , N,∣∣∣∣∣∣

N∑
i=0

N∑
j=i+1

(Tiui, Tjvj)A

∣∣∣∣∣∣ .
( N∑
i=0

(Tiui, ui)A

)1/2( N∑
j=0

(Tjvj , vj)A

)1/2
,

that is, A2 holds for the space decomposition (17).

Proof. As described above, (SP) guarantees the assumptions of Lemma 3.2. The desired
estimate then follows with the elementary inequality (see, e.g., [12, 35])

N∑
l=0

N∑
k=0

γ|l−k|xlyk .
2

1− γ

( N∑
l=0

x2
j

)1/2( N∑
k=0

y2
k

)1/2
∀xl, yl ∈ R, l = 0, . . . , N.

3.3 Smoothing property

We first state the well-known L2-stability of B-splines.

Theorem 3.3 ([31, 30]). Let l ∈ {0, . . . , N} and c(l,j) ∈ R, j ∈ I l. Then we have

‖
∑
j∈Il

c(l,j)β(l,j)‖20 h hdl
∑
j∈Il
|c(l,j)|2.

We need the following auxiliary result on the norms of B-spline basis functions.

Lemma 3.3. The tensor product B-spline basis functions satisfy

|β(l,i)|21 h h−2
l ‖β

(l,i)‖20 h hd−2
l ∀(l, i) ∈ I.

Proof. The bound |β(l,i)|1 . h−1
l ‖β

(l,i)‖0 follows from the inverse inequality (18). The
bound ‖β(l,i)‖0 . hl|β(l,i)|1 follows from Poincaré’s inequality since diam suppβ(l,i) h
h and β(l,i) is zero on at least some part of the boundary of its support. The final
equivalence follows from the B-spline stability result of Theorem 3.3.

Our smoothers Rk are to be specified on the subspaces T̃k := Bk(Ωk) ⊂ Bk, k =
0, . . . , N . Therefore it is natural to use the canonical B-spline basis for their representa-
tion, i.e., fix some k and let

v =
∑
j∈Ĩk

cjβ(k,j) ∈ T̃k with cj ∈ R.

In the remainder of this section, we identify Ak with the local stiffness matrix with
respect to this basis and also interpret Rk as a square matrix of the same size. We will
also make use of the splitting Ak = D−L−U , where D,L,U denote the diagonal, lower
left triangular and upper right triangular components of Ak.
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3.3.1 The Richardson smoother

Let
Rk = µkI,

where I is the identity matrix of the same size as Ak and the damping parameter µk > 0
is chosen such that 〈Akv, v〉 ≤ 〈R−1

k v, v〉 for all v, i.e., µk h h2
k. Thus, the first equation

of (SP) is immediately satisfied with ω = 1. On the other hand, by Theorem 3.3 and
Lemma 3.3 we have

h−2
k ‖v‖

2
0 h hd−2

k

∑
j∈Ĩk

|cj |2 h h−2
k

∑
j∈Ĩk

‖β(k,j)‖20|cj |2 h µ−1
k ‖v‖

2
I = ‖v‖2

R−1
k

.

Thus, (SP) holds for the Richardson smoother.

3.3.2 The Jacobi smoother

Let
Rk = µkD

−1,

where the damping parameter µk > 0 is chosen such that 〈Akv, v〉 ≤ 〈R−1
k v, v〉 for all

v. Thus, the first equation of (SP) is immediately satisfied with ω = 1. On the other
hand, by Theorem 3.3 and Lemma 3.3 we have

h−2
k ‖v‖

2
0 h hd−2

k

∑
j∈Ĩk

|cj |2 h
∑
j∈Ĩk

|β(k,j)|21|cj |2 h
∑
j∈Ĩk

‖β(k,j)‖2A|cj |2 = µk‖v‖2R−1
k

.

A standard argument using the Cauchy-Schwarz inequality shows that µk can be chosen
depending only on the number of nonzeros per row of Ak and thus on cp, but not on hk;
hence, µk h 1. This shows that (SP) is satisfied for the Jacobi smoother.

4 Convergence of local multigrid methods with (T)HB-splines

4.1 Robust convergence of the local multigrid method

The assumptions of the abstract convergence result Theorem 2.3 are now satisfied due
to Theorem 3.1 and Theorem 3.2 assuming that the chosen smoothers satisfy (SP). We
have verified that standard Richardson or Jacobi smoothers satisfy these assumptions in
Section 3.3. Thus, we have shown the following main result.

Theorem 4.1. Under the assumption that the mesh level disparity δ is uniformly bounded
(which can be guaranteed by suitable refinement strategies [8, 9, 10]), the proposed lo-
cal multigrid method for HB- and THB-spline spaces based on the space decomposition
(17) and using Richardson or Jacobi smoothers converges uniformly with respect to the
number of levels and the mesh sizes.
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Remark 4.1. Note that our theory covers HB- and THB-splines in the same framework.
In fact, the choice of basis enters only in the smoothers, and since smoothing is only done
in the B-spline spaces Bk(Ωk), our method even produces identical results independent
of the choice of HB- or THB-spline bases.

The theory is significantly simpler than that for previously introduced local multigrid
methods for FEM [12, 18, 34], where the specifics of the element refinement strategy
have to be taken into account.

4.2 Possible enlargements of the subspaces

In Section 3 we have presented a space decomposition (T̃k)Nk=0 which, together with
suitable smoothing operators (Rk), satisfies the assumptions A1, A2. In a sense, the
subspaces T̃k, k = 0, . . . , N to be smoothed over were chosen in a minimal way, since
Qk −Qk−1 : L2(D) → T̃k, k = 0, . . . , N are supported on Ω̃k only. As we have shown,
this is sufficient in order to obtain h-robustness. However, in practice it may be desirable
to enlarge the subspaces, in particular to improve the behavior of the solver for higher
spline degrees. Therefore we now discuss the possibility of choosing larger subspaces,
T̃k ⊆ T̃+

k ⊆ T, along with corresponding subspace solvers R+
k which we again assume to

satisfy (SP).
Assumption A1 can be proved in a completely analogous way using (SP).
With regards to A2, we note that adding only HB-basis functions of levels 0, . . . , k−1,

preserves the inclusion T̃+
k ⊆ Bk, and Lemma 3.1 remains valid for the enlarged spaces.

Adding only THB-basis functions of levels 0, . . . , k − 1 leads to a slightly weakened
inclusion T̃+

k ⊆ Bk+δ−1; thus, an estimate analogous to Lemma 3.1 remains valid with
slightly larger constants, depending only on δ. Hence the proof of Theorem 3.2 and thus
A2 remain intact provided that is is possible to verify (SP) for the enlarged subspaces.

Regarding the optimal computational complexity of the resulting methods, it is merely
required that dim T̃+

k h dim T̃k in order to retain optimality.
We now present two practical enlargements of space decompositions which still satisfy

A1, A2. The following definition resembles a scheme presented in [34]:

ĨTk := (Ik \ Ik−1) ∪ {(l, i) ∈ Ik ∩ Ik−1 : τ
(l,i)
k 6= τ

(l,i)
k−1},

T̃Tk := span{τ (l,i)
k : (l, i) ∈ ĨTk }.

In other words, T̃Tk consists of the newly added THB-spline basis functions which are in
Tk, but not in Tk−1, as well as “neighboring” THB-spline basis functions (of at most δ
levels) which have been modified due to truncation.

Another enlargement, potentially easier to implement, is given by

ĨBk := (Ik \ Ik−1) ∪ {(l, i) ∈ Ik ∩ Ik−1 : suppβ(l,i) ∩ Ω̃k},

T̃Bk := span{τ (l,i)
k : (l, i) ∈ ĨBk }.

In other words, T̃Bk consists of the newly added THB-spline basis functions which are in
Tk, but not in Tk−1, as well as THB-spline basis functions (of at most δ levels) which
intersect Ω̃k.
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We point out that T̃k ⊆ T̃Tk ⊆ T̃Bk for all k = 0, . . . , N .

5 Numerical results

We present some preliminary numerical tests for a one-dimensional problem. We solve
the differential equation

−u′′ + u = 1 in (0, 1)

and fix the refinement hierarchy

Ωl = (1− 0.5l, 1), l = 0, . . . , L.

We discretize using HB-splines and then apply our proposed local multigrid solver for
the decomposition (17) using two steps of forward Gauss-Seidel smoothing per level.

For demonstrating the robustness in the number of levels and mesh size, we fix the
spline degree and vary the number L of refinement steps and the base mesh size h0. The
results for spline degrees p = 1, 2, 3, 4 shown in Table 5. We observe that the convergence
rates are robust with respect to both h0 and L.

In Table 2 we present convergence rates comparing exact subspace solvers to Gauss-
Seidel smoothing, as well as the minimal (h-robust) subspace decomposition (17) to
the enlarged decomposition based on the truncation criterion T̃Tk from Section 4.2. We
note that the solver degrades for higher spline degrees, however increasing the smoothing
area slightly improves the convergence rates significantly when exact subspace solvers are
used. The design of improved smoothers which approach this almost p-robust behavior
is an important future task.
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New Verifiable Sufficient Conditions for Metric Subregularity of Constraint Sys-
tems with Applications to Disjunctive Programs

June 2019

2019-03 Matúš Benko
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