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Abstract

In this study we developed a mathematical model that describes the diffusion process inside
a cell. The cell is considered to be a three dimensional bounded domain which restricts the
diffusion of the contained chemical species out of the boundary according as some perme-
ability value that characterized the cell. We solved the resulting three dimensional model
using an adaptive finite element procedure.

The 3D model is coupled with a two-dimensional reaction-diffusion process along a plane
interface. The resulting two dimensional problem on the boundary was solved with adaptive
finite element methods and the result obtained was combined with the original three dimen-
sional problem. Finite element methods is no trivial task in three dimensional situation, so
Comsol was used for the 3D mesh generation and for the solution.
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Chapter 1

Introduction

1.1 Reaction-Diffusion Processes

The present work has evolved through a multitude of problems in various field of science
involving transport of materials, and interactions of chemical compounds. The underlying
physical processes involved are chemical reactions and diffusion which can be found in all
facets of science most especially in physical and engineering problems. A reaction process
involves interconversion of chemical substances which arises from the random motion of the
molecules and the forming and breaking of chemical bonds resulting into the formation of
one or more new products. In most cases, the intermediate product(s) formed simultaneously
breaks down into new chemical compounds and are transported within the cell by the process
of diffusion. Diffusion process is of great importance in physics, chemistry and biology and
it results in mixing of chemical substances as it moves materials from one point to another
within a cell as a result of different concentration gradients. These phenomenon are found in
many applications which includes production of semiconductors, catalyst design in chemical
industry, transportation of air and ground water pollutant e.t.c.

The exchange of chemical materials in living cells, and subsequent formation of complex are
carried out through the cell membranes. In this work, we consider the modeling of reaction-
diffusion processes in cell membrane as well as finding a numerical solution to the resulting
model problem in the stationary case. We start with modeling of each processes separately,
and then study process involving both reaction and diffusion.

Our motivation for this work lies in the various works of several authors ranging from
the study of protein-protein interaction in cells, [22], through detailed analysis of reaction-
diffusion of compounds in cells. Notable among these works are [20] which focused on the
numerical simulations of reaction-diffusion systems in cells. The paper [7] specifically stud-
ied the reaction-diffusion of carcinogenic compounds in cells, and model for determining the
concentrations of these chemical substances in cells was obtained. A detailed analysis of
reaction-diffusion processes are extensively considered in cell tissues by [11].

It is worth mentioning that the works cited above have either considered reaction-diffusion
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CHAPTER 1. INTRODUCTION 2

processes solely within cells or have tailored their models to specific problems. We therefore
present in this work, model that encompasses both reaction-diffusion withing cells as well as
on cell membranes.

More specifically, in a general situation, we consider a cell (Ω) that is made up of a chemical
specie B. It reacts with an external chemical species R and S at some parts of its membrane
denoted by Γ, which results in the formation of a chemical complexes RB and RS on Γ.
RB and RS are continually formed and accumulated on Γ but do not diffuse into the cell.
Within the cell, we assume a pure diffusion process. Thus, in the absence of a reaction term,
we obtain a three dimensional model describing the pure diffusion process in Ω given by

−∇ · (D∇uB) = 0 in Ω, (1.1)

uB = g on Γ,

−D∂uB
∂n

= α(uB − u1) on ∂Ω\Γ, u1 ≈ 0,

where α, D and uB denote respectively, the permeability constant of the cell, the diffusion
coefficient of the cell and the concentration of the chemical specie B. One of the major task
in this thesis is the computation of the Dirichlet data g which has to be computed from the
two-dimensional reaction-diffusion model on Γ. We start with the creation of the geometries.

The cell is a tiny structure with the size of about 3×10−6m. Therefore, to be able to represent
the cell on computer for the sake of modeling, some scaling and non-dimensionalization has
to be done. The non-dimensional analysis is treated in details in Chapter 4 of this thesis.
The three dimensional cell is modeled by the intersection of a sphere of a unit radius centered
at the origin (0, 0), and a block of side length two metres as shown in Figure 1.1.

Figure 1.1: The geometry for the cell.

Therefore, the interface Γ, a part of the cell membrane is a result of the intersection of
a ball with a plane. Precisely in our model, Γ is a circle of radius 0.8641 (about 2.59 ×
10−6m in actual size) and is centered at the origin (0, 0). Assuming that Γ is subdivided
into two subdomains ΓR and ΓS (represented in Figure 1.2 by the red tiles and white tiles



CHAPTER 1. INTRODUCTION 3

respectively), then Figure 1.2 describes the geometry for Γ. ΓR and ΓS correspond to the
part of Γ where chemical specie B reacts with the species R and S respectively.

Figure 1.2: The geometry for the interface Γ.

However, the g obtained from solving the two-dimensional model on Γ cannot be used directly
in (1.1), we will therefore employ the multiphysics capability of Comsol to couple the 3D pure
diffusion model (1.1) within the cell and the 2D reaction-diffusion model on the interface Γ.

1.2 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces the mathematical modeling of re-
action, diffusion and reaction-diffusion processes, from which the three dimensional model
problem was formulated. In Chapter 3 we consider discretization of the reaction-diffusion
model. We begin by providing basic background theories in finite element methods, and then
introduce the multi-grids methods as the mathematical basis of our solver. We also introduce
Comsol Multiphysics in Chapter 3. As a simplification of the problem, we implement our
model with Comsol Multiphysics using a constant Dirichlet boundary data, and the results
of the 3D implementation presented. Chapter 4 is devoted entirely to the modeling and
implementation of reaction-diffusion process on the cell membrane. The 2D model is imple-
mented both with Matlab and Comsol on different grid structures, and the results obtained
presented. Finally in Chapter 5, we will consider coupling of the non-constant solution of
the 2D problem on the cell membrane with the 3D model, and we conclude in Chapter 6 by
synthesizing our arguments, and citing a possible direction for future work.



Chapter 2

Mathematical Modeling of
Reaction-Diffusion Process

In this chapter, we give the formulation of the equations governing the reaction diffusion
process in cell membranes. We will start by considering the reaction between the different
chemical species interacting at the contact point on the cell membranes, and then give a
description of the diffusion process within the cell under consideration.

2.1 Reaction Process

We consider a reaction between two different chemical species A and B described by a
reversible reaction equation given by

A+B
k1


k2

AB, (2.1)

where A and B denote the chemical specie A and the chemical composition of the cell under
consideration (Figure 2.1) respectively. This reaction results in the formation of a chemical
complex AB. We assume that the chemical specie A and the complex AB do not diffuse
into the cell after the reaction, but however have a great influence on the concentration of
B in the cell. This is depicted in Figure 2.1.

Denoting the concentrations by

ua = [A], ub = [B], uc = [AB],

the concentration of the complex formed can be obtained by the application of the law of
mass action which states that the rate of a reaction is proportional to the product of the
concentrations of the reactants. Applying this law to (2.1) gives

dua
dt

= −k1uaub + k2uc, (2.2)

4



CHAPTER 2. MATHEMATICAL MODELING OF REACTION-DIFFUSION PROCESS5

Figure 2.1: Illustration of the reaction between chemical specie A and the composition of
the cell.

dub
dt

= −k1uaub + k2uc, (2.3)

duc
dt

= k1uaub − k2uc. (2.4)

Furthermore, under quasi steady state assumption that the concentration of the intermediate
complex formed remain constant we have

duc
dt

= k1uaub − k2uc = 0, (2.5)

and from this we immediately obtain

ub =
k2

k1

uc
ua
. (2.6)

(2.6) models the concentration of the chemical specie B in the cell without diffusion, for a
given k1 and k2.

2.2 Diffusion Process

In this part we derive the governing equation describing the diffusion process within the cell.

We assume that the diffusion of materials within the cell follows the classical diffusion process
so that the Fick’s law of diffusion applies.

2.2.1 Fick’s Law of Diffusion

It is often important to find the relation between the concentration of the material ub and the
flux J . An equation describing this relation is termed constitutive equation, and is usually
determined empirically.



CHAPTER 2. MATHEMATICAL MODELING OF REACTION-DIFFUSION PROCESS6

An applicable constitutive law here is the Fick’s law which states that the steady state
diffusion flux J is proportional to the concentration gradient i.e.(in one dimension)

J ∝ ∂

∂x
ub(x, t) =⇒ J = −D ∂

∂x
ub(x, t), (2.7)

D is the diffusion coefficient which measures how efficiently ub moves from a region of high
concentration to regions of low concentrations. The value of D depends on the size of ub,
as well as the medium in which it is diffusing. It has dimensions (length)2/time. In three
dimensions, the flux is of the form

J = −D∇ub. (2.8)

The diffusion equation is generally written as

∂ub
∂t

= −∇ · (D∇ub) (2.9)

[19].

2.3 Reaction-Diffusion

Equations (2.3) and (2.9) describe respectively the reaction and diffusion rates of the chemical
specie B in the cell. We now consider a general situation involving both reaction and diffusion
processes, and it is derived from balance law as follows. Let τ be a small time period and
denote the cell as an open, bounded and smooth domain Ω ⊆ R3 and regard ∂Ω as the cell
membrane. In general, let S be an arbitrary surface enclosing a volume V ⊂ Ω and n, the
outward normal at the boundary. The general conservation equation holds i.e.

∫
V

[ub(x, t+ τ)− ub(x, t)] dV =

∫ t+τ

t

[
−
∫
S
J · ndS +

∫
V
f(x, t′)dV

]
dt′, (2.10)

where J is the flux of material and f represents the source of material which may be functions
of ub, x and t. Dividing through by τ and then taking the limit as τ → 0, we have

lim
τ→0

∫
V

[
ub(x, t+ τ)− ub(x, t)

τ

]
dV = lim

τ→0

1

τ

∫ t+τ

t

[
−
∫
S
J · ndS +

∫
V
f(x, t′)dV

]
dt′.

This gives

∫
V

∂ub(x, t)

∂t
dV = −

∫
S
J · ndS +

∫
V
f(x, t)dV. (2.11)

Applying the divergence theorem
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∫
Ω
∇ · udx =

∫
∂Ω
u · nda(x) (2.12)

to the flux integral in (2.11) we have

∫
S
J · ndS =

∫
V
∇ · JdV. (2.13)

If the function ub(x, t) is smooth enough, then integration and differentiation can be inter-
changed, and (2.11) becomes

∫
V

[
∂ub
∂t

+∇ · J − f(ub, x, t)

]
dV = 0. (2.14)

Since the volume V is arbitrary, the integrand must be zero and we have

∂ub
∂t

+∇ · J − f(ub, x, t) = 0. (2.15)

The equation (2.15) is called a reaction-diffusion equation and it holds for a general flux
transport J , whether diffusion or some other processes. Here, ∇ · J is the diffusion term
which describes the movement of the chemical specie within the cell, and f(ub, x, t) is the
reaction term which describes the reaction occurring inside the cell.

Inserting (2.8) into (2.15) gives

∂ub
∂t

= ∇ · (D∇ub) + f(ub, x, t). (2.16)

In our case, the reaction term f will be determined from the reactions on the cell membrane
and this is discussed in Chapter 4.

Our model will be based on the quasi steady state equilibrium assumption that the concentra-
tion of the cell remains constant, and thus we consider a time-independent reaction-diffusion
equation

−∇ · (D∇ub)− f(ub, x) = 0. (2.17)

We distinguish between different choices of the reaction term in the following remark.

Remark:

1. If there is no reaction, f = 0, and we obtain the pure diffusion equation

−∇ · (D∇ub) = 0 (2.18)

inside Ω.
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Figure 2.2: Boundary conditions on the cell membrane.

2. On the interface Γ ⊂ ∂Ω; the point of contact between the chemical species A and B,
the reaction term is given by (2.3) i.e.

f = −k1uaub + k2uc.

Substituting this in (2.17) gives the equation

−∇ · (D∇ub) + k1uaub = k2uc, (2.19)

describing the reaction-diffusion process on Γ.

2.4 Choice of Boundary Conditions

A complete reaction-diffusion problem is usually specified by the differential equation (2.15)
and some boundary conditions. The boundary conditions are specified by the appropriate
balance equations at each of the boundary surface.

Let the boundary of the cell be divided into two partial surfaces: Γ and ∂Ω\Γ and let the
concentration of the cell at the interface Γ be fixed i.e. we specify a Dirichlet boundary
condition

ub = g on Γ. (2.20)

Furthermore, cell membranes are considered a barrier (but permeable), so we specify a Robin
boundary condition at the other part of the membrane (as shown in Figure 2.2) i.e.

−D∂ub
∂n

= α(ub − u1) on ∂Ω\Γ, u1 ≈ 0, (2.21)

where
∂ub
∂n

= ∇ · n is the covariant normal derivative, α denotes the permeability constant

of the cell membrane and n is the outward normal at the boundary.
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2.5 The Model Problem

The pure diffusion equation (2.18) is complete with appropriate boundary conditions (2.20)
and (2.21) respectively, and consequently our model problem is

−∇ · (D∇ub) = 0 in Ω, (2.22)

ub = g on Γ,

−D∂ub
∂n

= α(ub − u1) on ∂Ω\Γ,

where the Dirichlet data g has to be computed by solving the following problem describing
the reaction-diffusion process on Γ

−∇ · (D∇g) + k1uag = k2uc in Γ, (2.23)

g = 0 on ∂Γ,

In the above, ∇ is the two-dimensional nabla operator and the computation of the Dirichlet
data g is done in Chapter 4.



Chapter 3

Discretization of the
Reaction-Diffusion Equation

Since it is not possible to solve (2.22) analytically for a general g, we need some discretization
method. One of the most efficient method for the approximation of the solution of (2.22)
is the finite element method. We therefore devout this chapter to the discretization of
the model problem (2.22) with finite element methods. The approach is based on discrete
representation of the weak form of (2.22). First, we provide some basic idea of the method.

3.1 Basic Introduction to Finite Element Methods

To introduce finite element method, brief definition of certain spaces and norms are impera-
tive. We are only introducing the important notions as needed in the present work, we refer
the readers to [9, 15, 13] for a comprehensive introduction to finite element methods.

3.1.1 Function Spaces

We start with the definitions of some function spaces [2].

Definition 3.1. Let the domain Ω ⊂ Rd be Lebesgue measurable with non-empty interior.
The class of all measurable functions u is defined as

Lp(Ω) =

{
u : Ω 7−→ R|

∫
Ω
|u|pdx <∞

}
, 1 ≤ p <∞.

These spaces are equipped with the norms

||u||Lp(Ω) :=

(∫
Ω
|u|pdx

)1/p

, 1 ≤ p <∞.

10
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Also important are vector subspaces of Lp(Ω), the Sobolev spaces.

Definition 3.2. For a nonnegative integer k, the Sobolev space Hk(Ω) is defined as

Hk(Ω) =
{
u ∈ L2(Ω)|Dαu ∈ L2(Ω) ∀ |α| ≤ k

}
,

where the weak derivative Dα for α = (α1, · · · , αd) ∈ Nd0 with |α| =
∑d

j=1 αj is given by

Dαu = ∂α1
x1
· · · ∂αd

xd
:=

∂|α|u

∂α1x1 · · · ∂αdxd
.

The Sobolev space Hk(Ω) is equipped with the norm

||u||k :=

∫
Ω

∑
|α|≤k

|Dαu|2dx

1/2

. (3.1)

Correspondingly, a semi-norm on this space is defined as

|u|k :=

∫
Ω

∑
|α|=k

|Dαu|2dx

1/2

. (3.2)

Of great use will be H1
Γ(Ω), a closed subspace of H1(Ω) defined as

H1
Γ(Ω) = {v ∈ H1(Ω)|v = 0 on Γ}.

It consists of square integrable functions whose trace vanishes on the boundary Γ, [2].

Next, we obtain the weak formulation of the model problem (2.22).

3.1.2 Variational Formulation

In order to apply the finite element method, we must develop a computable form of our
problem, the so called weak form. We do the variational formulation for the general form of
the model problem

−∇ · (D∇ub) + k1uaub = k2uc in Ω, (3.3)

ub = g on Γ,

−D∂ub
∂n

= α(ub − u1) on ∂Ω\Γ,

which covers (2.22). As before, n here denotes the outward normal at the boundary.

The weak form is obtained as follows. First we multiply the problem with a test function
v ∈ H1

Γ(Ω) and integrate over Ω
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−
∫

Ω
∇ · (D∇ub)v dx+

∫
Ω
k1uaubv dx =

∫
Ω
k2ucv dx.

Applying Gauss’ theorem gives∫
Ω
D∇ub · ∇v dx+

∫
∂Ω
D∇ub · nv dx+

∫
Ω
k1uaubv dx =

∫
Ω
k2ucv dx

and because of the structure of the boundary, we have

∫
Ω
D∇ub · ∇v dx+

∫
Γ
D∇ub · nv dx+

∫
∂Ω\Γ

D∇ub · nv dx+

∫
Ω
k1uaubv dx =

∫
Ω
k2ucv dx

Since v ∈ H1
Γ(Ω) and −D∂ub

∂n
= α(ub − u1), we obtain

∫
Ω
D∇ub · ∇v dx+

∫
∂Ω\Γ

αubv dx+

∫
Ω
k1uaubv dx =

∫
Ω
k2ucv dx+

∫
∂Ω\Γ

αu1v dx.

The weak form of (3.3) is thus: find ub − g ∈ H1
Γ(Ω) such that

a(ub, v) = f(v) (3.4)

for all v ∈ H1
Γ(Ω) with

a(ub, v) =

∫
Ω
D∇ub · ∇v dx+

∫
∂Ω\Γ

αubv dx+

∫
Ω
k1uaubv dx, k1 ≥ 0, ua ≥ 0,

and

f(v) =

∫
Ω
k2ucv dx+

∫
∂Ω\Γ

αu1v dx, k2 ≥ 0, uc ≥ 0.

a(·, ·) is called a bilinear form on H1
Γ(Ω). We will see that this is an H1− elliptic problem.

Fundamental to the theory of elliptic problems is the famous Lax-Milgram Lemma. We
introduce this lemma by first giving some appropriate definition and proposition.

Definition 3.3. A bilinear form a(·, ·) on a normed linear space H is said to be bounded
(or continuous) if there exists C <∞ such that

|a(v, w)| ≤ C||v||H ||w||H ∀v, w ∈ H, (3.5)

and coercive on V ⊂ H if there exists α > 0 such that

a(v, v) ≥ α||v||2H ∀ v ∈ V. (3.6)
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Proposition 3.4. Let H be a Hilbert space, and suppose a(·, ·) is a symmetric bilinear form
that is continuous on H and coercive on a closed subspace V of H. Then (V, a(·, ·)) is a
Hilbert space.

Proof. see [10].

Now, we present the Lax-Milgram Lemma [10].

Lemma 3.5. (Lax-Milgram’s Lemma) Given a Hilbert space (V, a(·, ·)), a continuous,
coercive bilinear form a(·, ·) and a continuous linear functional f ∈ V ′ (the dual space of V ),
there exists a unique u ∈ V such that

a(u, v) = f(v) ∀ v ∈ V. (3.7)

In order to apply the Lax-Milgram lemma to our present problem, we have to establish that
the conditions of the lemma are indeed fulfilled by (3.4). An important tool in establishing
the coercivity of a(·, ·) on the space H1

0 (Ω) is the Poincare-Friedrich’s Inequality, and it
simply states that the semi-norm (3.2) is equivalent to the norm (3.1) on H1

0 (Ω).

Lemma 3.6. (Poincare-Friedrich’s Inequality) Let Γ ⊆ ∂Ω have a non-vanishing (n−
1)-dimensional measure. Then, there exists constants, depending only on Ω and Γ, such that,
for u ∈ H1(Ω),

||u||2L2(Ω) ≤ C1|u|2H1(Ω) + C2||u||2L2(Γ). (3.8)

In particular, if u vanishes on Γ,

||u||2L2(Ω) ≤ C1|u|2H1(Ω), (3.9)

and thus
|u|2H1(Ω) ≤ ||u||

2
H1(Ω) ≤ (C1 + 1)|u|2H1(Ω). (3.10)

Proof. We refer the reader to [24] for the proof.

The bilinear form in (3.4) is clearly symmetric, so we only need to establish its continuity
and coercivity as well as showing that the right hand side f(v) is a linear functional on the
dual space V ′ (which is (H1

Γ)∗ in our case).
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Continuity

Proof.

|a(ub, v)| ≤
∫

Ω
|D||∇ub||∇v|+

∫
Ω
|k1||ua||ubv|+

∫
∂Ω\Γ

|α||ubv|

≤ α0

∫
Ω

(|∇ub||∇v|+ |ubv|) +

∫
∂Ω\Γ

|α||ubv|

≤ α0

(∫
Ω
|∇ub|2 + |ub|2

)1/2(∫
Ω
|∇v|2 + |v|2

)1/2

+ α

(∫
∂Ω\Γ

|ub|2
)1/2(∫

∂Ω\Γ
|v|2
)1/2

= α0||ub||H1(Ω)||v||H1(Ω) + α||ub||L2(∂Ω\Γ)||v||L2(∂Ω\Γ)

≤ C||ub||H1(Ω)||v||H1(Ω) (Trace mapping theorem cf.[24]),

where (C = α0 + α).

We have used the Cauchy-Schwarz Inequality in the third line of the proof, and α0 is some
bounds for |D| and |k1||ua|.

Coercivity

Proof. We distinguish two cases based on whether there is a Dirichlet boundary condition
or not.

1. There is a Dirichlet boundary condition on a part of ∂Ω. We can thus estimate α with
0 and using the fact that the coefficient D is positive, ua and k1 are nonnegative, we
can write

a(v, v) =

∫
Ω
D∇v∇v +

∫
∂Ω\Γ

αv2 + k1

∫
Ω
uav

2

≥
∫

Ω
D∇v∇v = D

∫
Ω
|∇v|2

= D|v|2H1(Ω) ≥
D

(C1 + 1)
||v||2H1(Ω).

where the constant (C1 + 1) comes from the Friedrich’s Inequality lemma 3.6.

2. There is no Dirichlet boundary condition. Then, we have a Robin boundary condition
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on ∂Ω with α > 0. This implies

a(v, v) =

∫
Ω
D∇v∇v +

∫
∂Ω\Γ

αv2 + k1

∫
Ω
uav

2

≥
∫

Ω
D∇v∇v +

∫
∂Ω\Γ

αv2

= D

∫
Ω
|∇v|2 + α

∫
∂Ω\Γ

|v|2

= D|v|2H1(Ω) + α||v||2L2(∂Ω\Γ)

≥ ||v||2H1(Ω). (Lemma 3.6, (3.8))

Finally, the application of Cauchy-Schwarz inequality on the linear form f(v) gives

|f(v)| ≤ ||f ||(H1
Γ)∗ ||v||H1 , (3.11)

and this implies that f(v) is a bounded linear functional on (H1
Γ)∗. Therefore, we are assured

of a numerical solution to our problem by the Lax-Milgram’s lemma.

Next, we describe the steps involved in applying a finite element procedure to a weak form.

3.1.3 Finite Element Method (Approximating the weak form)

The finite element method is a process of constructing finite dimensional subspaces Vh of
spaces V = H1

Γ, called finite element spaces which approximate the original solution u. The
discretization of the weak formulation (3.4) will then involve finding approximations uh ∈ Vh,
the so-called Ritz projection of u in the finite dimensional subspace. More specifically, with
any finite dimensional subspace Vh of V , we associate the discrete problem: Find uh ∈ Vh
such that

∀ vh ∈ Vh a(uh, vh) = f(vh) (3.12)

[13].

This construction is characterized by three basic aspects:

• the existence of the triangulation of the polygonal set Ω,

• the construction of a finite dimensional subspace consisting of piecewise-polynomials
and

• the existence of a basis of functions having small support

[9].

The well-posedness of problem (3.12) is ensured by the Lax-Milgram Lemma 3.5. This
implies that (3.12) has a unique solution which shall be referred to as a discrete solution.



CHAPTER 3. DISCRETIZATION OF THE REACTION-DIFFUSION EQUATION 16

Triangulation

Let Ω ⊂ Rd be a bounded polygonal or polyhedral domain with a Lipschitz continuous
boundary. A triangulation (or equivalently, mesh) is a non-overlapping partition of Ω into
elements. Here we shall consider meshes consisting of triangles in the 2D problem on the
cell membrane, and of tetrahedral elements in the 3D problem in the cell. A family of
triangulations Th, h > 0 is formally defined below [13].

Definition 3.7. Let Ω ⊂ Rd be a bounded domain. A partition Th of Ω into subsets T ∈ Th
is called a triangulation if the following properties are satisfied

1. Ω̄ = ∪T∈ThT .

2. For each T ∈ Th, the set is closed and its interior int(T ) is non-empty and connected.

3. For each distinct T1, T2 ∈ Th, one has int(T )1 ∩ int(T )2 = ∅.

4. If F = T1 ∩ T2 6= ∅, T1 and T2 distinct elements of Th, then F is a common edge, face
or vertex of T1 and T2.

5. diam(T ) ≤ h for each T ∈ Th.

Then Th is called a triangulation of Ω̄, [20]. h is called the diameter of Th, and the family
Th satisfying the above properties is said to be geometrically conforming. Other required
properties of triangulations are given in the following definitions.

Definition 3.8. [24] A family of triangulations Th is called shape-regular if there exists a
constant independent of h, such that

hT < CρT , T ∈ Th,

where ρT is the radius of the largest circle or sphere contained in T. The ratio hT /ρT is
called the aspect ratio of T .

Definition 3.9. [24] A family of triangulations Th is called quasi-uniform if it is shape-
regular and if there exists a constant independent of h, such that

hT > Ch, T ∈ Th.

Finite Element Spaces

The second aspect of finite element involves the construction of the space Vh which approxi-
mates the infinite dimensional space V . Vh is chosen to be the space of functions consisting
of piecewise-polynomials i.e. for each T ∈ Th the space

Pk,T (Vh) :=
{
vh|T |vh ∈ Vh, k ≥ 0

}
consisting of algebraic polynomials of total degree at most k defined on Vh. In this work, the
triangulation of Ω shall consist of tetrahedral elements for the three dimensional problem
(diffusion within the cell), and triangles for the two dimensional problem on Γ.

Let Th be a conforming triangulation. We have the following result [24]:
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Lemma 3.10. A function u : Ω −→ R belongs to H1(Ω) if and only if the restriction of u
to every T ∈ Th belongs to H1(T ), and, for each common face (or edge in two dimensions)
f̄ = T̄1 ∩ T̄2, we have

u|T1
= u|T2

, on f̄ .

Consequently, finite element spaces, chosen as a space of continuous piecewise polynomial
functions are contained in H1(Ω). Furthermore, if Th consists of triangles or tetrahedral as
we have in our case (2D and 3D respectively), we define the finite element space for k ≥ 1

V h = V h
k (Ω) :=

{
u ∈ C0(Ω)|u|T ∈ Pk(T ), T ∈ Th

}
, (3.13)

V h
0 = V h

k;0(Ω) := V h
k (Ω) ∩H1

0 (Ω). (3.14)

Remark: Throughout this work, our implementation with Matlab will involve finite ele-
ment spaces consisting of only linear elements. Higher order elements in Pk, k ≥ 2 will
be considered only when using Comsol Multiphysics for the implementation (cf. Section
3.3). Although the use of linear elements is also possible in Comsol, we will nevertheless use
quadratic elements in our implementation.

Choice of Basis Elements

After a successful construction of the finite dimensional space, the next hurdle is to find a set
of basis elements for the subspace Vh. One basic requirement is that the basis have a small
support with little overlap of neighboring basis functions. This ensures that the resulting
system is sparse. The usual basis function for Vh is the shape functions φj ∈ Vh chosen in
such a way that

φj(ai) = δij ≡

{
1 if i = j

0 if i 6= j.
(3.15)

where ai, i = 1, ..., N denotes the global set of nodes in Th.

For a fixed polynomial of degree k, and the set of basis function {φhi } associated to a set of
nodes {ai} of the triangulation, the degree of freedom are the values of a function at these
nodes. Then

u(x) =
∑
i

u(ai)φ
h
i (x), u ∈ Vh, (3.16)

for a defined system of basis function φhi ’s.

We finally give the formal definition of finite element method.

Definition 3.11. A finite element in Rd is a triple (T, PT ,Σ) where
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• T is a closed subset of Rd with a non empty interior and a Lipschitz continuous bound-
ary.

• PT is a finite dimensional linear space of functions defined on T,

• Σ is a set of degrees of freedom,

such that a function v ∈ PT is determined by the degrees of freedom Σ

[13].

Since {φj}N1 is a set of test functions v that form a basis for Vh, any function u ∈ Vh (and
consequently the finite element approximation uh of u) has a unique representation

u(x) =

N∑
j=1

cjφj(x), x ∈ Ω.

Applying this and setting v = φi for each i in the weak form (3.4), we obtain a system of N
linear algebraic equations for the unknowns cj ’s

N∑
j=1

(∫
Ω
D∇φj · ∇φi +

∫
∂Ω\Γ

αφj · φi +

∫
Ω
k1uaφj · φi

)
cj =

∫
Ω
k2ucφi +

∫
∂Ω\Γ

αφiũ1,

i = 1, 2, ..., N.

Introducing the following notations

K = (Kij) =

(∫
Ω
D∇φj · ∇φi

)
ij

, (3.17)

R = (Rij) =

(∫
∂Ω
k1uaφj · φi +

∫
∂Ω\Γ

αφj · φi

)
ij

, (3.18)

b = (bi) =

(∫
Ω
k2ucφi +

∫
∂Ω\Γ

αφiũ1

)
i

, (3.19)

i, j = 1, 2, ..., N. We finally have, in matrix form, a linear system

Ac = b, (3.20)

where A = K +R.

3.1.4 Error Estimates

It should be recalled that the application of the Lax-Milgram Lemma to the weak form of
our problem ensures the existence (and the uniqueness) of a numerical solution. However, it
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is important to able to ascertain the quality of the approximate solution. We therefore inves-
tigate the quality of the approximation of the solution by the elements in the corresponding
finite element space Vh = Vh(Th). The error bounds for the finite element approximations
can be determined with the Cea’s Lemma. And according to the lemma, the accuracy of a
numerical solution essentially depends on choosing function spaces which approximates well
the exact solution u [9].

Lemma 3.12. (Cea’s Lemma) Suppose the bilinear form is coercive and continuous with
Hk

0 (Ω) ⊂ V ⊂ Hk(Ω). In addition, suppose u and uh are the solutions of the variational
problem in V and Vh ⊂ V, respectively. Then

||u− uh||k ≤
C

α
infvh∈Vh ||u− vh||k. (3.21)

Proof. By the definition, u and uh are the solutions of the variational problem, then

a(u, v) = f(v) ∀v ∈ V, (3.22)

a(uh, v) = f(v) ∀v ∈ V. (3.23)

Since Vh ⊂ V, subtracting (3.23) from (3.22) results in

a(u− uh, v) = 0 ∀v ∈ Vh,

which is termed the Galerkin Orthogonality.

Let vh ∈ Vh and setting v = u− vh ∈ Vh, it follows from the Galerkin orthogonality that

a(u− uh, u− uh) = a(u− uh, u− vh) ∀v ∈ Vh.

Now, using the bi-linearity, the coercivity and the continuity of a(·, ·), we have

α||u− uh||2k ≤ a(u− uh, u− uh)

= a(u− uh, u− vh)

≤ C||u− uh||k||u− vh||k ∀v ∈ Vh.
(3.24)

This implies that

||u− uh||k ≤
C

α
||u− vh||k ≤

C

α
infvh∈Vh ||u− vh||k. (3.25)

In the next step, we have to construct a suitable element vh ∈ Vh. Taking the interpolant
Ihv of the exact solution, we are able to prove the following error estimate as obtained in
[10].
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Theorem 3.13. (Error Estimate) Let a(u, v) be a symmetric, coercive and continuous
bilinear form , and let u and uh be the solutions of the variational problems

a(u, v) = f(v) ∀v ∈ V,

a(uh, vh) = f(vh) ∀vh ∈ Vh, with f ∈ L2(Ω).

If u ∈ H2(Ω), then
||u− uh||Hs(Ω) ≤ Ch2−s||u||H2(Ω), s = 0, 1, (3.26)

where C is a constant independent of h.

3.1.5 Adaptive Finite Element Methods

Adaptivity is an important aspect of finite element method. In general, the more elements
we have in a mesh, the more precise is the solution due to the availability of more nodes
for calculating responses [9]. Furthermore, more elements implies smaller elements and this
tends to minimize the discretization error of the approximation. However, constraints on
computational space and costs do not allow too fine discretization. Therefore, an adaptive
procedure is imperative as a trade-off between the discretization error minimization and the
computational costs.

A typical adaptive finite element procedure follows this sequence:

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ COARSEN/REFINE.

1. Solve: This involves computation of a trial solution of the finite element discretized
problems on a coarse mesh with a lower dimensional finite element space.

2. Estimate: Given a tolerance Tol > 0, the global discretization error denoted as ||E||
is estimated using the local discretization error ||E||T as an enrichment indicator, i.e

||u− uh||2︸ ︷︷ ︸
global error

=
∑
T∈Th

||u− uh||2︸ ︷︷ ︸
local error

. (3.27)

We require that
||E||T = ||u− uh||T ≤ Tol. (3.28)

3. Mark: Here all elements that needs to be refined are marked using (3.28) as indicator.
The assumption is that large errors come from regions where the local error estimate
||E||T is large.

4. Refine: The marked elements will be refined by subdividing the elements ensuring
quasi-uniformity requirement among others.

This procedure will be repeated until an optimal solution is obtained or the error tolerance
level is reached by every elements of the discretized domain. Standard literatures on error
estimators and adaptive procedures include [25, 8, 5].
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3.2 The Solver

The matrix A in (3.20) is large and sparse, and the non-zero entries has a regular pat-
tern. This favors the use of iterative methods for solving it. Since the spectral radius
ρ(A) ≈ O(h−2), many iterative procedures (Gauss-Seidel, Jacobi etc.) have a slow rate
of convergence. The software that will be used finds its solution by the use of multigrid
methods.

3.2.1 Multigrid Methods

Multigrid is an iterative linear solver and an optimal order algorithm for solving a discrete
elliptic boundary value problem. They are essentially used to improve the rate of convergence
of basic iterative methods. One important feature of multigrid is that its convergence speed
is independent of the discretization mesh size h. Also, the amount of computational work
involved is proportional only to the number of unknowns in the discretized equations.

The multigrid method has two main features; smoothing on the current grid and error
correction on a coarser grid. The smoothing step has the effect of damping out the oscillatory
part of the error. The smooth part of the error can then be accurately corrected on the
coarser grid [10]. So, the multigrid iterative formula can be interpreted as an error averaging
process. This phenomenon is always recognized after a few iteration steps, where the error
of the approximation becomes smooth (but not necessarily become small).

We recall our model problem in the variational form

a(ub, v) = f(v), (3.29)

for all v ∈ H1
Γ(Ω) with

a(ub, v) =

∫
Ω
D∇ub · ∇v dx+

∫
∂Ω\Γ

αubv dx+

∫
Ω
k1uaubv dx, k1 ≥ 0, ua ≥ 0, (3.30)

f(v) =

∫
Ω
k2ucv dx+

∫
∂Ω\Γ

αu1v dx, k2 ≥ 0, uc ≥ 0, (3.31)

and we seek a solution ub − g ∈ V := H1
Γ(Ω).

By elliptic regularity we know that ub ∈ H2(Ω) ∩H1
Γ(Ω). From the triangulation Th of the

physical domain Ω, ub is approximated as follows. Following [10], suppose T1 is given and
let Tk k ≥ 2, be obtained from Tk−1 via a regular subdivision; edge midpoints in Tk−1 are
connected by new edges to form Tk. Denoting by Vk the C0 piecewise linear functions with
respect to Tk that vanish on ∂Ω, then we have

Tk ⊃ Tk−1 =⇒ Vk−1 ⊂ Vk,

for all k ≥ 1. The discretized model problem in the weak form thus reads: find uk ∈ Vk such
that

a(uk, v) = (f, v) ∀v ∈ Vk. (3.32)
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Suppose that for any T ∈ Tk−1, the elements of Tk are all similar to T and have half the size
of T , then

hk =
1

2
hk−1,

where hk = maxT∈Tkdiam T . The multigrid methods aim to calculate uk ∈ Vk in O(nk)
operations such that (3.21) holds where nk denotes the dimension of the space Vk.

3.2.2 Multigrid Scheme

We introduce the multigrid scheme by making the following definitions. First, we define the
operator Ak : Vk −→ Vk by

(Akv, w)k = a(v, w) ∀v, w ∈ Vk. (3.33)

Then the discretized equation (3.32) can be written as

Akuk = fk (3.34)

where fk ∈ Vk satisfies
(fk, v)k = (f, v) ∀v ∈ Vk. (3.35)

The implementation of the multigrid scheme involves transferring of estimates between grids
(in 2-cycle multigrid method: between coarse and fine grid), so we describe the inter-grid
transfer operators as follows. We take the Galerkin interpolation as the coarse-to-fine grid
transfer operator

Ikk−1 : Vk−1 −→ Vk (3.36)

and it is illustrated in Figure 3.1. The values at points on the coarse grid map unchanged

Figure 3.1: Illustration of the coarse-to-fine grid Galerkin interpolation (prolongation).

to the fine grid while the values on the fine grid points which are not on the coarse grid are
the average of their coarse-grid neighbors.
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Correspondingly, the fine-to-coarse grid transfer (restriction) operator is defined as the trans-
pose of the prolongation operator i.e.,

Ik−1
k = (Ikk−1)T . (3.37)

Also important is the following lemma about the estimate of the spectral radius, ρ(Ak), of
Ak.

Lemma 3.14.
ρ(Ak) ≈ Ch−2

k . (3.38)

Proof. see [10].

We now describe the multigrid scheme. The scheme that we present here will require that
the discretized domains be nested. This means that the nodes of the coarse grid matches
the nodes of the fine grid. For a non-nested domain, we refer interested readers to [9].

(a) Coarse grid. (b) Fine grid.

Figure 3.2: Example of nested domains.

Let k represents the level of iteration, and l, the number of iterations. Now, denote the kth

level iteration of the multigrid scheme by MG(k, u0, f) for initial guess u0. The case k = 1
represents the direct solution of the equation A1u = f i.e,

MG(1, u0, f) = A−1
1 f (3.39)

The MG iterates for the case k ≥ 2 is obtained recursively in the following steps:

1. Presmoothing step:

• Perform m1 smoothing operations by a chosen iterative scheme (e.g damped Ja-
cobi method) i.e., for 1 ≤ l ≤ m1, let

ul = ul−1 +
1

ρ(Ak)
(fk −Akul−1) (3.40)

where ρ(Ak) denotes some upper bound for the spectral radius of Ak satisfying
Lemma 3.14.
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• Compute the defect dk = fk −Akum1 .

2. Error correction (or Coarse-Grid Correction): This is done in the following
steps:

• Project the defect to the coarse grid and solve the coarse problem:

– Let f̄ = Ik−1
k dk and q0 = 0.

– For 1 ≤ i ≤ p, let
qi = MG(k − 1, qi−1, f̄).

• Project back to the fine grid and do correction: um1+1 := um1 + Ikk−1qp.

3. Postsmoothing step: Carry out m2 smoothing steps, i.e., for m1 + 2 ≤ l ≤ m1 +
m2 + 1, let

ul = ul−1 +
1

ρ(Ak)
(fk −Akul−1). (3.41)

Then the output of the kth level iteration is

MG(k, u0, f) := um1+m2+1, (3.42)

for positive integers m1,m2. The parameter p in the error correction step is called the cycle
index and it denotes the number of times the multigrid scheme is applied to the coarse level
problem. Typical values for p are 1, 2 and represents respectively the V -cycle and W -cycle
multigrid method.

3.2.3 Convergence of Multigrid Method

One of the major concern on the use of the basic iterative scheme for solving a big linear
system is their slow rate of convergence. Some of these methods require an appropriate
choice of the parameters for convergence to be ensured. The damped Jacobi methods for
instance converges if only the damp factor ω ∈ (0, 2). Constructing a linear system solver that
converges independently of the discretization parameter h is the motivation for developing
the multigrid methods.

Naturally for convergence of a multigrid method, it is required that the approximate solutions

u
(k)
l −→ A−1

l fl for k → ∞. The convergence proof is given in [17] where the convergence
of the V -cycle multigrid method for a general symmetric problems was proved based on
sufficient regularity of the problems.

Before we formulate this important theorem, we introduce some notations. Let A be a
symmetric positive definite matrix. Then, we define the matrix norm

|||u|||21,A = (Au, u). (3.43)

We now present the multigrid convergence theorem [16].
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Theorem 3.15. Let V be a Hilbert space, a(·, ·) : V × V −→ R a coercive, bounded and
symmetric bilinear form of the finite element discretization (3.32) on V, and f(v) a linear
functional on the dual space V ′. Let Au = b be the resulting linear system according as (3.33).

Suppose that uk+1
l and ul are the lth iterate and the exact solution of a multigrid method

applied to the linear system, respectively. Furthermore, if f ∈ L2(Ω), and uh is H2−regular,
then a multigrid method applied to the linear system Au = b converges in the norm ||| · |||1,A
and

|||ul − uk+1
l |||1,A ≤ γ|||ul − ukl |||1,A (3.44)

with 0 < γl ≤ γ < 1.

In order to apply this theorem to our problem, we have to verify the assumptions of the
theorem. First, we have already shown in Subsection 3.1.2 that the bilinear form (3.30)
is coercive, continuous and symmetric. Furthermore, our present problem is a standard
elliptic problem which enjoys the H2−regularity. Therefore, applying the multi-grid scheme
described in Subsection 3.2.2, all the assumptions of the theorem are undoubtedly satisfied.
Hence, a multigrid method applied to our problem converges based on Theorem 3.15.

Remark: Extension to local refinements (i.e. adaptivity) is also possible.

3.3 Model Implementation with Comsol

In finding the numerical solution to our model problem (2.22), we need to compute the
Dirichlet data g by the reaction on the interface Γ. As a simplification, we discuss in this
part the implementation of our problem with Comsol Multiphysics using a constant value g.
The extension to the case of a non-constant g will be treated in the next chapter. First, we
briefly introduce Comsol.

3.3.1 Comsol Multiphysics

Comsol Multiphysics [1] (formally known as FEMLAB) is an integrated environment for
solving systems of time dependent or stationary second order in space partial differential
equations in one, two, and three dimensions [18]. It performs equation-based multiphysics
modeling which implies that the equations in Comsol can be manipulated to suit our problem.

There are many application modes in Comsol Multiphysics which serves as template for
various scientific problems. The underlying mathematical structure for the solver is a system
of partial differential equation, and there are two forms of the PDEs available; the coefficient
form and the general form. We select the coefficient form. This allows us to choose the
coefficients freely and by so doing, so many problems could be handled.

Comsol Multiphysics also provides sophisticated tools for geometric modeling of the physical
domain. A complex geometry can easily be drawn by appropriate combinations of the set
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of standard geometries (rectangles, circles etc. in 2D and block, sphere etc. in 3D). The
details behind the creation of the geometry in Figure 3.3(a) is provided in Chapter 5.

3.3.2 Model Implementation

The Comsol Multiphysics solves the following boundary value problem (in the coefficient
form)

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (−c∇u− δu+ γ) + β · ∇u+ au = f (3.45)

with boundary conditions
hu = r on ∂Ω, (3.46)

n · (c∇u+ δu− γ) + qu = g − hTµ on ∂Ω. (3.47)

n is the unit normal and ea, da, c, δ, γ, β, a, f, g, h are scalar functions. Our model problem is
easily realizable by setting ea = da = β = δ = γ = 0.

Comsol implements a finite element method thats is based on tetrahedral element and piece-
wise linear functions. The linear system arising from the discretization is solved with multi-
grid method.

3.3.3 Geometry

A complex geometry is drawn in Comsol using the sophisticated set of tools and the set of
standard geometric objects available. Through several combinations of these basic objects,
our physical domain was created.

3.3.4 Numerical Solution

In this part of the work, we present the result of the 3D model implementation of (2.22) by
the use of Comsol. This is a very simple elliptic problem, but the program used provides all
the major ingredients needed to solve not only problem of this type but a general stationary
problems. The Figures 3.3 show the solution to the pure diffusion problem (2.22), and the
corresponding refined mesh of the physical domain is as shown in Figure 3.4.

The plot shows the diffusion pattern of the chemical specie B within the cell. A symmetry
pattern behavior is observable in the result and this implies that our 3D problem is easily
reducible to a 2D problem.
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(a) Numerical solution of the pure diffusion problem with con-
stant g.

(b) The numerical solution of the pure diffusion problem with
constant g in slice form.

Figure 3.3: Numerical solution of the pure diffusion model with a constant Dirichlet data g.
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Figure 3.4: The corresponding meshed domain for the solution to the diffusion model.



Chapter 4

Reaction-diffusion on Cell
Membrane

Usually there are more than one chemical species interacting within a cell. In this chapter,
we will consider a situation where there are two different species R and S interacting with
B on a part of the cell membrane Γ as shown below.

RB SB RB SB

SB RB SB RB

RB SB RB SB

SB RB SB RB

Table 4.1: Multi-species Interaction.

We will derive the model problem in this case and implement it with Matlab and Comsol
Multiphysics.

4.1 Formulation of the 2D Problem on the Cell Membrane

The geometry for the interface Γ is modeled from the intersection of a ball with a plane.
This gives a circle. However, first we consider the problem on a simple rectangular geometry.
Suppose the interface Γ composes of two sub domains ΓR and ΓS arranged alternately as in
the table 4.1.

And suppose the two chemical species react according to these equations

R+B
k2


k3

RB on ΓR, (4.1)

S +B
k4


k5

SB on ΓS . (4.2)

29
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ΓR ΓS ΓR ΓS
ΓS ΓR ΓS ΓR
ΓR ΓS ΓR ΓS
ΓS ΓR ΓS ΓR

Table 4.2: Distribution of the two sub domains on the membrane.

Applying the law of mass action (cf. Section 2.1) on (4.1), (4.2) gives the reaction terms

f(uB, uR, uBR) = −k2uBuR + k3uBR on ΓR, (4.3)

and
f(uB, uS , uBS) = −k4uBuS + k5uBS on ΓS . (4.4)

We obtain the reaction-diffusion equation governing this process on Γ by substituting (4.3)
and (4.4) into the reaction-diffusion equation (2.15). Under our assumption of quasi steady
state equilibrium, we have the following equations

−∇ · (D∇uB) + k2uBuR = k3uBR on ΓR, (4.5)

and
−∇ · (D∇uB) + k4uBuS = k5uBS on ΓS . (4.6)

These equations describe the reaction-diffusion processes on ΓR and ΓS respectively. We
assume that the reaction rates k4 and k5 are zero so that we have a pure diffusion process
in the subdomain ΓS , i.e.

−∇ · (D∇uB) = 0 on ΓS . (4.7)

It is important to ascertain whether the reaction or the diffusion process dominates the
reaction-diffusion equation. To achieve this, and to be able to choose the parameters freely
so as to ease numerical programming, we have to non-dimensionalize the above equations
[14]. First, we introduce the characteristic length L (chosen here to be the size of the cell)
and the characteristic concentration u∗. Next, we introduce the dimensionless quantities

u =
uB
u∗
, ε =

x

L
. (4.8)

We obtain the dimensionless form of (4.5) by substituting (4.8) into (4.5) as follows (the
process for (4.7) is trivial).

ε =
x

L
(4.9)
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implies that
∇ε = L∇x and ∆ε = L2∆x.

This gives

k3uBR = −∇x · (D∇xuB) + k2uBuR

= −D∆xuB + k2uBuR

= −
(
Du∗

L2

)
∆εu+ (k2u

∗uR)u.

Multiplying through by

(
L2

Du∗

)
, we obtain

−∆εu+

(
k2L

2uR
D

)
u =

(
k3L

2uRB
Du∗

)
. (4.10)

Introducing the dimensionless quantities

p =

(
k2L

2uR
D

)
, q =

(
k3L

2uRB
Du∗

)
, (4.11)

we finally obtain the dimensionless equations

−∆εu+ pu = q on ΓR, (4.12)

and

−∆εu = 0 on ΓS . (4.13)

In a compact form, the dimensionless problem reads:

−∆u+ au = f, (4.14)

with piecewise constant coefficients

a =

{
p on ΓR
0 on ΓS

,

and

f =

{
q on ΓR
0 on ΓS

.

Equation (4.14) comprises a reaction term as well as a diffusion term. So, to be able to
efficiently write an appropriate programming code for numerical solution of the problem, it
is important to have a feeling of the magnitudes of the quantities p and q.
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Symbol Meaning Type Values Units

u mass concentration unknown -
mol

m2

t time variable - s

x space variable - m

D diffusion coefficient parameter 0.5E-13
m2

s

k2 forward reaction rate parameter 2π
m2

s
k3 reverse reaction rate parameter 10E-1 s−1

R size of the cell parameter 3E-6 m

r size of the planar interface parameter 2.59E-6 m

Table 4.3: Table of values and units of the variables and parameters describing the model.

The table 4.3 shows the chosen values of the variables and the parameters that describe our
model.

With the values of the parameters in table 4.3, we obtain p ≈ 18 and q ≈ 18. This implies
that our problem is not highly reaction dominated, and thus the standard finite element
method could be applied.

4.2 Numerical Solution of the 2D Problem on the Cell Mem-
brane.

In our quest for the non-constant Dirichlet boundary value data g, the two dimensional
problem on the membrane (Γ) is solved in this section.

4.2.1 Matlab Implementation on a Rectangular Domain.

Here, we consider the structure of the solution of (4.14) on a more simple geometry. There-
fore, in this part of the work we implement (4.14) on a rectangular domain shown in Figure
4.1.

First we obtain the variational formulation of the problem. Following the usual process of
multiplying by a test function v ∈ H1

0 (Γ) and integrating over the domain using the Green’s
formula (cf. Section 3), we obtain (after applying homogeneous Dirichlet boundary condition
on ∂Γ): find u ∈ H1

0 (Γ) such that∫
Γ
∇u · ∇v +

∫
Γ
auv =

∫
Γ
fv. (4.15)

Following the finite element procedure described in Section 3, we obtain the linear system

(K +N)c = b
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Figure 4.1: Discretized rectangular domain.

with

Kij =

∫
Γ
∇φi · ∇φj , (4.16)

Nij =

∫
Γ
aφi · φj , (4.17)

bi =

∫
Γ
fφi, (4.18)

i, j = 1, 2, ..., n.

The most important step in Matlab implementation is the assemblies of the global stiffness
matrix K, the mass matrix N and the right hand side b. These matrices can be written as
a sum over all the elements of the triangulation Th (of Γ)

Kij =
∑
T∈Th

∫
T
∇φi · ∇φj︸ ︷︷ ︸
K

(T )
loc

, (4.19)

Nij =
∑
T∈Th

∫
T
aφi · φj︸ ︷︷ ︸
N

(T )
loc

, (4.20)

bi =
∑
T∈Th

∫
T
fφi. (4.21)

The matrices K
(T )
loc , N

(T )
loc ∈ R3×3 are called the local stiffness matrix and mass matrices

respectively.
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We approximate the local stiffness matrix as follows. Consider an element with three vertices
(x1, y1), (x2, y2) and (x3, y3), and let φ1, φ2, φ3 be the associated basis elements. If |A| denotes
the area of the element, then

2|A| =

∣∣∣∣∣∣
1 1 1
x1 x2 y3

y1 y2 y3

∣∣∣∣∣∣ .
Following [23], the basis function can be chosen in terms of the barycentric coordinates for
the linear triangular element. This is because the barycentric coordinates for the linear

Figure 4.2: Length ratios of a triangle element.

triangular elements are identical to the shape function, and the two set of quantities can be
interchanged. The length ratios (barycentric coordinates) for a triangular element shown in
Figure 4.2 are defined as

L1 =
1

2|A|
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y], (4.22)

L2 =
1

2|A|
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y], (4.23)

L3 =
1

2|A|
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y]. (4.24)

Consequently the basis functions associated with the vertices of the element can be written
as  φ1(x, y)

φ2(x, y)
φ3(x, y)

 =

 L1(x, y)
L2(x, y)
L3(x, y)

 =

 1 1 1
x1 x2 x3

y1 y2 y3

−1 1
x
y

 . (4.25)

There is a big advantage of this choice of the basis functions. We immediately see that
the derivatives of the basis functions are constants and the evaluation of area integrals is
simplified as follows ∫

A
La1L

b
2L

c
3 dA =

a!b!c!

(a+ b+ c+ 2)!
2|A|. (4.26)
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For instance, ∫
A
φ1φ2 dA =

∫
A
L1

1L
1
2L

0
3dA =

1!1!0!

(1 + 1 + 0 + 2)!
2|A| = |A|

12

[23, 9].

Thus, the local mass matrix can be written as

N
(T )
loc =

|A|
12

 2 1 1
1 2 1
1 1 2

 .

Using (4.22− 4.24), it can also easily be computed that

∇φi(x, y) =
1

2

(
yi+1 − yi+2

xi+2 − xi+1

)
,

and consequently, the local stiffness matrix is∫
T
∇φi · ∇φj dx =

1

4|A|
(yi+1 − yi+2 xi+2 − xi+1)

(
yi+1 − yi+2

xi+2 − xi+1

)
,

where all indices are taken modulo 3. This can further be written in a more compact form
for all indices as

K
(T )
loc =

|A|
2
·G ·GT ,

where

G =

 1 1 1
x1 x2 x3

y1 y2 y3

−1 0 0
1 0
0 1

 .

In our case, all elements of the finite element mesh are congruent, isosceles, right angled
triangles. This implies (after proper permutation of the nodes) that (see Figure 4.3)

G =

 −1 −1
1 0
0 1

 ,

and therefore

K
(T )
loc =

1

2

 2 −1 −1
−1 1 0
−1 0 1

 .

Finally, we assemble the right hand side (4.18) making use of (4.26) and the fact that f is a
constant function

b
(T )
loc =

∫
T
fφj =

|A|
3
f. (4.27)

In general, the right hand side is evaluated using the one-point quadrature

b
(T )
loc =

∫
T
fφj =

|A|
3
f(xs, ys), (4.28)
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Figure 4.3: A unit element.

where (xs, ys) represents the centroid of the element T . This clearly coincides with (4.27)
for a constant function f .

It is important to comment that the choice of numbering of the elements in the discretized
domain (counter-clockwise numbering) assures that the area |A| is always positive.

The global stiffness matrix, the mass matrix, and the right hand side is then obtained by
summing over all elements of the triangulation according to (4.19), (4.20) and (4.21). Figure
4.4 shows the result obtained.

4.2.2 Numerical Solution on a Disc-shaped Domain with Comsol.

As mentioned earlier, the interface Γ is not rectangular in shape, we have only demonstrated
our understanding of the finite element implementation performed by the solver software,
via the matlab program in Subsection 4.2.1. The interface Γ is in form of a circular disc
shown in Figure 4.5. In oder to have a much more improved numerical solution, the problem
is implemented with Comsol. This affords finite element implementation with more number
of elements.

We solve (4.12), (4.13) imposing homogeneous Dirichlet boundary condition. Figure 4.6
shows the result of this implementation.

The plot shows the concentration distribution of the chemical specie B on the cell mem-
brane. The concentration on the sub-domains sharing the homogeneous Dirichlet boundary
are greatly influenced by the boundary condition; the results are roughly the average of the
concentrations in such subdomain. Therefore, it is expected that the concentration be con-
centrated or have a maximum value at the centre of the domain. This is exactly depicted
with the two peaks in Figure 4.6 and Figure 4.4.
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(a) 3D plot of the numerical solution obtained with Matlab.

(b) 2D color view of the numerical solution obtained with Matlab.

Figure 4.4: Numerical solution of the 2D reaction-diffusion on the cell membrane.
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Figure 4.5: A more realistic interface Γ with sub-domains alternately arranged.
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(a) 3D plot of the numerical solution of the 2D problem on the cell membrane.

(b) 2D view of the numerical solution.

Figure 4.6: Numerical solution of the 2D reaction-diffusion on the cell membrane.



Chapter 5

Coupling of the 2D and the 3D
Models

So far, we have obtained two different models describing the pure diffusion process within
the cell and the reaction-diffusion process on the part of the cell membrane Γ. The next task
is now to integrate the results of the two models into a single one. This chapter is therefore
devoted to the coupling of the 3D model described in Chapter 2, and the 2D model on the
cell membrane discussed in Chapter 4.

5.1 Coupling by Interpolation

We solved in Chapter 3, the model problem with a constant Dirichlet boundary condition.
Now, we will attempt to use the result from the 2D model of the membrane’s reaction-
diffusion problem as the Dirichlet value. The basic and the simplest way to achieve this is
to approximate the trial solution on each elements of the discretized domain.

Consider a triangulation consisting of triangle elements as shown in Figure 5.1.

Figure 5.1: A triangular element.

We first define the local degree of freedom (on each element) as the number of nodes per
element (which is equal to three in this case). Let gi, i = 1, 2, 3 be the approximations
of the solution at each of the three nodes of an element. Then, for a given element, the

40
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approximation to the solution g(x, y) on each element is defined as follows:

g(x, y)|T =
3∑
i=1

φi(x, y)gi. (5.1)

φi(x, y) in (5.1) represents the shape function at node i. So, there is a need to choose
appropriate shape functions. One way of doing this it to define them on a reference element.
In the 2D case, the reference element is

T̂ = {(ξ, η)|ξ, η ≥ 0, 0 ≤ ξ, η ≤ 1} ,

i.e. the triangle T̂ is spanned by v̂1 = (1, 0), v̂2 = (0, 1) and v̂3 = (0, 0). Therefore, we
treat any triangle T ∈ Th as an image of T̂ under an affine map F : T̂ −→ T [12]. Given
a triangle T with corner points (x0, y0)t, (x1, y1)t, (x3, y3)t we consider the following affine
linear mapping

FT : T̂ −→ T,

(
ξ
η

)
−→ FT

(
ξ
η

)
,

FT

(
ξ
η

)
= B

(
ξ
η

)
+

(
x0

y0

)
, B =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
,

which maps the corner points of T̂ to the corner points of T :

FT

(
0
0

)
=

(
x0

y0

)
, FT

(
1
0

)
=

(
x1

y1

)
, FT

(
0
1

)
=

(
x2

y2

)
.

Consequently, a linear ansatz functions on the reference triangle T̂ will have the following
form

φ1(ξ, η) = (1− ξ − η), φ2(ξ, η) = η, φ3(ξ, η) = ξ. (5.2)

One obvious observation is that an inverse transformation has to performed in order to use
and to specify (5.2) in Comsol. However, to avoid this, we can make use of our choice of the
basis functions described in Subsection 4.2.1, and the trial solutions can then be specified at
the appropriate part of the membrane in the 3D model.

Although, this is a very good idea to specifying the result of the 2D model as a boundary data
for the 3D model. Nevertheless, since we are solving the 3D model with Comsol Multiphysics
and do not have control over the mesh generation, we are faced with the tedious task of
specifying trial solutions on thousands of elements! Consequently, we consider coupling of
the two models using multi-physics tool in Comsol.

5.2 Coupling by Comsol Multiphysics

Solving a finite element problem in Comsol generally involves these steps:
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1. Choice of the representative physics (i.e. we choose the PDE),

2. Create the geometry on which to solve the problem,

3. Set the material properties i.e. setting all the constants that appear in the PDE,

4. Set the boundary conditions and initial conditions,

5. Choose an element type and mesh the geometry,

6. Choose a solver and solve for the unknowns, and

7. Post-process the results to find the information that is required

[27].

Following these basic steps, we now present the coupling and the implementation of the two
models in Comsol Multiphysics.

5.2.1 The Choice of PDE

We select the physics model in its coefficient form:

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (−c∇u− δu+ γ) + β · ∇u+ au = f, (5.3)

with boundary conditions
hu = r, (5.4)

n · (c∇u+ δu− γ) + qu = g − hTµ. (5.5)

Setting ea = da = β = δ = γ = 0, we realize our model problem.

5.2.2 The Geometry

We model the 3D geometry by performing the following steps in the drawing mode of Comsol:

1. Draw a unit sphere by selecting a sphere from the drawing mode,

2. Draw a box of dimensions (2,2,2),

3. Cut the box,

4. Paste the box and move it to engulf the sphere by setting displacement to (-1,-1,-0.5),

5. In creating composite object tab, select intersection of the two objects,
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Figure 5.2: The geometry for the 3D reaction-diffusion model.

6. Confirm selection by clicking the key symbol.

The resulting geometry consisting of nine sub-domains is shown in Figure 5.2.

In a similar manner, through a series of intersections of rectangles and circles, the geometry
for the cell membrane is created. This is depicted in Figure 5.3.

5.2.3 Subdomain Properties, and Equation Parameters

We make use of the coefficient form of the PDE model in Comsol, and by selecting the
subdomain settings dialog box under the physics menu, the appropriate choices of the pa-
rameters are entered. Comsol allows us to specify the values for the PDE coefficients on each
sub-domains, hence the piecewise constants coefficients of our problem is easily entered.

5.2.4 Boundary Conditions

The boundary conditions are specified through the Physics −→ Boundary settings menu of
Comsol. We apply the Robin boundary condition on the external boundaries of the domain;
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Figure 5.3: The meshed geometry for the 2D reaction-diffusion model on the cell membrane.

Figure 5.4: The extruded geometry for the 2D reaction-diffusion model on the cell membrane.

this is equivalent to setting c = 1, q = α, the permeability constant, h = 0 and g = 0 in
(5.5).

5.2.5 Choice of Element’s type and Meshing

We used the pre-defined quadratic Lagrange elements for the stationary analysis of the chosen
PDE module in its coefficient form. The mesh is created with a click on mesh button.
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5.2.6 Solver’s Setting

The solver used the V−cycle multigrid method as the linear system solver. The relaxation
factor (ω) for the Successive Overrelaxation method (SOR, as a presmoother) was 1.0 and
the number of iterations returned as 2. Comsol also returned 2 and 6 for the number of
iterations and the maximum number of levels respectively, for the multigrid method. As a
postsmoother, it used SORU (the version of SOR using the upper triangle of the matrix [1])
with relaxation factor 1.0 and the number of iterations was also returned as 2.

Remark: Due to the structure of the model for the cell, there are some singularities at the
sharp edges between the plane interface Γ and the cell geometry. Hence, there is a need for
adaptive procedure to cater for these corners.

The coupled model is therefore solved using an adaptive finite element method with a rough
global minimum as an element selection method. Here, we restrict the refinement levels to
two, since more levels of refinement makes the mesh too complicated to handle. Figures 5.5
show the initial mesh and the level-two refined mesh.

(a) The initial mesh for the coupled model consist-
ing of 71, 540 elements.

(b) The level-two refined mesh consisting of 304, 053
elements.

Figure 5.5: The mesh structure of the coupled model.
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5.2.7 Results

Figure 5.6 shows the result of our Comsol implementation of the coupled model. The plots
show the diffusion pattern of the chemical specie B within the cell. In contrast with the
result obtained in Section 3 where we have used a constant value g = 10 for the Dirichlet
data, the symmetry pattern shown by the solution in Figure 3.3(a) is no longer visible here.
This is a direct consequence of the non-constant Dirichlet value g.

(a) Numerical solution of the coupled reaction-diffusion model
(slice form).

(b) Numerical solution of the coupled reaction-diffusion
model.

Figure 5.6: Numerical solution of the coupled reaction-diffusion model.



Chapter 6

Conclusion and Outlook

The thesis has systematically described the modeling of the reaction-diffusion on cell mem-
brane and the subsequent implementation of the model. We started in Chapter 2 with the
modeling aspect where the reaction-diffusion model was derived from a general conservation
law and the application of the Fick’s law of diffusion.

In Chapter 3, where we have considered the discretization of the reaction diffusion equation,
we showed the V -ellipticity and elliptic regularity of our model problem. This allowed us to
apply the famous Lax-Milgram lemma for the existence of a numerical solution of our model
problem. We obtained the numerical solution by implementing the general model, first its
simplification with a constant boundary condition. The implementation was carried out with
Comsol Multiphysics software. The result showed some symmetry which is not unexpected
due to the constant Dirichlet boundary condition.

We considered a general model in Chapter 4 where the Dirichlet boundary value was com-
puted from the reaction-diffusion model on the cell membrane. The model for the reaction-
diffusion on the cell membrane was obtained and implemented both with Matlab and Comsol
Multiphysics, taking care of the jumped coefficients of the model problem in the two sub-
domains on the membrane. As expected, the symmetry structure of the result obtained in
Chapter 3 was lost in the result obtained in Chapter 4 (see Figure 6.1).

Based on the general model of Chapter 2 and the result of the model implementation in
Chapter 4, we were able to couple the two models in the last chapter. We have thus been
able to achieve our goal of giving a complete description and modeling of a reaction diffusion
in cell membrane.

As an outlook, in Chapter 4, we have assumed a certain pattern for the reactions of the two
chemical species on the cell membrane. A possible improvement on this would be to obtain
the probabilistic rate of reactions of these chemical species from experimental data. This will
result in a new pattern for the chemical reactions on the cell membrane and thus new results
can be arrived at. Furthermore, extension to non-stationary problems can be considered and
improvements is also possible as regards the geometry modeling with Comsol Multiphysics.
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(a) (b)

(c) (d)

Figure 6.1: Comparison of the numerical solutions of the pure diffusion models. 6.1(a),
6.1(c): Numerical solution of the diffusion model with constant Dirichlet data g. 6.1(b),
6.1(d): Numerical solution of the diffusion model with non-constant Dirichlet data g.
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