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Abstract

This thesis is concerned with the modelling and efficient solving of a body-body contact
problem without friction. After a short introduction to the fields of continuum mechanics
and linear elasticity, the Signorini- or Geometrical- contact condition is derived. The
resulting problem is brought into a variational form. Due to the Signorini- or Geometrical-
contact condition, the variational formulation is a variational inequality. Thus the body-
body contact problem isn’t linear even if linear elastic problems are considered. For this
variational inequality several equivalent formulations are denoted, which enables the usage
of different abstract tools. With these tools existence and uniqueness of the solution of the
body-body contact problem is proved under reasonable assumptions.

In order to solve the body-body contact problem numerically, a finite element for-
mulation is derived. For this finite element formulation, the Signorini- or Geometrical-
contact condition results in nodal constraints. If additional regularity of the solution of the
continuous problem is assumed convergence results are proved.

Due to the large scale of some body-body contact problems and due to missing a-
posterior error estimates for the body-body contact problem with nodal constraints an
ad-hoc refinement strategy is presented.

In order to solve the body-body contact problem efficiently, a solver with optimal time
complexity is constructed.

In addition to the body-body contact problem a simple Laplace problem with a non-
matching grid is analysed for nodal constraints. The main result for this Laplace problem
with nodal constraints is that it’s possible to achieve an optimal convergence result in the
primal variable, if a consistent mesh dependent stabilisation term is added to the original
formulation.



Zusammenfassung

Dies Arbeit beschéftigt sich mit der Modellierung und dem effizienten Losen eines Korper-
Korper-Kontaktproblems ohne Reibung. Nach einer kurzen Einfiihrung in das Gebiet der
Kontinuumsmechanik und der linearen Elastizitatstheorie, wird die Signorini- oder auch
Geometrische- Kontaktbedingung abgeleitet. Das daraus entstehende Problem wird da-
nach in eine Variationsformulierung iiberfiihrt. Aufgrund der Signorini- oder Geometrischen-
Kontaktbedingung, ist das Variationsproblem eine Variationsungleichung. Daher ist das
Korper-Korper-Kontaktproblem nichtlinear, auch wenn ein linear elastisches Problem be-
trachtet wird. Fiir diese Variationsungleichung werden verschiedene dquivalente Formulie-
rungen betrachtet, welche die Nutzung abstrakter Werkzeuge erlauben. Mit diesen Hilfs-
mitteln kann die Existenz und die Eindeutigkeit des Korper-Koérper-Kontaktproblems, un-
ter verniinftigen Voraussetzungen an die Glattheit der Lésung, bewiesen werden.

Um das Koérper-Korper Kontaktproblem numerisch zu 16sen, wird eine Finite Element
Formulierung eingefiihrt. Fiir die in dieser Arbeit verwendete Finite Element Formulierung
werden die Signorini- oder auch Geometrische- Kontaktbedingungen zu Knotenrestriktio-
nen. Fiir diese Art der Diskretisierung werden Approximationsresultate gezeigt. Leider
sind die Approximationsresultate nur giiltig, wenn zusétzliche Regularitit der Losung vor-
ausgesetzt wird.

Aufgrund der geometrischen Begebenheiten einiger Korper-Korper-Kontaktproblemen
und aufgrund fehlender Resultate iiber a-posteriori Fehlerschitzer fiir das Korper-Korper-
Kontaktproblem mit Knotenrestriktionen, wird ein ad-hoc Verfeinerungsstrategie angege-
ben.

Abschlieflend wird ein Verfahren zum effizienten 16sen des Koérper-Korper- Kontaktpro-
blems konstruiert, das optimal in der Zeit ist.

Zuséatzlich zum Korper-Korper-Kontaktproblem wird ein einfaches Laplace-Problem fiir
nichtkonforme Netze und Knotenrestriktionen analysiert. Die Hauptaussage fiir dieses La-
place-Problem ist, das es mdéglich ist auch fiir Knotenrestriktionen optimale Konvergenzei-
genschaften fiir die primale Variable zu erhalten, wenn das Originalproblem durch einen
konsistenten und netzabhingigen Stabilisierungsterm erginzt wird.
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Chapter 1

Introduction

Boundary value problems involving contact are of great importance in industrial applica-
tions in mechanical and civil engineering. The range of application includes metal forming
processes, drilling problems, bearings, crash analysis of cars, car tires or cooling of elec-
tronic devices.

From the modelling of the body-body contact problem to the numerical simulation,
there are a lot of steps between, having it’s own difficulties.

Starting with the modelling, the first difficulty consists in describing the non-penetration
of the bodies and the correct transfer of forces. This can’t be done, excepted of one special
case, the case that one body is a rigid plane, exactly. For contact problems undergo-
ing small deformations, the non-penetration condition is approximated by the so called
Signorini-condition. For large deformations it’s still unsolved how to approximate the non-
penetration condition. Some try to solve this problem by reducing the large deformations
into a number of small ones. This is done by considering the contact problem dynamically
or at least quasi static. For modelling the contact problem refer to the standard book for
contact mechanics KIKUCHI AND ODEN [34]. Other references concerned with the mod-
elling of the body-body contact problem are BOIERI, GASTALDI AND KINDERLEHRER [7],
EckK [22]. In CARSTENSEN, SCHERF AND WRIGGERS [15] a very general approximation
of the non-penetration condition, in the context of Signorin-condition, is presented. The
Signorini- contact condition usually results into variational inequalities.

After having a model it’s necessary to check the solvability of this model. Because
the contact problem usually results into variational inequalities, there are powerful tools
available. Nevertheless the solvability isn’t guaranteed in all cases. Especially contact
formulations with non-linear materials or considering contact with friction, the solvability
becomes difficult. A major problem is to guarantee that the contact problem is stable,
i.e. that the solution exists, is unique and depends continuously on the data. A lot of
abstract results to handle variational inequalities are presented in ECKLAND AND TEMAM
[23], SHOWALTER [46], KINDERLEHRER AND STAMPACCHIA [35], or every other book
concerned with the calculus of variation. Nevertheless some contact problems don’t fit into
these abstract results. Thus there are many references especially concerned with the contact
problem. Eck [22] especially concerns contact with friction. In KIKUCHI AND ODEN [34],
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HASLINGER, HLAVACEK AND NECAS [29] contact problems with non-linear material laws
are considered as well as contact with friction. That the down sized elastic body-body
contact problem without friction can become ill posed is proved in CARSTENSEN, SCHERF
AND WRIGGERS [15].

Having a model and the existence of a solution it’s necessary to think about the solution
itself. Only a few contact problems are solvable analytically. The most famous analytic
solution of a body-body contact problem was given by HERTZ [30], who considered the
elastic contact of two circles. Due to the difficulty of the contact problem it’s necessary to
solve it numerically. Note that the contact problem is non-linear even when the material is
linear elastic. First of all the contact problem has to be discretised. There are at least two
possibilities in the contents of FEM. The first method is to discretise the contact condition
by nodal constraints, i.e. the non-penetration condition and the transfer of forces are only
done for nodes at the contact zone and not for the hole contact zone. Indeed it seems
so that the nodal constraints don’t fit into the (mixed) FEM approach, but this isn’t the
case. The draw back of nodal constraints are the missing convergence results for body-
body contact problems without any further regularity. For the Signorini problem nodal
constraints are well suited, because this is nothing else than a matching grid. For this
case convergence results are proved in KIKUCHI AND ODEN [34], HASLINGER, HLAVACEK
AND NECAS [29] BrREZz1, HAGER AND RAVIART [13] [14] and FALK [24]. In WRIGGERS
[51] some different discretisations are presented which results into nodal constraints. It
was mentioned that the Signorini problem discretised with nodal constraints behave like
a matching grid, whereas the body-body contact problem behaves like a non-matching
grid, despite of some obvious special cases. Thus the second method, developed in the last
decade, for discretising the constraints is the Mortar method. This method was considered
by BELGACEM, HILD AND LABORDE [6] [5], which proved convergence, but not optimal
convergence.

Due to large scales of some contact problems it’s useful to use adaptive refinement
strategies. For variational equations there are a lot of a-posteriori error estimators which en-
able adaptive refinement. For variational inequalities the literature concerning a-posteriori
error estimators is sparse (e.g. KORNHUBER [38], AINSWORTH, ODEN AND LEE [3]). The
presented a-posteriori error estimators are usually not applicable to the body-body contact
problem, they are only well suited for the Signorini problem. Thus some ad-hoc error esti-
mators have to be used. Some of this ad-hoc error estimators are presented by VERFURTH
[49] [50] or AINSWORTH AND ODEN [2]. In CARSTENSEN, SCHERF AND WRIGGERS [15]
an a-posteriori error estimator, constructed for the body body contact problem, and a
solving algorithm based on penalisation, is presented.

For solving the discretised contact problem a lot of algorithms are available. Due to the
non-linearity of the contact problem most of the algorithms are from non-linear program-
ming. An overview for these algorithms is presented in GLOWINSKI [26]. In the last decade
a lot of algorithms, for solving contact problems are published, based on iterative methods,
like HACKBUSCH AND MITTELMANN [27], HOPPE AND KORNHUBER [32], HOPPE [33],
BRANDT AND CRYER [11], MANDEL [40], KORNHUBER [36] [37], TARVAINEN [47] [48],
DoOsTAAL, GOMES NETO AND SANTOS [20], SCHOBERL [43].
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Overview

This thesis is only concerned with a body-body contact problem without friction. The aim
is to develop a time optimal algorithm for solving the body-body contact problem.

e Chapter 2 is concerned with the modelling of the non-penetration condition (Signorini
condition) as well as the modelling of the transfer of contact forces for the body-body
contact problem.

e Chapter 3 is a short introductory into Sobolev spaces and there representation as
interpolation spaces. Furthermore a partial ordering for Sobolev spaces is introduced
which will be important to derive a weak formulation for the body-body contact
problem.

e Chapter 4 is concerned with the derivation of the weak formulation of the body-body
contact problem as well as to prove existence and uniqueness for this formulation.

e Chapter 5 gives an introduction into the topic of finite elements. Especially Scott-
Zhang type interpolation operators are introduced, which play an essential role on
the following chapters. Also some abstract existence and uniqueness results as well
as some convergence results are presented.

e Chapter 6 presents an analysis of nodal constraints for a simple Lapace problem with
non-matching grids. The goal of this chapter is the proof of an optimal convergence
result for nodal constraints in the primal variable. This result was also verified by an
numerical example.

e Chapter 7 deals with analysis of the discrete body-body contact problem. The dis-
cretisation of the constraints was done by nodal interpolation. For this discretisation
convergence results are proved. The draw back will be, that all these convergence
results need additional regularity for the solution. To allow adaptive refinement an
ad-hoc mesh refinement strategy is presented.

e Chapter 8 is concerned with the construction of a time optimal algorithm to solve
the body-body contact problem.

e Chapter 9 presents numerical results for both, academic examples and a real life
problem, the sag of a roll stack (3D)



Chapter 2

Modelling of the Body-Body Contact
Problem

In many practical situations in solid mechanics it’s important to model the situation of
two or more bodies coming into contact with each other. The aim of this chapter is to
derive the contact condition for two elastic bodies undergoing small deformations. For the
sake of simplicity, this thesis is restricted to contact without friction.

An introduction into the mechanics of continua is presented in CIARLET [17]. The
modelling of the body-body contact problem and some results on existence, uniqueness,
regularity and so on, are published by KikucHI AND ODEN [34], HASLINGER, HLAVACEK
AND NECAS [29], BOIERI, GASTALDI AND KINDERLEHRER [7] , EcK [22]. The results
given in these references are not restricted to linear elasticity and contact without friction.

In Section 2.1 an introduction to the basic results of linear elasticity as well as the no-
tation are presented. Section 2.2 is concerned with the derivation of the contact condition.
Also some draw backs of this condition are mentioned. In Section 2.3 connects results on
linear elasticity and the contact condition to the classical formulation, which is a system
of partial differential equations and boundary conditions.

2.1 Basics of Linear Elasticity

This section is far away from being complete and mathematical correct. For a more de-
tailed description refer to CIARLET [17]. Let a domain Q C R? represent the reference
configuration of a material body, where d € {2, 3} is the dimension of the space. There are
at least two possibilities to describe the deformation (motion)

e Let’s characterise the deformation (motion) of the body by the mapping

P:QxRf - R

z = P(X,1) XeQ teR:. (2.1)

Here it was expected that X = P(X,0), P is injective (in the first variable), suffi-
ciently smooth and orientation preserving. That P is orientation preserving can be
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expressed by the pointwise inequality

oP
0X
This kind of representation is called material- or lagrangian- representation. P(X,1t)

describes the position of the material point X in the reference configuration, at the
time t.

J(X,t)_det< )(X,t)>0 VX € QVte RS . (2.2)

e Let z € R?, then the deformation (motion) of the body can be described with the
mapping
p: D) xR - Q  D(t) C R
X =p(x,t) Vit e Ry ,Vx e D(t).
The domain D(t) usually depends on time (D(t) = P(£2,t)). Without loss of gener-
ality it’s assumed that = = p(x,0). In this representation any point z in the domain

D(t) at time t is mapped back to the reference position X. This representation is
called spatial- or euler- representation.

(2.3)

Both the euler- and the lagrange- descriptions are equivalent.
P(p(z,t),t)=2  p(P(X,t),t)=X

In the following capital letters denote the material- or lagrange- representation and the
small ones the spatial- or euler- representation.
In most applications the displacement of a particle X at time ¢ given by

UX,t)=2— X=P(X,t) - X

u(z,t) =z — X=z—p(z,t) (2:4)
is of much more interest than the deformation itself.
From physics there are three important (conservation) laws which are
e Conservation of mass:
% / pla,)dr =0  YACQVEER!, (2.5)
P(A)

where p is the density of mass.

e Impulse equation (Newton’s law):

/ f(z,t) do + / t(z,t,v) da(a:):% / plz, t)v(z,t) dr (2.6)

OP(A,t) P(A)

Here f (!L‘,t) is the density of volume forces, v the out warding normal vector (on
OP(A,t)) and v(z,t) the speed of the mass point p(z,t).

ol t) = V(p(a, 1), ) = (%) (v, 1),1) (2.7)
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e Torque equation:

. d
/ z X f(x,t)de + / (x x t(x,t,v)) da(x) = pr / z x p(x,t)v(z,t) de
P(A) OP(A,t) P(A)
(2.8)

Here x denotes the vector product.
Note: Because of Newton’s law equation (2.6) is invariant under translations of the
origin.

The fundamental Axiom (Euler, Cauchy) is the existence of a stress field #(z,t,v) which
fulfils (2.6), (2.8) and some boundary conditions on I'y C 09

t(z,t,vy) = (2, 1) Ve P(Ty,t)VteRY. (2.9)

[(z,t) is the surface load. From conservation of mass (2.5) the continuity equation

D
%(x,t) + div, (p(z, t)v(z, b)) = Fi(x,t) + p(z, t)divo(x,t) =0 (2.10)
can be deduced, where
Dy y
D (& 8) = 5, (@, 1) + (gradyy, v} (@, 1) (2.11)

is the material derivative.

As a consequence of Newton’s law (2.6) the stress field #(z,t,v) is linear in v. Thus the
stress field can be written as #(z,t,v) = t(x,t)v, where £(x,t) is a tensor of second order
called Cauchy stress tensor. Using additionally the continuity equation (2.10) and Reynolds
transport theorem the following equation can be deduced

div,i(z,1) + f(z,0) = p(a, ) BL(z,t)  Vie RS Ve PQ1)

. (2.12)
t(x, )y =1(z,t) Vte Ry Vz € P(Ty,t)

As a consequence of the torque equation (2.8) the Cauchy stress tensor is symmetric, i.e.

i(z,t) =iT(x,t) VteRIVaze P(1). (2.13)

Additionally the displacement w(z,t) is fixed on x € P(Ip,t) C OP(€,t). Summing
up all results the following system of partial differential equations in spatial- or euler-
representation follows.

div,t(z,t) + f(z,t) = p(z, 1) Y (v,1) Vi€ RS Vo € P(Q,t)
t(z, )y =1(x,1) Vte RS Vo e P(Ty,t) (2.14)
(T
(

S

u(z,t) =ug(x,t Vte Ry Ve P(I'p,t)
t(z,t)=tT(z,1) Vt e Ry Vo€ P(Q,t)
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The next step is to transform the system of partial differential equations (2.14) given in
spatial- or euler- representation into a system given in material- or lagrange- representation.
This is done by using the Piola-transformation. Rewriting the system of partial differential
equations (2.14) in material- or lagrange- coordinates results in

N 2
divyT(z,t) + F(X, 1) :pO(X)%Tg(X,t) VteRIVX €Q,

T(X,t)vx =L(X,t) VieRI VX €y, (2.15)
U(X,t)=Up(X,1) VieRI VX €lp,
T(X,HF(X, )T =F(X,t)TT(X,t) VteRI VX €Q.

In equation (2.15) T'(X,t) denotes the first Piola-Kirchhoff stress tensor, given by
T(X, 1) = J(X, 0 (P(X, 1), 0) F(X, 1), (2.16)

po the density of the reference configuration Q, F(X, ) the volume force density, given by

A

F(X,t)=J(X,t)f(P(X,t),1)
and L(X,t) the surface load
L(X,t) = U(P(X, 1), )| T (X, ) F(X, ) Tvg(P(X, 1), t) |1 re) -
Here F/(X,t) denotes the deformation gradient

oP
F(X,t) := 8—X(X’ t) n. (2.17)
To solve this system of partial differential equations some more information is needed,
namely information about the behaviour of the material (material law’s). Assuming that
the material is an elastic material and assuming the simplest case, a linear elastic material,

then the material law is given via

(F*IT)U (X,t) = Xd: aijel(X, t) B (X, 1), (2.18)

k=1
with the elasticity tensor (Hooks’ tensor) a;jx (X, t) and the Green-St. Venant strain tensor

E = % (F'F—1). (2.19)

To achieve boundness and ellipticity in the following theories it’s assumed that

laij (X, 1) < Co
d

d
> (X )& > co 30 &

1,7,k,l=1 1,7=1

(2.20)
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Because of the symmetry of the stress tensor and the property of linear elastic materials
a;jr; has also to be symmetric

aijkl(X,t) = ajikl(X,t) :aklij(X, t) Vi,j,k,l € {1, ,d} (221)
For homogen and isotropic materials the elasticity tensor (Hooks’ tensor) is given by
ijkl = A0ijOki + (1(0ikji + Gudjk). (2.22)

A and p denote Lamé parameters and both are larger than zero. In technical application’s
the Young-Modul and the Poison-number are more familiar than the Lamé constants. The
link between these coefficients are given in the following equation.

)\ — Ev
1+v)(1—-2v) (2.23)
__E
=50+

where E > 0 is the Young-Modul (Elastizitédtsmodul) and v € (0, 3) is the Poison-number
(Querkontraktionszahl).
Note that (2.18) is linear in E but not in the displacements U. Usually one is interested
in a system of partial differential equations which is linear in the displacements.

This can be achieved by assuming only very small deformations, then the equations
(2.15) with material law (2.18) can be linearised. This was done in CIARLET [17], who
proved that the operator

Lows ( —div ((I + gradu)(F'T)(E)) )

(I + gradu)(F'T)(E)v|r,
is Frechet-differentiable at ©v = 0 and

A(0)u = ( —divo(u) ) .

o(u)vlry
o denotes the linearised stress tensor
Oi5 = Qijkl€kl (2-24)
with the linearised Green-St. Venant strain tensor
1
e(u) = 5 (gradu + (gradu)”) . (2.25)
Collecting all the results the following equations can be deduced:
. 2
divo(X, 1) + F(X, ) :pg%Tg(X,t) VteRIYX €Q

o(X, vy = L(X, 1) VieRI VX ely (2.26)
u(X)=0 VieRI VX €lp,

where o is given by (2.24). It can easily be seen that (2.26) is a system of partial differential
equations of second order. In the special case of an isotropic body, for which (2.22) is valid,
the left hand side of (2.26) has a relative simple form:

dive = (A + p)grad divu + pAu.
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2.2 Contact Condition

In the following only time independent problems are considered and thus the time derivative
and the time variable is omitted. The main task in this section is to formulate the contact
conditions. On the one hand the contact condition should prevent penetration of the two
bodies and on the other it should describe the transfer of forces in a correct way. In the
following only material- or lagrange- coordinates are used and thus it won’t be distinguished
between capital letters and small ones, as in the section before.

Let the bodies occupy bounded domains 2!, Q> C R? (d is the dimension of the space)
with Lipschitz boundaries, let u(X) be the displacement field in material- or lagrangian-
notation  := Q' UO?, and assume that the boundaries of the domains are split into three
parts,

00 =T' =T Ul UT
0N =T?=T12%UI3% Ul%,

which are open and disjoint. Only T}, and '], may come into contact. See Figure 2.1.
Further it’s assumed that the body Q' U Q? is fixed by its part T'p := T}, UT?%,

Figure 2.1: two-body contact

u=0 onlpCoN. (2.27)
On 'y := '}, UT% the surface load is given, that is,
o =1L onlyC a0, (2.28)

where v denotes the outer unit normal to 99, L is the surface load and o) := o - v.
In HASLINGER, HLAVACEK AND NECAS [29] one more boundary condition is presented,
which represents a glide bearing. This formulation of the contact and the following theory
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isn’t restricted to the decomposition of the boundary given above. It’s also possible to
handle more complicated boundary conditions as long as ', which is some kind of a-
priori information about the region of the two bodies that may come into contact, are
known.

2.2.1 Non-penetration Condition

A mathematically exact formulation of the non-penetration condition would be to define
the non-convex set of admissible displacements

K= {U eV |’U(Ql) N U(Qg): @} .
For this set it’s not possible to handle it numerically. To find a suitable convex approxi-

mation let X® : ', ¢ R — T% be two one to one maps with X € C'(T'¢,T%) (See
Figure 2.2). Further more define

2
+@(X) z®
2
I'c X Te
n(X) |
Fl
¢ (1)
XW(X) X

Figure 2.2: common parametrisation

(x) = X200 = XU
n - |X((2))(X) _ X((l))(X)|
X) = [XO(X) - XO(X)
zR(X) =ulo X(l)(X) _u2o X@ (X) (2.29)
on(X) = (v(X), n(X)),re
vp(X) == 0(X) — on(X)n(X),

where u/ = u|yq; is the trace of the boundary of €7. Suppose that the final contact region
may be represented implicitly by the function ¢ : R — R and the relation

U(y) =0, (2.30)
with the non-penetration condition taking the form
(XY +u (XW))(X)) > 0
L i Da(ren)) 2 0 YT (23

For deriving the system of partial differential equations for linear elasticity (Section 2.1) it
was still assumed that 7 is very small and that it’s possible to neglect terms of higher order
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than one. Additionally assume that g(X) is also very small (comparable with u?). Devel-
oping inequality (2.31) into a Taylor series at the point Xo(X) := X((X) + %g(X)n(X)
and neglecting higher order terms the non-penetration condition becomes

{ 1o Xo(X) + (V) 0 Xp(X),u' o XD(X) — %Q(X)R(X»Q(Rd) >
10 Xo(X) + (V) 0 Xo(X), u? 0 XO(X) + 59(X)n(X))(a) <

The rest term of the Taylor series is of order of||u' o X (X) — %g(X)n(X)H) in the first

inequality and of order o(||u? o X (X) + %g(X)n(X)H) in the second one and because of

the smallness assumption above this term is neglect able. Subtracting both inequalities
gives

(V) o Xo(X),u' o XI(X) —u? o XO(X) — g(X)n(X))jpmey >0 VX €Te.
(V) o Xo(X) is a priori not known and thus assume that

(V) o Xo(X)
(V) o Xo(X) 1, ray

which should be approximately valid for small deformations. Summing up the linearised
non-penetration condition results into the signorini- or geometrical contact condition.

uy (X, 1) = (WX, 1),n(X))re) < g(X). (2.33)

~n(X) VXeTle, (2.32)

The next Lemma 2.1 will show that the penetration of the bodies is reasonable small if the
parametrisation is good enough, in the sense of preventing penetration!

Lemma 2.1. Let € > 0 be a small parameter and assume
o [ui(X)], [ei(u)| <€
e [g(X)| <2 VX e€eT¢

e The curvature of Tt,, T'% is bounded

e VX els
[7(X) = " (XO(X)) [|1y@ay < [Jo" (XO(X)) + 07 (XPX)) |1y ma)
(X)) + 1% (XO(X)) |1y < [I0" (XD(X)) +v° (X (X)) [y
where v' (XW) 12 (X®)) are the out warding normal vectors at the boundaries

L, T2.
Then the condition, that T} and T'% don’t intersect, is equivalent to
uy(x) < g(o) +r(@),
where the error r(x) can be estimated by

r(z)| < Ke¥/2.
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Proof. For proof see ECK [22, Lemma 1.3]. O

Remark 2.2. Tt’s not a-priori clear how to choose the parametrisation X@). In fact it’s
not clear whether there are parametrisations which result into the “exact” solution of
the “real” problem or not. From the physical point of view it seems to be a “good”
idea to choose the parametrisation such that the gap ¢(X) is minimal. This kind of
parametrisation can result into an ill-posed problem, because it’s possible that 3 A C
T'¢, meas(A) > 0 with meas(XU)(A4)) = 0 and this results into a not closed admissible set
of displacements. An Example is given in CARSTENSEN, SCHERF AND WRIGGERS [15,
Proposition 3.2]. Nevertheless this parametrisation is often used. An other idea is to fix
only one parametrisation and the unit vector n(X). Then it’s possible to reconstruct the
second parametrisation. It’s also possible that this choice results into an ill-posed problem
(same reason as above).

Remark 2.3. One draw back is that the non-penetration condition is only formulated for
small deformations. In mechanics there are a lot of more realistic material laws, which
allow to handle big deformations as well, but there is no non-penetration condition for
this case. The first idea to get ride of this problem may be choose the parametrisation
depending on the displacement and applying some fix point iteration. This was done by
the author, but the fixed point iteration resulted into a “oscillating” sequence. One idea
to prevent this is to use the active restrictions of the last two steps. But this doesn’t fit
into the algorithm presented in this thesis and thus it wasn'’t tried.

An other idea is to consider the problem of big deformations as a quasi-static problem.
This means that all forces and surface loads are applied arbitrary slowly. In every step it’s
now possible to solve a problem with small deformations (if there are enough steps to apply
the forces), which fits into the non-penetration condition above. One more advantage is
that it seems to be very easy to implement, not depending on the solving algorithm of the
stationary contact problem. Nevertheless this wasn’t implemented for this thesis.

2.2.2 Transfer of Forces

It was mentioned before that the contact condition shouldn’t only prevent penetration, it
also should describe the transfer of forces at the boundaries. This section isn’t mathemat-
ically correct, it’s only an approximate approach. For a mathematical correct modelling a
process similar to the derivation of the linear elasticity (Section 2.1) has do be done.

e As a direct consequence of Newton’s law the normal components (normal to the
deformed configuration) of the stress tensor, in spatial- or euler- notation, have to
be equal, if two points are in contact (¢¢")(z) = ¢**)(z)). Because of our model a
point is in contact iff uf(X) = g(X).

Note: The physical picture of contact isn’t the same as the signorini- or geometric-
contact condition. In the physical picture two points are in contact iff the points
coincide. In the signorini- or geometric- picture two points are in contact iff the points
are represented with one point X in the parameter domain I'¢ via the parametrisation
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XU (X) and if they are connected with a hypersurface, defined via n(X). It’s only
to hope that for a “good” parametrisation both pictures coincide.

This condition in spatial- or euler-notation can be transformed by the Piola trans-
formation (as in Section 2.1) into material- or lagrange- formulation and looks as
follows

o(X) == o) (XO(X)) Jy(X) = =) (XP(X)) (X) VX eTq (234)

is the gram determinant, and 7 are

k k
where .J, = ‘det <8Xa())(EX), 8Xa()i-§X)>
I>(Rd)
the out warding normals on the reference configuration. The gram determinants .J
are consequences of the transformation rule of surfaces (transformation of I'f, — TI'¢).
Also for this derivation the smallness assumption of the displacements was used
(similar to linear elasticity Section 2.1).

e Because only compressive forces can act, it’s possible to deduce that (ov*, v¥),,
0. (in the spatial- or euler- notation, where 17 are the out warding normals of the
deformed configuration) Transforming this condition into material- or lagrangian-
notation and using assumption (2.32) the inequality

on(X) = (=17 T;(X) (0™ 0 XD n),maey(X) <0 VX eToVje{1,2}

Rd) <

follows, where n is the vector given in (2.29) and v\ is the out warding normal on
the reference configuration I'Z,. oy coincides with the notation given in (2.29).

e Forces can only be transfered at contact zones. Here it’s necessary to distinguish
between the physical and the “geometric” picture. Contact occurs iff uf(X)—g(X) =
0.

—  oy(X)=0 if uf(X)-g(X)<0.
e Because frictionless contact is assumed no tangential forces can be transfered. This
is in material- or lagrangian- notation, with the same approximations as above,
or(X) =0 VX ele, (2.35)
where the notation introduced in (2.29) was used.

Summarising all these results, the contact condition follows.

(090 XO) () (X) = = (000 X)) (X)h(X) |

ul (X < g(X

UNEX; 2 6’( ) v VX eTl¢ (2.36)
O'T(X) = 0

on(X) (Wl (X) —g(X)) = 0 )

For a contact formulation with friction refer to KiIkucHI AND ODEN [34], HASLINGER,
HLAVACEK AND NECAS [29], Eck [22].
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2.3 Classical Formulation of the Body-Body Contact
Problem without friction

The contact condition (2.36) and the partial differential equation (2.26) result into the
classical formulation of the linearised body-body contact problem.

—dive(X, Vu) — F(X) in Q
u(X) =0 onI'p
o)X, Vu) = L;(X) on 'y
(a(ul)(_, V) o X(1)> (X)L (X) = — (aoﬂ)(_, Vu) o X(2)> (X)R(X) onTc (5
ul(X) < g(X)
O'N(X, VU) S 0 onT
or(X, Vu) =0 ¢
on(X, Vu) (uf(X) —g(X)) = 0

where (X, Vu) is given by (2.24) and X, X?) are the parametrisations from above.

Remark 2.4. This model is approximately valid if the displacements are small, not due to
the material law, no because of the contact condition. Note that the solution depends
on the choice of the parametrisation and it’s not clear how to choose it, to get a solution
which may also be a realistic one. An other problem is that if the displacement field is
known, which fulfils the system of partial differential equations above and fulfils a realistic
contact condition (physical non-penetration condition and transfer of forces) and if the
parametrisation is constructed in an obvious way, it’s not clear that this displacement field
is also a solution of the contact problem with constructed parametrisation. All in all, the
signorini- or geometrical- contact condition seems not to be very satisfying but the author
don’t know a better one and thus this condition is used in this thesis.



Chapter 3

Sobolev Spaces

For numerical analysis of partial differential equations (PDE) usually Sobolev spaces are
used. On the one hand these spaces allow a more general solution of the PDE and on
the other the analysis of existence and uniqueness is usually much easier. Additionally
Sobolev spaces allows finite element (FE) approximations of the solutions and thus a simple
discretisation of the PDE.

An introduction to Sobolev spaces can be found in ADAMS [1] or LIONS AND MAGENES
[39]. In this thesis it’s necessary to define positive functions on Sobolev spaces. This set of
positive functions should be represented by a condition on the dual space. Thus a partial
ordering is needed. For this refer to KIKUCHI AND ODEN [34] and references in there. In
numerical analysis scaling arguments are used, i.e. that results proved on Sobolev spaces of
integer type are extended to the corresponding result on Sobolec spaces of fractional order.
This scaling argument is possible due to the fact that Sobolev spaces of fractional order
can be represented as interpolation spaces. For interpolation spaces and properties of this
spaces refer to ADAMS [1], LIONS AND MAGENES [39] or BRAMBLE [10].

In Section 3.1 Sobolev spaces and some of their important properties are presented.
Especially the embedding results, the possibility to define traces and the validity of the
Green’s formula are needed in this thesis. It was mentioned above that Sobolev spaces
of fractional order can be represented as interpolation spaces. This fact is presented in
Section 3.2. In Section 3.3 an abstract partial ordering on vector spaces is given and then
this abstract ordering is applied to Sobolev spaces to define positive functions for Sobolev
spaces. The important property of the partial ordering is the possible representation of
cones by it’s polar cones. Finally an abstract result for equivalent norms on Banach
spaces is presented in Section 3.4 which enables the prove of V-ellipticity for variational
inequalities.

3.1 Preliminary Results and Definitions

Natural spaces for variational problems are Sobolev spaces. The only which Sobolev spaces
are needed in this thesis are Hilbert type spaces.

16
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Let © be an open and bounded domain of R?. To avoid technical difficulties assume
that 2 is polygonal. Assume that I'j is open subset of 0€2. Let w C 2 be an open Lips-
chitz continuous boundary. The space C*°(w) denotes the space of infinitely differentiable
functions on w and the subspace C§%,(w) consists of all functions of C°°(w) with vanishing
values of the function and all its derivatives on I'p.

Let (.,.) 1a(w)xLs(w) be the inner product with the associated norm

HU”g,w = (v, U>L2(w)><L2(w)

on Ly(w).
For k € N the following norm is defined recursively

[v]lkw = (HUHk 1w

Let o €]0, 1], then define the semi norm

av

Z

)2 . (3.1)

ol 1= / iz Wg Cdaxy). (32)

With this it’s possible to define for all @ > 0 the norm
lvllae = llvlliw + 0I5 . (3.3)
where k£ € N, o €]0, 1] such that o = k + 0.

Definition 3.1 (Sobolev spaces). Let « > 0 and w C Q an Lipschitz bounded domain,
then define the following Sobolev spaces of order «

Hw) = C®@)" = (3.4)
Hy%(w) = (H%w)) (3.5)
Hepw) = Coop@) ™ (3.6)
H™w) = (Hfw)) . (3.7)

In numerical analysis Green’s formula for Sobolev spaces is essential, also in this thesis.
For this the space H(div,) has to be introduced.

Definition 3.2. The space H(div,QY) is defined by
H(div, Q) := {q € (L2(Q))*| divg € Ly(Q) }, (3.8)
with the norm

lall g0 = llalloo + ldivallog (3.9)
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1
For this thesis the space Hg,(T'), with T' C 02 is important.
1
Definition 3.3. The space H§;2(F) is defined by
k+3

Hy *(T) == {v e H* () |p 2D € Ly(T) Vla| =k} (3.10)

with p € C®(T), p > 0 in T and vanishing on T of the order d(x,T), i.e.

. oplr)
:cigclod(x,f‘) =d#0 Vaxgel.

1
The norm on H§J2(F) is defined by

= ol ey gy + 2 02Dy (311)

||U||2 1 1
Hog 2 () o

Note that these Sobolev spaces are Hilbert spaces. One of the important properties of
Sobolev spaces is that they can be embedded in several other spaces. In some cases this
embedding is even compact. The most important compact embeddings for this thesis are
denoted in the famous Rellich-Kandrachov theorem.

Theorem 3.4 (Rellich-Kondrachov theorem). Let Q C R, I' = 9Q € C%! and j €
{0, ..., k} with k € N. Then there holds the following compact embedding:

H¥(Q) (resp. HE(Q)) <€ HI(Q) (resp. HI(Q)) forj <k

H*(Q) —yeu(e) fork—1> (3.12)

Proof. see ADAMS [1, Theorem 6.2] O

For PDEs it’s necessary to have boundary values, but Sobolev spaces are subspaces of Lo
and in L, boundary values make no sense. Nevertheless it’s possible to define boundary
values for Sobolev spaces as long as the order is large enough. The next theorem is a special
case of a more general trace theorem and guarantees that traces are well defined for Sobolev
spaces which are needed in this thesis.

Theorem 3.5. Let Q € C%', T' C 9Q and let - be the operator defined by

yr(v) = vlp Voe C®(Q). (3.13)

Then yr can be extended to a continuous linear operator, also denoted yr, from H'(Q) onto
H=(T) and this operator is surjective with keryp = H&,aﬂ/r-

Proof. see ADAMS [1, Theorem 7.53] or LIONS AND MAGENES [39, I Theorem 8.3] O

Remark 3.6. Tf the trace of the space Hy ;,(€2) is considered with T' = intdQ/T'p then the

1
trace operator isn’t surjective onto H3(T). The correct space will be the space HZ (T).
For this space the same results as before are valid (at least if Q € C™).
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Remark 38.7. A consequence of this surjectivity (indeed of the existence of a continuous
extension operator) and the trace operator 7 is that

lgllsp = inf Jlufliq (3.14)
vEH ' (Q)
yr(v)=g

The last property of Sobolev spaces which will be needed is the abstract Green’s formula.

Lemma 3.8. For q € H(div,Q) the scalar product (q,n),re)|r € H’%(F) can be defined
and the Green’s formula is valid.

(divg,v)o,0 + (¢, gradv)oa = ((qn)1,rd), U>H*%(F)xH%(F) Vv e HY(Q) (3.15)

Proof. see BREZZ1 AND FORTIN [12, IIT Lemma 1.1] O

Theorem 3.9. The trace operator
<.,n>l2(Rd)|F : H(dzv, Q) — HﬁE(F) q— <.,n>l2(Rd)|F (316)
18 surjective.

Proof. see BREZZ1 AND FORTIN [12, IIT Lemma 1.2] O

3.2 Interpolation Spaces

Important for this thesis is that Sobolev spaces of fractional order can be represented as
interpolation spaces. For this short introduction the real method of interpolation is used.

Let (X, (., . )xxx) and (Y, (., .)yxy) be two Hilbert spaces with embedding ¥ — X
and Y dense in X. For £ > 0 define the K-functional as

Ktu)? = _int[lel + 2l (3.17)

w=z+y
The interpolation norm ||.||x,y}, for 6 €]0,1] is defined by

o0

lulZeyr, = / 2R (1 )2 di (3.18)
0

The interpolation norm fulfils the parallelogram law and thus the interpolation space
([X, Y]y = V06 i o Hitbert space.

Remark 3.10. In BRAMBLE [10, Theorem B.2.] it was proved that the real method of
interpolation is equivalent to the introduction of interpolation spaces by spectral methods,
i.e. by defining [X,Y]y := D(A'"?), where D(A'~?) denotes the domain of the operator
A and A is such that [|. |3 =~ [|. || + [|A.||? (see L1ONS AND MAGENES [39, I Definition
2.1]).
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The next result proves that linear, bounded operators, defined on both spaces X, Y are
bounded on the interpolation space [ X, Y]s. This result is often used as scaling argument
in the FE analysis.

Theorem 3.11. Let X, Y and X, Y be as above, and L be a linear operator, L € L(X, X)N
L(Y,Y) with norm bounds

| Lv||x <ex||vlx Vve X,
| Loy <cyllv|ly YvevY.

Then for V0 €]0,1[: L € L([X,Y]q, [X,V]y) with spectral bound

I1Zvlleyn, < X eyllvllixy, - (3.19)
Proof. see LIONS AND MAGENES [39, I Theorem 5.1], BRAMBLE [10, Theorem B.4.] O

In this thesis also the characterisation of the dual space of [X,Y], is needed. Because
Y — X and Y is dense in X, the converse is valid for its dual, i.e. X’ — Y’ and X’ is
dense in Y’. The next theorem guarantees what is expected.

Theorem 3.12.
(X, V], = [V, X1 Vo €]o,1] (3.20)
Proof. see LIONS AND MAGENES [39, I Theorem 6.2] O

It was mentioned above that interpolation spaces are needed in this thesis because Sobolev
spaces of fractional order can be represented as interpolation space of Sobolev spaces with
integer order.

Theorem 3.13. Let Q be a bounded domain with 0 € C%'. Let s > so > 0 and
0 €]0,1[. Set s(f) = (1 —0)s; + 0sy. Then

[H(Q), H2(Q)]y = HO(Q)
(Hy (), H ()], = HPQ) 51, 505(0) € No + 2
[H3(Q), HE2(Q)], = H () s, &Ny +1 s(0) e Ny + 1

Proof. see LIONS AND MAGENES [39, I Theorem 9.6, Theorem 11.6, Theorem 11.7] O

3.3 Partial Ordering of Sobolev Spaces

To derive a weak- or primal- formulation of the system of partial differential inequalities
(2.37) some partial order properties are needed.

First an abstract partial ordering for a linear space @) is introduced. Suppose that )
is a normed space (not necessary but enough for this thesis). The following definition of a
cone is taken from EKLAND AND TEMAM [23].
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Definition 3.14. A non-empty subset C C @ is a cone with vertex 0 (simple cone) if

AC CC VA>0

cicce. (3.21)

The cone is pointed or unpointed according to whether 0 € C or 0 € C.
A pointed cone with vertex 0 is salient if C N {—C} = {0}.

With a pointed cone it’s possible to associate a partial ordering > on () by setting
p>q &= p—qeC. (3.22)

Note the relation > is reflexive and transitive and if the pointed cone is salient, then > is
antisymmetric and thus > is an order relation on all of ). Conversely, the introduction of
any partial ordering > on () defines a pointed cone. Usually C, associated with the partial
ordering >, is denoted as positive cone C, and likewise the pointed cone C_ = —C, is the
negative cone.

The introduction of a positive cone C, in () makes it possible to add inequalities such
as ¢ > 0, ¢ <0 to the linear structure of (). The partial ordering is also compatible with
the structure of the linear space @), i.e.

g>0 — Ag>0 YA>0
p>q — pH+r>qg+r Vreq@.

For the pointed cone C, it’s possible to define the polar cone C% in the dual space Q" of @
by setting

C:_ = {q* S QI | (q*,q)QIXQ >0Vqe C+} (323)

Note C is a pointed cone and closed even if Cy is not.

It’s possible to repeat the game and build the polar of the polar cone C%. This polar
cone is living in the space Q. It’s well known that it’s possible to consider () as a subset
of @" and thus only the part living in () is considered as the polar of the polar cone.

C® = {q€eQ | (¢ Q)gxg >0Vg €Cl}. (3.24)
The next lemma proves a relationship between C%° and C,.

Lemma 3.15. Let C, be a cone, then
¢ =c,, (3.25)
where A is the closure of A.

Proof.

"> " Because C? is closed only C; C C{° has to be verified. Let ¢ € C; then
(CY,q)q'xq > 0 and thus ¢ € CY°.
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"'C " Assume that ¢ € C?°/Cy. As a consequence of separation of convex sets (Hahn
Banach theorem see HEUSER. [31, Satz 42.5]) there exists an element ¢* € Q" and an @ € R
such that

(0" Daxq <a<(d,paxq VpeCl,

Because C is a cone and (¢*, ¢)grxg is bounded, it follows that

(¢",P)oxq > 0  Vpel,
( < 0

and thus ¢* € CY which is a contradiction to (¢*, ¢)g'xg < 0. O

If C is closed then it’s possible, because of Lemma 3.15, to represent C, by C%°.

Note that due to the convexity and the theorem of MAZUR (See HEUSER [31, Satz
59.4]) weakly closed and closed is equivalent.

In this thesis a partial ordering on Sobolev spaces is needed.

Definition 3.16. Define the set of positive functions in the space H*(T') for a € [0, 1] via

¢, ={vec=Mv>0) . (3.26)

Remark 3.17. Due to the fact (see KIKUCHI AND ODEN [34, 5 Theorem 5.2] or KINDER-
LEHRER AND STAMPACCHIA [35]) that

max{0,u} € H*(I) Vue H*T)Va € [0,1],
the set of positive functions in H%(I') can be rewritten by
C, ={veH*)|v >0 ae}.

Note that due to the definition C, is closed and thus, due to Lemma 3.15, C; = C%.

3.4 Equivalent Norms

For this thesis some results about equivalent norms for Sobolev spaces are needed.

Theorem 3.18. Let (X, ||.||x), (Y,||.]ly) be two Banach spaces. Let X —°Y be a com-
pact embedding and let | . |4 be a semi-norm on X with kernel Xy. Assume that the following
norms are equivalent

e = Al + 1 fa

Then the following is true:
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i. The kernel Xy is of finite dimension. The semi-norm |. |4 is equivalent to the norm
on the factor space, i.e.

|u|a ~ inf |ju — upl|x Vue X.
uo€Xp

ii. Let |.|p be a continuous semi-norm on X such that there holds for all u € X
lula+|ulp =0 = wu=0
Then there holds the equivalence of norms
[ a1l >~ I llx

ii. Let Z C X be a closed subspace such that ZNXy = () ,then there holds the equivalence
of norms

lula ~ ||ullx VueZ.
Proof. see GIRAULT AND RAVIART [25, Theorem 2.1] or SHOWALTER [46, IT Proposition
5.2] O

Remark 3.19. Choosing X = H*''(Q), Y = H*(Q), with k € Ny and |. |4 = |. |p11.0-
It’s known that X, = kern|.|py1.0 = P¥(Q), where P¥(Q) is the space of polynomials of
degree less than k 4 1. If the semi-norm |.|p is chosen such that

VoeP¥Q): |vlg=0= u=0,
then from Theorem 3.18 it’s deduced that ||.||xr10 ~ |- |5+ [k+1.0-
The Brambel-Hilbert lemma is just a consequence of Theorem 3.18

Lemma 3.20 (Bramble-Hilbert). Let k € N and Y be a Hilbert space. Let L : HF — Y
be a linear bounded operator. Assume that L vanishes on the space P*~' of polynomials up
to order k — 1. Then L is bounded by the semi-norm, i.e.

| Lul|x = |ulk Vue H*.



Chapter 4

Variational Inequalities

A lot of practical problems, also the body-body contact problem can be formulated in
a variational inequality. The spaces which are usually used are Sobolev spaces. The re-
formulation of a classical partial differential inequality into a variational inequality isn’t
only done for numerical calculations, especially for the analysis of variational inequalities
there are powerful tools available. The aim of this chapter is to present some results for
variational inequalities and applying them to the body-body contact problem.

The reformulation of the body-body contact problem into a variational inequality and
the proof of the equivalence of the variational formulation and the classical formulation
under certain smoothness assumptions is done in KIKUCHI AND ODEN [34], BOIERI,
GASTALDI AND KINDERLEHRER [7] and ECk [22]. For existence and uniqueness results
for variational inequalities as well as for several equivalent formulations for variational
inequalities refer to ECKLAND AND TEMAM [23], SHOWALTER [46] and KINDERLEHRER
AND STAMPACCHIA [35]. In KIKUCHI AND ODEN [34], HASLINGER, HLAVACEK AND
NECAs [29] and Eck [22] these abstract results for variational inequalities are applied to
the body-body contact problem.

In Section 3.3 a partial ordering for Sobolev spaces was introduced. With this partial
ordering it’s possible to formulate the primal- or weak- formulation of the body-body
contact problem. This is done in Section 4.1. Abstract existence and uniqueness results
for variational inequalities are denoted in Section 4.2. In Section 4.3 several equivalent
formulations for the variational inequality are presented. Especially the equivalence of
primal- or weak formulation, saddle point- or mized formulation and the dual formulation
is presented. Finally the existence and uniqueness of the body-body contact problem under
certain assumptions is proved in Section 4.4. and uniqueness result for the body-body
contact problem is presented.

24
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4.1 Variational Formulation of the Body-Body Con-
tact Problem

To achieve a reasonable variational formulation the space of admissible displacement func-
tions have to be fixed.

V.= H&D(Ql)d X Hg,D(QQ)d (4.1)

The space V is the space of displacements without restrictions. The contact restrictions
are taken into consideration by defining the set of admissible displacements K.

Definition 4.1. The set of admissible displacements K is defined by
K={veV | vf(X)-g(X)<0 aeonlc}, (4.2)

where T is the common parameter domain of X9 which maps T on to Fé.

W.lo.g. assume that X is the identity map, i.e. ['c = I't. It’s obvious that K
is a convex set, but K may not be closed. CARSTENSEN, SCHERF AND WRIGGERS [15,
Proposition 3.2 presented an example of a parametrisation, a very common parametrisa-
tion, and a domain € such that K isn’t weakly closed and thus not closed (MAzUR). With
suitable assumptions on the parametrisations X 7) it’s possible to achieve that K is closed.

Proposition 4.2. Assume that the parametrisations XU fulfils the following condition
VYA C T, meas(A7) =0 : meas(X(j)fl(Aj)) =0,
then the set of admissible displacements K s closed.

Proof. CARSTENSEN, SCHERF AND WRIGGERS [15, Proposition 3.3] O

Remark 4.3. The only restriction for the parametrisations XU) to get a suitable set of
admissible displacements, i.e. K is closed, is given by Proposition 4.2. In Section 2.2 it was
assumed that the parametrisations are smooth, i.e X() € C'(T'¢,T'/,). This isn’t necessary
for the definition of K, nevertheless in this thesis it’s assumed that X is smooth enough
such that the operator

BV s (HYTe)t Vjie{1,2) : TLNT), =

is continuous and surjective. If I, NI = '), then (H2(D'¢))* is replaced by (Ho‘%o)d.
Furthermore assume that the parametrisation is smooth enough such that n € C%(I'¢)?
and g € H2(T¢).

If the parametrisations X € C%(I'¢,T'%) are Lipschitz continuous with Lipschitz
continuous inverse and the Gram determinants .J; are bounded with bounded inverse (a.e.),
then continuity and surjectivity of the operator .% is fulfilled, furthermore g € H> (T¢) (see
Eck [22, Voraussetzung 1.4]).
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Remark 4.4. Assuming n € C%'(I'¢)?, then every element v € Hz(I'¢)? can be decom-
posed into v = vyn + vy with vy € H2(C¢) and vy € HZ(T¢).

H (o) = {v e H (Te) | ox =0 |
Due to the trace theorem (Theorem 3.5) this decomposition impose an isomorph from
1
H2 (Do) into Hz(T¢) x H2(T¢).

Remark 4.5. Tt’s usually no restriction to assume that v j € {1,2} : @ﬂ@ = (), because
'/, is an a-priori guess of the possible contact zone and can be chosen such that Vj € {1,2} :

ng N ch = af‘é. With this assumption and the smoothness of the parametrisations X )
it’s possible to represent the set of admissible displacements via

K={veV |g—vgecC.},

with Cy = {q* ceH:(T¢) | ¢ >0 ae. } . The cone C, was considered in Section 3.3.

Because C; is closed it’s possible (Lemma 3.15) to represent it by Cy = C%°. Thus the set
of admissible displacements is nothing else than

K={veV | (Bv—G,q)gxg <0 VgelCl}. (4.3)

Here Q' denotes the space H%(Fc) and B the linear, surjective and continuous operator
R e L£(V,Q"). The polar cone the space Q" is identified by @, which is possible because

Q is a reflexive Banach space (CS € Q). The function g € H3(T¢) is denoted as G € @'
to point out its functional interpretation.

Definition 4.6. u € K is called a weak solution of the contact problem iff
[tr(oc(w)e(v —u)) de+ [(F,v— u)yway de + [ (Lo —u)pmayds >0 VveK
Q Q I'n
(4.4)

holds for F € H'(Q), L € H 2(Ty)

The following theorem proves that the classical formulation and the weak formulation
are equivalent, assuming enough smoothness of the solution wu.

Theorem 4.7. Every solution of (2.37) is a weak solution. If a weak solution is suffi-
ciently smooth, then it’s a classical solution as well.

Proof. 1. Let u be a solution of (2.37) and v € K. Then by partial integration the
following holds:

({tr (o(u) grad(v —u)) de = a{) (o(u)’, v —u),ma ds — g{(div o(u), v —u)y,maydr
(4.5)
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Because o is symmetric (2.13) it can easily be verified that

/tr (o(u)e(v —u))de = /tr (o(u) grad (v — u)) dx

The surface integral in (4.5) can be simplified in the following way:

Il (o®), v — Uy (ray s = Il (o), v — Uy (re)y dS
90 PpUl' yUrLur,
= f <L, v — U/>l2(Rd) dS + f <O-(V)7 v — u>l2(Rd) ds
I'n rLurg

(4.6)

The remaining term is [ (o), v — ),y ds . This term is first transformed into its
o
parameter domain ['c.

i (a(”j), v — U>l2(Rd) ds= [ (a(”j), v — U>l2(Rd) o X J;dX

7, e]
= <O', (U — U) e] X(])>l2(Rd) dX (47)
T ‘
e f <O'N + O'T, (U — 'U/) (@] X(])>l2(Rd) dX
NG}

Using that o = 0 and summing up gives that
/ (e, v — Uy (rey A5 = / on(vk —ul)dX = / on(vk —g)dX >0 (4.8)
LLUrg, Y] e}
The assertion is proved by connecting (4.5), (4.6) and (4.8).

2. Now assume that v € K is a sufficiently smooth weak solution of (4.4). Let ¢ €
C5%,(€2) be arbitrary, v =u =+ ¢ = v € K. Then from (4.19) follows:

0 < ({tr (o(u) e(v —u)) de + ({(F, v — U, (wa) AT +Ff (L, v — ), may ds
i({tr (0(u) €(9)) + (', @)iy(re) d

) :Ef<leU(U) + ﬁ‘, §0>12(Rd) de‘,
Q

(45

which implies

—divo(u) = F in Q. (4.9)
Now suppose that ¢ € C5g (), v =u+¢ = v € K. It follows from (4.4) and
(4.9) that

0<+ /(a(”) — L, @)myds = o=L only. (4.10)

'n
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The remaining boundary term which isn’t fixed is
/ (eW), v — Uy ray ds > 0. (4.11)
riurg,
From (4.7) it’s known that

0 < [ (oW v—uy,geyds = [ on(WF —uk)+ (o7, off — uf), e dX

rLure, r'e
= [(o") v~ Wy 0 XM T+ (0, v — Wy © X JpdX
o]

(4.12)

Because of the trace theorem (Remark 4.4) and the surjectivity of . (see Remark
4.3) the following is valid:

i) VocHz(Te)'3peV : poXW =poX® =¢

ii) VoeHi(Tc) JpeV i pf=¢ (A ¢f=0)

i) VoeH2(Tg) JpeV: ofF=0 A k=9

— N

Setting v = u + ¢ and considering case i.) — 7ii.) and using (4.12) follows
i) pf=0= veK
0 < i/(Jla(”l) o XU — L,0@) o XP @), zay dX . (4.13)
Y]
i) py=0 = veK
0 < :I:/(JT, eMpraydX = op=0 onlc. (4.14)
o]
iii.) With ¢ such that % € C, follows
0 S / O'N(pﬁ dX = <(,0§, UN>Q/><Q - onN € Cg_ . (415)
e

From the assumed smoothness of the solution w it’s deduced oy € C’S’r NLy(Te)
and thus oy >0 a.e. onI'(.

The last equation which have to be verified is the compatibility condition. This is
done by setting ¢ such that % = g and % = 0. With the setting v =2u—p € K
everything is proved because

e
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Note that the partial ordering induced by the cone C, is indeed a ordering.
A prove for contact with friction can be found in Eck [22, Satz 1.6] and an exact
formulation of the necessary smoothness of u is presented in BOIERI, (GASTALDI AND
KINDERLEHRER [7, Theorem 2.2]. O

Using the following notation it’s possible to write the weak formulation in a more abstract
way

(Au,u —v)yrigy == [tr(o(u)e(v —u)) dx

2 . (4.17)
<F, Vv — U>VI><V = I<F, Vv — u>l2(Rd) dr + f <L, v — U>12(Rd) ds .

Q Iy
In this notation A : V' — V' is an operator from V into its dual space V'. A is linear if o
is linear in u. The operator F : V' — R € V' is linear and bounded and thus an element of
the dual space V'. In the abstract notation the weak formulation weak formulation reads

as follows:
Find v € K such that

(Au, v — u)yrxy > (Fyv — u)yrgy Vo e K. (4.18)

Remark 4.8. It (Au,v)yrwyv = (Av, u)yr«y then (4.18) is equivalent to the constraint min-
imisation problem:

1

u = argmin J(v) with J(v) = i(Av, Vvixy — (F,0)yrxy (4.19)
vEK

Using (2.13) it’s very easy to verify that A is symmetric. Because of this equivalence the

weak formulation is often denoted as primal formulation

4.2 Some Abstract Results for Variational Inequali-
ties

For considering variational inequalities in an abstract setting, an abstract elliptic inequality
of the first and second kind is defined. For this abstract elliptic inequality some results
concerning the existence and the uniqueness of its solution are presented. Then alternative
variational formulations of elliptic inequalities and their mutual relations are discussed.

In the following, V' will denote a real Hilbert space, V' its dual with the duality pairing
(., )vixv. The norm on V will be denoted by ||.||y and the dual norm by ||.||y». Let
a:V xV — R be a bilinear form and define the operator A : V- — V' by (Au, v)yrvy =
a(u,v). Let K be some nonempty, closed and conver subset of V.

Definition 4.9. A triplet {K,A,F}, F € V', is called an abstract elliptic variational
inequality of the first kind. A function u € K is called solution of {K, A, F'} iff

(Au, v —u)yrgy > (Fo0 — u)yrgy Vve K (4.20)
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In order to prove existence and uniqueness of the solution of {K, A, F'}, assumptions
on the linear operator A have to be added.
Suppose that the linear operator A is bounded on V:

Jag > 0: |(Au, v)vixv| < agllully ||v]ly YVu,veV (4.21)
and V-elliptic on K:
Ja; > 0: (Av,v)yiwy > o]} Vve K (4.22)

Theorem 4.10. Let K be a nonempty, closed, convexr subset of a Hilbert space V. Then
for each v € V there exists a unique element u := Pv € K, named the projection of v
onto K, such that the following equivalent assertions are valid:

lu— o]y < [Jw—2]|y Vwe K (4.23)
respectively
(u—v,w—2v)ygy > 0 Vwe K (4.24)
Furthermore ¥ wy,wy € K the following holds:
[Pwy — Pwslly < flwi — wellv (4.25)
Proof. KINDERLEHRER AND STAMPACCHIA [35] O

Using Theorem 4.10 and a similar proof as for the Lax Milgram Lemma, the Theorem of
Lions and Stampacchia can be proved easily. In the Theorem of Lions and Stampacchia,
there is no demand for symmetry of the appearing operator. Furthermore nonlinear prob-
lems can be dealt with. In HASLINGER AND HLAVACEK AND NECAS [29] an extension of
this theorem on reflerive Banach spaces can be found (without proof).

Theorem 4.11 (Lions, Stampacchia). Let V' be a Hilbert space, K C V' a closed, con-
ver, nonempty subset and A : V' — V' a Lipschitz continuous and coercive (not necessarily
linear) operator, i.e. Jay, a9 >0 :

||Au — Av||y < allu—v|ly Yu,veK

(Au— Av,u—v)yrivy > aqllu—ol3 Yu,veK. (4.26)

Then for each F' € V' there exists a unique solution u € K of the variational inequality
<A'LL—F,U—U>VI><V 2 0 Vve K (427)

1

Furthermore the nonlinear solution operator is Lipschitz continuous with constant ar i.e.

1
lur = wally < —|[|F1 = Py (4.28)
1
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Proof. KINDERLEHRER AND STAMPACCHIA [35] O

If A symmetric , i.e. (Au,v)yrvy = (Av, u)yr«y, then the problem {K, a, f} is equivalent
to the following one:

u = argmin J(v) (4.29)
veK

where J : V' — R is the quadratic functional (Ritz functional)

J () = %<A01U>V’><V — (F,v)vrxv, (4.30)

i.e. u € K solves {K, A, F'} iff it minimises J(v) over K.
Remark 4.12. Denote by I : V — {0,400} the indicator function of K, i.e.:

0 ifve K
L (V) = { +00 elsewhere.

Then (4.20) is formally equivalent to
findu e V: (Au,v —u)yrgy + Ix(v) — Ix(u) > (F,v —u)yrxy VoeV. (4.31)
This motivates the following definition.

Definition 4.13. Let j : V — R U {—o0,00} be a convez, lower semi continuous (i.e.
Vu, »>u€V: jlu) < liminfj(u,)) and proper (i.e. j(v) # —oc) functional on V. The
n—oo

quadruple {V, A, j, F'} is said to be an abstract elliptic inequality of the second kind. The
function u € V' is said to be a solution of {V, A, j, F} iff

(Au, v — uyyrxy + j(v) — j(u) > (F,v — u)yrxy VoeV. (4.32)

If j = Ik is the indicator function of K, {V, A, j, F'} reduces to {K, A, F'}. If moreover
A is symmetric on V', the inequality {V, A, j, F'} is equivalent to the minimisation problem

u = argmin J(v),
veV

with 7 : V — RU {—o0, 0}

) = %(Av,v)wxv+j(v) —(F, o)y (4.33)

There are a lot of results about existence and uniqueness of abstract elliptic inequalities of
the second kind. This results are not presented in this thesis because the abstract elliptic
inequality of second kind is only a subtotal.

Let @ be a Banach space, G € Q' and B € L(V,Q'), where V is defined as above and
let > be an order property on @' with positive cone C, which is closed and C} be the
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corresponding positive polar cone in the dual space @ (Q" is identified with @). Let K be
defined by

K={veV|Bv<GinQ'}. (4.34)

Because B € L(V, Q') it’s obvious that K is convex and closed. If K is nonempty, property
(4.21) is valid and if A is V-elliptic (4.22) then Theorem 4.11 is valid and thus {K, A, F'}
is uniquely solvable. If RgB = @' it’s obvious that K is nonempty.

It’s nice to have existence and uniqueness, but it’s difficult to calculate the solution,
because K is only known formally, but an explicite characterisation is missing. Thus K has
to be characterised. Consider the abstract elliptic inequality of second kind {V, A, I, F'}
(which is equivalent to {K, A, F'}) and assume that the positive polar cone CY is known
explicitely. From this the original problem can be reformulated as a Saddle point problem.
This is done by writing

Ik = sup(Bv—G,Q)g'xq - (4.35)

0
peCy

The abstract inequality of second kind {V, A, I, F'} is now given by solving: find (u,p) €
V x CY such that:

_ 1
L(u,p) = inf sup §(Av, V)vixy + (Bv — G, q)gxo — (Fyv)vixy . (4.36)

vquECQF\ v

-~

i=L(v,q)

Remark 4.14. This formulation has the advantage that the convex set K doesn’t occur
explicitly. Furthermore the minima is searched in a linear subspace. The price for this
is that the problem size increases. Now both have to be solved, u € V, which is the
interesting variable, and the Lagrange multiplier p € C}, which may not be from further
interest,.

4.3 Some Abstract Results for Saddle Point Problems

Let K C V, N C @ be nonempty closed convex subsets and let L : K x N — R be a real
functional defined on K x N.

Definition 4.15. The pair (u,p) € K X N is called a saddle point of L iff
L(u,q) < L(u,p) < L(v,p) VYve KVqeN.

Theorem 4.16. A pair (u,p) € K x N is a saddle point of L on K X N iff

i. primal: e(u) = min p(v) ¢(v) = sup L(v, q)
veK geEN
ii. dual: P(p) = maxp(q) ¥(q) = inf L(v,q)

qEN veEK
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i L(u,p) = ¢(u) = ¢(p)
Proof. see EKLAND AND TEMAM [23, IV Proposition 1.2] O

Proposition 4.17. The set of saddle points of L is of the form U x P where U C K and
P CN.

Proof. see EKLAND AND TEMAM [23, IV Propostion 1.4] O

In order to guarantee the existence, and eventually the uniqueness, of a saddle point,
supplementary conditions are needed.

i. Vg€ N, v L(v,q) is conver and weakly lower semi continuous.
ii. Vv € K, ¢+— L(v,q) is concave and weakly upper semi continuous.

Theorem 4.18. Let the assumptions (i)-(ii) be satisfied and assume moreover,

g€ N : lim L(v,q) = 400 (4.37)
llvlly =00

Juy € K lim  L(vy,q) = —o0. (4.38)
llgllg—o0

Then there ezists a saddle point (u,p) € K x N of L.
Proof. see EKLAND AND TEMAM [23, IV Proposition 2.2] O

Theorem 4.19. The conclusions of Theorem 4.18 also hold if condition (4.38) is replaced
by the condition

lim inf L(v,q) — —o0 (4.39)

llgllq—o0 vEK
Proof. see EKLAND AND TEMAM [23, IV Proposition 2.4] O
Theorem 4.20. Let L be Gateaux differentiable on K x N and let ® : K x N — R and
L fulfils (1)-(ii). Then (u,p) € K x N is a saddle point of L + ® iff

(Fe(up)v—u) +0p)-0up) 2 0 VveK

x (4.40)
<%—§(u,p),q—p> +®(u,q) — ®(u,p) < 0 VgeN

Q'%XQ

Proof. see EKLAND AND TEMAM [23, IV Proposition 1.7] O
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Back to the abstract inequality of first kind (4.19), where K is given by (4.34). L(v,q)
is then given by (4.36). This functional is G-differentiable on V' x N, where N = C9.
Theorem 4.20 indicates that a saddle point (u,p) € V x N of (4.36) can by characterised
by the system

(Au, v)vicy + (B, D) grg = (Fiv)vixy YU EV (4.41)
(Bu—G,q = D)oo < 0 Vq € N.

The question arises whether the mized system (4.41) is uniquely solvable or not. The
answer can’t be given in general, thus two for this thesis important cases are distinguished.
The first case is that N # V, then the existence and uniqueness is guaranteed if Rg B =
Q@' and A is V-elliptic. The second case is that N = @' and thus the inequality in
(4.41) becomes an equality. In this case the existence and uniqueness is guaranteed if
Rg B = Q' and A is elliptic on ker B. Furthermore the unique solution of the equality case
is bounded by ||F||v/, ||G]|q- This two results are the topic of the next theorems. First an
characterisation of Rg B = @' is given in the case that V, Q are Hilbert spaces, which is
the case in all examples we are interested in.

Proposition 4.21. Let V, Q be two Hilbert spaces and B € V,Q’', then the following
statements are equivalent

i. RgB = (ker B*)°
ii. RgB* = (ker B)°

wi. 30 > 0Vo eV . supM > Bllv

U Tl I kers

. B*q U>VI v
w. 30 > 0Vqge @ : su <’—X > .
B qgEQR vE‘B ||U||V =z BHQHQ/kerB
Proof. see BREZzI AND FORTIN [12, Proposition 1.2] O

For the inequality case, the next lemma proves all, what is needed to proof existence and
uniqueness of the saddle point.

Lemma 4.22. Suppose that (4.21) and (4.22) (with K =V') and

B /
35 > 0: infsupi< v, 0)@'xQ

(4.42)
€Qocv [lqllellvllv

hold. Then

lim inf L(v,q) = —o0
llgllg—o0vEV

Proof. see KIKUCHI AND ODEN [34, Lemma 3.2] O
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Remark 4.23. Condition (4.42) is due to the closed range theorem (HEUSER [31, Satz 39.4])
equivalent to Rg(B) = Q.

Proposition 4.24. Let B € L(V,Q'), A € L(V,V'). Assume that B fulfils the LBB
condition (4.42) and assume that A is V-elliptic. Then there exists a unique solution

(u,p) €V x N.

Proof. Due to Lemma 4.22 condition (4.39) is valid and due to the assumption that A
is V-elliptic also (4.37) is valid. Thus Theorem 4.19 guarantees the existence of a saddle
point. With Theorem 4.20 this saddle point is also a solution of (4.41). The uniqueness is
a consequence of the strict convexity of v — L(v, ¢) and the LBB condition (4.42). O

The equality case has a special importance in Chapter 6 and is thus also denoted.

Theorem 4.25. Let V, Q) be Hilbert spaces, B € L(V,Q'), A € L(V,V') and G € RgB.
Assume that N = @ in (4.41), that RgB is closed in Q' and that A is elliptic on ker B.
Then there exists a solution (u,p) € V X Q of (4.41). Moreover (u,p) is bounded by

1 1
fullv < I+ 5(1——) Glo

1
Wlgtern < 5 (15 22) 171+ % (14 22) [lo-

Proof. see BREZz1 AND FORTIN [12, Proposition 1.3] O

Dual Formulation

In Theorem 4.16 the dual formulation was noted. For the body-body contact problem (L
given by (4.36)) and with the assumption that A is V-elliptic on V, the dual formulation
can be calculated explicitly. For this

Y(q) = inf = (Av Vvixy + (B — G, q)oxg — (F,v)vixy (4.43)

veV 2

has to be calculated. Because A was assumed to be V-elliptic (and bounded) Theorem
4.11 is valid and thus this equation is uniquely solvable for every ¢, B and F. The uniquely
defined solution operator is denoted by A~!. Because of Theorem 4.11 this operator is
bounded and linear from V' — V (A~! € £(V',V)). From the symmetry of A, the
symmetry of A~! is deduced. Substituting this result into (4.43) it follows

V(g) = =5 (B ¢+ F, AT (B + F))yiv + (G @)
((BA B0, Q) g+ 2(BATF Q) g+ (F AT F)yy ) + (G0

(BA'B*¢, @) oy — (BA™'F — G, q) SFATF)

wl»—*wl»—*wli—‘

Q'xQ Q'xQ
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By changing the sign and sup — inf, the dual formulation looks like

p = argminy(q),
gEN

with
1
¥(g) = 5 (BATB'G.0) o +(BAF = Ga) (4.44)

If p is known, the solution u can be calculated by applying A~! to B*p + F. Note B* is
the adjoint operator of B with B* € £(Q,V"). KikucHI AND ODEN[34] denote the dual
formulation as reciprocal formulation.

4.4 Existence and Uniqueness of the Body-Body Con-
tact Problem

Theorem 4.11 guarantees existence and uniqueness if A, given by (4.17), is elliptic on K
(Boundness of A is easy to verify). Also the ellipticity of A on K may be too much. There
are body-body contact problems which are not elliptic on K having a unique solution.
Ellipticity isn’t necessary because there are more general results than Theorem 4.11. Some
of them are presented in the references given at the beginning of this section. If A isn’t
K-elliptic, then the existence and uniqueness results are usually based on the coercitivity of
the Ritz functional J(v) ((4.30). Especially for the body-body contact problem existence
and uniqueness results are presented in KIKUCHI AND ODEN [34], HASLINGER, HLAVACEK
AND NECAS [29], BOIERI, GASTALDI AND KINDERLEHRER [7]| and EcK [22].

For this thesis only examples are considered which have Dirichlet boundaries on both
bodies, i.e. [TL[, |T%| > 0. In this case it’s possible to prove that A is V-elliptic. This is
done by considering the null space of A, which are, due to the next lemma, the rigid body
motions.

Lemma 4.26. Let Q € C%'. Then the following conditions are equivalent:
e Voe HY(Q)V €{1,...d} :  €;(v) = 0in Ly()
e Ja,beR!: w(z) =a+bxxae inQ,
where X denotes the vector product and x € € is the position vector of a point.
Proof. see KIKUCHI AND ODEN [34, Lemma 6.1] O

The most important inequality in elastic mechanics, from which the most ellipticity results
of A are deduced is the Korn’s inequality.
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Theorem 4.27. Let Q C R? be a bounded domain with 02 € C%'. Then there erists a
positive constant c, independent of v, such that

/tr(gmdv gradv) dz < C’/tr(e(v)e(v))d:r—i— ||v||gQ (4.45)
Q Q

for every v € WHP(Q), p €]1, 00].

Proof. for a sketch of the proof see KIKUCHI AND ODEN [34, Theorem 5.13] O

Using Korn’s inequality (Theorem 4.27) and the assumption ||, |T%| > 0, the V-
ellipticity follows as a direct consequence of Theorem 3.18. Theorem 3.18 is used to prove
that

[ et e ds+ ol = [ n(ew) ),

Q Q

which follows directly by setting

B = / tr(e(v) e(v) d.

Q

|.|lp = /vds

D

and noting that X is the set of rigid body motions given in Lemma 4.26.

Remark 4.28. Because A is V-elliptic and it was assumed that the parametrisations X )
is smooth enough such that RgB = @', also the mized formulation (4.41) has, due to
Proposition 4.24 , a unique solution and thus the dual formulation as well. This fact will
be essential for the following chapters.



Chapter 5

Some Results for Finite Element
Analysis

To solve variational inequalities numerically, the infinite space V' (Q) for the primal (dual)
formulation and the space V x @ for the mixed formulation has to be reduced to a finite
one. There are a lot of methods to do this, but the common one and the best suited method
for numerical computation is the Finite Element Method (FEM). For details of FEM refer
for the primal (dual) problem to CIARLET [16] and for the mixed problem to BREZZI AND
FORTIN [12]. An important property of the FEM is that the convergence results of the
discrete to the continuous solution usually depend only on the best approximation error.
The best approximation error is easy to estimate for FEM due to the local property of FEM
and well known interpolation operators. For variational inequalities some convergence
results are presented in BREZzI, HAGER AND RAVIART [13],[14] and FALK [24]. For
interpolation operators refer to SCOTT AND ZHANG [45], CLEMENT [18] and DUPONT
AND SCOTT [21].

In Section 5.1 the finite element space is introduced and some notations are defined.
To keep the writing short, the notation is important for the next chapters. An important
property of the FEM is that there exists several interpolation operators. For the discretisa-
tion of the convex set K of the body-body contact problem, these interpolation operators
are essential. Thus the most important one, at least for this thesis, the nodal interpolation
operator and the interpolation operators of Scott-Zhang type are introduced in Section 5.2.
To guarantee existence and uniqueness of the discretised solution, corresponding assump-
tions as in Section 4.3 are needed. In Section 5.3 an abstract condition (Fortin’s criterion)
is presented which guarantees the the discrete LBB condition holds uniformly in A. Finally
it’s important to know whether the discrete solution converges to the exact one or not. For
this some results are presented in Section 5.4.

38
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5.1 Finite Element Spaces

For computing, elements in Sobolev spaces have to be approximated by elements in fi-
nite dimensional function spaces. One possibility are finite element spaces (FE-spaces).
This kind of finite dimensional spaces are very common and should be introduced in this
section. For more details refer to CIARLET [16]. The FEM is a very general method to con-
struct finite dimensional subspaces for Sobolev spaces and well suited for a lot of practical
applications.

For simplicity and to avoid technical difficulties assume that Q@ C R? is a polygonal
shaped and bounded domain. The first characteristic of the FEM is that a triangulation
7, is established over the set €, i.e. the set () is subdivided into a finite number of subsets
T, called finite elements, in such a way that the following properties are satisfied.

e O= \JT

TeT,
eVTerm : cdT =TAIntT =0
e VILKen,,T#K: intTNnintK = ()
eVTer : 0T € C%.

For this thesis and for simplicity it’s enough to restrict the finite elements T' to segments
in 1D, triangles in 2D and tetrahedra in 3D.
For notation define the patches

wr = LJ TU

Kery,
KNT#D
w(r) = U T,
Kery,
z€T
the set of edges &, by
En={ECQI3T,Ken,: E=TNK V E=TNoNQ} (5.1)
and split the set of edges &, into disjoint sets £}, &P, ..., such that

&' = {Ee&|3T,Ken, : E=TNK},
EP = {FEe€&|3Ten : E=TnTp}.

Remember that I'p ... € 09 is a disjoint splitting of the boundary. These definitions will
simplify the writing in the following chapters.

For the FEM each element T' € 7, is interpreted as the image of the mapping z” (&)
from a reference element 7). The usual case is that 7 is an affine linear mapping.
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Definition 5.1. e A triangulation Ty, is called conforming, iff the intersection of two
different elements is either empty, or contains one common vertex, one common edge
or one common face.

e A conforming triangulation is shape regular, iff for all elements the condition number
of the Jacobian is bounded, i.e.

)

e The local mesh size h(x) is defined for v = 27 (£) as

dz"(€)

< : :
7 <1 VT emnVeéeT (5.2)

lg(RdXd)

lg(RdXd)

T
M) = \dx &) , (53)
df 12(Rd><d)
and
hy = sup h(x).
xeT

e A triangulation 13, is quasi-uniform, iff it’s shape regular and there exists one global
h > 0 such that

h < h(x) < h Vo e Q. (5.4)

Let X}, be any finite-dimensional space of functions defined over Q. With such a finite
element space X, the (finite dimensional) spaces

PT = {Uh|T | UhEXh}

are defined, where T € 73,

The second basic aspect of FEM is that the spaces Pr, T" € 75, contain polynomials.
For this define shape functions on the reference element. It’s enough, for this thesis, to
consider shape functions of full polynomial type. This shape functions are denoted by P’.

Pr:{p:Zaax'f“...xgd aq € R}. (5.5)

la|<r

The third basic aspect of the FEM is that there exists at least one “canonical” basis in
the FE space V}, whose corresponding basis functions have supports which are as “small” as
possible. It’s being implicitly understood that these basis functions can be easily described.

Fix the polynomial degree r for P" and consider the FE space V), which is defined by

Vh:{thC(Q)|vh|T€Pr VTETh}. (56)
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Note that this finite dimensional space V}, is subset of H'(Q) (see CIARLET [16, Theorem
2.1.1]). Tt can be represented as the span of local ansatz functions {y;} with corresponding
set of nodes N}, such that for z; € N,

piz;) = 045

For linear Lagrange elements (i.e. r = 1), N}, can be chosen as the union of all corner points
of the elements T € 7,. The corresponding ansatz functions {¢;} are local and defined on
the patch {w(z;)}. Also the set of nodes AV, is split into disjoint parts N5, AP, ..., similar
as the set of edges £,. An important property of FE spaces for shape regular triangulation
T, 18 the so called inverse inequality. I.e. it’s possible to estimate higher order Sobolev
norms on elements T' € 1, by lower one.

Theorem 5.2. Let 7, be a shape regular mesh, V, be a FE space. Then the following
inequality is valid.

pr = hEF o

lon b YO<I<k< (5.7)

Proof. see CIARLET [16, Theorem 3.2.6] O

5.2 Local Interpolation Operators

To approximate a function in a Sobolev space by some finite element functions a mapping
I, : H™(Q) — Vj, is needed. The mapping should be local, i.e. (I,u)|r should only depend
on uls, where T is close to and not much larger than T. The approximation shell become
better as the image norm gets weaker. The optimal approximation is

v — Invllkr = h%fk||v||j’f VoeVV0O<k<j<m<r+1, (5.8)

for proper integers k£ and j. r is the maximal polynomial degree of the ansatz functions,
i.e. p; € P"(T). One further property, which isn’t necessary but very common, is that the
interpolation operator I, is idempotent, i.e. I? = I,.

Every linear interpolation operator Ij, can be represented as

Iv = Z Li(v)p; VveV, (5.9)

xiENh

where [; € V' is some linear functional. Note that [;(v) = I,(v)(x;) and its norm is in
general mesh dependent. For a local mapping the linear functional /; has to be local, i.e.
VoeV,v|l=0: [(v)=0and for I, idempotent [;(I,v) = [;(v) Vz; €N,. The hard
property for an interpolation operator I, is equation (5.8). In the following two examples
of interpolation operators are presented which fulfils (5.8).
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e The classical interpolation operator is the nodal interpolation operator Iy. From
Theorem 3.4 it’s known that H™() is continuously embedded into the contin-

uous functions C'(2), if m > % Thus it’s possible to evaluate every function

v € H™(Q) in every arbitrary point x € Q with v(z) < ma5<|v(y)| =< |v]lm.0-
ye

L.e. the linear functional I,(v) := v(x) is element of the space H;, ™(2). Especially

Li(.):=1:(.) = €N, iselement of H,™(Q). With this it’s possible to define the

nodal interpolation operator Iy

Iyv = Z v(x;) ;. (5.10)

ziG/\/'h

This operator is obviously a local interpolation operator and idempotent. In CIARLET
[16, Theorem 3.2.1] it’s proved that this interpolation operator also fulfils (5.8). The
main reason that (5.8) is valid for the nodal interpolation operator is that

(I—-In)p=0 VpeP (T)VT €,

and that [;(v) < ||v|lm.q. Thus the Bramble Hilbert lemma (see Lemma 3.20) is valid
and with the transformation of the element 7T to its reference element T® everything
follows.

The big disadvantage of the nodal interpolation operator is that m has to be greater
than %, which is especially not fulfilled for 2D and 3D examples with m = 1.

Note that nodal interpolation provides the same approximation result for the bound-
ary as for the domain.

e An other possibility is the Scott-Zhang type interpolation operator. These operators
are defined as follows. For each node z; € N}, define a set o;, with x; € 0;. It can
be a subset of non-zero measure, but also a manifold. Define the Ly(0;)-orthogonal
projection IT¥ onto P*(c0;). Then define the linear functionals [;(v) := T1¥(v)(z;) and
thus the interpolation operator becomes

Iszv = Y TF(v)(2:)e:. (5.11)

ziGNh

This operator is idempotent if V|,, € P*(0;) and then also local. Two examples
to define the set o; for the node z; € N}, are given in Figure 5.1. The Scott-Zhang
projection is well defined for the Sobolev space Ly(Q2) iff all sets o; have non-zero
measure in R?, in the other case it’s well defined on H™(Q) with m > %, due to the
trace theorem (see Theorem 3.5). If additionally

il =1{ 0

O(h
O(hT
then the approximation inequality (5.8) holds for 1 < m < max{r + 1,k + 1}. For
proof refer to SCOTT AND ZHANG [45].

) dimo; = d
71 dimoy =d—1 7
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T

A
I
Figure 5.1: construction of a SCOTT-ZHANG operator

Note that if 0; C 0Q Va; € M)y N OQ, then the Scott-Zhang interpolation operator
is also one at the boundary 02 with the same properties as in €.

Remark 5.53. Due to the fact that Hilbert type Sobolev spaces of fractional order can be
represented as interpolation spaces of two Sobolev spaces with an integer order (see The-
orem 3.13) and due to Theorem 3.11, the approximation result (5.8) can be extended to
sobolev indices with fractional order. This is often denoted as scaling argument.

5.3 Existence and Uniqueness of the Discretised Vari-
ational Inequality

For the {K, A, F'} denoted as saddle point formulation (4.41), with
K={veV|Bv-Gqgxg <0 V,ge N},

the existence and uniqueness was guaranteed, due to Proposition 4.24, if A is V-elliptic
and B fulfils the LBB condition (4.42). For the equality case, i.e. N = (@), the existence
and uniqueness was guaranteed, due to Theorem 4.25, if A is Ker B-elliptic and B fulfils
the LBB condition (4.42). This results are also valid in the discretised case. Thus it’s
enough to prove a discrete LBB condition, i.e. BV, = @)}, and for the equality case
the discrete kernel ellipticity. To achieve convergence results for the discretised system
it’s necessary that the discrete LBB condition and the discrete kernel ellipticity holds
uniformly, i.e. independent of the mesh parameter h. The following theorem guarantees
an uniform discrete LBB condition in a lot of applications.

Theorem 5.4 (Fortin’s criterion). Let V, Q) be a stable pair, i.e. the LBB condition

b(v, q)

vev [ollv

> lallo
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is fulfilled and Vi, Qp the corresponding FE spaces. Furthermore assume the existence of
a family of uniformly continuous operators IF : V' — V}, satisfying

b([,lfw—w a) = Vg, € Qy
’ ’ 5.12
e < olly- (5.12)

Then the FE spaces Vi, Q are a uniform stable pair, i.e.

b(vn, qn
sup L0 (5.19)
VR EV thHV
Proof. see BREzz1 FORTIN [12, IT Proposition 2.8] O

For the inequality case the last theorem is enough to guarantee existence and uniqueness.
If

ker,B = {wvy € Vi, | )Bun, qn)grxg = 0 Van € Qn}

is subspace of ker B then Theorem 5.4 is also enough for the equality case, to guarantee
existence and uniqueness. But in general ker, B ¢ ker B and thus the discrete kernel
ellipticity has to be verified by hand.

5.4 Convergence Results

In the last sections the variational inequality was discretised and the existence of a unique
solution was guaranteed. But the hole work will be useless if the discretised solution is no
approximation of the continuous one. This section is concerned with some abstract results
which guarantees that the discretised solution approximates the continuous one.

In the hole section e denotes the discretisation error in the primal variable, i.e.

e = UuU—Up.

Most of the results and inequalities presented, are concerned with the convergence of the
primal variable. Only for the equality case a convergence result for both, the primal and
dual variable is presented. Some of the inequalities, which are presented are well suited
to construct a-posteriori error estimators, at least for the equality case. The convergence
result, presented in this thesis, for the inequality case requires a special representation of
the discretised convex set K}, but that’s enough for the problems considered here.

K, = {Uh eV | <th — G,qh>Q/XQ <0 th € Nh} . (514)

Before presenting some inequalities of the discretisation error in the A energy norm, the
notion of the approxrimation of K is defined.
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Definition 5.5. A family (Kp)pen, where K, C Vi, are non-empty, closed and conver
subsets of V},, is said to be an approximation of K iff

e VveK3vy,eKp: limuov,=vinV (5.15a)
h—0+

o if (Vn)hen, vy € Ky, is such that vy, v, h -0+ inV = ve K. (5.15b)

The next lemmas are the basis of proofing convergence results in the inequality case.
Some of these lemmas are used later, to prove convergence results for the body-body
contact problem with nodal constraints as discretisation.

Lemma 5.6. Let (u,p) be solution of (4.41) and (up,py) be the corresponding one of the
discretised system, with K, given by (5.14), then the following error estimate is valid for
all v, € Kp, and q, € Ny,.

(Ae,e)vivy < (Ae,u—vp)yrixy + (Blup — vh), P — qh)or<o (5.16)
+(B(u = vn), qn)g'xq + (Bu— G,p — qn)o'xq

Proof. see BREZz1, HAGER AND RAVIART [14, IT Theorem 2.2] O

Lemma 5.7. Let (u,p) be solution of (4.41) and (up,py) be the corresponding one of the
discretised system. Then the residual e = u — uy, in the energy norm has the following
representations for all e, € Vi, qn € Ny, g € N

<A€, 6>V’><V = {(F, € — eh>V’><V - <Auh; € — 6h>v'xv - <B(€ - eh);ph>Q’><Q} (5 17&)
+{{(Bu — G, pr)gxq}t + {(Bur — G.p)orxa} '

<A€; 6>V’><V < {(F, € — eh>V’><V - <Auh, € — 6h>v'xv - <B(€ - eh);ph>Q’><Q} (5 17b)
+{(Bu—G,pn — @)qrxq} + {{Bun — G,p — qn)qg'xq} '

Proof. From (4.41) it follows that

(Au — up, vp)vixy = (Bop, ph — D)@'x0 Vo, € V).

Thus the residual (e := u — uy,) in the energy norm can be estimated by

(Ae,e)yivy = (Au,e—ep)yixy — (Aup, e —ep)viwy — (Ben, P — Pr)orxo
= {(Fe—en)vixv — (Aup, e —ep)vicy — (Ble —en), ph)orxo}
+(Bu,pp — P)grxg + (Bun, D — Pr)or<o
= {(F, € — eh>V’><V - <Auh; € — eh>V’><V - <B(€ - eh)aph>Q’><Q}
+{(Bu,pn)q'xq — (G, pn) <o} + {{Bun, P)oxq = (G D) oo

The inequality (5.17b) is a direct consequence of the last estimate and (Bu—G, ¢)g'xg < 0,
(Buh — G, Qh>Q’><Q S 0. U
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Lemma 5.8. It holds that Vv € K Vv, € K,

(Ae,eyyrivy < (F,u—vp)vixv + (Fyup — )vigy

5.18
+(Ae,u — vp)vrxy + (Au, v — up)vrcy + (Au, v — u)yrcy ( )

Proof. see HASLINGER AND HLAVACEK AND NECAS [29, Lemma 4.1] O

Theorem 5.9. Let u € K and u, € K}, be solutions of {K, A, F} and {K}, A, F}, re-
spectively. Let the family {K,} be an approximation of K, i.e. (5.15a)-(5.15b) is fulfilled.
Then

lim ||u— uslly =0.
h—+0

Proof. see HASLINGER AND HLAVACGEK AND NECAS [29, Theorem 4.1] O

Condition (5.15a) is some minimal assumption which should be fulfilled to guarantee a
convergence result without assuming any properties for the solution w.

In the equality case (4.41) has nice convergence properties, which will be very important
in the next chapter.

Theorem 5.10. Assume N = @Q (unrestricted mized problem), that B fulfils the LBB
condition (4.42) and A should be ker B-elliptic (4.22). Furthermore assume the uniform
discrete LBB condition (5.13) and also the uniform ker, B-ellipticity for A. Let (u,p)
be the unique solution of (4.41) and (up,pn) be the unique solution of the corresponding
discretised system. Then the following convergence result is valid.

|u—unlly +llp = pulle = inf |lu—wvpl|lv + inf ||p—aullg (5.19)
vpEVY, qhEQR

Proof. see BREZz1 AND FORTIN [12, IT Propositon 2.6-2.7] O

One draw back of this section is that the convergence result presented for the variational
inequality isn’t valid for the body-body contact problem and the discretisation (nodal
constraints) chosen in this thesis. For the body-body contact problem the inequalities
presented for the primal variable are from greater interest.



Chapter 6

Intermezzo Non-Matching (Grids

Standard discretisation of the body-body contact problem will usually result into a problem
with non-matching grids at the contact boundary. There are at least two techniques to
handle non-matching grids. The first is the Mortar method and the second one is Nodal
constraints (on a master surface). The Mortar method is well developed for equality
constraints and give optimal convergence results (see BELGACEM [4]). There are also
some results for contact problems (see BELGACEM, HILD AND LABORDE [6] [5]). One
disadvantage is that this method is hard to implement, especially the three dimensional
case. Nodal constraints have the advantage that they are easy to implement but, to the
knowledge of the author, there are no theoretical optimal convergence results available.
This chapter follows SCHOBERL et al [28] and presents the analysis of a simple example with
Nodal equality constraints. The main result will be that Nodal constraints with a simple
stabilising term has optimal convergence for Lagrange elements, in the primal variable, at
least in 2 dimensions.

In Section 6.1 a mized problem, equivalent to the Laplace problem (see RAVIART AND
THOMAS [41]), is presented, which enables the handling of non-matching grids. Introduc-
ing an abstract interpolation operator and assuming its existence, it’s possible to introduce
Nodal constraints as a special choice of ansatz functions in the dual space. This and the
validity of the standard requirements for discretised mized problems is presented in Section
6.2. The convergence result which is achieved due to this discretisation isn’t optimal in
the primal variable. In Section 6.3 the mized problem is consistently modified, such that
all standard results, apart of the uniform V- ellipticity, are trivially valid. Assuming this
Von-ellipticity, optimal convergence results are achieved for Nodal constraints and linear La-
grange elements. In Section 6.4 both, the existence of the abstract interpolation operator
and the assumed uniform Vy,-ellipticity of the consistently modified problem, in 2 dimen-
sions are proved. In Section 6.5 it’s explained how to implement the consistently modified
problem efficient (at least for a uniform mesh) and an numerical example is presented
which confirms the optimal convergence property of the consistently modified problem.

47
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6.1 Non-matching Grid for a Laplace Problem
Consider the following simple model problem.

—AU:f ianQlLJQQ

u=0 on['p =00. (6.1)

It’s well known that the (weak-) Laplace problem (6.1) is uniquely solvable, because of

Mc

rD Q 1 Qz

Figure 6.1: Non-matching grid

the H}(Q)-ellipticity of the bilinear form a(.,.) (Poincaré or Friedrich inequality), the
boundness of a(.,.) and the Laz Milgram lemma (Theorem 4.11). Due to the next theorem
it’s possible to handle non-matching grids.

Theorem 6.1. The space H}(Q) can be represented as a subspace of V, namely

Hy(Q) ={veV|blg,v)=0 YqgeQ}, (6.2)
with
vV :H&,D(Ql) X H(;,D(Qﬁ
0 { (Hs(Te)) TenTp=are
H3(¢) TenTp=0
b(g,v) :== (g, [v])oxq
[v] = (v1 — v2)rg

X = LyI¢) » X' =X
1
1

v = H- (Fc) EQE:(?FC
| Hy'(Te) TenTp=10
Z = H™(T¢) —» Z' = H2(T'¢).

Proof. A more general proof is presented in RAVIART AND THOMAS [41, Lemma 1].
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"

" .

Let u € H}(Q) and from the trace theorem Theorem 3.5 it’s know that [u] = 0 in
Q' and thus b(q,u) = (q,[ul)oxg = 0 Vge Q.

Assume that there exists an element v € {v € V|b(¢q,v) = 0 Vg € Q}/H ().
From the Hahn-Banach theorem (HEUSER [31, Satz 42.5]) follows that
FvreV': (v, 0)vixy < (v, Hy (Q))vrsy -

Because H () is a linear space (v*, H} (Q))vixy = 0 = {(v*,v)yrxy < 0. The
proofis done if Iq(v*) € QVw € Vi (v*,w)yry = (q(v*),[w])oxe , because this
would be a contradiction to the assumption. Also from the Hahn-Banach theorem
it’s known that (see ADAMS [1, Theorem 3.8])

3 (g, 90) (v") € Lo()™ 1V w e V : (0 ww—z/ ), Vo, + go(0*)w dar.

ZIQ

Note that V¢ € C5°(2) C Hg(Q)

0= p)oxy = /<g(U*),Vg0>12(Rd) + go(v")pdz,
Q

and thus div g(v*) exists in a distributional sense, i.e. divg(v*) € (C§°(£2)), and is
equal to go(v*). From the fact that C§°(Q) is dense in Ly(£2) and that go(v*) € Lo(Q)
this equality divg(v*) = go(v*) holds also in Lo(2) and thus g(v*) € H(div,<).
Using this the linear functional v* can be written as

(v, w)yryy = Z/ ), V), way + div g(v*)w dx

llﬂ

- Z/ ), V), way + div g(v*)w dx
=14,

L 3.8 * *
N (90" m)mey, w1) 5, 0+ ({9(07), m2)1yrey w2) 4 4

(lg()]n)y, may=0 *
=" <<g(v )vn>l2(Rd)’[w]>Z><Z’ )

Note that n = n; = —ny, (g(v*),n),me) € Z C Q and [w] € Q'. With the setting
q(v*) = (g(v*),n),ga) the desired result

(v whviey = (q(v7), [whoxg = blg(v),w)  VweV

is proved.
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Now consider the mixed Laplace problem
(6.3)

where
2
a(u,v) = Z

=1

/ <VU, VU>12(Rd) dz .
Q:

i

The question arises if the problem (6.1) and problem (6.3) are equivalent. But first consider
the question whether the bilinear form b(.,.) fulfils the LBB-condition or not.

Remark 6.3. Because of Theorem 3.5 or Remark 3.7 the trace norm ||.||o has an equivalent
representation.

lgllgr =~ inf [jw[lv (6.4)

[w]=g

Note that V' can be replaced by V; x {0}, because of Vj|r, = @'
Proposition 6.4. Problem (6.3) fulfils the LBB condition

b
sup 229 5l (6.5)

vev [ollv

Proof. Because of the surjectivity Vi, = @' and [V] = Q' the following estimates are
valid.

blg,v) sup b(q,v)

sup > (6.6)
vev |v]lv vevix{oy [[vllv
b(q, v q,9 ' lgllor Remark 6.3
sup ( ) = sup sup {< >Q><Q H ||Q - ||Q||Q
vk Mol ~ sear 20 U llgller Jwllv
O

Proposition 6.5. The mized problem (6.3) has a unique solution (u,p) € V x Q with

lullv +llplle = 1l fllv

Proof. Because of Theorem 6.1 the bilinear form a(.,.) is elliptic on ker B = {v |b(v,q) =
0 V¢ € Q}. From Proposition 6.4 it’s known that b(.,.) fulfils a LBB-condition and with
Theorem 4.25 the prove is done. O

The only thing which is missing is that a solution of (6.1) generates a solution of (6.3) and
vice versa.
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Theorem 6.6. Let u € H(QQ) be the unique solution of (6.1) with f € Ly(Q2) then the

pair (u, %) €V x Z is the unique solution of (6.3). On the other hand if (u,p) € V x Q
is the unique solution of (6.3) then u € H}(Q) is the unique one of (6.1).

Proof. The proof can also be found in RAVIART AND THOMAS [41, Theorem 1].

e Let (u,p) € V x @ be the unique solution of (6.3), then due to Theorem 6.1 u €
H}(Q). Choosing v € H(f2) in equation (6.3) the desired result follows.

e Let u be the solution of (6.1) and consider the linear form

(L,v)yrwy = alu,v) — (f,0)yvy = b(p,v)

Let ¢ € C(2) C Hy(Q) and because u is a solution of (6.1) it’s deduced that
—div Vu exists in a distributional sense and is equal f.

0= <L7 90>V’><V = /<VU7 v90>12(Rd) _fSde = —<diVVU—|—f, 90>(080(Q))'><080(Q)
Q

From the density of C§°(€2) in Lo(£2) and the fact that f € Ly(Q2) the equality holds
in Ly(Q2) and thus divVu € H(div,2). Using Greens’ formula (Lemma 3.8), the
linear functional (L, .)y7y can be represented as

<L; U>V’><V = —<diV Vu + f, U>V'xv + ( (VU, n>12(Rd); M)sz'
=b0((Vu, 1)y, may, v)

From Proposition 6.4 it’s known that p is unique and thus p = (Vu, n>l2(Rd) S

0

Remark 6.7. The mixed formulation is useful if €2, are separately meshed because in this
case the grid is usually a non-matching one (see Figure 6.1).

Remark 6.8. To solve this problem numerically, a stable pair V}, C V, @), C @ of finite
element spaces has to be chosen. For V' assume the standard discretisation with Lagrange
elements of first order. The only thing which is missing is how to choose . One possibility
is to use Mortar, which is a well developed technique. An other possibility is to use nodal
constraints, which will be considered in the following.

6.2 Nodal Constraints

The idea of nodal constraints is to set the duality pairing

(ans [unld oy = (ans uny — un2)axer = D dh(un(w:) = unp())
:L‘iEN,S’:l
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where ¢, € R and N, = {nodes of surface I'c: generated by the mesh of ; } . Now the
question arises are there linear functionals q};’l Q"= R € @ such that

(Ghys vdoxq = vn(z:) Yo €W, (6.7)
or not. The space W), denotes the sum of the traces of V,; at I'c (see Figure 6.2).
Wh = tr Vh,l + tr Vh’2 . (68)

w, inW,

Xi G

Figure 6.2: Summed trace spaces

The answer isn’t obvious because in general the space ) doesn’t include point eval-
uating functionals. Having a positive answer, the next question is whether the space
Qny = span{q};’l |z; € thl} and V}, are a stable pairing, or not. This section is concerned
with answering this questions by formulating an abstract condition for the existence of an
interpolation operator I' : trV;, — trV},; such that

Il(vh)(xi) = Uh(!L‘Z') Va, € ./\/',fleh S tI"Vh,l + tth’Q (69&)
Ilvh = U Yo, € tI"Vh,l (69b
1T ||z =< Zhg—’wm VO<k<mVve  H™(¢) (6.9¢)
j=0
> Wt o = T2 < ollar. VO<k<m<r+1Vve H"(T¢).
EeE,{fl
(6.9d)

r is the integer which fixes the polynomial degree of the ansatz space (for linear Lagrange
elements r = 1).

Remark 6.9. W.l.o.g. it’s possible to refer I' : Q' — trV},; as an operator from I':v,— Vi
with property (6.9a)-(6.9d) on V, Vj,; instead of trVj, trV;,, and € instead of I'c. The
reason therefore is

e trV; = Q' because the trace operator is surjective Theorem 3.5

o IV, — Vi, can be constructed like a SCOTT-ZHANG operator using instead of the
usual boundary approximation the operator I' : trV; — trVj,.
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Indeed I' : V; — Vi, becomes nothing else than a SCOTT-ZHANG operator with special
choice of o; for the boundary nodes z; € Ny

With this knowledge it’s possible to refer I, : V' — Vj, (vy,v9) = (I'vy, I%v;) as an
interpolation operator with property (6.9b)- (6.9d).

Remark 6.10. From Section 5.2 it’s known that I' : V, — Vi, can be represented via

I'(v) = Y T'(v)(w;)i, where p;; denotes the basis ansatz function in node z;. Similar
ziGNh,l
the interpolation operator I' : trV; — trV},,; is represented via I'(v) = > I'(v)(%i)pi,
IiEth:l

where Vux; € N,fl L Pig = %0z'|Fo-

Assuming the existence of such an interpolation operator fulfilling (6.9a)-(6.9d) the
space of nodal evaluating linear functionals ()5, can be defined.

Definition 6.11. The space of nodal evaluating functionals is defined by

Qni=144¢€Q | qv)= > ¢v)(@:) R . (6.10)

:L‘iENhCl

Remark 6.12. To call the space Q5 the space of nodal evaluating functionals isn’t correct
because only functions v € W), are evaluated correct at the nodal points z; € Nj,;. Even
continuous functions aren’t evaluated at node z;.

Considering @), as discretisation of ) and with the discretisation V;, C V' the mixed
FE system

a(up, vp) + b(ph, vn) = (f, va)vr v Vo, €V

6.11
b(qn, un) 0 Van € Qny (6.11)

can be considered. To prove existence, uniqueness and approximation results for the mixed
system (6.11) standard assumptions for Theorem 4.25 and Theorem 5.10 have to be verified.
First consider the approximation property of @, in @ N X (X = Ly(T'¢)).

Lemma 6.13. Let I' fulfil properties (6.9a)- (6.9d), Qn, be given by Definition 6.11 and
assume a uniform mesh. Then the operator

I6:Q=Qui p = pni= Y Py ()(w:). (6.12)

:L‘iEN,S’:l
s an interpolation operator fulfilling

Horlle  =lplle Vpedq

1 (6.13)
lp = I5llx <h2lplle  VpeX.
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Proof. Because of the interpolation theorem (Theorem 3.13) @ is the interpolation space
Q =1, X]%. To hold the notation simple define @y := [Y, X]s. Note that X < ¥ and

thus (p, ¢*)g,xq, = (P, q*)vxys . From the definition of If, follows that

(Iép, q*>Q9xQ; = (p, Z [l(q*)(xi)%,zhfxy' = (0. I'q )y uv = (p, ﬂq*)Q,;xQ;-

:EiENhol

e That If, is bounded is proved by proofing that If, is a bounded linear operator from
It - Qo — (Qnys ||-llg,) for 6 € {0,1} and then using Theorem 3.11.

Il , * ’ ,Il * ,
Hlé?p”Qe = Ssup <Qp a >Q9XQ9 = su m

e, ey ey llatlle
C.S. 11'q* | gy (6:90)
< pllgy sup ——+—" = lIpllq,
T*€Q) lq"|| b

e Also the approximation property is proved by proofing the corresponding approxima-
tion property in the space @y with 6 € {0,1} and using the interpolation inequality
(Theorem 3.13).

l * * *
<p - IQpaq >Q9><Q§; <p7q - Ilq >X><X

P — I5pllg, = sup = sup

s T i P e . i P
(6.9d)
= lp— Ipplly = > bl s < ullpllx
EcEf,
. Theorem 3.13 Lo L 1—g 0
= |lp — Igpllq, = I = Iopll-llp — Igpllx* < hllpllx

A direct consequence of Lemma 6.13 is the following proposition.

Proposition 6.14. Let I' fulfil properties (6.9a)- (6.9d), Qn; be given by Definition 6.11
and assume a uniform mesh. Assuming p € X, then the following approzimation result is
valid.

inf [p—allo < vhullplx (6.14)
qhEQR,
Proposition 6.15. The discretised problem (6.11) fulfils the discrete LBB condition uni-
formly in hy.

Proof. The proof is done by proving that I, is a Fortin operator on the subspace V; x {0}
and thus for equation (6.6). Using Fortin’s criterion (Theorem 5.4) everything is done.
Boundness of I}, is valid because of requirement (6.9¢). The only thing to prove is

(qh,v—llv>QXQr:0 thEQh,lVUEWX{O}.
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This is trivial because Vv € V; x {0} :  I'(v) = I'(I,v) and thus
(anvdexe = Y. al'@)@) Y Gl ) @) = (o hodexe - (6.15)
HENT, NG,
U
Proposition 6.16. The bilinear form a(.,.) is uniformly Vo,-elliptic, i.e.
Null? < a(u,u) Vu € kerBy, = {v e V,|blgn,v) =0 Vg, € Qn}- (6.16)

Proof. e TcNTp = dl¢: In this case [0Q; NTp| > 0 Vj € {1,2} and thus the
Poincaré (or Friedrich’s) inequality is valid on all of V', i.e. a(.,.) is V-elliptic.

e I'cNTp =0: Wlo.g. |00 NTp| =0 and thus a(.,.) isn’t V-elliptic. Thus prove
that a(.,.) + || [.]I7,rey = lI-Il- This is done by verifying the assumptions of
Theorem 3.18 (equivalent norms theorem), i.e. ||[.]||z,.) < |||y and continuous,
and Vc € V (¢ = const.) : ||[c]||1,00) =0 & ¢ = 0. Both assumptions are trivially
fulfilled. Now consider Iyu € ker By, < I'[I,u] = 0. For such functions the term
|| [Inu] || 1o(re) doesn’t vanish in general. Nevertheless it’s possible to estimate

1] ey = Ndww] = 'Iaud 17,00 = 1T = I (Thw)ic |70,
< (- fl)(Ihu)zlei(ro) + (1 - Il*l)([hu)lflni(rc)

(6.9d) (
= ) hill(Tu)i 13

EeEf,

6.4) )
= I|[Thully .

Thus there exists a parameter hjmax € R such that for all mesh-parameters h; <
i max the bilinear form a(.,.) is uniform Vp,-elliptic.
Note that for every mesh-parameter a(.,.) is trivially Vp,-elliptic (but not necessary

uniformly) because a(.,.) +[[I'[. 17,1,y = [I-I5- (I' is uniformly bounded and [|I'[c] || =
ITc|| [c] | and thus Theorem 3.18 is valid). Per definition V I"u € ker By : |[I'[I"u]||1,(re) =
0 and everything is done. O

Theorem 6.17. Let (u,p) € ((H*(Q) x H*(Q)) N V) x Ly(T¢) be the solution of problem
(6.3) and (up, py) be solution of (6.11), with a uniform mesh, then the following convergence
result holds

1
lu = unllv +1lp = palle = ullullaoira, + 7 [Ipllx (6.17)

Proof. Because of the discrete inf-sup condition (Proposition 6.15) the Vj, ellipticity of
a(.,.) (Proposition 6.16) and the boundness, Theorem 5.10 is valid and thus

u—1u +|lp — = inf |lu—v + inf —

[l = unllv + [[p — pallq = Jnf flu—vallv ot 1P — anlle

Proposition 6.14
= [ = Tyullv + v/ Iullp

(6.9d)
< hallull2,0, 10, + Vhullpllore -

0,l'e
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0

Remark 6.18. The convergence result of Theorem 6.17 is an optimal result for the dual
variable p and the assumed smoothness. But in the usual case that u € H*(Q) N Hy(Q),
then p € H2(I'¢) due to Theorem 6.6 and thus a better convergence result is expected.
For Mortar techniques this is true but for nodal constraints this can’t be proved because
of missing approximation results for negative sobolev indices.

Nevertheless it’s possible to achieve a better convergence result for the primal variable
u, if the mixed Laplace problem is consistently modified. How to modify the mixed Laplace
problem consistently such that the convergence result is optimal for the primal variable u
and for nodal constraints, is the aim of the next section.

6.3 Stabilised Mixed FEM

In Section 6.2 a master surface [ was chosen and on the master surface [ the nodal interpo-
lation functions were defined. There may be the idea to expect the nodal restrictions for
both sides (both surfaces). In general this isn’t a good idea because either the new kernel
space

ker B, = {v € Vi, | b(qn,v) =0 A b(ghi—1,v) =0 Vg, € QniVani—1 € Qni—1}

is equal to the set of functions which are constant on I'¢ or the LBB condition isn’t fulfilled
or both on some parts of I'-. The first case is too restrictive and the solution will in general
not converge to the continuous one, in the second case the discrete solution isn’t unique.

Nevertheless the hanging nodes of the slave surface [ — 1 (i.e. nodes which are not
restricted), may influence the convergence property. For the Mortar method there are no
hanging nodes. The idea now is to add some consistent penalty term to the bilinear form
a(.,.) which restricts hanging nodes of the slave surface [ — 1. The simplest idea is to add
some penalty term for every node at the slave surface [ — 1. Note that adding a penalty
term isn’t the same as expecting nodal constraints on both sides.

For notation assume that the master-surface is the surface [ — 1 (i.e. g5 € Qp —1) and
the slave surface is [. Consider the following consistent modified bilinear form

(i, 0) = a(u,0) + 3 by / ] o] ds (6.18)

The penalty term is h;-dependent and penalises every node of the slave surface. To apply
standard theory, i.e. boundness, V,-ellipticity and LBB condition has to be verified, new
h; dependent norms have to be introduced (at least for the primal variable).

it = IvlIF+ ) hg® e —usllf (6.19)
EeShCJ
lallg,, = inf {lalg+ > hillell s} (6.20)

a=q1+q3
q1€Q,q2€X EES,?I
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Remark 6.19. The h; dependent norm ||.||y, , is stronger than the former norm ||.[|y- but
the corresponding %; dependent norm of the dual variable [|.||q,, is weaker than ||.[/q.
Important is that for p € X (= Ly(T'¢))

inf p—aulld,, < > hilplds.

GhEQn,
Ecef,

Le. the h; dependent norm ||.||g, , is chosen weaker than ||| such that the approximation

of the dual variable is trivial. Especially for oo > % the approximation result improves for
the dual variable.

Note that this norms are not well suited for numerical implementations but that’s not
important because they are only needed for theoretical aspects.

Thus the aim is to check the properties of Theorem 4.25 and Theorem 5.10. To do this
the explicite representation of the dual norm of [|.[|g, , is needed.

Lemma 6.20. The dual norm of ||.||q,, s

Il =118+ > Al (6.21)

Eeefl,

Proof. Let ¢* € ', then the norm ||q*||thl is

o = supilDexe (¢, 01+ )oxer
1eq Oni <@ e Nlally+ Y b lells
Eegf,
sup (0", 01 + @) oxq
0 arex ||QI||Q+ Z h2a||CI2||0E
Eegf,
la*lellallo+ [ > > el s

Eegf, Eegf,

NG

sup

\/||q1||Q+ S hell2

EeEE,
C.S.
< \/Ilq*llw Sl

Eeef

The equality is proved by considering the solution of the following variational equation

(Pr.a)oxe+ > bt e dor = (0" 01 + Rloxg Va1 €EQVpEX.
EeEf,
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Note that @) is a Hilbert space and (.,.)gxq denotes the scalar product on ) and not the
duality pairing. This variational equality is uniquely solvable because it’s @ x Lo(T'¢)-
elliptic and bounded (not uniformly in h;) and thus the theorem of Laz Milgram (Theorem
4.11) is valid. Taking the supremum of the variational equation and using that Ly(E) C
X(=Ly(Tc)) YE €& it can be concluded that (p,p,) fulfils

Ille = lla*ller— lIpellx = X ™ llal15.e-
EeEf,
Substituting this result into above supremum the desired lower bound follows. O

Remark 6.21. Note that due to Remark 6.3 it’s possible to give an equivalent representation
of [|llgy,,

Il = ol + > hp>llgls
’ EcEf,
6.4) ) o , (6.22)
it el S aE N )l R | = inf el
(&}
[wl=g Eegy, lwl=g

In this equivalent representation V' can be replaced by V; x {0}, because V|r, = Q'
This equivalence was also valid for [|.||os (Remark 6.3) and played an essential role for the
LBB condition (see Proposition 6.4).

To apply standard theory the continuity, the LBB-condition and the kernel ellipticity for
problem (6.3) with the stabilised bilinear form a;4(.,.) ((6.18)) instead of af(.,.) is proved.

Proposition 6.22. a;4(.,.) is continuous and Vy-elliptic, b(.,.) is continuous and fulfils
the LBB condition with respect to the hy-dependent norms ||.||v, ,, ||-lq.-

Proof. e Continuity of a;4(.,.):

() = Y b 2&/ ] '] ds

EEShJ E
T vl + 32 g o s o] |
) \% 1% E 0,F 0,FE
EeE,{fl
C.S.+(6. -
< lul? + 3 he W Bs o3+ 3 hell o] 12,
EcEf EeEf,

||u||Vh,l||v||Vh,l
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e Continuity of b(.,.):

baw) = (@ldee = nf (0 +m [u])oxe
q1€Q,q2€X
C.S.
< it S allel e+ Y B lasllos byl [
41€Q, q2€X Eegl,
C.S.
<t \/||q1||2+zhza||q2||3£x
q1€Q,q2€X EEg}?l
aly+ 3 e S el
EES
~[lull3, it

e LBB-condition:

b b
sup ——=~ (g, v) > sup blg,v) (6.23)
vev [Vl ™ wevixgoy [l0llvi,
qup  V@:0) _ sup sup {(q,g>QxQ' lglle }
veV; x{0} ||v||Vh,l 9€Q" pev. 9]l ||w||Vh,l
Remark 6.21
q,9 !
= sup < I ﬁQ,XQ = ||q||Qh,l'
ge@ 191lQ;,

e Vi— ellipticity is trivial because [u] = 0in @’ and thus
ars(u,u) = alu,u) = lully = Jully,,
U

In the same way as in Section 6.2 the uniform LBB-condition, for the h; dependent norms
||.||Vh,l, ||.||Qh,l, can be proved.

Proposition 6.23. The bilinear form b(.,.) fulfils the discrete LBB condition, with respect
to the by dependent norms ||.|lv, ,, ||-llq,,, uniformly in hy.

Proof. The prove is done similar as the prove of Proposition 6.15. It’s shown that I is
a Fortin operator on V; x {0}, i.e. that equation (6.23) fulfils the uniform LBB-condition
with the associated norm |||y, ,, ||.[lg,,- The invariance was still proved in Proposition
6.15 equation (6.15) and thus only the continuity of I, with respect to the norm ||.|y; , has
to be verified.

Twoll,, = Mol + Y hE™ Iwv] 5,
EeEf,

(6.9d) ~
= ol + D0 hE e = lvlv, -

EGS,(Z,



CHAPTER 6. INTERMEZZ0O NON-MATCHING GRIDS 60

The rest follows from Fortin’s criterion Theorem 5.4. O

The only result which is missing to apply standard convergence results for saddle point
problems is the uniform Vjj-ellipticity with respect to the norm ||.||y; ;. The author isn’t
in the position to give an general proof for the Vj,-ellipticity and thus it’s assumed. In
Section 6.4 a proof for linear Lagrange elements and the d = 2 is given.

Theorem 6.24. Assume that a;4(.,.) is uniform Vy,-elliptic, with respect to the norm
l|v;,..» that the solution (u,p) of (6.3) has the regularity u € H*(Qy) x H*(Q2) NV, ulr, €
H?*(T¢), p € Ly(T¢) and let (up,pp) be the solution of the discretised system (6.11), with
as(.,.) instead of a(.,.), then the following a-priori error estimate is valid

lu = wnllviy +llp = pallor, = inf {llu =il + P = anllQu,}

AR EQH I

2(2—
< S R+ Y B Nulie+ S BRIl
Ter, Eegf, Eeef,

(6.24)

Proof. Because of Proposition 6.22 for the continuous problem and Proposition 6.23 and the
assumed uniform Vp,-ellipticity, with respect to the norm ||.||y, ,, for the discrete problem,
all assumptions for Theorem 5.10 are valid and thus

o= il + 10 = il
<"t (= wllv, + o — aulle,,}

vp €V
A EQHR,
< \/||U—fhu||%/+ > hg™llu = Lullg 5 + lplle,.
Eegf,
(6.9d

= > Wl + X hE e + X hElplE
Te, EcEf, Eegl,

O

Remark 6.25. The best choice for a, to achieve a best possible convergence result, is o = 1.
For a uniform mesh the convergence error in the primal variable u gets [lu — uylly,, =
h(||ull2,0, +l|ull2,0, + 1P/ Lo(re)) and is thus an optimal result for linear Lagrange elements.

Note that for this optimal convergence result more regularity is assumed as usually
necessary.

Remark 6.26. Sometimes an a-priori error estimate in a weaker norm , as the Ls-norm, is

from further interest. Usually such an estimate is proved by assuming Ly — H? regularity,
ie.

if f € Lo(Q) then u € HX(Q) A [[ullag < [flla) - (6.25)

and applying the Aubin-Nitsche trick. Note that due to Theorem 6.6 p € H:> (T¢). Mortar
techniques also achieve optimal convergence in the Ls-norm. For the stabilised version of
nodal constraints this isn’t proved by the author, but the numerical results presented in
Section 6.6 give rise to expect optimal convergence results also for the weaker Ly-norm.
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6.4 2D Example

Assume d = 2 and r = 1 (linear ansatz functions). For this case an interpolation operator
fulfilling (6.9a)- (6.9d) is constructed. Later on the uniform Vj,-ellipticity with respect to
the norm |||y, , is proved.

In the two dimensional case W), is nothing else than the linear space which results from
the ordinary linear and continuous ansatz for the new mesh given by joining the nodes of
both sides (N := N7, UN)T,). Note that this new mesh in general degenerates and thus
no interpolation operator with property (6.9a)- (6.9d) exists on Wj,.

Nevertheless it’s possible to define an interpolation operator Iy, : Lo(I'c) — W), such
that

o [lwy, = wy, Vo, € Wy B B
e[ Iw,vlog = ||v|lows Withwg =int (U Kir. IKNE#0, K € Th) )

This is done by choosing for every x; € N¢ the largest element o; and set
T, (v)(w:) = Pg"(v)(2s)

P(l,"’ is the projection operator defined in Section 5.2 for SCOTT-ZHANG type operators and
linear ansatz functions. Note that the largest element o; has measure of order |o;| = O(hy).
That’s the reason for the uniform boundness of || Iy, ||1, in ;. Define I' : Ly(T¢) — tr Vi

I'u =14 Iy, u = Z Iy, (v) (%) i

x,’ENhCl

where I is the ordinary nodal interpolation operator (see Section 5.2), ¢;; is the basis
ansatz function ¢; restricted to I'c. This operator fulfils (6.9a)- (6.9d).

Lemma 6.27. The operator I' = I Iy, fulfils property (6.9a)- (6.9d).

Proof. Because of Remark 6.9 it’s possible to refer I' as an operator I' : V; — Vj,;. The
proof is finished if it’s proved that I' : V; — V},; is an SCOTT-ZHANG operator and thus
fulfils property (6.9b)-(6.9d). Following the original proof of SCOTT AND ZHANG [45] with
a little modification, namely that o; on T'¢ is chosen as above , then the proof is done.
Because the measure of o; is of order h; (|o;| ~ h;) all steps of the proof of SCOTT AND
ZHANG are valid. The only thing which has to be checked is the property (6.9a). Let
wp, € Wy, (or w € V; such that w|p, = wy), then

Il(wh)(xi) = I]lVIWh(wh) = I]l\,(wh) = wp(x;) Va, € ./\/,fl.
]

The existence of this interpolation operator I' guarantees the validity of the hole theory
developed in Section 6.3. Especially the existence, uniqueness and convergence results are
valid. For the stabilised mixed FEM the additional assumption, a;4(.,.) is uniformly V-
elliptic with respect to the norm ||.|[y; ,, was made. For the 2D case this uniform ellipticity
can also be proved.
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Lemma 6.28. Let d = 2 and assume a linear, quasi uniform Lagrange discretisation.
Then the stabilised bilinear form a;4(.,.) is uniformly Vo, elliptic, i.e.

al,s(uh, uh) > ||uh||%,h,l Yuy, € kerBh,l_l . (626)

Proof. From Proposition 6.16 it’s known that a(.,.) is Vp,- elliptic, with respect to the
norm ||.||y and so it’s enough to prove that

Z h_QaH fup ||0E - Z h_QaH (1] ||0E

EcEf EcEf
Every element u;, € ker By, ;1 can be represented via

(qn, [vn)) <@ =0 Van € Qni—
& vpa(z;) = vpa(;) Va; € N}Sz—1 ,

and from the explicit representation of W), = trV}, ; +trV}, o only the following extreme case
has to be considered.

[up]

Ae(0,1)
b o =z € N a(l—z)+b
' - {a)‘;x z € [0, 7]
\ _ - g X fI;Z E hl _
. T o= weln]
A
|E| =
o [(Mu))?dzr = [(a(l—x)—0b)*de=L(a®+1+ad)
E E
A—z)° 2 (z—=\\?
X [lup)? dx = a® (A5L) de+ [ b dz
EI [o,fA} ( A ) [AJ,;] (I_A)
= 10+ (1-0p).
Summing up gives
1
2/(1l[uh])2dx - /[uh]Qd:[; = 2 (@01 =N +BX) + (@ +5?) >0,
E E
and thus the required result. O

With the existence of the interpolation operator and the uniform Vj,- ellipticity, with
respect to the norm ||.||y; , the optimal convergence results for nodal constraints, at least
in 2D, is guaranteed.
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6.5 Implementation of Stabilised FEM

For numerical purposes it’s necessary to represent the discretised mixed equation (6.3), with
as(.,.) instead of a(., .), in matrix and vector notation. This is done in a standard way. The
only interesting part is the explicit form of the stabilisation term. In this section it’s not
distinguished between (u, p) € Vj, x Q4 and the representing vector (u, p) € RN +V2 x RN
N; is the number of free nodes in the domain 2; produced by the triangulation 7,; (N :=
N; + Ny). NF denotes the number of free nodes at the boundary I'c produced from the
triangulation of domain €2;. As in Section 6.3 the master surface is denoted by [ — 1 and
the slave surface by [. Standard discretisation techniques give the following representation
of the stabilisation term in a;4(.,.) (u € V3):

S b / Pl 'flds = [@a)ll;) Y ”Em/ P ds

EGS,%:I E Ii,IjENhCJ EGS,%:I E
N

With the setting

(Bju); == [u](z;) Vi e N
Azg :a/((pl790]) vxla X ENha

the stabilised bilinear form a;4(.,.) can be representation by
ar,s(u,v) = (Au, v),@yy + (BlTC;llBlu, V)1 (RN -

Note that A € RV and B, € RV*N | Using the matrix vector representation of the
bilinear form b(., .)

blg,v) = Y al 'Pl@) = Y all(@) = (@ Biav) e

l2(R ! 1)
xiENh(’:171 xiENh(’:171

the discretised system (6.11) becomes the following indefinite system:

<A+Blo;}Bl Bl', ) < u )_ < f)
B, 0 Pi—1 0 )"
An algorithm to generate the matrix B; is given in Section 7.6. From the discrete LBB-

condition Proposition 6.23 it’s known that the matrix B; has full rank (Rg B; = N). Thus
it’s possible to rewrite above indefinite system into

A BF, Bf u f
Bl,l 0 0 plfl — 0
B, 0 —Cquy D 0
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Note that the artificial introduce vector p, € RN’ has no interpretation in the space

Qn,;! This substitution was only done for numerical purposes. It seems to be difficult

to calculate the matrix C;. Assuming a uniform mesh, then calculating C,,; is quit

simple. Due to the uniformity of the mesh the stabilisation term Y~ k> f I'u) T [v] ds is
Eeef,

equivalent to h, ** f I'[u] I'[v] ds. Proceeding as above the stabilisation term is represented

by (B h; **Mf BT u v)l ) The matrix (M); ; = [ ¢iipj1 ds denotes the mass matrix
I'e
at the boundary I'c produced by the triangulation of the domain €2;. For linear ansatz

functions it’s known that this mass matrix is spectrally equivalent to a diagonal matrix
—C . _
(M) = f ©;1ds d;5, the so called lumped mass matrix. Thus Ca’ll can be replaced

o]
(without loosing any property like existence, uniqueness and convergence) by the diagonal

. A —2a77C . . . .
matrix Caj = h;**M, , which is easy to invert. So it’s enough to solve the system

A BFf, Bf u f
By 0 0 p-1 | =10
B 0 —Cuy Dl 0

6.6 Numerical Example

To verify the results of Section 6.3 consider the following example and solve it numerically

Au = —100sin(10x)
Ql
u = sin(10x) on I'p =00

Solution u = sin(10z)

I'c

In Figure 6.3 the non-matching grid is visualised and in Figure 6.4 the solution for the
mesh-parameter h = 4L0 is visualised. The interesting graphics are the convergence rates
in the H'-norm (Figure 6.5) and the L, norm (Figure 6.6). For a = 1, i.e. with stabilisation
h=2 the optimal convergence rates are achieved, as it was proved in Section 6.3.
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Chapter 7

The Body-Body Contact Problem

In Chapter 4 the primal- or weak- formulation of the body-body contact problem was pre-
sented. For this primal- or weak- formulation some equivalent formulations were presented.
Also the unique solvability of the body-body contact problem was guaranteed in Section
4.4. The aim of this chapter is to reduce the body-body contact problem into something
computable. This is done by standard FEM discretisation, which was presented in Chapter
5. The only thing which isn’t obvious is how to approximate the convex sets K, N. There
are several possibilities. One is to use Mortar. This approach is considered in BELGACEM,
HiLD AND LABORDE [6] [5] and shouldn’t be considered in this thesis. Motivated from
the results of Chapter 6 the body-body contact problem, i.e. the convex sets K, N, are
approximated via nodal constraints. At least for the Signorini problem, this approach is
very common and provides optimal results (see HASLINGER, HLAVACEK AND NECAS [29],
KIKUCHI AND ODEN [34], BREZZI, HAGER AND RAVIART [13] [14] and FALK [24]). The
results achieved for the body-body contact problem with nodal constraints aren’t optimal
due to a similar reason as foe the non optimality of nodal constraints for non-matching
grids.

Due to large scales of some body-body contact problems adaptive mesh refinement
will be better suited to solve these problems. For variational inequalities the results on
adaptive mesh refinement are very sparse (e.g. KORNHUBER [38], AINSWORTH, ODEN
AND LEE [3]). To the knowledge of the author there is no a-posteriori error estimator
which is well suited for the body-body contact problem and nodal constraints. For an
augmented lagrangian algorithm CARSTENSEN, SCHERF AND WRIGGERS [15] presented
an a-posteriori error estimator for the body-body contact problem, but this estimator
doesn’t fit into the solving algorithm used in this thesis. Thus an ad hoc refinement
algorithm is presented which seems to give good results, at least for the 2D case. The
refinement algorithm is based on standard error estimators for elliptic equalities, which
can be found in VERFURTH [49] [50] or AINSWORTH AND ODEN [2].

In Section 7.1 a short review of the three important equivalent formulations of the body-
body contact problem are given. These formulations are discretised by nodal constraints
in Section 7.2. Some a-priori convergence results for this discretisation are presented in
Section 7.3. The draw back for the nodal constraints is the missing convergence result,

66
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when no regularity of the solution is assumed. In Section 7.4 an ad-hoc adaptive mesh
refinement algorithm is presented for the body-body contact problem with nodal constraints
as discretisation. This refinement strategy seems to give “good” results. Motivated from
Chapter 6 the body-body contact problem is stabilised in Section 7.5. The draw back
for the stabilisation applied to the body-body contact problem is, that it isn’t consistent
anymore. Finally in Section 7.6 it’s explained how to implement the constraints.

7.1 Formulations of the Body-Body Contact Problem

In Chapter 4, three equivalent formulations for the body-body contact problem (with
(A., Yyrwy V-elliptic) were presented. Because of the importance of these three equivalent
formulations for this chapter, they are denoted again. The first one was the primal- or
weak- formulation (4.4)

1
uw = argmin —(Av, v)yrwy — (F, v)yixy, (7.1)
veEK

with K the set of admissible displacements (4.2)
K={veVy|g—vk >0ae}.
The second one was the mized or saddle-point formulation

<F,U>VI><V YoeV
(G,q)Q:XQ Vq eN (72)
0,

<AU, v>V’><V + <Bvap>Q’><Q
<Buvq>Q’><Q
(Bu—G,p)arxq

IVARI

with N :=C} = {q € H:(T¢) | ¢>0 ae. }0

Remark 7.1. For the primal- and for the mized- formulation it’s not necessary to assume
V-ellipticity for A, ellipticity on K, which is equivalent to the ellipticity on ker B, is enough
to guarantee existence and uniqueness of the solution. Only for the third formulation, the
dual formulation V-ellipticity is necessary.

In the numerical examples presented in this thesis (Chapter 9) |TL|, |T%| > 0 and
with Theorem 4.27 A is V-elliptic. If one of the two bodies isn’t fixed (w.l.o.g. |T%| = 0),
then it’s possible to achieve a V-elliptic operator A by regularising A, i.e. adding some
h-dependent mass term to A. This is some kind of Tikhonov regularisation and may work
quite well. One problem is to find the correct h-dependent factor to keep the problem
stable.

The dual formulation with A is V-elliptic reads as follows

.1 1 _
p = argr]an §(BA 'B*q,q)qrxq — (BAT'F — G, ¢)orxq (7.3)
g€

where u is calculated by solving the equality Au = F — B*p.
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Remark 7.2. A dual formulation exists also for a non V-elliptic operator A but the repre-
sentation of this formulation isn’t as simple as this one. The algorithm presented in the
next chapter is essentially based on the dual formulation with V-elliptic operator A.

These three equivalent formulations enable a lot of different kinds of discretisation tech-
niques and solving algorithms. In the next section the primal and the mized formulation
will be discretised and it turns out that both discretisation are equivalent.

7.2 Discretisation of the Body-Body Contact Prob-
lem

For discretising the body-body contact problem the FEM, presented in Chapter 5, is ap-
plied. Thus the discretisation of the space V is done in a standard way, i.e.

Vi, = {Uh S CO’D(Q) |vh|T S PT(T) VT € Th}.

It’s also possible to use FEM to discretise (), keeping in mind that the pair V}, x @), has
to be stable. This will result into Mortar techniques, which shouldn’t be discussed in this
thesis. For discretisation of the body-body contact problem with Mortar techniques refer
to BELGACEM, HILD AND LABORDE [6] [5]. In this thesis the discretisation of the space
@ should be done by nodal evaluating linear functionals, i.e.

Qri=3¢€Q | qlv)= Z ¢ (I'v)(7;) ¢ €R

:L‘,'E./\fhcl

This nodal evaluating linear functionals and their properties are known from Chapter 6.

To discretise formulations presented above it’s not enough to discretise the spaces V, @Q,
it’s necessary to discretise the convex sets K, N. The first idea to approximate the convex
sets K, N may be touse K, = KNV,, N, = NNQ,. This sets would have a lot of
advantages concerning a-priori and a-posteriori error estimates, but the disadvantage is
that these sets can’t be handled numerically, at least not with a reasonable effort. Further
more the set N N Q;; may be empty if I' doesn’t preserve positive functions. A very
common approximation of the convex set K is the setting

Ky = {vn € Vi|unn(zi) < g(X3) Vay EN}S:} - (7.4)

This approximation K}, ; of the convex set K is very simple to handle numerically, because
the admissibility of v, € V}, is tested by evaluating v, at certain nodes in N},. The big
disadvantage of this approximation is that Kj; is no subset of K anymore. To prove that
the solution of the discretised primal formulation wu, converges strongly to the solution of
the body-body contact problem u assumptions (5.15a)-(5.15b) have to be fulfilled (Theorem
5.9). The author isn’t in the position to prove (5.15a) and up to the knowledge of the author
there is no proof.
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The discretised primal formulation is also equivalent to a mized and a dual formulation.
Both are achieved by introducing artificial Lagrange multipliers. This isn’t very satisfying
because this artificial Lagrange multipliers have no interpretation in the space Q).

To get rid of this artificial Lagrange multipliers it’s necessary to discretise the mized
or saddle point formulation. The discrete spaces Vj,, @y, are still fixed. The only thing
which is missing is the approximation of the set N. In Chapter 6 it was seen that Iéz is an
interpolation operator from () into @5,;. To approximate the set N consider Ié)q Yqe N
(equation (6.12)) explicitely.

Ihg = Y (e axel'() (@) (7.5)
:EiG/\/’fgl

If the ansatz functions ¢;; have polynomial degree less than three, then they are positive
and because ¢ € N it’s deduced that (;;,¢)g'xg > 0. Thus approximate N via

Ny = IégN = < qn € Qny

am= > ¢I'()(z) Ya>0,. (7.6)

fEiGNEl

Also for this approximation Nj; is no subset of N.

Remark 7.5. 1f the interpolation operator I'(.) is constructed like in Chapter 6 then I'(.)
doesn’t map positive functions into positive ones and thus no element of Ny, ;/{0} is element
of N.

The solution uy of the discretised mixed system fulfils
(Bup, — G, qn — pr)grxg < 0 Van € Niy

and if I'(g) = g¢ this is nothing else than (Bu, — g)(z;) < 0 Vua; € ./\/',fl. In fact the
convex set Kj; can be represented via

Ky = {v, € Vi | (Bun — G, qn)grxg < 0 Van € Nuy}-

Thus the discretised primal formulation and the discretised mized formulation and also the
discretised dual formulation are equivalent. Especially the artificial introduced Lagrange
multipliers for the discretised primal formulation becomes a meaning in the space Q).

7.3 Convergence Results

To achieve convergence results the existence and uniqueness of the discrete problem has
to be guaranteed. In Chapter 5 it was proved that it’s enough to check the uniform kernel
ellipticity and the uniform LBB condition. Because it was assumed that A is V-elliptic,
the kernel ellipticity is trivial. The LBB condition is in general more complicated, but in
the special case that X® is the identity map and n is a constant unit vector, the discrete
uniform LBB condition is trivial. The proof is similar to that one of Proposition 6.15. The
only thing what has to be proved is that I' is a Fortin operator on the space V; x {0},
which is trivial.
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Remark 7.4. The numeric examples presented at the end of this thesis fulfil both, that A
is V-elliptic, because [T'L], |T%| > 0 and the normal unit vector n is constant. Note that
n is constant is nothing else than a special choice of the parametrisations X ).

In the section before it was mentioned that the author isn’t in the position to prove
condition (5.15a) for the primal formulation and condition (5.15b) for the dual formulation
and so Theorem 5.9 can’t be applied, i.e. it can’t be proved that hlirn+ ||up, — u|ly = 0 for

—0

the primal formulation and hlirn+ lpn—pllg = 0 for the dual formulation, without assuming
—0

any regularity. Assuming more regularity for the solution u of the primal formulation the
following proposition holds.

Proposition 7.5. Let g € H 5 (T'¢), u € (H2T(Qy) x Hi+ (L)) N K, be solution of
(7.1), where € is an arbitrary small number, u, € K, be the corresponding solution of the
discretised formulation (7.1). Furthermore let the polynomial degree of the ansatz functions
be less than three, then

li - = 0. :
Jimflu =yl = 0 (7.7

Proof. The prove is done by using Lemma 5.8, i.e. by estimating the right hand side of
the following inequality.

(Ae,e)vrvy < (Fou—vp)vicy + (Fyup — v)vicy
+(Ae,u — vp)vrcy + (Au, v — up)vrcy + (Au, v, — u)visy

which is valid Vv € KVv, € K},;. Before estimating the last inequality, i.e. choosing v
and vy, some facts are denoted.

e Because of the regularity of © and g and the embedding theorem Theorem 3.4 it’s
known that u and ¢ are continuous and thus the nodal interpolation operator Iy
is well defined. Furthermore it’s known that Bu — ¢ < 0 a.e. and due to the
continuity of v and ¢ this inequality is valid everywhere. Thus the function Iyu
fulfils (BIyu —g)(x;) < 0 Vuz; € ./\/',fl. This is nothing else than Iyu € K.

e Condition (5.15b) is valid. For the proof assume wy, € K} ; with w, — w. To prove
that w € K consider (Bw — G, q)gxq for all ¢ € N.

(Bup — G, q)gxg = (Bw,—G,q— IlQQ>Q’><Q + (Bwy, — G, IlQQ)Q’XQ

—~

*

< (Bwy—G,q—Ih)axe < ||Buwy — Gllaolla — Thallo

o

(%) Ié)q € N, Vq € N because the ansatz functions ;; have polynomial degree
less than three.

Using the weak convergence of w, — w, which also guarantees that wy, is bounded
(uniform boundness principle see HEUSER [31, Satz 40.2]) and Lemma 6.13 it’s proved
that (Bw — G,q)gxg < 0 Vg€ N and thus w € K.
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e vy, is uniformly bounded due to Theorem 4.11 and thus has a weak converging sub-
sequence (Eberlein-Shmulyan see HEUSER [31, Satz 60.6]). W.l.o.g. assume that
up, — u*. Note that u* € K because (5.15b) is valid.

Now consider above inequality an set v, = Iyu and v = u*. Noting that A is V-elliptic,
Inu converges strong to u the assertion is proved for every subsequence and thus for the
hole sequence. O

The last proposition guarantees convergence under some regularity assumptions. Assuming
more regularity a convergence rate is expected. The next proposition provides a conver-
gence rate which is similar to that one of Chapter 6 for nodal constraints without any
stabilising term.

Proposition 7.6. Assume for B and the space Vi, X Qp; the uniform LBB condition. Let
g € HFH(Te), (u,p) € (H2(Q1) x HX(Q)) NV) x (L2(Te) N N) , be the unique solu-
tion of (7.2) and (up,pp) the corresponding unique solution of the discretised formulation.

Furthermore assume that the parametrisations X9 are such that Bu € H%“(Fc). Then
the following convergence rate holds.

lu = unllv + |Ip = palle < O(h?) (7.8)

Proof. First prove the assertion for the primal variable u by using inequality (5.16) from
Lemma 5.6. L.e. Vv, € K}V q, € Ny, the following inequality is valid.

(Ae,e)vivy < (Ae,u —vp)yrisy + (B(up — V), P — Gh) o' <0
+H(B(u —vn), qh)qg'xq + (Bu — G,p — qr)qg'xq

Like in the proof of Proposition 7.5 it follows that Iyu € K} and Ié)p € Np,, and thus set
vp, = Iyuand g, = Ij)p. For notation set X = Ly(T¢) and V't = H?(Q) x H?*(Qy).

c.5 2 1 2 (5-8) 2, h? 2
o (Ae,u— Iyuyyry < allelli + gllu— Inully = allelld + G llulli+
[ )
(B(up — Iyu),p — IlQp>Q’><Q

= (B(up, —u),p — Ihp)grxg + (B(u — Iyu),p — Ihp) orxq

1Bl Liv,oy (lellvlip = Iopllv+llu — Inullv]ip — I5pllq)
1
Bllell% + 3(041||B||L(MQ'))2||1? — IHpll?
B L(V,Q'

P Blevian 1, — g+ 1o - 14p)2)

Lemmag.13+(5.8) - 2 L p2 )
= Bllell + g lIpllx + A2 lulli-
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C.s.
<

(B(u — Iyu), Ihp)orxo IBllvienllu = Inullv( Igplle

Lemma 6.13+(5.8)
= Mlullv+[pllo

e Set Y = HYT'¢) and Y its dual space, then

; / Lemma 6.13
(Bu—G,p—Igp)gxq < [[Bu—Gllylp—Igplly = hl|Bu — G|y |Ipll x -

Choosing «, [ small enough (independent of h) then

(4.22)
lu —unlli- = lu—unlly < h([ulfr +[Ipl5 + [|Bu = Gllylpllx + [pllelullv+) -

The missing part is the convergence of the dual part ||p—prllo < |lp— aullo + |lan — pullo-

(5.13) Bo _
hs dh Pr)q
o -mlle < sup ¢ o
VREV, thHV
(7:2) sup (Aun —u), va)vixv — (Bun, @n — D)@'x@
VREV, thHV
(4.22
< lu—wllv +1Blluvenllp — anlle
With ¢, = Iézp the assertion is proved. O

Remark 7.7. The convergence result ||u—up||y+||p—pnllo < O(h?) is the best possible for
the assumed regularity, but for the assumed regularity in the primal variable the regularity
in the dual variable is usually better (p € H2(T'¢)). Then this result isn’t the best possible.
Comparing the result with that one achieved in Chapter 6 for nodal constraints without
stabilisation, it’s the best result which can be expected with the theory given in this thesis.

Remark 7.8. Some regularity results for the body-body contact problem can be found in
BOIERI, GASTALDI AND KINDERLEHRER [7].

7.4 Ad-Hoc Adaptive Mesh Refinement

One of the numeric example (the real life problem) has a very large scale. Using a uniform
mesh the number of unknowns will become too large before the contact area is “correctly”
described. This problem can be solved by generating the mesh by hand or by using adaptive
mesh refinement. Up to the knowledge of the author there are no efficient element error
estimators for the body-body contact problem with nodal constraints as discretisation.
Thus it’s necessary to use ad-hoc refinement algorithm. In AINSWORTH AND ODEN [2]
some gradient based error estimators are presented which can be used.
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The ad-hoc adaptive mesh refinement which is used in this thesis is based on inequality
(5.17b) from Lemma 5.7.

(Ae,e)vivy = {(F,e—en)vixy — (Aup, e —ep)vivy — (Ble —en), Ph)orxo}
+{(Bu — G, pn)qxq} + {{Bun — G,p)g'xq}

There are three terms which should be considered separately.

<Auh_F;e_eh>V’><V .
= Z <U(uh)a grad(e - 6h)>0,T - <F, € — 6h>0,T - (L, € — 6h>0,aTmrN

TeTy
3.15 . ~
( = - Z <d1VU(Uh) + F,e— 6h>o,T + <U(”), e — €h>o,aT - <L, e— 6h>o,aTmrN
TeTy
= — Y (divo(up) + F,e—ep)or+ Y, ([0"(un)],e —en)or
TETy Eeg}?
+ > <U(V) —L,e—ep)op+ > (U(V), e—en)o,n
Eegly Eegf’,lUgf’,z_l

[.] is defined as follows: Let E € &}, then two unique elements T, K € 7, exists
with E = TN K. With this [0 (u)] := ¢ (u)r — 0™ (u)x. Note that v is a unit
normal vector on E. The error term

Z <U(V)7 € — eh>0,E )

C el
Eegy Ve

together with the error term (B(e —ep), pr)grxg can’t be handled by the author and
are thus omitted. The element error 77 ; can thus be defined by

: 1 v
nry = hplldive(u) + fll§z+5 X hellle® n)]lls e
EEE(T)NES
+ X hrlle™ - Liifp.
Ee&(T)NEY

Using only this element error 7y for generating an adaptive mesh the mesh will look
like that one illustrated in Figure 7.3. It can be seen that the mesh becomes more
finer at the slave surface [ — 1 than at the master surface [. The hanging nodes at
the slave surface have no reasonable information for the contact. Due to the more
curved surface of the slave surface the gradient of the primal variable u becomes
larger. Especially gradient based error estimators recognise this and refine the slave
surface again. The mesh becomes worser and worser. The idea to prevent this may
be to penalise the penetration of the slave surface. This can be done by considering
this penetration in the operator A, similar to Section 6.3 or by refining elements at
the master surface, which are penetrated. The first idea is presented in Section 7.5
and the second one is done now, by considering further terms of (5.17h).
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e The error term which describes that uy, ¢ K}, ; is (Bup,—G, p)gxq- This term can also
be considered as the term which estimates the error resulting from hanging nodes.
In the hope that a correct estimate of this term produces a better mesh than that
one which is produced by using only 77, this term is considered in the following.
Let wy, € V}, such that (B(up —wy) — G, @)grxg, < 0 Vq € N. Note that this (if
the parametrisation is smooth enough) is equivalent to B(u, —wp) —G < 0 on ¢
and because uy, w, € Vj this is equivalent to B(up, — wy)(x;) < g(x;) Vi, €

n NS ;. The term (Buy — G, P)qgixq can now be estimated by

(Bup, — G, p)grxo (B(up — (un — wp)),p)grxq + (Blun — wi) — G,p)gr<q
<Bwhap>Q’XQ

(max{0, Bwy},p)o'xo — (max{0, —Bw}, p)orxo

(

max{0, Bwn},p)orxq < |Ipllgl| max{0, Bwn}|q -

IA 1IN

To get an idea how to chose wy, consider Figure 7.1.
There are several possibilities to choose wy,. Consider only the two cases that either

d

Figure 7.1: sketch of the penetration (hanging nodes)

the master surface [ or the slave surface [ —1 is displaced such that B(u, —wy,) < G.
Le.

wy, = Z dip; - (7.9)

:L‘,'E./\fhcj

j is either [ or [ — 1. The meaning of d; is illustrated in Figure 7.1 and can be
calculated by a post processing step. To calculate d; fix the node x; and take all
elements 7' € 7, ; such that z; € T'. For this elements calculate the maximal value of
penetration. This maximal value is d;. This calculation is simple to implement and
is of optimal time complexity.

(Bup — G, p)gxq = Iplle [ 22 I X diwill? ey

TeT,; :riENth

Th 5.2
TXN e, [ 0l Y diilEm
Tey, CCiE./\/}L,]‘
(%) —
= llo. [ > dhd?

TGTh,j
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(*) It’s well known that the mass matrix Mj is spectral equivalent to h¢I. The same
is true for the local part

I Z dipillower) = Z didn(Pis Pn)owT) = Z d?hg..
2 €N, i,on €N €N

z; Ew(T)

The value d# is nothing else than

d3 = Z d; .

mZENf?]
z;Ew(T)

Note that ¢; isn’t the ansatz function restricted to I'c.

The last estimate provides a local error estimate which can be added with a certain
constant (depending on ||p||@ to nr,. Define this additional term as

2 27d-2
Nro = dphy *.

From the construction it’s possible that 17 is an additional error added to the slave
surface [ — 1 or to the master surface [. In Figure 7.3 it was illustrated that the
slave surface becomes a lot of hanging nodes if 77 is used. Thus the additional term
nr2 is added to the master surface | (for penalising penetration or hanging nodes).
In Figure 7.4 the mesh generated by using the element error nr; + nr2 (nr2 at the
master surface 1) is illustrated. The mesh has much less hanging nodes and seems to
be very satisfying

e The last term remaining is (Bu — G, pr)grxg < irg (B(u—vp),pr)grxo - It is also

VpERp |

very difficult to handle this term and thus it’s neglected.

For adaptive mesh refinement set 7y either nr; or nr; + nro. For nr it’s expected that

> np < TOL.

Ter,

TOL is the tolerance and chosen by the user. To minimise the number of degrees of
freedom during the refinement it’s expected that the error 17 is equally distributed. Thus
an element 1" € 7y, is refined if

, _ TOL
nr < —-
|7h]

The missing and unknown constant is absorbed with TOL. Ny = |7 is the number of
elements.

Remark 7.9. For Figure 7.3-Figure 7.5 the lower body is that one with the master surface
[ and the upper one that one with the slave surface.
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7.5 Stabilisation of the Body-Body Contact Problem

In Chapter 6 a consistent stabilisation term was added to the operator A such that it
was possible to achieve better convergence results for the primal variable. This may be
a motivation to do the same for the body-body contact problem. In Section 7.4 it was
mentioned that the adaptive mesh generator based on the element error 77 isn’t very
satisfying due to the fine mesh at the slave surface. The guessed reason for this fine mesh
were the hanging nodes which result into a curved surface and thus into large gradients for
the discretised solution wu;. One idea to prevent this was to penalise hanging nodes. For
a moment assume that the slave surface is the surface [. A consistent penalisation of the
hanging nodes, motivated by Section 6.3 will be

(Atses Jvixv = (A v + Y b (IN(B. = G)4, I'(B. = G)4)i

Eesho,l

where (.); := max{0, .} represents the positive part of a function. It’s obvious that the
stabilised version is consistent, because the admissible displacements v € K fulfil Buv—G <
0 a.e.. The term (B. — @), represents the penetration and thus penalises functions which
aren’t in the set of admissible displacements. Consider an element v, € K}, ;1. Then the
hanging nodes (see Figure 7.1), which penetrate the body [ — 1 are penalised. Thus it’s
expected that the curvature of the slave surface becomes smoother and the adaptive error
estimator doesn’t refine the slave surface as strong as in the original formulation. The
stabilisation term introduced above can’t be handled numerically with a reasonable effort,
thus the stabilisation term is changed into

(Ao Jvrer = (A v+ > B2 ((IH(B. — @), (INB. = @) )iy

EeShCJ

In general this stabilisation term isn’t consistent because the interpolation operator I'
doesn’t preserve positive functions. Thus it isn’t guaranteed that the stabilised version
doesn’t change the problem seriously. The last stabilised version can be handled numeri-
cally, but also in this case the effort for it is too much. Having in mind only the idea of
penalising hanging nodes which penetrate, the stabilisation can be changed into

(As vy = (AL dvv + Y b (IU(B. = G), I (B. = G))} g (7.10)
Eegf,
with IL.(.) := > max{0,70)(2;)}¢i; . Note that I' (I'(.)) = I.(.). The last stabilisa-
:L‘iEN,gl

tion term is simple to handle, especially for a uniform mesh and linear Lagrange elements.
The reason is similar to that of Section 6.5. Writing down the stabilisation term explicitely
gives

WPy TUBL = G)(@) (B = G)(w)) (@it ia) Loy La(re) -
z;,8, ENC v
1 = (Mf);
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It’s well known that for linear ansatz functions the mass matrix M is spectral equivalent
. =—C e . .
to the lumped mass matrix M, . Thus the stabilisation term is equivalent to

he N (LB - G) (@) (VT )i

:L‘iENhCl

(@]
Introducing artificial Lagrange multipliers on the space Rf’ the stabilisation term can be
written as supremum of a quadratic constraint minimisation problem.

> (LB~ O @)P(L)u = — inf (0T} 0.0), ove, =2 D al'(B. = G)(w)

2 €NE, geR, i T ENE,

Thus the stabilised problem can be denoted as saddle point problem or equivalent as mixed
inequality system.

(F,v)yiwv VoeV

0 Vg 1€ N

0 Vql € N,
(7.11)

(Au, v)viev + (Bio1v, pi1) o' + <IlBanpl>Q’><Q
(quu —G,q-1 — plfl>Q’><Q o
(I'(Bu — G) ,qt — p)grxg — (M) 'piyqt — pi)gr<q

VANRVANI

Note that in this case the artificial Lagrange multipliers have no interpretation in ). The

C
identification of the vector ¢, € R_]:l with the functional ¢, € N, is only an artificial one

-1

. . oI
and possible because the inverse of the lumped mass matrix (M, )~' is interpreted as an

operator mapping @, — tr'Vj, ;. More precisely

—C\ _ —C\_1
(M) = Z wig(M, )n’l%',la

IieN}?l

with of ) @ Qng = R qn = (©is, qh)orxq-

This system fits into the theory presented in the last chapters and also fits into the
class of problems which can be solved by the numerical algorithm presented in the next
chapter.

Remark 7.10. Numerical calculations with the stabilised version are inefficient because of
missing robust preconditioners for parameter dependent problems. Nevertheless calcula-
tions with this stabilised versions were done. The only result which should be presented
here is the mesh generated by the solution of the stabilised version using only 77, for the
adaptive mesh refinement (see Figure 7.5). The mesh generated by this version seems to be
the best one compared with the other two possibilities. To get an idea how to construct a
robust preconditoner for the stabilised version and thus how to solve the stabilised version
efficiently, refer to SCHOBERL [44].
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7.6 Generation of B; and G;

In the previous section the discretisation of the body-body contact problem was introduced.
The constraints for the discretised problem were reduced to some nodal constraints. The
link between the values at the node z; € N,fl and the restrictions was done by the matrix
B;. This section is concerned how to generate the matrix B; and the gap vector Gj.
The matrix B; and the gap G depend on the choice of the master surface [ and on the
parametrisation.

In Chapter 2 it was noted that there is no rule for choosing the parametrisations X @,
Thus for two possible choices of the parametrisations X the generation of B, and G is
explained.

a. From the physical point of view it may be reasonable, that the parametrisation is
chosen such that it satisfies the following

[ (Ol = inf [P (YOX0)) = PXOX) ey s (712)

where u should be the unknown solution and P(X) := u(X) + X.
Remember that this choice of parametrisation can result into an ill posed problem.
Nevertheless it’s a very common choice and gives “good” results.

b. Tt’s also possible to fix the unit vector n(X). This may be done due to geometrical
properties of the bodies or the normal vector of the deformed configuration is guessed
(or known). In this case the parametrisations X are chosen such that

n(X) (7.13)

P (xV(X)) - P(XP(X))
(2)( |

TP EO) -~ PEPE)

This kind of choice enables to set n constant and with choosing X as the identity
map, the uniform discrete LBB condition becomes trivial.

The domains € are approximated by triangles and so the matrix B; and the vector G|
can be calculated by Algorithm 7.1.
For explanation of the used notation A, P;, ... see Figure 7.2.

S£P2 - P1)4+t£P3 - Pl)J =P - P1 - <P - Pl, I/(A)>12(Rd) V(A)

R, Ry o (7.14)
(8) = Huxth
| Ry x RQng(Rd)

From equation (7.14) it should be obvious how to program the procedure Barycentric.
The only procedure of Algorithm 7.1 which isn’t obvious is the procedure Parametri-
sation. One possibility is to calculate for every surface, generated by the A € S,f:l_l,
the point ) which fulfils either a.) or b.) and checks whether this point is inside the
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@ should be the point in A such
that either case a.) or case b.) is
fulfilled. v(A) is the out warding
unit normal vector onto A. The
barycentric coordinates of () are
determined by equation (7.14)

Figure 7.2: barycentric coordi-
nates

triangle A or not. For 2D problems this may work fast enough, but for 3D problems
this may be rather slow. The time complexity for calculating B, and G is in this case
O(NFNE,) = O(h=2@=1) which isn’t optimal in the 3D case. An other possibility to find
the triangle A is the use of an ADT (Alternating Digital Tree). This method was presented
by BONET AND PERAIRE [8] and shouldn’t be explained in this thesis. In this case the time
complexity for generating B; and G, reduces (in mean) to O(N In N ) = O(h~"Y1nh).

Remark 7.11. For numerical computation also Lagrange elements of second order were
used. In this case the calculation of the Parametrisation becomes more difficult. Indeed
it’s to difficult to calculate the point ) on the curved surface generated by A. One
simplification would be to divide the triangle A into four parts, such that every node for
the ansatz functions becomes a corner point of one of these parts. This simplification
is calculate able with a reasonable effort. Nevertheless it’s enough to consider only the
triangle A itself to achieve a similar accuracy as for the partition of the triangle and thus
this was implemented by the author.
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PROCEDURE Generate(B, G, [, case)
BEGIN

WHILE P € MY, DO

BEGIN
(* find A € £, such that x)
IF case = a.) THEN

BEGIN
(+ 2) IQEA : Q = argmin [P(XO(P)) - P(XOD(X))[lya) +)
AengI

XeNn

Parametrisation(P, Q, A, a.))
END
IF case = b.) THEN
BEGIN
(* b.) IQeATINER: Q =
Parametrisation(P, Q, A, b.))
END
(x calculate barycentric coordinates x)
Barycentric(s, t, A, Q, P)
(x calculate u(Q) via barycentric coordinates )
u(Q) = (1 —t — s)u(Py) + su(Py) + tu(Ps)
IF case = a.) THEN

P(XW(P)) + An(P) %)

BEGIN
(x a.) calculate n from (2.29) x)
(P~ —PQ PP

= IP@) — PPl
END
(x set B and G )
Bp,p = TL(P), Bp’p1 = —(]_ —t— S)TL(P), Bp’p.z = —STL(P)
Bpp, = —tn(P), Gp = sign(v(A),n(P)) &) || P = Ql|,ra)
END

END

Algorithm 7.1: generation of B, and G,

80
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Chapter 8

Solving the Body-Body Contact
Problem

The contact problem results into a constraint minimisation problem (CMP). A lot of nu-
merical algorithms are developed to handle such CMP. Some of the classical algorithms
are explained in GLOWINSKI [26]. In WRIGGERS [51] some algorithms especially for the
contact problem are presented. In this work also some approximations for the contact
condition are discussed. CARSTENSEN, SCHERF AND WRIGGERS [15] gave a complete
numerical analysis for the contact problem of elastic bodies. In the last decade a lot of al-
gorithms are published, based on iterative methods, like HACKBUSCH AND MITTELMANN
[27], HorPE AND KORNHUBER [32], HOPPE [33], BRANDT AND CRYER [11], MANDEL
[40], KORNHUBER [36] [37], TARVAINEN [47] [48], DOSTAAL, GOMES NETO AND SANTOS
[20], SCHOBERL [43].

The algorithm which is presented in this thesis is as simple and old, as it’s new. In
Section 8.1 an simple algorithm for solving CMP is presented in a very abstract way.
For this algorithm convergence results in the A-energy norm are presented. An concrete
example of this algorithm is presented in Section 8.2. This example will be the basis for
solving the body-body contact problem. To achieve a time optimal algorithm for solving
the body-body contact problem some transformations has be done. This transformations
is presented in Section 8.3. For an efficient solving an equivalent preconditioner for the
transformed body-body contact problem are needed. This preconditioner is a result of the
Bramble Pasciak transformation, which is presented in Section 8.4. As a consequence of
all tools presented up to now, the final time optimal solving algorithm for the body-body
contact problem follows. The final algorithm and the proof of its optimal time complexity
is presented in Section 8.5. Finally some practical improvements of the solving algorithm
are presented in Section 8.6.

82
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8.1 The Approximate Projection Method

A lot of applications result into a CMP, especially the body-body contact problem is a
CMP. To solve such a problem numerically a CMP solver is needed. In this section such a
solver is developed in an abstract setting. In Section 8.5 this algorithm is applied to the
body-body contact problem such that the resulting algorithm has optimal time complexity.
Consider the CMP

J(v) = (A, v)vir — (F,0)vsy .
8.1

with A : V — V' a symmetric, positive definite and bounded linear operator, F € V' and
K some closed convex set. Note that an operator is called positive definite (spd) iff

(Av,v)yrey > 0 Yo e V/{0}. (8.2)

The quadratic functional J(v) is called Ritz functional. Usually A is a matrix resulting from
a FEM discretisation. Note that (8.1) has a unique solution because A is spd (Theorem
4.11). Assume that A:V = V'is some spectral equivalent preconditioner of A, i.e. there
are positive constants a, @, such that

~

a (Av, v)yiey < (Av,v) vy < @ (Ao, v)yryy VveV.
In the following spectral equivalence is denoted by
aA < A<aA, (8.3)

or using <, >, =~ to reduce writing.
Note that in a lot of applications «, @ are independent of the mesh parameter h, but in
Section 8.2 there is one application with o, @ mesh dependent.

To solve the CMP numerically, a projected, preconditioned richardson iteration can
be applied (see Algorithm 8.1). The parameter 7 is some relaxation parameter, which is
chosen such that Algorithm 8.1 converges in the fl—energy norm.

Note that A was assumed to be spd and thus |1 == (A, )vrxv is a norm,

The operator PX : V' — K is a projection operator onto K with respect to the fl—energy
norm (||.|| 1), i.e.
P{ () = argmin |lv — @l 5 . (8.4)
vEK
In Theorem 4.10 it was proved that Pff is unique and lipschitz continuous with lipschitz
constant 1. Thus it’s possible to apply the ordinary theory for the richardson iteration to

achieve convergence results and rates. From this it’s known that Algorithm 8.1 converges
in the A-energy norm, with convergence rate

. N 2
p=p(A—TA) = ||A-TA|| < max{|l —7a|,[1—Ta|} <1 V1 elo,=[.
a
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PROCEDURE Projection Algorithm(K, A, A F, 7, ul)
BEGIN

FOR k=1,2,... DO
W =uF+ 1A (F — Auk)
yk L — Pf (i)

END

Algorithm 8.1: projected preconditioned richardson

Usually the fl—energy norm isn’t from further interest, because this norm isn’t fast com-
putable and has no physical interpretation. More interesting would be a convergence
result in the A-energy norm, at least for the application considered in this thesis. From
the convergence in the A—energy norm the converges in the A-energy norm is deduced, but
this convergence may not be monotone. SCHOBERL [43] proved a monotone decay of the
quadratic Ritz functional J(v) and gives an estimate of the convergence rate p. This decay
of the Ritz functional J(v) also forces convergence in the A-energy norm.

Theorem 8.1 (Energy convergence). Let the relazation parameter T €0, %], uf be a
sequence generated by Algorithm 8.1, then the estimate

J(WMh) < pJ (u*) + (1 = p)J (u) (8.5)

holds for every k € N with the convergence rate
p:1—%<1. (8.6)

The error in the A-energy norm is bounded by
o — w11 < 20" (J) — T(w) (8.7
Proof. see SCHOBERL [43, Theorem 1]. O

Define the condition number x(A-1A) by

~

K(ATTA) = (8.8)

2| Ql

Note that this definition isn’t the original one, but it’s up to a mesh independent constant
equivalent (provided that «, @ are close to the best possible spectral constants). Rewriting
the convergence rate p by setting 7 = 7@ €]0, 1] it’s deduces that the convergence rate is
only dependent, on the condition number x(A~'A) and 7.

3

B
g 2m(A 1 A)
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The convergence rate is small if the spectral bounds «, @ are close, i.e. /f(fl*lA) ~ 1.
The time to calculate one projected, preconditioned richardson step depends on the time to
evaluate A1 x d, A x d and the time to calculate the projection Pf{(d). For FEM systems
the application of a multiplication in A is of optimal time complexity because A is usually a
spares matrix. Using a multigrid or multilevel preconditioner for fl, then it’s possible to get
close spectral bounds and one application Alxd is as fast as an application of A x d. The
only thing which is usually very expansive to compute is the projection Pf . To improve
this draw back the exact projection in Algorithm 8.1 is replaced by some approximate
projection f’f (Algorithm 8.2). If the approximate projection Pf fulfils a certain decay

PROCEDURE Approximate Projection Algorithm(K, A, A F, 7, u')
BEGIN

FOR k=1,2,... DO

ik = uk + 7A! (F — Auk)
ukbtl = ﬁf (a*)

END

Algorithm 8.2: approximate projection algorithm

in the fl—energy norm, then it’s also possible to proof monotone convergence in the energy
functional J(v) and thus convergence in the A-energy norm, for Algorithm 8.2.

Theorem 8.2. Let the approximate projection ﬁf fulfil

IPE() — a2 < pp 1 — @113 + (1 — pp) |PE () — 2, (5.9)
with pp € [0,1] and let T €]0, %] . Then Algorithm 8.2 has a monotone convergence of the
energy functional J(uF)

J (uF) < pd (uF) + (1= p)J(u), (8.10)

and convergence of u* in the A-energy norm
=] < 20 (J(u') = T(w)) | (8.11)
for all k € N with the setting

(1—pp) < 1. (8.12)

Proof. see SCHOBERL [43, Theorem 1] O
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~k

Figure 8.1: sketch of (8.9)

Remark 8.3. Note that pp = 0 is nothing else than the exact projection. Condition (8.9) is
graphically illustrated in Figure 8.1. The approximate projection operator Pf(&k) has to
be in the hatched area (Figure 8.1). This area is such that the distance between the point

¥, resulting from the preconditioned richardson step, and the new point u**+! = ﬁf(ﬂk) €

K in the hatched area, decreases strict in the A-energy norm (pp € [0,1]). If pp = 0, i.e.
Pf is the exact projection, this reduction is the best possible.

For practical computation a computable estimate for the iteration error is needed. The
next Corollary provides such an estimate, which is nothing else than the error estimator
for iterative methods for linear systems.

Corollary 8.4. Let the sequence u* be generated by Algorithm 8.2. Then the error of the
iteration value u*t' is bounded by

2
e R S R Ty e (8.13)

with p from Theorem 8.2.

Proof. see SCHOBERL [43, Corollary 1]. O

8.2 An Example of an Approximate Projection

Theorem 8.2 guarantees the convergence of the projected preconditioned richardson with
an approximate projection Pf, fulfilling (8.9), instead of the exact projection Pf. In this
section a simple example of an approximate projection, fulfilling (8.9), is presented. To
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construct such an approximate projection ]31’: consider the problem of solving the exact
projection Pf(&k). This problem is nothing else, than solving the quadratic CMP

uptt := PX(a") = argmin |lv — a@*[]%, (8.14)

ex
veE

which is due to Theorem 4.10 equivalent to the variational inequality

~

(Aub T b — )y < <Aak,u§;1 — V)yrxy Vve K.

er exr

For the preconditioner A it was assumed that it’s a spd preconditioner and thus there are
spectral constant a,, @y such that

a,] < A< @l.

Note that if A is from an FEM discretisation, the spectral bounds a,, @» usually depends on
the mesh parameter h and are not close. Nevertheless apply n steps of the exact projection
algorithm, i.e. a projected richardson with projection in the V-norm (see Algorithm 8.3).

PROCEDURE Approximate Projection(K, A, n, 1, uk)
BEGIN

w® = uk

FOR j =0,...,n—1DO
W = wi + rA (0 — w?)
Wt = PE (i)

ubtt = PE(i*) == w"

END

Algorithm 8.3: example of an approximate projection

Remark 8.5. The projector PX in Algorithm 8.3 is a Lo-projector. If K is a set of box
constraints, then this Lo-projection is trivial.

From Theorem 8.1 it’s known that the Ritz functional J(v) = [lv — @*||* for Algorithm
T2
2k(A)’
Ty = Teap €]0,1]. Thus the Ritz functional decreases after applying Algorithm 8.3 by

if

8.3 converges monotone in the fl—energy with a convergence rate p, = 1 —

et — a1 < gl — a5+ (1 o)k, — %

This proves that Algorithm 8.3 is an approximate projection with pp = pf.
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~

Remark 8.6. Note that p, depends on the condition number x(A) and so pp depends

~

on k(A) for a fixed n. If A is the matrix generated by a FEM discretisation of an elliptic

~

problem, then k(A) = O(h~?) (uniform mesh). This isn’t very satisfying because Algorithm

~

8.3 should converge independent from the condition number x(A) and thus from the mesh
parameter h.

~

To achieve that pp is independent of k(A) choose

n= C2I€A(A) , (8.15)
T2

with ¢ > 0 is some arbitrary constant. Substituting this n into pp gives

2k(A)

C—=
_ n _ 1 — — < (& s
Pp = P ( 2&(A)> >

~

and thus pp is a constant, invariant of x(A).

~

Remark 8.7. That n is depending on the condition number x(A) is a draw back and it seems
so that this approximate projection (Algorithm 8.3) won’t be a good idea. Nevertheless in
Section 8.5 this approximate projection proves to be the correct one to construct a solver
for the body-body contact problem with optimal time complexity.

8.3 Augmented Lagrangian Formulation

In Section 4.2 it was proved that the body-body contact problem is equivalent to the dual
formulation, which has the following form.

1
= argmin — ((BA™'B* — C)q,¢)orxo — (¢, BA™'F — G)orvo 8.16
p ;geN 5 ((. - Vg, @) orxo — (g o< (8.16)

and the displacements v € V' are computed by solving

Au+B'p—F=0 <= u=argminl|4v+ B*p— F|?. (8.17)
veV

The norm |||, is any norm which is equivalent to ||.||y. The operator C'is either 0 or the
operator which is generated by the stabilisation term (7.10). S is called Schurcomplement.
Problem (8.16) is a quadratic CMP where N has the form of box constraints. Thus
it may thought to solve this quadratic CMP with the approximate projection algorithm
(Algorithm 8.2). This will work but the algorithm which results has no optimal time
complexity, because the Schurcomplement isn’t sparse. The main problem is the exact
inversion of the operator A. This problem is omitted by reformulating the CMP.
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Let A be some (scaled) spd preconditioner such that
A< A<HA, (8.18)
define the inexact Schurcomplement

Sin == BAT'B* 4+ C,

and let S be some Schurcomplement preconditioner

BS < S < BS.

Note that due to the strict inequality A < A the norm ||.|| 4_,_,_: is equivalent to the
norm ||.||y. The reformulation is done by adding zero to the quadratic functional (8.16),

indeed add

1 .
5 nf [l Ao+ B'q = Fl._ o

Note that this infinum attains its limit value zero for all ¢ € ), because A is V-elliptic and
thus invertible (Theorem 4.11). Thus the problem (8.16) and (8.17) are equivalent to

(u,p) = argmin  $((BA™'B*+C)q,q)qixq — (0, BA™'F — G)grxg
(v.)eV XN (8.19)

%“AU + B*q - F||124—1,A—1 :
Some elementary calculations prove that (8.19) can be written as the quadratic CMP
U = argmin J (V),

VEV XN
with
1
The spd operator A and the functional F are known from the Bramble Pasciak transfor-
mation as

g (A= )A~1A (A- A)A-'B
BA-'(A—4) BA'B*+C

BA'F - @ p
This formulation seems to be much more complicated than the original one, nevertheless
it’s the correct one for constructing a time optimal algorithm.

(8.20)
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8.4 A Review on Bramble Pasciak Transformation

It was mentioned before that (8.20) is well known from the Bramble Pasciak transforma-
tion. This transformation was originally applied to an matrix equation, where the matrix
was an special indefinite matrix. This indefinite matrix is achieved by setting N = @ in
(8.16) and reformulating this minimisation problem into a matrix equation. This equation

reads as follows.
A B* U F
(5 %) (5)=(¢c) 521

For this indefinite system Bramble and Pasciak introduced an transformation, which trans-
forms it into a spd system. The transformation is nothing else than the multiplication of
the indefinite system (8.21) by the operator

A—A 0 I 0 A0
0 I B —I o 1)
The result of this multiplication is also the spd system

AU = F,

with A and F presented in (8.20).
The main result of Bramble and Pasciak was the spectrally equivalence of A to some
block diagonal matrix A.

Theorem 8.8. Let A be some scaled preconditioner for A (8.18), then the block diagonal
operator

- T(A- A 0
A:<7( 0 | BAlB*+C> (8.22)

is spectrally equivalent to the block operator A, defined in (8.20), with spectral equivalence

constants
_ 1 — / 1
=1—-,/1—-= =1 1-=.
a 5 Q + 5
Proof. see BRAMBLE AND PASCIAK [9] or SCHOBERL [43, Theorem 2]. O
Remark 8.9. @ < 2 and o > 1 _ %1 Thus the condition number /i(fl’lA) <
Y k(AT A)

4/4;(121_114). The upper bound 2 for @ provides a simple choice for the relaxation parameter
7 in Algorithm 8.2 and because of the upper estimate of the condition number x(.A~"A)
by 4k(A1A) the convergence rate of Algorithm 8.2 only depends on pp and k(A 1A).

Remark 8.10. The reason that the Bramble Pasciak transformation wasn’t applied directly
to the mixed system of the body-body contact problem is that it was not obvious that this
transformation preserves the inequality sign.



CHAPTER 8. SOLVING THE BODY-BODY CONTACT PROBLEM 91

Remark 8.11. 1t’s obvious that the operator C' can also be replaced by an spectral equiva-
lent one. Indeed it’s possible to replace the inezact Schurcomplement Sy, = BA'B*+C
by some spectral equivalent Schurcomplement preconditioner S , keeping in mind that then
«a, @ modifies!

8.5 Contact Algorithm Based on Neumann DD

In Section 8.3 the body-body contact problem was reformulated into the quadratic CMP

U = argmin - (AZ/{ Uy —(F.uy,

VEVXN

with A, F from (8.20). In Section 8.4 it was proved that (8.22) is a good preconditioner
for A. Note that due to Remark 8.11 it’s possible to replace the inezact Schurcomplement
by some spectral equivalent Schurcomplement preconditioner S. Now apply Algorithm 8.2,
ie.

i. Apply one preconditioned richardson step
U =uU+rA" (F— AU .

With the notations
= A 1d§ (8.23)
B

the richardson step simplifies to

u* uk wk
()= )+ (5% )

It seems so that the inverse of the Schurcomplement preconditoner is needed. This is
usually very expansive, because only the application of S may be cheap. But there
is still one step missing

ii. Apply an approximate projection
YrHl — pVxN <ak>
i )

Because the preconditoner A is block diagonal, the primal and the dual variable
decouples. The primal component is unrestricted and thus the projection for it is
trivial. Therefor the approximate projection acts only on the dual component. For
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understanding the approximate projection of the dual component and its advantage,
consider first an exact projection, i.e. solve

Pest = argmin|lg — p°[|% . (8.24)
qeEN

A

Note that [lg —p*|1% = llgll% —2(SP", @) 'xq + [|P*II% , and with (8.23) the quadratic
functional becomes

g — 2% = llall% — 2(Sp" + Twk, q) g + O(1) .

The last calculation proves that the term including Sl only occurs in the constant,
which doesn’t influence the calculation of pf1. Thus every algorithm, which is based
on solving (8.24) approximatively and fulfils (8.9) is an approximate projection such
that S~! never occurs. Especially Algorithm 8.3 is based on solving (8.24) and is

thus a candidate for the approximate projection.

PROCEDURE Augmented Projection Algorithm(N, A, S, A B,C,F,G, u,p)
BEGIN

WHILE not termination criteria (8.25) DO
BEGIN
dk = F— AuF — B*p¥
12 _ Ailkdﬁ k k
¥ = Bw} — (G — Bu* + Cp") N
(* calculate approximated projection pF+! = PéV(Spk + Twk) )
ApproximateProjection(N, S, SpF + Twp, phth)
(* update uF*! additive or multiplicative x)
Upgg = u¥ + %wﬁ
AL =gl 4 T ()
END

END

Algorithm 8.4: approximate augmented projection

If the Schurcomplement preconditioner is the inezact Schurcomplement S = S, and thus,
o < 2, then it’s possible to choose 7 = % explicitely. A better choice will be

= =



CHAPTER 8. SOLVING THE BODY-BODY CONTACT PROBLEM 93

if 7 is available.
The iteration error can be estimated by Corollary 8.4, which provides a termination

criteria
U — uktl
k+1
p—D

where ¢ only depends on p, a, @.

2

< e [, diyviv + (0" =" wh) el | (8.25)
A

Remark 8.12. Tf A is from a standard multigrid or multilevel algorithm, then the inezact
Schurcomplement isn’t sparse. Thus Algorithm 8.4 hasn’t optimal time complexity. But
due to Remark 8.11 it’s possible to replace the inezact Schurcomplement with some other
spectral equivalent Schurcomplement preconditioner. Note that in this case the spectral
equivalence constants a, @ are not determined by Theorem 8.8 and thus the choice of 7
isn’t known a-priori. The Schurcomplement preconditoner can be constructed such that
it’s sparse i.e. one multiplication with S is of time complexity NF.

Ezample 8.1. At the beginning of this chapter it was claimed that the solving algorithm for
the body-body contact problem is of optimal time complexity. This is proved for the special
case that the approximate projection is calculated by Algorithm 8.3, that S is some sparse
Schurcomplement preconditioner, that the mesh which generates A, B is uniform and that
the calculation is without the stabilising term C'. Essential for the time complexity of

A

Algorithm 8.3 was the condition number, i.e. £(S). The next lemma provides an estimate
of the condition number x(BA ' B*) and thus for x(S).

Lemma 8.13. let A be V-elliptic and bounded, B be given by .% with n constant and X"
the identity map, then condition number of the operator BA™'B* for an uniform mesh is
k(BA™'B*) = O(h ).

Proof. Let ¢, € Q,; and consider (BA™'B*qy, qn)orxo = (A7'B*qn, B*qin)g'xq - Define uy,
as the solution of the variational equation

(Aup, vi)vixy = (B qn, vn)vixy  Yop € Vi
Thus the term (BA 'B*qy, qn) g < becomes
(BAT'B*qn, an)qixq = (Aup,up)vixy = [unll -
Because A is V-elliptic and bounded, the A-energy norm of u; can be represented as

(Aup, wp)vrxv - (Bwh, qn) @' xq

(8.26)

|unlla = sup
wpEVy ||wh||V wpEVy ||wh||V

This term can be estimated from above due to the continuity of B via

(8.26) Bwp, qn) ¢
lun|[a = sup M

= lanlle < llanllrare) -
wneVi  ||wallv
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The estimate from below is more tricky. First note that

”thQ = we%/rlef{O} Hw”V = whe%/ﬂfx{o} “whHV' (8'27)
Puw=n Buwp=gp
8.26 , )
l|un | a €20 sup (Bun, th)g'xq > sup (Bwn, an)g'x@
wprEVR ||wh||V wp €Vy, x{0} HwhHV
= sup  sup (Bun, an)g'xq _ sup W%qhw
gnELT Vyp € Vhet whHV ghEtI‘Vh,l whlgvhl ||wh||V
Bwyp, =gy, Bwh:g’h
(8.27) sup {gn, ) arxo Theorﬁm 5.2 - M
gretr vy, |gh Q . aetr Vi, hl_§||gh||L2(1"0)
3 / * 1 ’ 1
= hi' su (9.0 < H?“LQ(FO) = hj sup w = hl2||Qh||L2(FC)
geq’ ||g||L2(FC) ||Ig||L2(F0) geQ’ ||g||L2(Fo)

(*) I' is a Fortin operator. The proof is, due to the assumption n is constant and X"
is the identity map, similar to the corresponding proof in Proposition 6.15. Summing up
both estimates everything is done.

hl||qh||%2(ro) = (BA_IB*thQh>Q’XQ = ||Qh||%2(ro)

To prove the optimal time complexity rewrite the algorithm

WHILE not termination criteria (8.25) DO
BEGIN
w=A"Y(F — Au* — B*pF)
d=Spk+7 (Bw — (G — Buk))
FOR j =0,... ,n, — 1 DO

it1 a N a
pe = PN (p'”“i +1o(d — SPH”"))

(* update u**! additive or multiplicative x)
U];;dl = uk + %wu
A =gl EAC 0 )

END

e P} is a L, projection, which is trivial for box constraints and thus for N.

~

e n; large enough (n; = O(k(S5))) then pp < 1 independent of the mesh parameter h
(see Section 8.2) and due to termination criteria (8.25) the algorithm is terminated
after a finite number (independent of the mesh parameter h) of outer iterations
(no = O(Ine)). € denotes the relative iteration error.
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e 5(S) = O(h") (see Lemma 8.13)
e time complexity (uniform refined): N = O(h=%) Nf = O(h; %)
no(co +nic;) = O(lne) (O(N) + O(N7)O(h ")) = O(NIne) .

¢, denotes the costs for calculating w, d, u**! and ¢; are the costs for calculating the
approximate projection P} and one multiplication of S, i.e. calculating one time

Py (kar_’{_i + 7o(d — S’pH_’{?))

Remark 8.14. It’s not usual that the preconditioner A is scaled. If this is not the case, i.e.

1121<A§714,

=22

then A, % has to be replaced by A= 1121 and ¥ —

If 7,77 are not available, then it’s possible to calculate them by the Lancos-method,
without losing time complexity.

8.6 Practical Improvements

e In Example 8.1 it was proved that Algorithm 8.4 with the approximate projection
from Algorithm 8.3 and a sparse Schurcomplement preconditioner S is optimal in
time. One disadvantage of Algorithm 8.3 for the approximate projection is that the
relaxation parameter 7, has to be chosen and thus 3 with BS’ < S < BS’ has to
be known. Furthermore it’s known that a richardson iteration converges not as fast
as other iteration algorithms (e.g. cg-iteration). Thus replace Algorithm 8.3 for
the approximate projection by the projection algorithm introduced by DOSTAL [19].
This algorithm is a cg kind algorithm and thus a faster convergence is expected (not
proved). Furthermore a cg algorithm is self scaling, i.e. the relaxation parameter 7
isn’t necessary any more.

e In Algorithm 8.4 an initial guess (u’,p°) is needed. For the first level (u°,p°) = (0,0)
is the simplest choice. For higher levels it’s possible to choose (u’,p°) as in the
first level but with this choice information is lost, because the solution of the last
level is known. Thus prolongate the solution from the last level to the new one.
For the primal variable u this is trivial, because u is a grid function, i.e. it has an
interpretation in the continuous space V. The dual variable p is only defined in the
nodes at the master surface, or if C' # 0, p is defined in all nodes of both contact
surfaces. Assume that the calculation is done without stabilisation, i.e. C'= 0. Then
the nodal constraints has an interpretation in the continuous space (. From Chapter
6 it’s known that

pPrL = Z szllL()(%)

:EiG’)/l(?L
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L is the index describing the level and [ is the number of the master surface. The
prolongation of level L — 1 to level L has to fulfil

Pr-1,pini)oxq = (P vinp)axe = P Vai €.

Note that ¢;; 1, is the basis ansatz function in node z; at level L, restricted to I'c. The
calculation of (pr_1, ¥isL)o xq is difficult and it’s possible that some values p; ;, < 0.
This kind of prolongation seems to be useless for an initial guess. As an ad hoc guess
try the following approach, which gives good results for linear Lagrange elements.
Multiply the vector p;,_; with the inverse lumped mass matrix (lumped mass matrix
see Section 6.5). Now consider p;, as a grid function on '}, and prolongate it to the
next level. The initial value for p} is then nothing else than the prolongated function
multiplied with the lumped mass matrix of level L. The advantage of this approach
is that every component of p} > 0. In practical experiments this approach reduces
the time in the approximate projection about %

For quadratic Lagrange elements the initial guess for p° = 0 seems to be the safest
one.

e From Theorem 8.8 it’s known that the spectral constants for the preconditioner fl,
with S, only depend on the condition number (A A) and for standard multigrid,
multilevel preconditioners this condition number /{}(1217114) ~ 1, which guarantees the
best possible theoretical convergence rates. On the other hand it’s known that S;,
isn’t sparse, i.e. one multiplication of S;, is of order O(N) and thus it’s not possible
to get a time optimal algorithm. Using a sparse Schurcomplement preconditioner
S instead of Sin, the solver will be of optimal time complexity but the condition
number k(A 1A) depends on x(A *A) and k(S 1S), which results usually in much
worse convergence rates, because it’s usually not possible to get m(g_ls) as close to
one as /1(121_114). The aim is to find a compromise at least a practical one.

Remark 8.15. The choice of the preconditioner A is standard. For this refer to BRAMBLE
[10] or other books about multigrid. The choice of the sparse Schurcomplement precondi-
tioner is more tricky. For this refer to SCHOBERL [43] [43].
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PROCEDURE Main()
BEGIN

IF L is first level THEN
BEGIN
w=0,p"=0
END
ELSE
BEGIN
u® = Prolongate(u;,_,)
p° = M.Prolongate(p;, ;)
END
(% linearise problem (Algorithm 7.1) x)
Generate(B, G)
(% solve linearised problem (Algorithm 8.4) x)
AugmentedProjectionAlgorithm(N, A,S8,A,B,C,F,G,u, P)
(x calculate grid function p x)

—1
pr=M p

END

Algorithm 8.5: “efficient” body-body contact solver

97



Chapter 9

Numeric Results

In Chapter 7 a method (nodal constraints) was introduced to discretise the body-body
contact problem. Also an ad-hoc refinement strategy for the body-body contact problem
was presented. For solving the body-body contact problem a time optimal algorithm was
presented in Chapter 8. With all these results it’s possible to solve the body-body contact
problem numerically.

In this section numerical results for both, the solution of academic problems as well as
the solution of a real life problem (the sag of a roll stack), are presented. The calculations
have been carried out within the C++ finite element code FE++ (Documentation see
SCHOBERL [42]). The calculations of the academic results were done on a SGI Origin
2000, CPU R12000, 300MHz, whereas the calculations of the real life problem were done
on a SGI Origin 2000, CPU R10000, 195 MHz.

In the tables presented the following notation is used
Notation:

J\ PO number of nodes.

NF........ number of nodes at the contact boundary T, which is equal to the number of
inequalities.

No(€).....number of outer iteration to reduce the error by a factor e.
Thjeaeannns average number of steps for approximate projection
Tsorve---..total time spent in the solver.

Torojeee--- average time spent in the approximate projector.

m(S’) ...... condition number of the Schurcomplement preconditioner

98
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9.1 Contact between a Circle and a Square (2D Prob-
lem)

il

Q! = 0(0.5,0.5;0.707)
02 = C(0.5,2.5;0.707)

E=1, v=0.3

£=(0,0,-0.01)

Ql

The calculation was done for linear Lagrange elements, for both, a uniform refined mesh
(Table 9.1) and an adaptive refined mesh (Table 9.2). The adaptive refined mesh was
generated by using the ad-hoc a-posteriori error estimator 77,1 + 172 presented in Section
7.4.

For the preconditioning of A a standard multigrid preconditioner (V-cycle with 1 pre-
and 1 post- smoothing step (V 11)) was used. The Schurcomplement preconditioner S is
more tricky, refer to the references given in Remark 8.15.

In Figure 9.1 the time needed for solving the body-body contact problem Ty, versus
the number of unknowns N is illustrated in a logarithmic scale. From theory (Section
8.5) it’s known that the time complexity of the algorithm is linear if S is sparse and
k(S) = O(h™") (Lemma 8.13). The Schurcomplement preconditioner used for this problem
should be sparse (Remark 8.15), nevertheless Figure 9.1 shows that the gradient is ~ % > 1.
The reason therfore is that the intern multiplication for one multigrid step isn’t correct
implemented and thus the Schurcomplement preconditioner isn’t sparse. In Figure 9.2 the
error, measured by the ad-hoc a-posteriori error estimator 1y 4+ nr2, versus the number of
unknowns N is illustrated. Also the condition number m(g ) versus the number of unknowns
is illustrated (see Figure 9.3). For a uniform refined mesh the condition number should be
of order h~! (Lemma 8.13). The numeric results show a similar behaviour for the adaptive
refined mesh.

For the adaptive refined mesh, the number of contact nodes N, are larger than for
the uniform refined mesh. Furthermore the snap shot of the adaptive refined mesh (Figure
9.4) shows that the mesh becomes finer in the region where the contact takes off. This is

what is expected because the solution a the take off area is less smooth.
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Nodes | N | n,(10%) | 77 | Tootwe/[8] | Tproj/Is] | K(S) |
4226 | 33 19 9 3.3 0.66 21.2
16642 | 65 19 11 15.96 2.75 40.9
66050 | 129 20 15| 149.08 35.46 79.7
263170 | 257 21 19 | 910.67 221.09 | 158.5
Table 9.1: circle square (2D) uniform refined
Nodes | N | no(107) | 77 | Tuotwe/[s] | Tproj/[5] | #(S)
6800 | 69 18 22| 21.40 7.13 71.8
9522 | 85 18 29 | 37.23 13.27 94.9
14443 | 119 19 31| 66.02 25.03 | 136.0
32418 | 174 19 33| 124.26 47.53 | 190.6
55196 | 257 20 37| 269.15 105.46 | 308.8
110652 | 418 21 44 | 753.17 338.73 | 503.2

Table 9.2: circlesquare (2D) adaptive refined (1, + 72)

Ql

Q' =0(0,0,0;1)

9.2 Contact between a Cube and a Sphere (3D Prob-

02 = 5(0.5, 0.5, 2.5; 0.866)

E=1, v=0.3

£=(0,0,-0.01)

The calculation was done for linear Lagrange elements, for both, a uniform refined mesh
(Table 9.3) and an adaptive refined mesh (Table 9.4). The adaptive refined mesh was
generated by using the ad-hoc a-posteriori error estimator 771 + 172 presented in Section
7.4.

For the preconditioning of A a standard multigrid preconditioner (V-cycle with 1 pre-
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1000

uniform ‘y—»— " ' uniform ‘—»—
adaptiv ~--x-7 adaptive ---x---

0.01 X

Ti[s]
Error

0.001

0.0

1 L L L 0.0001 . L L
100 1000 10000 100000 100 1000 10000 100000

N N

Figure 9.1: N — T} circle square (2D) Figure 9.2: N — I%lax(nT,l + nr2) circle
ETh
square (2D)

and 1 post- smoothing step (V 11)) was used. The Schurcomplement preconditioner S is
more tricky, refer to the references given in Remark 8.15.

In Figure 9.6 the time needed for solving the body-body contact problem Ty, versus
the number of unknowns N is illustrated in a logarithmic scale. From theory (Remark
8.15) it’s known that the time complexity of the algorithm is linear if S is sparse and
k(S) = O(h™") (Lemma 8.13). The Schurcomplement preconditioner used for this problem

should be sparse (Remark 8.15), nevertheless Figure 9.6 shows that the gradient is ~ 2 > 1.

2
The reason therefore is that the intern multiplication for one multigrid step isn’t correct
implemented and thus the Schurcomplement preconditioner isn’t sparse. In Figure 9.7 the
error, measured by the ad-hoc a-posteriori error estimator 1y 4+ nr2, versus the number of

~

unknowns N and in Figure 9.8 the condition number £(S) versus the number of unknowns

is illustrated. For the uniform mesh the condition number x(S) increases like it was proved
in Lemma 8.13.

9.3 Sag of a Roll Stack (3D)

The VAi Linz produces sheet metal. To produce sheet metal of high quality for automobile
industry it’s necessary to get uniform thin metal. The production of sheet metal is done
by putting metal into a rolling mill. One roll by itself has a weight of about 200 tons. The
rolling sheet causes forces on the rolling mill of about 30 000kN. Because of the large scale
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kappa

1 L L L
100 1000 10000 100000
N

Figure 9.3: N —k(S) circle square (2D)

Nodes | N¢ [ no(1072) | M7 | Tsowe/[s] | Tproj/[8]
2482 81 107 8 15.29 5.09
18018 289 112 26 | 254.38 94.79

137410 | 1089 115 28 | 4782.41 | 1745.61

Table 9.3: cube sphere (3D) contact uniform refined

(length) of the rolls, it’s obvious that the rolls sag and so the thickness of the sheet varies.
To prevent or reduce this effect a supporting roll and a working roll is used. In addition
the rolls aren’t cylindrical, they are bulbous. Also the forces at the bears can be varied to
reduce the sag. Because of the high forces, the rolls can’t be regarded as rigid, they will
deform. To get the sag of the working roll a body-body contact problem (contact between
support- and working- roll) has to be solved.
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Figure 9.4: snap shot of adaptive refined mesh (97, + nr.2)

Nodes | Ne | no(1072) | 77 | Tsowe/[s] | Tproj/ 8]
7393 | 405 55 38 | 126.74 67.74
11696 | 485 57 43 | 334.85 170.62
32773 | 1112 63 55 | 1424.06 | 759.31
85074 | 1963 70 66 | 5774.01 | 4143.81

Table 9.4: cubesphere (3D) contact adaptive refined nr; + nr2

M\—\M supchrt roll MM

B I RSN RN
7777771 | AN
worki ‘ng roll
7i77777#7777777
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but the eigenvalues of the problem may be very small, and so for numerical stability
it would be better to regularise. Because of the large scale and the small contact zone
a very fine mesh is needed to resolve the contact zone. In the inner of the domain the
mesh hasn’t to be as fine, because the solution is expected to be more regular there. So an
adaptive refinement strategy is chosen. The results which are presented in the following are
calculated for two different loads. The Figure 9.15, 9.16 show the sag of the rolls measured
along a line. In Figure 9.14 the notation used, is explained. The reason why it was stressed
out that the sag is measured along a line, is that due to the bulbous form of the working
roll the figures given in 9.15, 9.16 have to be corrected. This is done by the considering
the “Schliff”. The “Schliff” denotes the difference of the thickness of the working roll. For
the this calculations the difference of this thickness is 150um.

The calculations were done on a R10000/195 MHz processor of an SGI Origin 2000
machine and took about 90 minutes.

The preconditioner A was a standard multigrid preconditioner, V-cycle with 3 pre- and
3 post- smoothing steps (V 33). For this calculations the Schurcomplement preconditoner
was given by the inezact Schurcomplement and thus S was not sparse. Note that in this
case the solving algorithm has no optimal time complexity. Never mind because a sparse
Schurcompement preconditioner wouldn’t work due to the implementation error of the
multiplication of the smoothers.
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Figure 9.5: van mises stress
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Figure 9.6: N — Tyue for cube sphere Figure 9.7 N — ijax(nm + nr2) for
ETh
(3D) cube sphere (3D)

T
uniform —+—
adaptiv ---x---

100

kappa

1 L L L
100 1000 10000 100000
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Figure 9.8: N — k(S) cube sphere (3D)
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Figure 9.9: surface mesh for adaptive refined mesh 77 + 172

Schliff = 150pm
E=220, v=0.3
f=(0,0,-76.6107)

p:(oaanstee])

Figure 9.10: distribution of the
steel pressure along the working
roll
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Figure 9.11: mesh for F;., = 15KN, L = 1m Nodes: 46611, Tet.:246338, Inequalities:
7089

”“F‘acﬂ ’E}%‘iﬁw BRI strehEs —5
@.4332 ©72. 7 1351

Figure 9.12: Van Mises stress along a cut surface. F.. = 15KN, L =1m
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Figure 9.13: Isocline for Fye; = 15KN, L = 1m

_contact steel

@ —middle axis wr
J _contact surface wr

_contact surface sr

Figure 9.14: notation for Figure 9.15+ 9.16
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0.7 | ! | |
contact surface wr <—

06 - contact surface sr —+- |
middle axis wr -8--

05 contact steel -

z/[mm]

x/[m]

Figure 9.15: sag for F; .., = 15KN and L = 1m

12 - contact surface wr <— 7
contact surface sr -+-
1r middle axis wr -8--
contact steel —x-—
X

z/[mm]

x/[m]

Figure 9.16: sag for F; .., = 30KN and L = 1m

tee
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Die eitle Einbildung, man verstehe
alles, kann ja nur daher kommen,
dafl man nie etwas verstanden hat.
Denn wer nur ein einziges Mal das
Verstindnis einer Sache erlebt hat,
wer wirklich geschmeckt hat, wie
man zum Wissen gelangt, der weif}
auch, dafl er von der Unendlichkeit
der iibrigen Wahrheiten nichts weif3 .

Galileo Galilei

..... nun steh’ ich hier ich, armer Tor
und bin so klug wie jeh zuvor.....

Johann Wolfgang von Goethe



