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Abstract

This thesis is concerned with the modelling and e�cient solving of a body-body contact

problem without friction. After a short introduction to the �elds of continuum mechanics

and linear elasticity, the Signorini- or Geometrical- contact condition is derived. The

resulting problem is brought into a variational form. Due to the Signorini- or Geometrical-

contact condition, the variational formulation is a variational inequality. Thus the body-

body contact problem isn't linear even if linear elastic problems are considered. For this

variational inequality several equivalent formulations are denoted, which enables the usage

of di�erent abstract tools. With these tools existence and uniqueness of the solution of the

body-body contact problem is proved under reasonable assumptions.

In order to solve the body-body contact problem numerically, a �nite element for-

mulation is derived. For this �nite element formulation, the Signorini- or Geometrical-

contact condition results in nodal constraints. If additional regularity of the solution of the

continuous problem is assumed convergence results are proved.

Due to the large scale of some body-body contact problems and due to missing a-

posterior error estimates for the body-body contact problem with nodal constraints an

ad-hoc re�nement strategy is presented.

In order to solve the body-body contact problem e�ciently, a solver with optimal time

complexity is constructed.

In addition to the body-body contact problem a simple Laplace problem with a non-

matching grid is analysed for nodal constraints. The main result for this Laplace problem

with nodal constraints is that it's possible to achieve an optimal convergence result in the

primal variable, if a consistent mesh dependent stabilisation term is added to the original

formulation.



Zusammenfassung

Dies Arbeit besch

�

aftigt sich mit der Modellierung und dem e�zienten L

�

osen eines K

�

orper-

K

�

orper-Kontaktproblems ohne Reibung. Nach einer kurzen Einf

�

uhrung in das Gebiet der

Kontinuumsmechanik und der linearen Elastizit

�

atstheorie, wird die Signorini- oder auch

Geometrische- Kontaktbedingung abgeleitet. Das daraus entstehende Problem wird da-

nach in eine Variationsformulierung

�

uberf

�

uhrt. Aufgrund der Signorini- oderGeometrischen-

Kontaktbedingung, ist das Variationsproblem eine Variationsungleichung. Daher ist das

K

�

orper-K

�

orper-Kontaktproblem nichtlinear, auch wenn ein linear elastisches Problem be-

trachtet wird. F

�

ur diese Variationsungleichung werden verschiedene

�

aquivalente Formulie-

rungen betrachtet, welche die Nutzung abstrakter Werkzeuge erlauben. Mit diesen Hilfs-

mitteln kann die Existenz und die Eindeutigkeit des K

�

orper-K

�

orper-Kontaktproblems, un-

ter vern

�

unftigen Voraussetzungen an die Glattheit der L

�

osung, bewiesen werden.

Um das K

�

orper-K

�

orper Kontaktproblem numerisch zu l

�

osen, wird eine Finite Element

Formulierung eingef

�

uhrt. F

�

ur die in dieser Arbeit verwendete Finite Element Formulierung

werden die Signorini- oder auch Geometrische- Kontaktbedingungen zu Knotenrestriktio-

nen. F

�

ur diese Art der Diskretisierung werden Approximationsresultate gezeigt. Leider

sind die Approximationsresultate nur g

�

ultig, wenn zus

�

atzliche Regularit

�

at der L

�

osung vor-

ausgesetzt wird.

Aufgrund der geometrischen Begebenheiten einiger K

�

orper-K

�

orper-Kontaktproblemen

und aufgrund fehlender Resultate

�

uber a-posteriori Fehlersch

�

atzer f

�

ur das K

�

orper-K

�

orper-

Kontaktproblem mit Knotenrestriktionen, wird ein ad-hoc Verfeinerungsstrategie angege-

ben.

Abschlie�end wird ein Verfahren zum e�zienten l

�

osen des K

�

orper-K

�

orper- Kontaktpro-

blems konstruiert, das optimal in der Zeit ist.

Zus

�

atzlich zum K

�

orper-K

�

orper-Kontaktproblem wird ein einfaches Laplace-Problem f

�

ur

nichtkonforme Netze und Knotenrestriktionen analysiert. Die Hauptaussage f

�

ur dieses La-

place-Problem ist, das es m

�

oglich ist auch f

�

ur Knotenrestriktionen optimale Konvergenzei-

genschaften f

�

ur die primale Variable zu erhalten, wenn das Originalproblem durch einen

konsistenten und netzabh

�

angigen Stabilisierungsterm erg

�

anzt wird.
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Chapter 1

Introduction

Boundary value problems involving contact are of great importance in industrial applica-

tions in mechanical and civil engineering. The range of application includes metal forming

processes, drilling problems, bearings, crash analysis of cars, car tires or cooling of elec-

tronic devices.

From the modelling of the body-body contact problem to the numerical simulation,

there are a lot of steps between, having it's own di�culties.

Starting with the modelling, the �rst di�culty consists in describing the non-penetration

of the bodies and the correct transfer of forces. This can't be done, excepted of one special

case, the case that one body is a rigid plane, exactly. For contact problems undergo-

ing small deformations, the non-penetration condition is approximated by the so called

Signorini-condition. For large deformations it's still unsolved how to approximate the non-

penetration condition. Some try to solve this problem by reducing the large deformations

into a number of small ones. This is done by considering the contact problem dynamically

or at least quasi static. For modelling the contact problem refer to the standard book for

contact mechanics Kikuchi and Oden [34]. Other references concerned with the mod-

elling of the body-body contact problem are Boieri, Gastaldi and Kinderlehrer [7],

Eck [22]. In Carstensen, Scherf and Wriggers [15] a very general approximation

of the non-penetration condition, in the context of Signorin-condition, is presented. The

Signorini- contact condition usually results into variational inequalities.

After having a model it's necessary to check the solvability of this model. Because

the contact problem usually results into variational inequalities, there are powerful tools

available. Nevertheless the solvability isn't guaranteed in all cases. Especially contact

formulations with non-linear materials or considering contact with friction, the solvability

becomes di�cult. A major problem is to guarantee that the contact problem is stable,

i.e. that the solution exists, is unique and depends continuously on the data. A lot of

abstract results to handle variational inequalities are presented in Eckland and Temam

[23], Showalter [46], Kinderlehrer and Stampacchia [35], or every other book

concerned with the calculus of variation. Nevertheless some contact problems don't �t into

these abstract results. Thus there are many references especially concerned with the contact

problem. Eck [22] especially concerns contact with friction. In Kikuchi and Oden [34],

2



CHAPTER 1. INTRODUCTION 3

Haslinger, Hlav

�

a

�

cek and Ne

�

cas [29] contact problems with non-linear material laws

are considered as well as contact with friction. That the down sized elastic body-body

contact problem without friction can become ill posed is proved in Carstensen, Scherf

and Wriggers [15].

Having a model and the existence of a solution it's necessary to think about the solution

itself. Only a few contact problems are solvable analytically. The most famous analytic

solution of a body-body contact problem was given by Hertz [30], who considered the

elastic contact of two circles. Due to the di�culty of the contact problem it's necessary to

solve it numerically. Note that the contact problem is non-linear even when the material is

linear elastic. First of all the contact problem has to be discretised. There are at least two

possibilities in the contents of FEM. The �rst method is to discretise the contact condition

by nodal constraints, i.e. the non-penetration condition and the transfer of forces are only

done for nodes at the contact zone and not for the hole contact zone. Indeed it seems

so that the nodal constraints don't �t into the (mixed) FEM approach, but this isn't the

case. The draw back of nodal constraints are the missing convergence results for body-

body contact problems without any further regularity. For the Signorini problem nodal

constraints are well suited, because this is nothing else than a matching grid. For this

case convergence results are proved in Kikuchi and Oden [34], Haslinger, Hlav

�

a

�

cek

and Ne

�

cas [29] Brezzi, Hager and Raviart [13] [14] and Falk [24]. In Wriggers

[51] some di�erent discretisations are presented which results into nodal constraints. It

was mentioned that the Signorini problem discretised with nodal constraints behave like

a matching grid, whereas the body-body contact problem behaves like a non-matching

grid, despite of some obvious special cases. Thus the second method, developed in the last

decade, for discretising the constraints is the Mortar method. This method was considered

by Belgacem, Hild and Laborde [6] [5], which proved convergence, but not optimal

convergence.

Due to large scales of some contact problems it's useful to use adaptive re�nement

strategies. For variational equations there are a lot of a-posteriori error estimators which en-

able adaptive re�nement. For variational inequalities the literature concerning a-posteriori

error estimators is sparse (e.g. Kornhuber [38], Ainsworth, Oden and Lee [3]). The

presented a-posteriori error estimators are usually not applicable to the body-body contact

problem, they are only well suited for the Signorini problem. Thus some ad-hoc error esti-

mators have to be used. Some of this ad-hoc error estimators are presented by Verf

�

urth

[49] [50] or Ainsworth and Oden [2]. In Carstensen, Scherf and Wriggers [15]

an a-posteriori error estimator, constructed for the body body contact problem, and a

solving algorithm based on penalisation, is presented.

For solving the discretised contact problem a lot of algorithms are available. Due to the

non-linearity of the contact problem most of the algorithms are from non-linear program-

ming. An overview for these algorithms is presented in Glowinski [26]. In the last decade

a lot of algorithms, for solving contact problems are published, based on iterative methods,

like Hackbusch and Mittelmann [27], Hoppe and Kornhuber [32], Hoppe [33],

Brandt and Cryer [11], Mandel [40], Kornhuber [36] [37], Tarvainen [47] [48],

Dosta

�

al, Gomes Neto and Santos [20], Sch

�

oberl [43].
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Overview

This thesis is only concerned with a body-body contact problem without friction. The aim

is to develop a time optimal algorithm for solving the body-body contact problem.

� Chapter 2 is concerned with the modelling of the non-penetration condition (Signorini

condition) as well as the modelling of the transfer of contact forces for the body-body

contact problem.

� Chapter 3 is a short introductory into Sobolev spaces and there representation as

interpolation spaces. Furthermore a partial ordering for Sobolev spaces is introduced

which will be important to derive a weak formulation for the body-body contact

problem.

� Chapter 4 is concerned with the derivation of the weak formulation of the body-body

contact problem as well as to prove existence and uniqueness for this formulation.

� Chapter 5 gives an introduction into the topic of �nite elements. Especially Scott-

Zhang type interpolation operators are introduced, which play an essential role on

the following chapters. Also some abstract existence and uniqueness results as well

as some convergence results are presented.

� Chapter 6 presents an analysis of nodal constraints for a simple Lapace problem with

non-matching grids. The goal of this chapter is the proof of an optimal convergence

result for nodal constraints in the primal variable. This result was also veri�ed by an

numerical example.

� Chapter 7 deals with analysis of the discrete body-body contact problem. The dis-

cretisation of the constraints was done by nodal interpolation. For this discretisation

convergence results are proved. The draw back will be, that all these convergence

results need additional regularity for the solution. To allow adaptive re�nement an

ad-hoc mesh re�nement strategy is presented.

� Chapter 8 is concerned with the construction of a time optimal algorithm to solve

the body-body contact problem.

� Chapter 9 presents numerical results for both, academic examples and a real life

problem, the sag of a roll stack (3D)



Chapter 2

Modelling of the Body-Body Contact

Problem

In many practical situations in solid mechanics it's important to model the situation of

two or more bodies coming into contact with each other. The aim of this chapter is to

derive the contact condition for two elastic bodies undergoing small deformations. For the

sake of simplicity, this thesis is restricted to contact without friction.

An introduction into the mechanics of continua is presented in Ciarlet [17]. The

modelling of the body-body contact problem and some results on existence, uniqueness,

regularity and so on, are published by Kikuchi and Oden [34], Haslinger, Hlav

�

a

�

cek

and Ne

�

cas [29], Boieri, Gastaldi and Kinderlehrer [7] , Eck [22]. The results

given in these references are not restricted to linear elasticity and contact without friction.

In Section 2.1 an introduction to the basic results of linear elasticity as well as the no-

tation are presented. Section 2.2 is concerned with the derivation of the contact condition.

Also some draw backs of this condition are mentioned. In Section 2.3 connects results on

linear elasticity and the contact condition to the classical formulation, which is a system

of partial di�erential equations and boundary conditions.

2.1 Basics of Linear Elasticity

This section is far away from being complete and mathematical correct. For a more de-

tailed description refer to Ciarlet [17]. Let a domain 
 � R

d

represent the reference

con�guration of a material body, where d 2 f2; 3g is the dimension of the space. There are

at least two possibilities to describe the deformation (motion)

� Let's characterise the deformation (motion) of the body by the mapping

P : 
� R

+

0

! R

d

x = P (X; t) X 2 
; t 2 R

+

0

:

(2.1)

Here it was expected that X = P (X; 0), P is injective (in the �rst variable), su�-

ciently smooth and orientation preserving. That P is orientation preserving can be

5
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expressed by the pointwise inequality

J(X; t) := det

�

@P

@X

�

(X; t) > 0 8X 2 
 8 t 2 R

+

0

: (2.2)

This kind of representation is called material- or lagrangian- representation. P (X; t)

describes the position of the material point X in the reference con�guration, at the

time t.

� Let x 2 R

d

, then the deformation (motion) of the body can be described with the

mapping

p : D(t)� R

+

0

! 
 D(t) � R

d

X = p(x; t) 8 t 2 R

+

0

; 8 x 2 D(t) :

(2.3)

The domain D(t) usually depends on time (D(t) = P (
; t)). Without loss of gener-

ality it's assumed that x = p(x; 0). In this representation any point x in the domain

D(t) at time t is mapped back to the reference position X. This representation is

called spatial- or euler- representation.

Both the euler- and the lagrange- descriptions are equivalent.

P (p(x; t); t)=x p(P (X; t); t)=X

In the following capital letters denote the material- or lagrange- representation and the

small ones the spatial- or euler- representation.

In most applications the displacement of a particle X at time t given by

U(X; t)= x�X =P (X; t)�X

u(x; t) =x�X =x� p(x; t)

(2.4)

is of much more interest than the deformation itself.

From physics there are three important (conservation) laws which are

� Conservation of mass:

d

dt

Z

P (A;t)

�(x; t) dx = 0 8A � 
 8 t 2 R

+

0

; (2.5)

where � is the density of mass.

� Impulse equation (Newton's law):

Z

P (A;t)

f(x; t) dx+

Z

@P (A;t)

^

t(x; t; �) da(x) =

d

dt

Z

P (A;t)

�(x; t)v(x; t) dx (2.6)

Here f(x; t) is the density of volume forces, � the out warding normal vector (on

@P (A; t)) and v(x; t) the speed of the mass point p(x; t).

v(x; t) = V (p(x; t); t) =

�

@P (X; t)

@t

�

(p(x; t); t) (2.7)
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� Torque equation:

Z

P (A;t)

x� f(x; t) dx+

Z

@P (A;t)

(x�

^

t(x; t; �)) da(x) =

d

dt

Z

P (A;t)

x� �(x; t)v(x; t) dx

(2.8)

Here � denotes the vector product.

Note: Because of Newton's law equation (2.6) is invariant under translations of the

origin.

The fundamental Axiom (Euler, Cauchy) is the existence of a stress �eld

^

t(x; t; �) which

ful�ls (2.6), (2.8) and some boundary conditions on �

N

� @


^

t(x; t; �

x

) = l(x; t) 8 x 2 P (�

N

; t) 8 t 2 R

+

0

: (2.9)

l(x; t) is the surface load. From conservation of mass (2.5) the continuity equation

@�

@t

(x; t) + div

x

(�(x; t)v(x; t)) =

D�

Dt

(x; t) + �(x; t)div

x

v(x; t) = 0 (2.10)

can be deduced, where

Dy

Dt

(x; t) =

@y

@t

(x; t) + hgrad

x

y; vi

l

2

(R

d

)

(x; t) (2.11)

is the material derivative.

As a consequence of Newton's law (2.6) the stress �eld

^

t(x; t; �) is linear in �. Thus the

stress �eld can be written as

^

t(x; t; �) =

^

t(x; t)�, where

^

t(x; t) is a tensor of second order

called Cauchy stress tensor. Using additionally the continuity equation (2.10) and Reynolds

transport theorem the following equation can be deduced

div

x

^

t(x; t) + f(x; t)= �(x; t)

Dv

Dt

(x; t) 8 t 2 R

+

0

8 x 2 P (
; t)

^

t(x; t)�

x

= l(x; t) 8 t 2 R

+

0

8 x 2 P (�

N

; t)

(2.12)

As a consequence of the torque equation (2.8) the Cauchy stress tensor is symmetric, i.e.

^

t(x; t) =

^

t

T

(x; t) 8 t 2 R

+

0

8 x 2 P (
; t) : (2.13)

Additionally the displacement u(x; t) is �xed on x 2 P (�

D

; t) � @P (
; t). Summing

up all results the following system of partial di�erential equations in spatial- or euler-

representation follows.

div

x

^

t(x; t) + f(x; t)= �(x; t)

Dv

Dt

(x; t) 8 t 2 R

+

0

8 x 2 P (
; t)

^

t(x; t)�

x

= l(x; t) 8 t 2 R

+

0

8 x 2 P (�

N

; t)

u(x; t)=u

0

(x; t) 8 t 2 R

+

0

8 x 2 P (�

D

; t)

^

t(x; t)=

^

t

T

(x; t) 8 t 2 R

+

0

8 x 2 P (
; t)

(2.14)
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The next step is to transform the system of partial di�erential equations (2.14) given in

spatial- or euler- representation into a system given inmaterial- or lagrange- representation.

This is done by using the Piola-transformation. Rewriting the system of partial di�erential

equations (2.14) in material- or lagrange- coordinates results in

div

X

T (x; t) +

^

F (X; t)= �

0

(X)

@

2

U

@t

2

(X; t) 8 t 2 R

+

0

8X 2 
 ;

T (X; t)�

X

=L(X; t) 8 t 2 R

+

0

8X 2 �

N

;

U(X; t)=U

0

(X; t) 8 t 2 R

+

0

8X 2 �

D

;

T (X; t)F (X; t)

T

=F (X; t)T

T

(X; t) 8 t 2 R

+

0

8X 2 
 :

(2.15)

In equation (2.15) T (X; t) denotes the �rst Piola-Kirchho� stress tensor, given by

T (X; t) = J(X; t)

^

t (P (X; t); t)F (X; t)

�T

; (2.16)

�

0

the density of the reference con�guration 
,

^

F (X; t) the volume force density, given by

^

F (X; t) = J(X; t)f(P (X; t); t)

and L(X; t) the surface load

L(X; t) = l(P (X; t); t)kJ(X; t)F (X; t)

�T

�

x

(P (X; t); t)k

l

2

(R

d

)

:

Here F (X; t) denotes the deformation gradient

F (X; t) :=

@P

@X

(X; t)n: (2.17)

To solve this system of partial di�erential equations some more information is needed,

namely information about the behaviour of the material (material law's). Assuming that

the material is an elastic material and assuming the simplest case, a linear elastic material,

then the material law is given via

�

F

�1

T

�

ij

(X; t) =

d

X

k;l=1

a

ijkl

(X; t)E

kl

(X; t) ; (2.18)

with the elasticity tensor (Hooks' tensor) a

ijkl

(X; t) and the Green-St.Venant strain tensor

E =

1

2

�

F

T

F � I

�

: (2.19)

To achieve boundness and ellipticity in the following theories it's assumed that

ja

ijkl

(X; t)j � C

0

d

P

i;j;k;l=1

a

ijkl

(X; t)�

ij

�

kl

� c

0

d

P

i;j=1

�

2

ij

:

(2.20)
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Because of the symmetry of the stress tensor and the property of linear elastic materials

a

ijkl

has also to be symmetric

a

ijkl

(X; t) = a

jikl

(X; t) = a

klij

(X; t) 8 i; j; k; l 2 f1; : : : ; dg (2.21)

For homogen and isotropic materials the elasticity tensor (Hooks' tensor) is given by

a

ijkl

= ��

ij

�

kl

+ �(�

ik

�

jl

+ �

il

�

jk

): (2.22)

� and � denote Lam�e parameters and both are larger than zero. In technical application's

the Young-Modul and the Poison-number are more familiar than the Lam�e constants. The

link between these coe�cients are given in the following equation.

� =

E�

(1 + �)(1� 2�)

� =

E

2(1 + �)

;

(2.23)

where E > 0 is the Young-Modul (Elastizit�atsmodul) and � 2 (0;

1

2

) is the Poison-number

(Querkontraktionszahl).

Note that (2.18) is linear in E but not in the displacements U . Usually one is interested

in a system of partial di�erential equations which is linear in the displacements.

This can be achieved by assuming only very small deformations, then the equations

(2.15) with material law (2.18) can be linearised. This was done in Ciarlet [17], who

proved that the operator

A : u!

�

�div ((I + gradu)(F

�1

T )(E))

(I + gradu)(F

�1

T )(E)�j

�

N

�

is Frechet-di�erentiable at u = 0 and

A(0)u =

�

�div �(u)

�(u)�j

�

N

�

:

� denotes the linearised stress tensor

�

ij

= a

ijkl

�

kl

; (2.24)

with the linearised Green-St.Venant strain tensor

�(u) =

1

2

�

gradu+ (gradu)

T

�

: (2.25)

Collecting all the results the following equations can be deduced:

div �(X; t) +

^

F (X; t)= �

0

@

2

U

@t

2

(X; t) 8 t 2 R

+

0

8X 2 


�(X; t)�

X

=L(X; t) 8 t 2 R

+

0

8X 2 �

N

u(X)=0 8 t 2 R

+

0

8X 2 �

D

;

(2.26)

where � is given by (2.24). It can easily be seen that (2.26) is a system of partial di�erential

equations of second order. In the special case of an isotropic body, for which (2.22) is valid,

the left hand side of (2.26) has a relative simple form:

div� = (�+ �)grad divu+ ��u :
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2.2 Contact Condition

In the following only time independent problems are considered and thus the time derivative

and the time variable is omitted. The main task in this section is to formulate the contact

conditions. On the one hand the contact condition should prevent penetration of the two

bodies and on the other it should describe the transfer of forces in a correct way. In the

following onlymaterial- or lagrange- coordinates are used and thus it won't be distinguished

between capital letters and small ones, as in the section before.

Let the bodies occupy bounded domains 


1

; 


2

� R

d

(d is the dimension of the space)

with Lipschitz boundaries, let u(X) be the displacement �eld in material- or lagrangian-

notation 
 := 


1

[


2

, and assume that the boundaries of the domains are split into three

parts,

@


1

= �

1

= �

1

D

[ �

1

N

[ �

1

C

@


2

= �

2

= �

2

D

[ �

2

N

[ �

2

C

;

which are open and disjoint. Only �

1

C

and �

2

C

may come into contact. See Figure 2.1.

Further it's assumed that the body 


1

[ 


2

is �xed by its part �

D

:= �

1

D

[ �

2

D

,

P

S

f

r

a

g

r

e

p

l

a

c

e

m

e

n

t

s




1




2

�

1

C

�

2

C

�

1

D

�

2

D

�

1

N

�

2

N

Figure 2.1: two-body contact

u = 0 on �

D

� @
 : (2.27)

On �

N

:= �

1

N

[ �

2

N

the surface load is given, that is,

�

(�)

= L on �

N

� @
 ; (2.28)

where � denotes the outer unit normal to @
, L is the surface load and �

(�)

:= � � �.

InHaslinger, Hlav

�

a

�

cek and Ne

�

cas [29] one more boundary condition is presented,

which represents a glide bearing. This formulation of the contact and the following theory
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isn't restricted to the decomposition of the boundary given above. It's also possible to

handle more complicated boundary conditions as long as �

i

C

, which is some kind of a-

priori information about the region of the two bodies that may come into contact, are

known.

2.2.1 Non-penetration Condition

A mathematically exact formulation of the non-penetration condition would be to de�ne

the non-convex set of admissible displacements

K =

�

v 2 V j

�

v(


1

) \

�

v(


2

)= ;

�

:

For this set it's not possible to handle it numerically. To �nd a suitable convex approxi-

mation let X

(i)

: �

C

� R

d�1

! �

i

C

be two one to one maps with X

(i)

2 C

1

(�

C

;�

i

C

) (See

Figure 2.2). Further more de�ne

P

S

f

r

a

g

r

e

p

l

a

c

e

m

e

n

t

s

X �

C

X

(1)

x

(2)

X

(1)

(X)

x

(2)

(X)

�

1

C

�

2

C

n(X)

Figure 2.2: common parametrisation

n(X) :=

X

(2)

(X)�X

(1)

(X)

jX

(2)

(X)�X

(1)

(X)j

g(X) := jX

(2)

(X)�X

(1)

(X)j

u

R

(X) := u

1

�X

(1)

(X)� u

2

�X

(2)

(X)

v

N

(X) := hv(X); n(X)i

l

2

(R

d

)

v

T

(X) := v(X)� v

N

(X)n(X) ;

(2.29)

where u

j

= uj

@


j

is the trace of the boundary of 


j

. Suppose that the �nal contact region

may be represented implicitly by the function  : R

d

! R and the relation

 (y) = 0 ; (2.30)

with the non-penetration condition taking the form

�

 ( (X

(1)

+ u

1

(X

(1)

))(X) ) � 0

 ( (X

(2)

+ u

2

(X

(2)

))(X) ) � 0

8X 2 �

C

: (2.31)

For deriving the system of partial di�erential equations for linear elasticity (Section 2.1) it

was still assumed that u

j

is very small and that it's possible to neglect terms of higher order
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than one. Additionally assume that g(X) is also very small (comparable with u

j

). Devel-

oping inequality (2.31) into a Taylor series at the point X

0

(X) := X

(1)

(X) +

1

2

g(X)n(X)

and neglecting higher order terms the non-penetration condition becomes

(

 �X

0

(X) + h(r ) �X

0

(X); u

1

�X

(1)

(X)�

1

2

g(X)n(X)i

l

2

(R

d

)

� 0

 �X

0

(X) + h(r ) �X

0

(X); u

2

�X

(2)

(X) +

1

2

g(X)n(X)i

l

2

(R

d

)

� 0

8X 2 �

C

:

The rest term of the Taylor series is of order o(ku

1

�X

(1)

(X)�

1

2

g(X)n(X)k) in the �rst

inequality and of order o(ku

2

�X

(2)

(X) +

1

2

g(X)n(X)k) in the second one and because of

the smallness assumption above this term is neglect able. Subtracting both inequalities

gives

h(r ) �X

0

(X); u

1

�X

(1)

(X)� u

2

�X

(2)

(X)� g(X)n(X)i

l

2

(R

d

)

� 0 8X 2 �

C

:

(r ) �X

0

(X) is a priori not known and thus assume that

(r ) �X

0

(X)

k(r ) �X

0

(X)k

l

2

(R

d

)

� n(X) 8X 2 �

C

; (2.32)

which should be approximately valid for small deformations. Summing up the linearised

non-penetration condition results into the signorini- or geometrical contact condition.

u

R

N

(X; t) = hu

R

(X; t); n(X)i

l

2

(R

d

)

� g(X) : (2.33)

The next Lemma 2.1 will show that the penetration of the bodies is reasonable small if the

parametrisation is good enough, in the sense of preventing penetration!

Lemma 2.1. Let � > 0 be a small parameter and assume

� ju

i

(X)j; j�

ij

(u)j � �

� jg(X)j < 2� 8X 2 �

C

� The curvature of �

1

C

; �

2

C

is bounded

� 8X 2 �

C

kn(X)� �

1

�

X

(1)

(X)

�

k

l

2

(R

d

)

� k�

1

�

X

(1)

(X)

�

+ �

2

�

X

(2)

(X)

�

k

l

2

(R

d

)

kn(X) + �

2

�

X

(2)

(X)

�

k

l

2

(R

d

)

� k�

1

�

X

(1)

(X)

�

+ �

2

�

X

(2)

(X)

�

k

l

2

(R

d

)

;

where �

1

�

X

(1)

�

; �

2

�

X

(2)

�

are the out warding normal vectors at the boundaries

�

1

C

;�

2

C

.

Then the condition, that �

1

C

and �

2

C

don't intersect, is equivalent to

u

R

N

(x) � g(x) + r(x);

where the error r(x) can be estimated by

jr(x)j � K�

3=2

:
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Proof. For proof see Eck [22, Lemma 1.3].

Remark 2.2. It's not a-priori clear how to choose the parametrisation X

(j)

. In fact it's

not clear whether there are parametrisations which result into the \exact" solution of

the \real" problem or not. From the physical point of view it seems to be a \good"

idea to choose the parametrisation such that the gap g(X) is minimal. This kind of

parametrisation can result into an ill-posed problem, because it's possible that 9A �

�

C

; meas(A) > 0 with meas(X

(j)

(A)) = 0 and this results into a not closed admissible set

of displacements. An Example is given in Carstensen, Scherf and Wriggers [15,

Proposition 3.2]. Nevertheless this parametrisation is often used. An other idea is to �x

only one parametrisation and the unit vector n(X). Then it's possible to reconstruct the

second parametrisation. It's also possible that this choice results into an ill-posed problem

(same reason as above).

Remark 2.3. One draw back is that the non-penetration condition is only formulated for

small deformations. In mechanics there are a lot of more realistic material laws, which

allow to handle big deformations as well, but there is no non-penetration condition for

this case. The �rst idea to get ride of this problem may be choose the parametrisation

depending on the displacement and applying some �x point iteration. This was done by

the author, but the �xed point iteration resulted into a \oscillating" sequence. One idea

to prevent this is to use the active restrictions of the last two steps. But this doesn't �t

into the algorithm presented in this thesis and thus it wasn't tried.

An other idea is to consider the problem of big deformations as a quasi-static problem.

This means that all forces and surface loads are applied arbitrary slowly. In every step it's

now possible to solve a problem with small deformations (if there are enough steps to apply

the forces), which �ts into the non-penetration condition above. One more advantage is

that it seems to be very easy to implement, not depending on the solving algorithm of the

stationary contact problem. Nevertheless this wasn't implemented for this thesis.

2.2.2 Transfer of Forces

It was mentioned before that the contact condition shouldn't only prevent penetration, it

also should describe the transfer of forces at the boundaries. This section isn't mathemat-

ically correct, it's only an approximate approach. For a mathematical correct modelling a

process similar to the derivation of the linear elasticity (Section 2.1) has do be done.

� As a direct consequence of Newton's law the normal components (normal to the

deformed con�guration) of the stress tensor, in spatial- or euler- notation, have to

be equal, if two points are in contact (�

(�

1

)

(x) = �

(�

2

)

(x)). Because of our model a

point is in contact i� u

R

N

(X) = g(X).

Note: The physical picture of contact isn't the same as the signorini- or geometric-

contact condition. In the physical picture two points are in contact i� the points

coincide. In the signorini- or geometric- picture two points are in contact i� the points

are represented with one pointX in the parameter domain �

C

via the parametrisation
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X

(j)

(X) and if they are connected with a hypersurface, de�ned via n(X). It's only

to hope that for a \good" parametrisation both pictures coincide.

This condition in spatial- or euler-notation can be transformed by the Piola trans-

formation (as in Section 2.1) into material- or lagrange- formulation and looks as

follows

�(X) := �

(�

1

)

�

X

(1)

(X)

�

J

1

(X) = ��

(�

2

)

�

X

(2)

(X)

�

J

2

(X) 8X 2 �

C

; (2.34)

where J

k

=

�

�

�

�

�

det

�

@X

(k)

(X)

@X

i

;

@X

(k)

(X)

@X

j

�

l

2

(R

d

)

�

�

�

�

�

is the gram determinant, and �

j

are

the out warding normals on the reference con�guration. The gram determinants J

k

are consequences of the transformation rule of surfaces (transformation of �

k

C

! �

C

).

Also for this derivation the smallness assumption of the displacements was used

(similar to linear elasticity Section 2.1).

� Because only compressive forces can act, it's possible to deduce that h��

k

; �

k

i

l

2

(R

d

)

�

0 : (in the spatial- or euler- notation, where �

j

are the out warding normals of the

deformed con�guration) Transforming this condition into material- or lagrangian-

notation and using assumption (2.32) the inequality

�

N

(X) = (�1)

j

J

j

(X)h�

(�

j

)

�X

(j)

; ni

l

2

(R

d

)

(X) � 0 8X 2 �

C

8 j 2 f1; 2g

follows, where n is the vector given in (2.29) and �

(j)

is the out warding normal on

the reference con�guration �

j

C

. �

N

coincides with the notation given in (2.29).

� Forces can only be transfered at contact zones. Here it's necessary to distinguish

between the physical and the \geometric" picture. Contact occurs i� u

R

N

(X)�g(X) =

0.

=) �

N

(X) = 0 if u

R

N

(X)� g(X) < 0 :

� Because frictionless contact is assumed no tangential forces can be transfered. This

is in material- or lagrangian- notation, with the same approximations as above,

�

T

(X) = 0 8X 2 �

C

; (2.35)

where the notation introduced in (2.29) was used.

Summarising all these results, the contact condition follows.

�

�

(�

1

)

�X

(1)

�

(X)J

1

(X) = �

�

�

(�

2

)

�X

(2)

�

(X)J

2

(X)

u

R

N

(X) � g(X)

�

N

(X) � 0

�

T

(X) = 0

�

N

(X)

�

u

R

N

(X)� g(X)

�

= 0

9

>

>

>

>

>

=

>

>

>

>

>

;

8X 2 �

C

(2.36)

For a contact formulation with friction refer to Kikuchi and Oden [34], Haslinger,

Hlav

�

a

�

cek and Ne

�

cas [29], Eck [22].
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2.3 Classical Formulation of the Body-Body Contact

Problem without friction

The contact condition (2.36) and the partial di�erential equation (2.26) result into the

classical formulation of the linearised body-body contact problem.

�div �(X;ru) =

^

F (X) in 


u(X) = 0 on �

D

�

(�

j

)

(X;ru) = L

i

(X) on �

N

�

�

(�

1

)

(:;ru) �X

(1)

�

(X)J

1

(X) = �

�

�

(�

2

)

(:;ru) �X

(2)

�

(X)J

2

(X) on �

C

u

R

N

(X) � g(X)

�

N

(X;ru) � 0

�

T

(X;ru) = 0

�

N

(X;ru)

�

u

R

N

(X)� g(X)

�

= 0

9

>

>

=

>

>

;

on �

C

;

(2.37)

where �(X;ru) is given by (2.24) and X

(1)

; X

(2)

are the parametrisations from above.

Remark 2.4. This model is approximately valid if the displacements are small, not due to

the material law, no because of the contact condition. Note that the solution depends

on the choice of the parametrisation and it's not clear how to choose it, to get a solution

which may also be a realistic one. An other problem is that if the displacement �eld is

known, which ful�ls the system of partial di�erential equations above and ful�ls a realistic

contact condition (physical non-penetration condition and transfer of forces) and if the

parametrisation is constructed in an obvious way, it's not clear that this displacement �eld

is also a solution of the contact problem with constructed parametrisation. All in all, the

signorini- or geometrical- contact condition seems not to be very satisfying but the author

don't know a better one and thus this condition is used in this thesis.



Chapter 3

Sobolev Spaces

For numerical analysis of partial di�erential equations (PDE) usually Sobolev spaces are

used. On the one hand these spaces allow a more general solution of the PDE and on

the other the analysis of existence and uniqueness is usually much easier. Additionally

Sobolev spaces allows �nite element (FE) approximations of the solutions and thus a simple

discretisation of the PDE.

An introduction to Sobolev spaces can be found in Adams [1] or Lions and Magenes

[39]. In this thesis it's necessary to de�ne positive functions on Sobolev spaces. This set of

positive functions should be represented by a condition on the dual space. Thus a partial

ordering is needed. For this refer to Kikuchi and Oden [34] and references in there. In

numerical analysis scaling arguments are used, i.e. that results proved on Sobolev spaces of

integer type are extended to the corresponding result on Sobolec spaces of fractional order.

This scaling argument is possible due to the fact that Sobolev spaces of fractional order

can be represented as interpolation spaces. For interpolation spaces and properties of this

spaces refer to Adams [1], Lions and Magenes [39] or Bramble [10].

In Section 3.1 Sobolev spaces and some of their important properties are presented.

Especially the embedding results, the possibility to de�ne traces and the validity of the

Green's formula are needed in this thesis. It was mentioned above that Sobolev spaces

of fractional order can be represented as interpolation spaces. This fact is presented in

Section 3.2. In Section 3.3 an abstract partial ordering on vector spaces is given and then

this abstract ordering is applied to Sobolev spaces to de�ne positive functions for Sobolev

spaces. The important property of the partial ordering is the possible representation of

cones by it's polar cones. Finally an abstract result for equivalent norms on Banach

spaces is presented in Section 3.4 which enables the prove of V -ellipticity for variational

inequalities.

3.1 Preliminary Results and De�nitions

Natural spaces for variational problems are Sobolev spaces. The only which Sobolev spaces

are needed in this thesis are Hilbert type spaces.

16
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Let 
 be an open and bounded domain of R

d

. To avoid technical di�culties assume

that 
 is polygonal. Assume that �

D

is open subset of @
. Let ! � 
 be an open Lips-

chitz continuous boundary. The space C

1

(!) denotes the space of in�nitely di�erentiable

functions on ! and the subspace C

1

0;D

(!) consists of all functions of C

1

(!) with vanishing

values of the function and all its derivatives on �

D

.

Let h:; :i

L

2

(!)�L

2

(!)

be the inner product with the associated norm

kvk

2

0;!

:= hv; vi

L

2

(!)�L

2

(!)

on L

2

(!).

For k 2 N the following norm is de�ned recursively

kvk

k;!

:=

 

kvk

2

k�1;!

+

d

X

i=1













@v

@x

i













2

k�1;!

!

1

2

: (3.1)

Let � 2]0; 1[, then de�ne the semi norm

jvj

�;!

:=

Z

!�!

jv(x)� v(y)j

2

jx� yj

d+2�

d(x� y) : (3.2)

With this it's possible to de�ne for all � � 0 the norm

kvk

2

�;!

:= kvk

2

k;!

+ kvk

2

�;!

; (3.3)

where k 2 N ; � 2]0; 1[ such that � = k + �.

De�nition 3.1 (Sobolev spaces). Let � � 0 and ! � 
 an Lipschitz bounded domain,

then de�ne the following Sobolev spaces of order �

H

�

(!) := C

1

(!)

k:k

�;!

(3.4)

H

��

0

(!) := (H

�

(!))

0

(3.5)

H

�

0;D

(!) := C

1

0;D

(!)

k:k

�;!

(3.6)

H

��

(!) := (H

�

0

(!))

0

: (3.7)

In numerical analysis Green's formula for Sobolev spaces is essential, also in this thesis.

For this the space H(div;
) has to be introduced.

De�nition 3.2. The space H(div;
) is de�ned by

H(div;
) := f q 2 (L

2

(
))

d

j div q 2 L

2

(
) g ; (3.8)

with the norm

kqk

2

div;


:= kqk

2

0;


+ kdiv qk

0;


: (3.9)
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For this thesis the space H

1

2

00

(�), with � � @
 is important.

De�nition 3.3. The space H

k+

1

2

00

(�) is de�ned by

H

k+

1

2

00

(�) := f v 2 H

k+

1

2

(�) j �

�

1

2

D

�

v 2 L

2

(�) 8 j�j = k g (3.10)

with � 2 C

1

(�), � > 0 in � and vanishing on � of the order d(x;�), i.e.

lim

x!x

0

�(x)

d(x;�)

= d 6= 0 8 x

0

2 � :

The norm on H

k+

1

2

00

(�) is de�ned by

kvk

2

H

k+

1

2

00

(�)

= kvk

2

H

k+

1

2

(�)

+

X

j�j=k

k�

�

1

2

D

�

vk

L

2

(�)

(3.11)

Note that these Sobolev spaces are Hilbert spaces. One of the important properties of

Sobolev spaces is that they can be embedded in several other spaces. In some cases this

embedding is even compact. The most important compact embeddings for this thesis are

denoted in the famous Rellich-Kandrachov theorem.

Theorem 3.4 (Rellich-Kondrachov theorem). Let 
 � R

d

, � = @
 2 C

0;1

and j 2

f0; :::; kg with k 2 N. Then there holds the following compact embedding:

H

k

(
) (resp.H

k

0

(
)) ,!

c

H

j

(
) (resp.H

j

0

(
)) for j < k

H

k

(
) ,!

c

C

j

(
) for k �

d

2

> j

(3.12)

Proof. see Adams [1, Theorem 6.2]

For PDEs it's necessary to have boundary values, but Sobolev spaces are subspaces of L

2

and in L

2

boundary values make no sense. Nevertheless it's possible to de�ne boundary

values for Sobolev spaces as long as the order is large enough. The next theorem is a special

case of a more general trace theorem and guarantees that traces are well de�ned for Sobolev

spaces which are needed in this thesis.

Theorem 3.5. Let 
 2 C

0;1

, � � @
 and let 


�

be the operator de�ned by




�

(v) = vj

�

8 v 2 C

1

(
) : (3.13)

Then 


�

can be extended to a continuous linear operator, also denoted 


�

, from H

1

(
) onto

H

1

2

(�) and this operator is surjective with ker 


�

= H

1

0;@
=�

.

Proof. see Adams [1, Theorem 7.53] or Lions and Magenes [39, I Theorem 8.3]

Remark 3.6. If the trace of the space H

1

0;D

(
) is considered with � = int@
=�

D

then the

trace operator isn't surjective onto H

1

2

(�). The correct space will be the space H

1

2

00

(�).

For this space the same results as before are valid (at least if 
 2 C

1

).
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Remark 3.7. A consequence of this surjectivity (indeed of the existence of a continuous

extension operator) and the trace operator 


�

is that

kgk

1

2

;�

� inf

v2H

1

(
)




�

(v)=g

kvk

1;


(3.14)

The last property of Sobolev spaces which will be needed is the abstract Green's formula.

Lemma 3.8. For q 2 H(div;
) the scalar product hq; ni

l

2

(R

d

)

j

�

2 H

�

1

2

(�) can be de�ned

and the Green's formula is valid.

hdiv q; vi

0;


+ hq; grad vi

0;


= h hq; ni

l

2

(R

d

)

; vi

H

�

1

2

(�)�H

1

2

(�)

8 v 2 H

1

(
) (3.15)

Proof. see Brezzi and Fortin [12, III Lemma 1.1]

Theorem 3.9. The trace operator

h:; ni

l

2

(R

d

)

j

�

: H(div;
)! H

�

1

2

(�) q 7! h:; ni

l

2

(R

d

)

j

�

(3.16)

is surjective.

Proof. see Brezzi and Fortin [12, III Lemma 1.2]

3.2 Interpolation Spaces

Important for this thesis is that Sobolev spaces of fractional order can be represented as

interpolation spaces. For this short introduction the real method of interpolation is used.

Let (X; h : ; : i

X�X

) and (Y; h : ; : i

Y�Y

) be two Hilbert spaces with embedding Y * X

and Y dense in X. For t > 0 de�ne the K-functional as

K(t; u)

2

:= inf

x2X;y2Y

u=x+y

kxk

2

X

+ t

2

kyk

2

Y

: (3.17)

The interpolation norm k : k

[X;Y ]

�

for � 2]0; 1[ is de�ned by

kuk

2

[X;Y ]

�

:=

1

Z

0

t

�1�2�

K(t; u)

2

dt : (3.18)

The interpolation norm ful�ls the parallelogram law and thus the interpolation space

([X; Y ]

�

= Y

k : k

[X;Y ]

�

is a Hilbert space.

Remark 3.10. In Bramble [10, Theorem B.2.] it was proved that the real method of

interpolation is equivalent to the introduction of interpolation spaces by spectral methods,

i.e. by de�ning [X; Y ]

�

:= D(�

1��

), where D(�

1��

) denotes the domain of the operator

� and � is such that k : k

2

X

' k : k

2

Y

+ k� : k

2

Y

(see Lions and Magenes [39, I De�nition

2.1]).
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The next result proves that linear, bounded operators, de�ned on both spaces X; Y are

bounded on the interpolation space [X; Y ]

�

. This result is often used as scaling argument

in the FE analysis.

Theorem 3.11. Let X; Y and X ; Y be as above, and L be a linear operator, L 2 L(X;X )\

L(Y;Y) with norm bounds

kLvk

X

� c

X

kvk

X

8 v 2 X ;

kLvk

Y

� c

Y

kvk

Y

8 v 2 Y :

Then for 8 � 2]0; 1[ : L 2 L([X; Y ]

�

; [X ;Y]

�

) with spectral bound

kLvk

[X ;Y ]

�

� c

1��

X

c

�

y

kvk

[X;Y ]

�

: (3.19)

Proof. see Lions and Magenes [39, I Theorem 5.1], Bramble [10, Theorem B.4.]

In this thesis also the characterisation of the dual space of [X; Y ]

�

is needed. Because

Y * X and Y is dense in X, the converse is valid for its dual, i.e. X

0

* Y

0

and X

0

is

dense in Y

0

. The next theorem guarantees what is expected.

Theorem 3.12.

[X; Y ]

0

�

= [Y

0

; X

0

]

1��

8 � 2]0; 1[ (3.20)

Proof. see Lions and Magenes [39, I Theorem 6.2]

It was mentioned above that interpolation spaces are needed in this thesis because Sobolev

spaces of fractional order can be represented as interpolation space of Sobolev spaces with

integer order.

Theorem 3.13. Let 
 be a bounded domain with @
 2 C

0;1

. Let s

1

> s

2

� 0 and

� 2]0; 1[. Set s(�) = (1� �)s

1

+ �s

2

. Then

[H

s

1

(
); H

s

2

(
)]

�

= H

s(�)

(
)

[H

s

1

0

(
); H

s

2

0

(
)]

�

= H

s(�)

0

(
) s

1

; s

2

s(�) 62 N

0

+

1

2

[H

s

1

0

(
); H

s

2

0

(
)]

�

= H

s(�)

00

(
) s

1

; s

2

62 N

0

+

1

2

s(�) 2 N

0

+

1

2

Proof. see Lions and Magenes [39, I Theorem 9.6, Theorem 11.6, Theorem 11.7]

3.3 Partial Ordering of Sobolev Spaces

To derive a weak- or primal- formulation of the system of partial di�erential inequalities

(2.37) some partial order properties are needed.

First an abstract partial ordering for a linear space Q is introduced. Suppose that Q

is a normed space (not necessary but enough for this thesis). The following de�nition of a

cone is taken from Ekland and Temam [23].
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De�nition 3.14. A non-empty subset C � Q is a cone with vertex 0 (simple cone) if

� C �C 8� > 0

C + C �C :

(3.21)

The cone is pointed or unpointed according to whether 0 2 C or 0 62 C.

A pointed cone with vertex 0 is salient if C \ f�Cg = f0g.

With a pointed cone it's possible to associate a partial ordering � on Q by setting

p � q :, p� q 2 C : (3.22)

Note the relation � is re
exive and transitive and if the pointed cone is salient, then � is

antisymmetric and thus � is an order relation on all of Q. Conversely, the introduction of

any partial ordering � on Q de�nes a pointed cone. Usually C, associated with the partial

ordering �, is denoted as positive cone C

+

and likewise the pointed cone C

�

= �C

+

is the

negative cone.

The introduction of a positive cone C

+

in Q makes it possible to add inequalities such

as q � 0; q � 0 to the linear structure of Q. The partial ordering is also compatible with

the structure of the linear space Q, i.e.

q� 0 =) � q� 0 8� � 0

p� q =) p+ r� q + r 8 r 2 Q :

For the pointed cone C

+

it's possible to de�ne the polar cone C

�

+

in the dual space Q

0

of Q

by setting

C

�

+

:= fq

�

2 Q

0

j hq

�

; qi

Q

0

�Q

� 0 8 q 2 C

+

g : (3.23)

Note C

0

+

is a pointed cone and closed even if C

+

is not.

It's possible to repeat the game and build the polar of the polar cone C

0

+

. This polar

cone is living in the space Q

00

. It's well known that it's possible to consider Q as a subset

of Q

00

and thus only the part living in Q is considered as the polar of the polar cone.

C

00

+

:=

�

q 2 Q j hq

�

; qi

Q

0

�Q

� 0 8 q

�

2 C

0

+

	

: (3.24)

The next lemma proves a relationship between C

00

+

and C

+

.

Lemma 3.15. Let C

+

be a cone, then

C

00

+

= C

+

; (3.25)

where A is the closure of A.

Proof.

00

�

00

: Because C

00

+

is closed only C

+

� C

00

+

has to be veri�ed. Let q 2 C

+

then

h C

0

+

; qi

Q

0

�Q

� 0 and thus q 2 C

00

+

.
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00

�

00

: Assume that q 2 C

00

+

=C

+

. As a consequence of separation of convex sets (Hahn

Banach theorem see Heuser [31, Satz 42.5]) there exists an element q

�

2 Q

0

and an � 2 R

such that

h q

�

; qi

Q

0

�Q

< � < h q

�

; pi

Q

0

�Q

8 p 2 C

+

Because C

+

is a cone and h q

�

; qi

Q

0

�Q

is bounded, it follows that

h q

�

; pi

Q

0

�Q

� 0 8 p 2 C

+

h q

�

; qi

Q

0

�Q

< 0

and thus q

�

2 C

0

+

which is a contradiction to h q

�

; qi

Q

0

�Q

< 0.

If C

+

is closed then it's possible, because of Lemma 3.15, to represent C

+

by C

00

+

.

Note that due to the convexity and the theorem of Mazur (See Heuser [31, Satz

59.4]) weakly closed and closed is equivalent.

In this thesis a partial ordering on Sobolev spaces is needed.

De�nition 3.16. De�ne the set of positive functions in the space H

�

(�) for � 2 [0; 1] via

C

+

:= f v 2 C

1

(�) j v � 0 g

k : k

�

: (3.26)

Remark 3.17. Due to the fact (see Kikuchi and Oden [34, 5 Theorem 5.2] or Kinder-

lehrer and Stampacchia [35]) that

maxf0; ug 2 H

�

(�) 8 u 2 H

�

(�) 8� 2 [0; 1] ;

the set of positive functions in H

�

(�) can be rewritten by

C

+

:= f v 2 H

�

(�) j v � 0 a.e. g :

Note that due to the de�nition C

+

is closed and thus, due to Lemma 3.15, C

+

= C

00

+

.

3.4 Equivalent Norms

For this thesis some results about equivalent norms for Sobolev spaces are needed.

Theorem 3.18. Let (X; k : k

X

); (Y; k : k

Y

) be two Banach spaces. Let X *

c

Y be a com-

pact embedding and let j : j

A

be a semi-norm on X with kernel X

0

. Assume that the following

norms are equivalent

k : k

X

' k : k

Y

+ j : j

A

:

Then the following is true:
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i. The kernel X

0

is of �nite dimension. The semi-norm j : j

A

is equivalent to the norm

on the factor space, i.e.

juj

A

' inf

u

o

2X

0

ku� u

0

k

X

8 u 2 X :

ii. Let j : j

B

be a continuous semi-norm on X such that there holds for all u 2 X

juj

A

+ juj

B

= 0 =) u = 0

Then there holds the equivalence of norms

j : j

A

+ j : j

B

' k : k

X

iii. Let Z � X be a closed subspace such that Z\X

0

= ; ,then there holds the equivalence

of norms

juj

A

' kuk

X

8 u 2 Z :

Proof. see Girault and Raviart [25, Theorem 2.1] or Showalter [46, II Proposition

5.2]

Remark 3.19. Choosing X = H

k+1

(
); Y = H

k

(
), with k 2 N

0

and j : j

A

= j : j

k+1;


.

It's known that X

0

= kern j : j

k+1;


= P

k

(
), where P

k

(
) is the space of polynomials of

degree less than k + 1. If the semi-norm j : j

B

is chosen such that

8 v 2 P

k

(
) : jvj

B

= 0 =) u = 0 ;

then from Theorem 3.18 it's deduced that k : k

k+1;


' j : j

B

+ j : j

k+1;


.

The Brambel-Hilbert lemma is just a consequence of Theorem 3.18

Lemma 3.20 (Bramble-Hilbert). Let k 2 N and Y be a Hilbert space. Let L : H

k

! Y

be a linear bounded operator. Assume that L vanishes on the space P

k�1

of polynomials up

to order k � 1. Then L is bounded by the semi-norm, i.e.

kLuk

X

� juj

k

8 u 2 H

k

:



Chapter 4

Variational Inequalities

A lot of practical problems, also the body-body contact problem can be formulated in

a variational inequality. The spaces which are usually used are Sobolev spaces. The re-

formulation of a classical partial di�erential inequality into a variational inequality isn't

only done for numerical calculations, especially for the analysis of variational inequalities

there are powerful tools available. The aim of this chapter is to present some results for

variational inequalities and applying them to the body-body contact problem.

The reformulation of the body-body contact problem into a variational inequality and

the proof of the equivalence of the variational formulation and the classical formulation

under certain smoothness assumptions is done in Kikuchi and Oden [34], Boieri,

Gastaldi and Kinderlehrer [7] and Eck [22]. For existence and uniqueness results

for variational inequalities as well as for several equivalent formulations for variational

inequalities refer to Eckland and Temam [23], Showalter [46] and Kinderlehrer

and Stampacchia [35]. In Kikuchi and Oden [34], Haslinger, Hlav

�

a

�

cek and

Ne

�

cas [29] and Eck [22] these abstract results for variational inequalities are applied to

the body-body contact problem.

In Section 3.3 a partial ordering for Sobolev spaces was introduced. With this partial

ordering it's possible to formulate the primal- or weak- formulation of the body-body

contact problem. This is done in Section 4.1. Abstract existence and uniqueness results

for variational inequalities are denoted in Section 4.2. In Section 4.3 several equivalent

formulations for the variational inequality are presented. Especially the equivalence of

primal- or weak formulation, saddle point- or mixed formulation and the dual formulation

is presented. Finally the existence and uniqueness of the body-body contact problem under

certain assumptions is proved in Section 4.4. and uniqueness result for the body-body

contact problem is presented.

24
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4.1 Variational Formulation of the Body-Body Con-

tact Problem

To achieve a reasonable variational formulation the space of admissible displacement func-

tions have to be �xed.

V := H

1

0;D

(


1

)

d

�H

1

0;D

(


2

)

d

(4.1)

The space V is the space of displacements without restrictions. The contact restrictions

are taken into consideration by de�ning the set of admissible displacements K.

De�nition 4.1. The set of admissible displacements K is de�ned by

K =

�

v 2 V j v

R

N

(X)� g(X) � 0 a.e on �

C

	

; (4.2)

where �

C

is the common parameter domain of X

(j)

which maps �

C

on to �

j

C

.

W.l.o.g. assume that X

(1)

is the identity map, i.e. �

C

= �

1

C

. It's obvious that K

is a convex set, but K may not be closed. Carstensen, Scherf and Wriggers [15,

Proposition 3.2] presented an example of a parametrisation, a very common parametrisa-

tion, and a domain 
 such that K isn't weakly closed and thus not closed (Mazur). With

suitable assumptions on the parametrisations X

(j)

it's possible to achieve that K is closed.

Proposition 4.2. Assume that the parametrisations X

(j)

ful�ls the following condition

8A

j

� �

j

C

; meas(A

j

) = 0 : meas(X

(j)

�1

(A

j

)) = 0 ;

then the set of admissible displacements K is closed.

Proof. Carstensen, Scherf and Wriggers [15, Proposition 3.3]

Remark 4.3. The only restriction for the parametrisations X

(j)

to get a suitable set of

admissible displacements, i.e. K is closed, is given by Proposition 4.2. In Section 2.2 it was

assumed that the parametrisations are smooth, i.e X

(j)

2 C

1

(�

C

;�

j

C

). This isn't necessary

for the de�nition of K, nevertheless in this thesis it's assumed that X

(j)

is smooth enough

such that the operator

:

R

: V ! (H

1

2

(�

C

))

d

8 j 2 f1; 2g : �

j

C

\ �

j

D

= ;

is continuous and surjective. If �

j

C

\ �

j

D

= @�

j

C

) ; then (H

1

2

(�

C

))

d

is replaced by (H

1

2

00

)

d

.

Furthermore assume that the parametrisation is smooth enough such that n 2 C

0;1

(�

C

)

d

and g 2 H

1

2

(�

C

).

If the parametrisations X

(j)

2 C

0;1

(�

C

;�

j

C

) are Lipschitz continuous with Lipschitz

continuous inverse and the Gram determinants J

j

are bounded with bounded inverse (a.e.),

then continuity and surjectivity of the operator :

R

is ful�lled, furthermore g 2 H

1

2

(�

C

) (see

Eck [22, Voraussetzung 1.4]).
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Remark 4.4. Assuming n 2 C

0;1

(�

C

)

d

, then every element v 2 H

1

2

(�

C

)

d

can be decom-

posed into v = v

N

n + v

T

with v

N

2 H

1

2

(�

C

) and v

T

2 H

1

2

T

(�

C

).

H

1

2

T

(�

C

) =

n

v 2 H

1

2

(�

C

)

d

j v

N

= 0

o

Due to the trace theorem (Theorem 3.5) this decomposition impose an isomorph from

H

1

2

(�

C

)

d

into H

1

2

(�

C

)�H

1

2

T

(�

C

).

Remark 4.5. It's usually no restriction to assume that 8 j 2 f1; 2g : �

j

C

\�

j

D

= ; ; because

�

j

C

is an a-priori guess of the possible contact zone and can be chosen such that 8 j 2 f1; 2g :

�

j

N

\ �

j

C

= @�

j

C

: With this assumption and the smoothness of the parametrisations X

(j)

it's possible to represent the set of admissible displacements via

K =

�

v 2 V j g � v

R

N

2 C

+

	

;

with C

+

:=

n

q

�

2 H

1

2

(�

C

) j q

�

� 0 a.e.

o

: The cone C

+

was considered in Section 3.3.

Because C

+

is closed it's possible (Lemma 3.15) to represent it by C

+

= C

00

+

. Thus the set

of admissible displacements is nothing else than

K =

�

v 2 V j hBv �G; qi

Q

0

�Q

� 0 8 q 2 C

0

+

	

: (4.3)

Here Q

0

denotes the space H

1

2

(�

C

) and B the linear, surjective and continuous operator

:

R

N

2 L(V;Q

0

). The polar cone the space Q

00

is identi�ed by Q, which is possible because

Q is a re
exive Banach space (C

0

+

2 Q). The function g 2 H

1

2

(�

C

) is denoted as G 2 Q

0

to point out its functional interpretation.

De�nition 4.6. u 2 K is called a weak solution of the contact problem i�

R




tr (�(u)�(v � u)) dx+

R




h

^

F; v � ui

l

2

(R

d

)

dx+

R

�

N

hL; v � ui

l

2

(R

d

)

ds � 0 8 v 2 K

(4.4)

holds for

^

F 2 H

�1

(
); L 2 H

�

1

2

(�

N

)

The following theorem proves that the classical formulation and the weak formulation

are equivalent, assuming enough smoothness of the solution u.

Theorem 4.7. Every solution of (2.37) is a weak solution. If a weak solution is su�-

ciently smooth, then it's a classical solution as well.

Proof. 1. Let u be a solution of (2.37) and v 2 K. Then by partial integration the

following holds:

R




tr (�(u) grad(v � u)) dx =

R

@


h�(u)

�

; v � ui

l

2

(R

d

)

ds�

R




hdiv�(u); v � ui

l

2

(R

d

)

dx

(4.5)
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Because � is symmetric (2.13) it can easily be veri�ed that

Z




tr (�(u) �(v � u)) dx =

Z




tr (�(u) grad (v � u)) dx

The surface integral in (4.5) can be simpli�ed in the following way:

R

@


h�

(�)

; v � ui

l

2

(R

d

)

ds =

R

�

D

[�

N

[�

1

C

[�

2

C

h�

(�)

; v � ui

l

2

(R

d

)

ds

=

R

�

N

hL; v � ui

l

2

(R

d

)

ds+

R

�

1

C

[�

2

C

h�

(�)

; v � ui

l

2

(R

d

)

ds

(4.6)

The remaining term is

R

�

j

C

h�

(�)

; v � ui

l

2

(R

d

)

ds : This term is �rst transformed into its

parameter domain �

C

.

R

�

j

C

h�

(�

j

)

; v � ui

l

2

(R

d

)

ds=

R

�

C

h�

(�

j

)

; v � ui

l

2

(R

d

)

�X

(j)

J

j

dX

=

R

�

C

h�; (v � u) �X

(j)

i

l

2

(R

d

)

dX

=

R

�

C

h�

N

+ �

T

; (v � u) �X

(j)

i

l

2

(R

d

)

dX

(4.7)

Using that �

T

= 0 and summing up gives that

Z

�

1

C

[�

2

C

h�

(�)

; v � ui

l

2

(R

d

)

ds =

Z

�

C

�

N

(v

R

N

� u

R

N

) dX =

Z

�

C

�

N

(v

R

N

� g) dX � 0 (4.8)

The assertion is proved by connecting (4.5), (4.6) and (4.8).

2. Now assume that u 2 K is a su�ciently smooth weak solution of (4.4). Let ' 2

C

1

@


(
) be arbitrary, v = u� ' ) v 2 K. Then from (4.19) follows:

0 �

R




tr (�(u) �(v � u)) dx+

R




h

^

F; v � ui

l

2

(R

d

)

dx+

R

�

N

hL; v � ui

l

2

(R

d

)

ds

= �

R




tr (�(u) �(')) + h

^

F; 'i

l

2

(R

d

)

dx

(4.5)

= �

R




h div�(u) +

^

F; 'i

l

2

(R

d

)

dx ;

which implies

�div �(u) =

^

F in 
 : (4.9)

Now suppose that ' 2 C

1

@
=�

N

(
), v = u � ' ) v 2 K. It follows from (4.4) and

(4.9) that

0 � �

Z

�

N

h�

(�)

� L; 'i

l

2

(R

d

)

ds ) �

(�)

= L on �

N

: (4.10)
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The remaining boundary term which isn't �xed is

Z

�

1

C

[�

2

C

h�

(�)

; v � ui

l

2

(R

d

)

ds � 0 : (4.11)

From (4.7) it's known that

0 �

R

�

1

C

[�

2

C

h�

(�)

; v � ui

l

2

(R

2

)

ds =

R

�

C

�

N

(v

R

N

� u

R

N

) + h�

T

; v

R

T

� u

R

T

i

l

2

(R

d

)

dX

=

R

�

C

h�

(�

1

)

; v � ui

l

2

(R

d

)

�X

(1)

J

1

+ h�

(�

2

)

; v � ui

l

2

(R

d

)

�X

(2)

J

2

dX

(4.12)

Because of the trace theorem (Remark 4.4) and the surjectivity of :

R

(see Remark

4.3) the following is valid:

i:) 8� 2H

1

2

(�

C

)

d

9' 2 V : ' �X

(1)

= ' �X

(2)

= �

ii:) 8� 2H

1

2

T

(�

C

) 9' 2 V : '

R

= � (^ '

R

N

= 0)

iii:) 8� 2H

1

2

(�

C

) 9' 2 V : '

R

T

= 0 ^ '

R

N

= �

Setting v = u� ' and considering case i:)� iii:) and using (4.12) follows

i:) '

R

= 0 =) v 2 K

0 � �

Z

�

C

h J

1

�

(�

1

)

�X

(1)

� J

2

�

(�

2

)

�X

(2)

; �i

l

2

(R

d

)

dX : (4.13)

ii:) '

N

= 0 =) v 2 K

0 � �

Z

�

C

h�

T

; '

R

T

i

l

2

(R

d

)

dX =) �

T

= 0 on�

C

: (4.14)

iii:) With ' such that '

R

N

2 C

+

follows

0 �

Z

�

C

�

N

'

R

N

dX = h'

R

N

; �

N

i

Q

0

�Q

=) �

N

2 C

0

+

: (4.15)

From the assumed smoothness of the solution u it's deduced �

N

2 C

0

+

\ L

2

(�

C

)

and thus �

N

� 0 a.e. on �

C

.

The last equation which have to be veri�ed is the compatibility condition. This is

done by setting ' such that '

R

N

= g and '

R

T

= 0. With the setting v = 2u� ' 2 K

everything is proved because

0 � �

Z

�

C

�

N

(u

R

N

� '

R

N

) dX = hBu�G; �

N

i

Q

0

�Q

� 0 : (4.16)
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Note that the partial ordering induced by the cone C

+

is indeed a ordering.

A prove for contact with friction can be found in Eck [22, Satz 1.6] and an exact

formulation of the necessary smoothness of u is presented in Boieri, Gastaldi and

Kinderlehrer [7, Theorem 2.2].

Using the following notation it's possible to write the weak formulation in a more abstract

way

hAu; u� vi

V

0

�V

:=

R




tr(�(u)�(v � u)) dx

hF; v � ui

V

0

�V

:=

R




h

^

F; v � ui

l

2

(R

d

)

dx +

R

�

N

hL; v � ui

l

2

(R

d

)

ds :

(4.17)

In this notation A : V ! V

0

is an operator from V into its dual space V

0

. A is linear if �

is linear in u. The operator F : V ! R 2 V

0

is linear and bounded and thus an element of

the dual space V

0

. In the abstract notation the weak formulation weak formulation reads

as follows:

Find u 2 K such that

hAu; v � ui

V

0

�V

� hF; v � ui

V

0

�V

8 v 2 K: (4.18)

Remark 4.8. If hAu; vi

V

0

�V

= hAv; ui

V

0

�V

then (4.18) is equivalent to the constraint min-

imisation problem:

u = argmin

v2K

J(v) with J(v) :=

1

2

hAv; vi

V

0

�V

� hF; vi

V

0

�V

(4.19)

Using (2.13) it's very easy to verify that A is symmetric. Because of this equivalence the

weak formulation is often denoted as primal formulation

4.2 Some Abstract Results for Variational Inequali-

ties

For considering variational inequalities in an abstract setting, an abstract elliptic inequality

of the �rst and second kind is de�ned. For this abstract elliptic inequality some results

concerning the existence and the uniqueness of its solution are presented. Then alternative

variational formulations of elliptic inequalities and their mutual relations are discussed.

In the following, V will denote a real Hilbert space, V

0

its dual with the duality pairing

h:; :i

V

0

�V

. The norm on V will be denoted by k:k

V

and the dual norm by k:k

V

0

. Let

a : V � V ! R be a bilinear form and de�ne the operator A : V ! V

0

by hAu; vi

V

0

�V

=

a(u; v). Let K be some nonempty, closed and convex subset of V .

De�nition 4.9. A triplet fK;A; Fg; F 2 V

0

, is called an abstract elliptic variational

inequality of the �rst kind. A function u 2 K is called solution of fK;A; Fg i�

hAu; v � ui

V

0

�V

� hF; v � ui

V

0

�V

8 v 2 K (4.20)
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In order to prove existence and uniqueness of the solution of fK;A; Fg, assumptions

on the linear operator A have to be added.

Suppose that the linear operator A is bounded on V :

9�

2

> 0 : jhAu; vi

V

0

�V

j � �

2

kuk

V

kvk

V

8 u; v 2 V (4.21)

and V-elliptic on K:

9�

1

> 0 : hAv; vi

V

0

�V

� �

1

kvk

2

V

8 v 2 K (4.22)

Theorem 4.10. Let K be a nonempty, closed, convex subset of a Hilbert space V . Then

for each v 2 V there exists a unique element u := Pv 2 K, named the projection of v

onto K, such that the following equivalent assertions are valid:

ku� vk

V

� kw � vk

V

8w 2 K (4.23)

respectively

hu� v; w � vi

V�V

� 0 8w 2 K (4.24)

Furthermore 8w

1

; w

2

2 K the following holds:

kPw

1

� Pw

2

k

V

� kw

1

� w

2

k

V

(4.25)

Proof. Kinderlehrer and Stampacchia [35]

Using Theorem 4.10 and a similar proof as for the Lax Milgram Lemma, the Theorem of

Lions and Stampacchia can be proved easily. In the Theorem of Lions and Stampacchia,

there is no demand for symmetry of the appearing operator. Furthermore nonlinear prob-

lems can be dealt with. In Haslinger and Hlav

�

a

�

cek and Ne

�

cas [29] an extension of

this theorem on re
exive Banach spaces can be found (without proof).

Theorem 4.11 (Lions, Stampacchia). Let V be a Hilbert space, K � V a closed, con-

vex, nonempty subset and A : V ! V

0

a Lipschitz continuous and coercive (not necessarily

linear) operator, i.e. 9�

1

; �

2

> 0 :

kAu� Avk

V

0

� �

2

ku� vk

V

8 u; v 2 K

hAu� Av; u� vi

V

0

�V

� �

1

ku� vk

2

V

8 u; v 2 K :

(4.26)

Then for each F 2 V

0

there exists a unique solution u 2 K of the variational inequality

hAu� F; v � ui

V

0

�V

� 0 8 v 2 K (4.27)

Furthermore the nonlinear solution operator is Lipschitz continuous with constant

1

�

1

, i.e.

ku

1

� u

2

k

V

�

1

�

1

kF

1

� F

2

k

V

0

: (4.28)
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Proof. Kinderlehrer and Stampacchia [35]

If A symmetric , i.e. hAu; vi

V

0

�V

= hAv; ui

V

0

�V

, then the problem fK; a; fg is equivalent

to the following one:

u = argmin

v2K

J (v) (4.29)

where J : V ! R is the quadratic functional (Ritz functional)

J (v) =

1

2

hAv; vi

V

0

�V

� hF; vi

V

0

�V

; (4.30)

i.e. u 2 K solves fK;A; Fg i� it minimises J (v) over K.

Remark 4.12. Denote by I

K

: V ! f0;+1g the indicator function of K, i.e.:

I

K

(V ) =

�

0 if v 2 K

+1 elsewhere:

Then (4.20) is formally equivalent to

�nd u 2 V : hAu; v � ui

V

0

�V

+ I

K

(v)� I

K

(u) � hF; v � ui

V

0

�V

8 v 2 V: (4.31)

This motivates the following de�nition.

De�nition 4.13. Let j : V ! R [ f�1;1g be a convex, lower semi continuous (i.e.

8 u

n

! u 2 V : j(u) � lim inf

n!1

j(u

n

)) and proper (i.e. j(v) 6= �1) functional on V . The

quadruple fV;A; j; Fg is said to be an abstract elliptic inequality of the second kind. The

function u 2 V is said to be a solution of fV;A; j; Fg i�

hAu; v � ui

V

0

�V

+ j(v)� j(u) � hF; v � ui

V

0

�V

8 v 2 V : (4.32)

If j = I

K

is the indicator function of K, fV;A; j; Fg reduces to fK;A; Fg. If moreover

A is symmetric on V , the inequality fV;A; j; Fg is equivalent to the minimisation problem

u = argmin

v2V

J (v) ;

with J : V ! R [ f�1;1g

J (v) =

1

2

hAv; vi

V

0

�V

+ j(v)� hF; vi

V

0

�V

: (4.33)

There are a lot of results about existence and uniqueness of abstract elliptic inequalities of

the second kind. This results are not presented in this thesis because the abstract elliptic

inequality of second kind is only a subtotal.

Let Q be a Banach space, G 2 Q

0

and B 2 L(V;Q

0

), where V is de�ned as above and

let � be an order property on Q

0

with positive cone C

+

which is closed and C

0

+

be the
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corresponding positive polar cone in the dual space Q (Q

00

is identi�ed with Q). Let K be

de�ned by

K = fv 2 V j Bv � G in Q

0

g : (4.34)

Because B 2 L(V;Q

0

) it's obvious that K is convex and closed. If K is nonempty, property

(4.21) is valid and if A is V-elliptic (4.22) then Theorem 4.11 is valid and thus fK;A; Fg

is uniquely solvable. If RgB = Q

0

it's obvious that K is nonempty.

It's nice to have existence and uniqueness, but it's di�cult to calculate the solution,

because K is only known formally, but an explicite characterisation is missing. Thus K has

to be characterised. Consider the abstract elliptic inequality of second kind fV;A; I

K

; Fg

(which is equivalent to fK;A; Fg) and assume that the positive polar cone C

0

+

is known

explicitely. From this the original problem can be reformulated as a Saddle point problem.

This is done by writing

I

K

= sup

p2C

0

+

hBv �G; qi

Q

0

�Q

: (4.35)

The abstract inequality of second kind fV;A; I

K

; Fg is now given by solving: �nd (u; p) 2

V � C

0

+

such that:

L(u; p) = inf

v2V

sup

q2C

0

+

1

2

hAv; vi

V

0

�V

+ hBv �G; qi

Q

0

�Q

� hF; vi

V

0

�V

| {z }

:= L(v; q)

: (4.36)

Remark 4.14. This formulation has the advantage that the convex set K doesn't occur

explicitly. Furthermore the minima is searched in a linear subspace. The price for this

is that the problem size increases. Now both have to be solved, u 2 V , which is the

interesting variable, and the Lagrange multiplier p 2 C

0

+

, which may not be from further

interest.

4.3 Some Abstract Results for Saddle Point Problems

Let K � V; N � Q be nonempty closed convex subsets and let L : K � N ! R be a real

functional de�ned on K �N .

De�nition 4.15. The pair (u; p) 2 K �N is called a saddle point of L i�

L(u; q) � L(u; p) � L(v; p) 8 v 2 K 8 q 2 N :

Theorem 4.16. A pair (u; p) 2 K �N is a saddle point of L on K �N i�

i. primal: '(u) = min

v2K

'(v) '(v) := sup

q2N

L(v; q)

ii. dual:  (p) = max

q2N

 (q)  (q) := inf

v2K

L(v; q)
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iii. L(u; p) = '(u) =  (p)

Proof. see Ekland and Temam [23, IV Proposition 1.2]

Proposition 4.17. The set of saddle points of L is of the form U � P where U � K and

P � N .

Proof. see Ekland and Temam [23, IV Propostion 1.4]

In order to guarantee the existence, and eventually the uniqueness, of a saddle point,

supplementary conditions are needed.

i. 8 q 2 N; v 7! L(v; q) is convex and weakly lower semi continuous.

ii. 8 v 2 K; q 7! L(v; q) is concave and weakly upper semi continuous.

Theorem 4.18. Let the assumptions (i)-(ii) be satis�ed and assume moreover,

9 q

0

2 N : lim

kvk

V

!1

L(v; q

0

) = +1 (4.37)

9 v

0

2 K : lim

kqk

Q

!1

L(v

0

; q) = �1: (4.38)

Then there exists a saddle point (u; p) 2 K �N of L.

Proof. see Ekland and Temam [23, IV Proposition 2.2]

Theorem 4.19. The conclusions of Theorem 4.18 also hold if condition (4.38) is replaced

by the condition

lim

kqk

Q

!1

inf

v2K

L(v; q)! �1 (4.39)

Proof. see Ekland and Temam [23, IV Proposition 2.4]

Theorem 4.20. Let L be Gâteaux di�erentiable on K � N and let � : K � N ! R and

L ful�ls (i)-(ii). Then (u; p) 2 K �N is a saddle point of L+ � i�

D

@L

@v

(u; p); v � u

E

V

0

�V

+ �(v; p)� �(u; p) � 0 8 v 2 K

D

@L

@q

(u; p); q � p

E

Q

0

�Q

+ �(u; q)� �(u; p) � 0 8 q 2 N

(4.40)

Proof. see Ekland and Temam [23, IV Proposition 1.7]



CHAPTER 4. VARIATIONAL INEQUALITIES 34

Back to the abstract inequality of �rst kind (4.19), where K is given by (4.34). L(v; q)

is then given by (4.36). This functional is G-di�erentiable on V � N , where N = C

0

+

.

Theorem 4.20 indicates that a saddle point (u; p) 2 V � N of (4.36) can by characterised

by the system

hAu; vi

V

0

�V

+ hBv; pi

Q

0

�Q

= hF; vi

V

0

�V

8 v 2 V

hBu�G; q � pi

Q

0

�Q

� 0 8 q 2 N:

(4.41)

The question arises whether the mixed system (4.41) is uniquely solvable or not. The

answer can't be given in general, thus two for this thesis important cases are distinguished.

The �rst case is that N 6= V , then the existence and uniqueness is guaranteed if RgB =

Q

0

and A is V -elliptic. The second case is that N = Q

0

and thus the inequality in

(4.41) becomes an equality. In this case the existence and uniqueness is guaranteed if

RgB = Q

0

and A is elliptic on kerB. Furthermore the unique solution of the equality case

is bounded by kFk

V

0

; kGk

Q

0

. This two results are the topic of the next theorems. First an

characterisation of RgB = Q

0

is given in the case that V; Q are Hilbert spaces, which is

the case in all examples we are interested in.

Proposition 4.21. Let V; Q be two Hilbert spaces and B 2 V;Q

0

, then the following

statements are equivalent

i. RgB = (kerB

�

)

0

ii. RgB

�

= (kerB)

0

iii. 9 � > 0 8 v 2 V : sup

q2Q

hBv; qi

Q

0

�Q

kqk

Q

� �kvk

V=kerB

iv. 9 � > 0 8 q 2 Q : sup

v2V

hB

�

q; vi

V

0

�V

kvk

V

� �kqk

Q=kerB

�

Proof. see Brezzi and Fortin [12, Proposition 1.2]

For the inequality case, the next lemma proves all, what is needed to proof existence and

uniqueness of the saddle point.

Lemma 4.22. Suppose that (4.21) and (4.22) (with K = V ) and

9 � > 0 : inf

q2Q

sup

v2V

hBv; qi

Q

0

�Q

kqk

Q

kvk

V

� � (4.42)

hold. Then

lim

kqk

Q

!1

inf

v2V

L(v; q)! �1

Proof. see Kikuchi and Oden [34, Lemma 3.2]
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Remark 4.23. Condition (4.42) is due to the closed range theorem (Heuser [31, Satz 39.4])

equivalent to Rg(B) = Q.

Proposition 4.24. Let B 2 L(V;Q

0

); A 2 L(V; V

0

). Assume that B ful�ls the LBB

condition (4.42) and assume that A is V -elliptic. Then there exists a unique solution

(u; p) 2 V �N .

Proof. Due to Lemma 4.22 condition (4.39) is valid and due to the assumption that A

is V -elliptic also (4.37) is valid. Thus Theorem 4.19 guarantees the existence of a saddle

point. With Theorem 4.20 this saddle point is also a solution of (4.41). The uniqueness is

a consequence of the strict convexity of v ! L(v; q) and the LBB condition (4.42).

The equality case has a special importance in Chapter 6 and is thus also denoted.

Theorem 4.25. Let V;Q be Hilbert spaces, B 2 L(V;Q

0

); A 2 L(V; V

0

) and G 2 RgB.

Assume that N = Q in (4.41), that RgB is closed in Q

0

and that A is elliptic on kerB.

Then there exists a solution (u; p) 2 V �Q of (4.41). Moreover (u; p) is bounded by

kuk

V

�

1

�

1

kFk

V

0

+

1

�

�

1�

�

2

�

1

�

kGk

Q

0

kpk

Q=kerB

�

�

1

�

�

1 +

�

2

�

1

�

kFk

V

0

+

�

2

�

2

�

1 +

�

2

�

1

�

kGk

Q

0

:

Proof. see Brezzi and Fortin [12, Proposition 1.3]

Dual Formulation

In Theorem 4.16 the dual formulation was noted. For the body-body contact problem (L

given by (4.36)) and with the assumption that A is V-elliptic on V , the dual formulation

can be calculated explicitly. For this

 (q) = inf

v2V

1

2

hAv; vi

V

0

�V

+ hBv �G; qi

Q

0

�Q

� hF; vi

V

0

�V

(4.43)

has to be calculated. Because A was assumed to be V -elliptic (and bounded) Theorem

4.11 is valid and thus this equation is uniquely solvable for every q; B and F . The uniquely

de�ned solution operator is denoted by A

�1

. Because of Theorem 4.11 this operator is

bounded and linear from V

0

! V (A

�1

2 L(V

0

; V )). From the symmetry of A, the

symmetry of A

�1

is deduced. Substituting this result into (4.43) it follows

 (q) = �

1

2

hB

�

q + F;A

�1

(B

�

q + F )i

V

0

�V

+ hG; qi

Q

0

�Q

= �

1

2

�

hBA

�1

B

�

q; qi

Q

0

�Q

+ 2 hBA

�1

F; qi

Q

0

�Q

+ hF;A

�1

F i

V

0

�V

�

+ hG; qi

Q

0

�Q

= �

1

2

hBA

�1

B

�

q; qi

Q

0

�Q

� hBA

�1

F �G; qi

Q

0

�Q

�

1

2

hF;A

�1

F i

V

0

�V
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By changing the sign and sup! inf, the dual formulation looks like

p = argmin

q2N

 (q) ;

with

 (q) =

1

2




BA

�1

B

�

q; q

�

Q

0

�Q

+




BA

�1

F �G; q

�

Q

0

�Q

(4.44)

If p is known, the solution u can be calculated by applying A

�1

to B

�

p + F . Note B

�

is

the adjoint operator of B with B

�

2 L(Q; V

0

). Kikuchi and Oden[34] denote the dual

formulation as reciprocal formulation.

4.4 Existence and Uniqueness of the Body-Body Con-

tact Problem

Theorem 4.11 guarantees existence and uniqueness if A, given by (4.17), is elliptic on K

(Boundness of A is easy to verify). Also the ellipticity of A on K may be too much. There

are body-body contact problems which are not elliptic on K having a unique solution.

Ellipticity isn't necessary because there are more general results than Theorem 4.11. Some

of them are presented in the references given at the beginning of this section. If A isn't

K-elliptic, then the existence and uniqueness results are usually based on the coercitivity of

the Ritz functional J (v) ((4.30). Especially for the body-body contact problem existence

and uniqueness results are presented inKikuchi and Oden [34], Haslinger, Hlav

�

a

�

cek

and Ne

�

cas [29], Boieri, Gastaldi and Kinderlehrer [7] and Eck [22].

For this thesis only examples are considered which have Dirichlet boundaries on both

bodies, i.e. j�

1

D

j; j�

2

D

j > 0. In this case it's possible to prove that A is V -elliptic. This is

done by considering the null space of A, which are, due to the next lemma, the rigid body

motions.

Lemma 4.26. Let 
 2 C

0;1

. Then the following conditions are equivalent:

� 8 v 2 H

1

(
) 8 2 f1; : : : dg : �

ij

(v) = 0 in L

2

(
)

� 9 a; b 2 R

d

: v(x) = a+ b� x a.e. in 
 ;

where � denotes the vector product and x 2 
 is the position vector of a point.

Proof. see Kikuchi and Oden [34, Lemma 6.1]

The most important inequality in elastic mechanics, from which the most ellipticity results

of A are deduced is the Korn's inequality.
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Theorem 4.27. Let 
 � R

d

be a bounded domain with @
 2 C

0;1

. Then there exists a

positive constant c, independent of v, such that

Z




tr(gradv gradv) dx � C

Z




tr(�(v) �(v)) dx+ kvk

2

0;


(4.45)

for every v 2 W

1;p

(
); p 2]1;1[.

Proof. for a sketch of the proof see Kikuchi and Oden [34, Theorem 5.13]

Using Korn's inequality (Theorem 4.27) and the assumption j�

1

1

j; j�

2

D

j > 0, the V -

ellipticity follows as a direct consequence of Theorem 3.18. Theorem 3.18 is used to prove

that

Z




tr(�(v) �(v)) dx+ kvk

2

0;


'

Z




tr(�(v) �(v)) dx ;

which follows directly by setting

j : j

2

A

=

Z




tr(�(v) �(v)) dx ;

j : j

B

=

�

�

�

�

�

�

Z

�

D

v ds

�

�

�

�

�

�

and noting that X

0

is the set of rigid body motions given in Lemma 4.26.

Remark 4.28. Because A is V -elliptic and it was assumed that the parametrisations X

(j)

is smooth enough such that RgB = Q

0

, also the mixed formulation (4.41) has, due to

Proposition 4.24 , a unique solution and thus the dual formulation as well. This fact will

be essential for the following chapters.



Chapter 5

Some Results for Finite Element

Analysis

To solve variational inequalities numerically, the in�nite space V (Q) for the primal (dual)

formulation and the space V � Q for the mixed formulation has to be reduced to a �nite

one. There are a lot of methods to do this, but the common one and the best suited method

for numerical computation is the Finite Element Method (FEM). For details of FEM refer

for the primal (dual) problem to Ciarlet [16] and for the mixed problem to Brezzi and

Fortin [12]. An important property of the FEM is that the convergence results of the

discrete to the continuous solution usually depend only on the best approximation error.

The best approximation error is easy to estimate for FEM due to the local property of FEM

and well known interpolation operators. For variational inequalities some convergence

results are presented in Brezzi, Hager and Raviart [13],[14] and Falk [24]. For

interpolation operators refer to Scott and Zhang [45], Clem

�

ent [18] and Dupont

and Scott [21].

In Section 5.1 the �nite element space is introduced and some notations are de�ned.

To keep the writing short, the notation is important for the next chapters. An important

property of the FEM is that there exists several interpolation operators. For the discretisa-

tion of the convex set K of the body-body contact problem, these interpolation operators

are essential. Thus the most important one, at least for this thesis, the nodal interpolation

operator and the interpolation operators of Scott-Zhang type are introduced in Section 5.2.

To guarantee existence and uniqueness of the discretised solution, corresponding assump-

tions as in Section 4.3 are needed. In Section 5.3 an abstract condition (Fortin's criterion)

is presented which guarantees the the discrete LBB condition holds uniformly in h. Finally

it's important to know whether the discrete solution converges to the exact one or not. For

this some results are presented in Section 5.4.

38
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5.1 Finite Element Spaces

For computing, elements in Sobolev spaces have to be approximated by elements in �-

nite dimensional function spaces. One possibility are �nite element spaces (FE-spaces).

This kind of �nite dimensional spaces are very common and should be introduced in this

section. For more details refer to Ciarlet [16]. The FEM is a very general method to con-

struct �nite dimensional subspaces for Sobolev spaces and well suited for a lot of practical

applications.

For simplicity and to avoid technical di�culties assume that 
 � R

d

is a polygonal

shaped and bounded domain. The �rst characteristic of the FEM is that a triangulation

�

h

is established over the set 
, i.e. the set 
 is subdivided into a �nite number of subsets

T , called �nite elements, in such a way that the following properties are satis�ed.

� 
 =

S

T2�

h

T

� 8T 2 �

h

: clT = T ^ intT 6= ;

� 8T;K 2 �

h

; T 6= K : intT \ intK = ;

� 8T 2 �

h

: @T 2 C

0;1

:

For this thesis and for simplicity it's enough to restrict the �nite elements T to segments

in 1D, triangles in 2D and tetrahedra in 3D.

For notation de�ne the patches

!

T

=

[

K2�

h

K\T 6=;

T ;

!(x) =

[

K2�

h

x2T

T ;

the set of edges E

h

by

E

h

= fE � 
 j 9T;K 2 �

h

: E = T \K _ E = T \ @
 g (5.1)

and split the set of edges E

h

into disjoint sets E




h

; E

D

h

; : : : , such that

E




h

= fE 2 E

h

j 9T;K 2 �

h

: E = T \K g ;

E

D

h

= fE 2 E

h

j 9T 2 �

h

: E = T \ �

D

g :

Remember that �

D

: : : 2 @
 is a disjoint splitting of the boundary. These de�nitions will

simplify the writing in the following chapters.

For the FEM each element T 2 �

h

is interpreted as the image of the mapping x

T

(�)

from a reference element T

(R)

. The usual case is that x

T

is an a�ne linear mapping.
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De�nition 5.1. � A triangulation �

h

is called conforming, i� the intersection of two

di�erent elements is either empty, or contains one common vertex, one common edge

or one common face.

� A conforming triangulation is shape regular, i� for all elements the condition number

of the Jacobian is bounded, i.e.













dx

T

(�)

d�













l

2

(R

d�d

)
















�

dx

T

(�)

d�

�

�1
















l

2

(R

d�d

)

� 1 8T 2 �

h

8 � 2 T : (5.2)

� The local mesh size h(x) is de�ned for x = x

T

(�) as

h(x) =













dx

T

(�)

d�













l

2

(R

d�d

)

; (5.3)

and

h

T

= sup

x2T

h(x) :

� A triangulation �

h

is quasi-uniform, i� it's shape regular and there exists one global

h > 0 such that

h � h(x) � h 8x 2 
 : (5.4)

Let X

h

be any �nite-dimensional space of functions de�ned over 
. With such a �nite

element space X

h

the (�nite dimensional) spaces

P

T

= f v

h

j

T

j v

h

2 X

h

g

are de�ned, where T 2 �

h

.

The second basic aspect of FEM is that the spaces P

T

; T 2 �

h

contain polynomials.

For this de�ne shape functions on the reference element. It's enough, for this thesis, to

consider shape functions of full polynomial type. This shape functions are denoted by P

r

.

P

r

= f p =

X

j�j�r

a

�

x

�

1

1

: : : x

�

d

d

a

�

2 R g : (5.5)

The third basic aspect of the FEM is that there exists at least one \canonical" basis in

the FE space V

h

whose corresponding basis functions have supports which are as \small" as

possible. It's being implicitly understood that these basis functions can be easily described.

Fix the polynomial degree r for P

r

and consider the FE space V

h

which is de�ned by

V

h

= f v

h

2 C(
) j v

h

j

T

2 P

r

8T 2 �

h

g : (5.6)



CHAPTER 5. SOME RESULTS FOR FINITE ELEMENT ANALYSIS 41

Note that this �nite dimensional space V

h

is subset of H

1

(
) (see Ciarlet [16, Theorem

2.1.1]). It can be represented as the span of local ansatz functions f'

i

g with corresponding

set of nodes N

h

such that for x

i

2 N

h

'

i

(x

j

) = �

ij

:

For linear Lagrange elements (i.e. r = 1),N

h

can be chosen as the union of all corner points

of the elements T 2 �

h

. The corresponding ansatz functions f'

i

g are local and de�ned on

the patch f!(x

i

)g. Also the set of nodes N

h

is split into disjoint parts N




h

; N

D

h

; : : : , similar

as the set of edges E

h

. An important property of FE spaces for shape regular triangulation

�

h

is the so called inverse inequality. I.e. it's possible to estimate higher order Sobolev

norms on elements T 2 �

h

by lower one.

Theorem 5.2. Let �

h

be a shape regular mesh, V

h

be a FE space. Then the following

inequality is valid.

kv

h

k

k;T

� h

l�k

T

kv

h

k

l;T

8 0 � l � k � (5.7)

Proof. see Ciarlet [16, Theorem 3.2.6]

5.2 Local Interpolation Operators

To approximate a function in a Sobolev space by some �nite element functions a mapping

I

h

: H

m

(
)! V

h

is needed. The mapping should be local, i.e. (I

h

u)j

T

should only depend

on uj

~

T

, where

~

T is close to and not much larger than T . The approximation shell become

better as the image norm gets weaker. The optimal approximation is

kv � I

h

vk

k;T

� h

j�k

T

kvk

j;

~

T

8 v 2 V 8 0 � k � j � m � r + 1 ; (5.8)

for proper integers k and j. r is the maximal polynomial degree of the ansatz functions,

i.e. '

i

2 P

r

(T ). One further property, which isn't necessary but very common, is that the

interpolation operator I

h

is idempotent, i.e. I

2

h

= I

h

.

Every linear interpolation operator I

h

can be represented as

I

h

v =

X

x

i

2N

h

l

i

(v)'

i

8 v 2 V ; (5.9)

where l

i

2 V

0

is some linear functional. Note that l

i

(v) = I

h

(v)(x

i

) and its norm is in

general mesh dependent. For a local mapping the linear functional l

i

has to be local, i.e.

8 v 2 V; vj

~

T

= 0 : l

i

(v) = 0 and for I

h

idempotent l

i

(I

h

v) = l

i

(v) 8 x

i

2 N

h

. The hard

property for an interpolation operator I

h

is equation (5.8). In the following two examples

of interpolation operators are presented which ful�ls (5.8).
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� The classical interpolation operator is the nodal interpolation operator I

N

. From

Theorem 3.4 it's known that H

m

(
) is continuously embedded into the contin-

uous functions C(
), if m >

d

2

. Thus it's possible to evaluate every function

v 2 H

m

(
) in every arbitrary point x 2 
 with v(x) � max

y2


jv(y)j � kvk

m;


.

I.e. the linear functional l

x

(v) := v(x) is element of the space H

�m

0

(
). Especially

l

i

( : ) := l

x

i

( : ) x

i

2 N

h

is element of H

�m

0

(
). With this it's possible to de�ne the

nodal interpolation operator I

N

I

N

v :=

X

x

i

2N

h

v(x

i

)'

i

: (5.10)

This operator is obviously a local interpolation operator and idempotent. InCiarlet

[16, Theorem 3.2.1] it's proved that this interpolation operator also ful�ls (5.8). The

main reason that (5.8) is valid for the nodal interpolation operator is that

(I � I

N

)p = 0 8 p 2 P

r

(T ) 8T 2 �

h

and that l

i

(v) � kvk

m;


. Thus the Bramble Hilbert lemma (see Lemma 3.20) is valid

and with the transformation of the element T to its reference element T

(R)

everything

follows.

The big disadvantage of the nodal interpolation operator is that m has to be greater

than

d

2

, which is especially not ful�lled for 2D and 3D examples with m = 1.

Note that nodal interpolation provides the same approximation result for the bound-

ary as for the domain.

� An other possibility is the Scott-Zhang type interpolation operator. These operators

are de�ned as follows. For each node x

i

2 N

h

de�ne a set �

i

, with x

i

2 �

i

. It can

be a subset of non-zero measure, but also a manifold. De�ne the L

2

(�

i

)-orthogonal

projection �

k

i

onto P

k

(�

i

). Then de�ne the linear functionals l

i

(v) := �

k

i

(v)(x

i

) and

thus the interpolation operator becomes

I

SZ

v :=

X

x

i

2N

h

�

k

i

(v)(x

i

)'

i

: (5.11)

This operator is idempotent if V

h

j

�

i

� P

k

(�

i

) and then also local. Two examples

to de�ne the set �

i

for the node x

i

2 N

h

are given in Figure 5.1. The Scott-Zhang

projection is well de�ned for the Sobolev space L

2

(
) i� all sets �

i

have non-zero

measure in R

d

, in the other case it's well de�ned on H

m

(
) with m >

1

2

, due to the

trace theorem (see Theorem 3.5). If additionally

j�

i

j =

�

O(h

d

T

) dim�

i

= d

O(h

d�1

T

) dim�

i

= d� 1

;

then the approximation inequality (5.8) holds for 1 � m � maxfr + 1; k + 1g. For

proof refer to Scott and Zhang [45].
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Figure 5.1: construction of a Scott-Zhang operator

Note that if �

i

� @
 8 x

i

2 N

h

\ @
 ; then the Scott-Zhang interpolation operator

is also one at the boundary @
 with the same properties as in 
.

Remark 5.3. Due to the fact that Hilbert type Sobolev spaces of fractional order can be

represented as interpolation spaces of two Sobolev spaces with an integer order (see The-

orem 3.13) and due to Theorem 3.11, the approximation result (5.8) can be extended to

sobolev indices with fractional order. This is often denoted as scaling argument.

5.3 Existence and Uniqueness of the Discretised Vari-

ational Inequality

For the fK;A; Fg denoted as saddle point formulation (4.41), with

K = fv 2 V j hBv �G; qi

Q

0

�Q

� 0 8; q 2 N g ;

the existence and uniqueness was guaranteed, due to Proposition 4.24, if A is V -elliptic

and B ful�ls the LBB condition (4.42). For the equality case, i.e. N = Q, the existence

and uniqueness was guaranteed, due to Theorem 4.25, if A is KerB-elliptic and B ful�ls

the LBB condition (4.42). This results are also valid in the discretised case. Thus it's

enough to prove a discrete LBB condition, i.e. BV

h

= Q

0

h

, and for the equality case

the discrete kernel ellipticity. To achieve convergence results for the discretised system

it's necessary that the discrete LBB condition and the discrete kernel ellipticity holds

uniformly, i.e. independent of the mesh parameter h. The following theorem guarantees

an uniform discrete LBB condition in a lot of applications.

Theorem 5.4 (Fortin's criterion). Let V; Q be a stable pair, i.e. the LBB condition

sup

v2V

b(v; q)

kvk

V

� kqk

Q
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is ful�lled and V

h

; Q

h

the corresponding FE spaces. Furthermore assume the existence of

a family of uniformly continuous operators I

F

h

: V ! V

h

satisfying

b(I

F

h

w � w; q

h

) = 8 q

h

2 Q

h

;

kI

F

h

vk

V

� kvk

V

:

(5.12)

Then the FE spaces V

h

; Q

h

are a uniform stable pair, i.e.

sup

v

h

2V

h

b(v

h

; q

h

)

kv

h

k

V

� kq

h

k

Q

(5.13)

Proof. see Brezzi Fortin [12, II Proposition 2.8]

For the inequality case the last theorem is enough to guarantee existence and uniqueness.

If

ker

h

B = f v

h

2 V

h

j iBv

h

; q

h

i

Q

0

�Q

= 0 8 q

h

2 Q

h

g

is subspace of kerB then Theorem 5.4 is also enough for the equality case, to guarantee

existence and uniqueness. But in general ker

h

B 6� kerB and thus the discrete kernel

ellipticity has to be veri�ed by hand.

5.4 Convergence Results

In the last sections the variational inequality was discretised and the existence of a unique

solution was guaranteed. But the hole work will be useless if the discretised solution is no

approximation of the continuous one. This section is concerned with some abstract results

which guarantees that the discretised solution approximates the continuous one.

In the hole section e denotes the discretisation error in the primal variable, i.e.

e := u� u

h

:

Most of the results and inequalities presented, are concerned with the convergence of the

primal variable. Only for the equality case a convergence result for both, the primal and

dual variable is presented. Some of the inequalities, which are presented are well suited

to construct a-posteriori error estimators, at least for the equality case. The convergence

result, presented in this thesis, for the inequality case requires a special representation of

the discretised convex set K

h

, but that's enough for the problems considered here.

K

h

= fv

h

2 V

h

j hBv

h

�G; q

h

i

Q

0

�Q

� 0 8 q

h

2 N

h

g : (5.14)

Before presenting some inequalities of the discretisation error in the A energy norm, the

notion of the approximation of K is de�ned.
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De�nition 5.5. A family (K

h

)

h2H

, where K

h

� V

h

are non-empty, closed and convex

subsets of V

h

, is said to be an approximation of K i�

� 8 v 2 K 9 v

h

2 K

h

: lim

h!0+

v

h

= v in V (5.15a)

� if (v

h

)

h2H

; v

h

2 K

h

is such that v

h

* v; h! 0 + in V ) v 2 K: (5.15b)

The next lemmas are the basis of proo�ng convergence results in the inequality case.

Some of these lemmas are used later, to prove convergence results for the body-body

contact problem with nodal constraints as discretisation.

Lemma 5.6. Let (u; p) be solution of (4.41) and (u

h

; p

h

) be the corresponding one of the

discretised system, with K

h

given by (5.14), then the following error estimate is valid for

all v

h

2 K

h

and q

h

2 N

h

.

hAe; ei

V

0

�V

� hAe; u� v

h

i

V

0

�V

+ hB(u

h

� v

h

); p� q

h

i

Q

0

�Q

+hB(u� v

h

); q

h

i

Q

0

�Q

+ hBu�G; p� q

h

i

Q

0

�Q

(5.16)

Proof. see Brezzi, Hager and Raviart [14, II Theorem 2.2]

Lemma 5.7. Let (u; p) be solution of (4.41) and (u

h

; p

h

) be the corresponding one of the

discretised system. Then the residual e = u � u

h

in the energy norm has the following

representations for all e

h

2 V

h

; q

h

2 N

h

; q 2 N

hAe; ei

V

0

�V

= fhF; e� e

h

i

V

0

�V

� hAu

h

; e� e

h

i

V

0

�V

� hB(e� e

h

); p

h

i

Q

0

�Q

g

+ fhBu�G; p

h

i

Q

0

�Q

g+ fhBu

h

�G; pi

Q

0

�Q

g

(5.17a)

hAe; ei

V

0

�V

� fhF; e� e

h

i

V

0

�V

� hAu

h

; e� e

h

i

V

0

�V

� hB(e� e

h

); p

h

i

Q

0

�Q

g

+ fhBu�G; p

h

� qi

Q

0

�Q

g+ fhBu

h

�G; p� q

h

i

Q

0

�Q

g

(5.17b)

Proof. From (4.41) it follows that

hAu� u

h

; v

h

i

V

0

�V

= hBv

h

; p

h

� pi

Q

0

�Q

8 v

h

2 V

h

:

Thus the residual (e := u� u

h

) in the energy norm can be estimated by

hAe; ei

V

0

�V

= hAu; e� e

h

i

V

0

�V

� hAu

h

; e� e

h

i

V

0

�V

� hBe

h

; p� p

h

i

Q

0

�Q

= fhF; e� e

h

i

V

0

�V

� hAu

h

; e� e

h

i

V

0

�V

� hB(e� e

h

); p

h

i

Q

0

�Q

g

+hBu; p

h

� pi

Q

0

�Q

+ hBu

h

; p� p

h

i

Q

0

�Q

= fhF; e� e

h

i

V

0

�V

� hAu

h

; e� e

h

i

V

0

�V

� hB(e� e

h

); p

h

i

Q

0

�Q

g

+ fhBu; p

h

i

Q

0

�Q

� hG; p

h

i

Q

0

�Q

g+ fhBu

h

; pi

Q

0

�Q

� hG; pig

Q

0

�Q

The inequality (5.17b) is a direct consequence of the last estimate and hBu�G; qi

Q

0

�Q

� 0,

hBu

h

�G; q

h

i

Q

0

�Q

� 0.
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Lemma 5.8. It holds that 8 v 2 K 8 v

h

2 K

h

hAe; ei

V

0

�V

� hF; u� v

h

i

V

0

�V

+ hF; u

h

� vi

V

0

�V

+hAe; u� v

h

i

V

0

�V

+ hAu; v � u

h

i

V

0

�V

+ hAu; v

h

� ui

V

0

�V

:

(5.18)

Proof. see Haslinger and Hlav

�

a

�

cek and Ne

�

cas [29, Lemma 4.1]

Theorem 5.9. Let u 2 K and u

h

2 K

h

be solutions of fK;A; Fg and fK

h

; A; Fg, re-

spectively. Let the family fK

h

g be an approximation of K, i.e. (5.15a)-(5.15b) is ful�lled.

Then

lim

h!+0

ku� u

h

k

V

= 0 :

Proof. see Haslinger and Hlav

�

a

�

cek and Ne

�

cas [29, Theorem 4.1]

Condition (5.15a) is some minimal assumption which should be ful�lled to guarantee a

convergence result without assuming any properties for the solution u.

In the equality case (4.41) has nice convergence properties, which will be very important

in the next chapter.

Theorem 5.10. Assume N = Q (unrestricted mixed problem), that B ful�ls the LBB

condition (4.42) and A should be kerB-elliptic (4.22). Furthermore assume the uniform

discrete LBB condition (5.13) and also the uniform ker

h

B-ellipticity for A. Let (u; p)

be the unique solution of (4.41) and (u

h

; p

h

) be the unique solution of the corresponding

discretised system. Then the following convergence result is valid.

ku� u

h

k

V

+ kp� p

h

k

Q

� inf

v

h

2V

h

ku� v

h

k

V

+ inf

q

h

2Q

h

kp� q

h

k

Q

(5.19)

Proof. see Brezzi and Fortin [12, II Propositon 2.6-2.7]

One draw back of this section is that the convergence result presented for the variational

inequality isn't valid for the body-body contact problem and the discretisation (nodal

constraints) chosen in this thesis. For the body-body contact problem the inequalities

presented for the primal variable are from greater interest.



Chapter 6

Intermezzo Non-Matching Grids

Standard discretisation of the body-body contact problem will usually result into a problem

with non-matching grids at the contact boundary. There are at least two techniques to

handle non-matching grids. The �rst is the Mortar method and the second one is Nodal

constraints (on a master surface). The Mortar method is well developed for equality

constraints and give optimal convergence results (see Belgacem [4]). There are also

some results for contact problems (see Belgacem, Hild and Laborde [6] [5]). One

disadvantage is that this method is hard to implement, especially the three dimensional

case. Nodal constraints have the advantage that they are easy to implement but, to the

knowledge of the author, there are no theoretical optimal convergence results available.

This chapter follows Sch

�

oberl et al [28] and presents the analysis of a simple example with

Nodal equality constraints. The main result will be that Nodal constraints with a simple

stabilising term has optimal convergence for Lagrange elements, in the primal variable, at

least in 2 dimensions.

In Section 6.1 a mixed problem, equivalent to the Laplace problem (see Raviart and

Thomas [41]), is presented, which enables the handling of non-matching grids. Introduc-

ing an abstract interpolation operator and assuming its existence, it's possible to introduce

Nodal constraints as a special choice of ansatz functions in the dual space. This and the

validity of the standard requirements for discretised mixed problems is presented in Section

6.2. The convergence result which is achieved due to this discretisation isn't optimal in

the primal variable. In Section 6.3 the mixed problem is consistently modi�ed, such that

all standard results, apart of the uniform V

0h

- ellipticity, are trivially valid. Assuming this

V

0h

-ellipticity, optimal convergence results are achieved for Nodal constraints and linear La-

grange elements. In Section 6.4 both, the existence of the abstract interpolation operator

and the assumed uniform V

0h

-ellipticity of the consistently modi�ed problem, in 2 dimen-

sions are proved. In Section 6.5 it's explained how to implement the consistently modi�ed

problem e�cient (at least for a uniform mesh) and an numerical example is presented

which con�rms the optimal convergence property of the consistently modi�ed problem.

47
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6.1 Non-matching Grid for a Laplace Problem

Consider the following simple model problem.

��u= f in 
 = 


1

[ 


2

u=0 on �

D

= @
 :

(6.1)

It's well known that the (weak-) Laplace problem (6.1) is uniquely solvable, because of

Γ ΩΩ 1 2

CΓ

D

Figure 6.1: Non-matching grid

the H

1

0

(
)-ellipticity of the bilinear form a(:; :) (Poincar�e or Friedrich inequality), the

boundness of a(:; :) and the Lax Milgram lemma (Theorem 4.11). Due to the next theorem

it's possible to handle non-matching grids.

Theorem 6.1. The space H

1

0

(
) can be represented as a subspace of V , namely

H

1

0

(
) = fv 2 V j b(q; v) = 0 8 q 2 Qg ; (6.2)

with

V :=H

1

0;D

(


1

)�H

1

0;D

(


2

)

Q :=

(
�

H

1

2

00

(�

C

)

�

0

�

C

\ �

D

= @�

C

H

�

1

2

(�

C

) �

C

\ �

D

= ;

b(q; v) := hq; [v]i

Q�Q

0

[v] := (v

1

� v

2

)j

�

C

:

Remark 6.2. To simplify the notation set

X = L

2

(�

C

) ! X

0

= X

Y =

�

H

�1

(�

C

) �

C

\ �

D

= @�

C

H

�1

0

(�

C

) �

C

\ �

D

= ;

Z = H

�

1

2

(�

C

) ! Z

0

= H

1

2

(�

C

) :

Proof. A more general proof is presented in Raviart and Thomas [41, Lemma 1].
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00

�

00

: Let u 2 H

1

0

(
) and from the trace theorem Theorem 3.5 it's know that [u] = 0 in

Q

0

and thus b(q; u) = hq; [u]i

Q�Q

0

= 0 8 q 2 Q.

00

�

00

: Assume that there exists an element v 2 fv 2 V j b(q; v) = 0 8 q 2 Qg=H

1

0

(
).

From the Hahn-Banach theorem (Heuser [31, Satz 42.5]) follows that

9 v

�

2 V

0

: h v

�

; vi

V

0

�V

< h v

�

; H

1

0

(
)i

V

0

�V

:

Because H

1

0

(
) is a linear space h v

�

; H

1

0

(
)i

V

0

�V

= 0 =) h v

�

; vi

V

0

�V

< 0 : The

proof is done if 9 q(v

�

) 2 Q 8w 2 V : h v

�

; wi

V

0

�V

= h q(v

�

); [w]i

Q�Q

0

; because this

would be a contradiction to the assumption. Also from the Hahn-Banach theorem

it's known that (see Adams [1, Theorem 3.8])

9 (g; g

0

)(v

�

) 2 L

2

(
)

d+1

8w 2 V : h v

�

; wi

V

0

�V

=

2

X

l=1

Z




l

h g(v

�

);rwi

l

2

(R

d

)

+ g

0

(v

�

)w dx :

Note that 8' 2 C

1

0

(
) � H

1

0

(
)

0 = hv

�

; 'i

C

0

�V

=

Z




h g(v

�

);r'i

l

2

(R

d

)

+ g

0

(v

�

)'dx ;

and thus div g(v

�

) exists in a distributional sense, i.e. div g(v

�

) 2 (C

1

0

(
))

0

, and is

equal to g

0

(v

�

). From the fact that C

1

0

(
) is dense in L

2

(
) and that g

0

(v

�

) 2 L

2

(
)

this equality div g(v

�

) = g

0

(v

�

) holds also in L

2

(
) and thus g(v

�

) 2 H(div;
).

Using this the linear functional v

�

can be written as

h v

�

; wi

V

0

�V

=

2

X

l=1

Z




l

h g(v

�

);rwi

l

2

(R

d

)

+ div g(v

�

)w dx

=

2

X

l=1

Z




l

h g(v

�

);rwi

l

2

(R

d

)

+ div g(v

�

)w dx

Lemma 3.8

=




h g(v

�

); n

1

i

l

2

(R

d

)

; w

1

�

Z�Z

0

+




h g(v

�

); n

2

i

l

2

(R

d

)

; w

2

�

Z�Z

0

h[g(v

�

)];n

l

i

l

2

(R

d

)

=0

=




h g(v

�

); ni

l

2

(R

d

)

; [w]

�

Z�Z

0

:

Note that n = n

1

= �n

2

, h g(v

�

); ni

l

2

(R

d

)

2 Z � Q and [w] 2 Q

0

. With the setting

q(v

�

) = h g(v

�

); ni

l

2

(R

d

)

the desired result

hv

�

; wi

V

0

�V

= hq(v

�

); [w]i

Q�Q

0

= b(q(v

�

); w) 8w 2 V

is proved.
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Now consider the mixed Laplace problem

a(u; v) + b(p; v)= hf; vi

V

0

�V

8 v 2 V

b(q; u) = 0 8 q 2 Q ;

(6.3)

where

a(u; v) :=

2

X

i=1

Z




i

hru;rvi

l

2

(R

d

)

dx :

The question arises if the problem (6.1) and problem (6.3) are equivalent. But �rst consider

the question whether the bilinear form b(:; :) ful�ls the LBB-condition or not.

Remark 6.3. Because of Theorem 3.5 or Remark 3.7 the trace norm k:k

Q

0

has an equivalent

representation.

kgk

Q

0

' inf

w2V

[w]=g

kwk

V

(6.4)

Note that V can be replaced by V

j

� f0g, because of V

j

j

�

C

= Q

0

.

Proposition 6.4. Problem (6.3) ful�ls the LBB condition

sup

v2V

b(q; v)

kvk

V

� kqk

Q

(6.5)

Proof. Because of the surjectivity V

l

j

�

C

= Q

0

and [V ] = Q

0

the following estimates are

valid.

sup

v2V

b(q; v)

kvk

V

� sup

v2V

l

�f0g

b(q; v)

kvk

V

(6.6)

sup

v2V

l

�f0g

b(q; v)

kvk

V

= sup

g2Q

0

sup

w2V

[w] = g

�

hq; gi

Q�Q

0

kgk

Q

0

kgk

Q

0

kwk

V

�

Remark 6.3

� kqk

Q

Proposition 6.5. The mixed problem (6.3) has a unique solution (u; p) 2 V �Q with

kuk

V

+ kpk

Q

� kfk

V

0

Proof. Because of Theorem 6.1 the bilinear form a(:; :) is elliptic on kerB = fv j b(v; q) =

0 8 q 2 Qg. From Proposition 6.4 it's known that b(:; :) ful�ls a LBB-condition and with

Theorem 4.25 the prove is done.

The only thing which is missing is that a solution of (6.1) generates a solution of (6.3) and

vice versa.
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Theorem 6.6. Let u 2 H

1

0

(
) be the unique solution of (6.1) with f 2 L

2

(
) then the

pair (u;

@u

@n

) 2 V � Z is the unique solution of (6.3). On the other hand if (u; p) 2 V �Q

is the unique solution of (6.3) then u 2 H

1

0

(
) is the unique one of (6.1).

Proof. The proof can also be found in Raviart and Thomas [41, Theorem 1].

� Let (u; p) 2 V � Q be the unique solution of (6.3), then due to Theorem 6.1 u 2

H

1

0

(
). Choosing v 2 H

1

0

(
) in equation (6.3) the desired result follows.

� Let u be the solution of (6.1) and consider the linear form

hL; vi

V

0

�V

:= a(u; v)� hf; vi

V

0

�V

= b(p; v)

Let ' 2 C

1

0

(
) � H

1

0

(
) and because u is a solution of (6.1) it's deduced that

�divru exists in a distributional sense and is equal f .

0 = hL; 'i

V

0

�V

=

Z




hru;r'i

l

2

(R

d

)

� f' dx = �hdivru+ f; 'i

(

C

1

0

(
)

)

0

�C

1

0

(
)

From the density of C

1

0

(
) in L

2

(
) and the fact that f 2 L

2

(
) the equality holds

in L

2

(
) and thus divru 2 H(div;
). Using Greens' formula (Lemma 3.8), the

linear functional hL; :i

V

0

�V

can be represented as

hL; vi

V

0

�V

=�hdivru+ f; vi

V

0

�V

+ h hru; ni

l

2

(R

d

)

; [v]i

Z�Z

0

= b(hru; ni

l

2

(R

d

)

; v)

From Proposition 6.4 it's known that p is unique and thus p = hru; ni

l

2

(R

d

)

2 Z.

Remark 6.7. The mixed formulation is useful if 


l

are separately meshed because in this

case the grid is usually a non-matching one (see Figure 6.1).

Remark 6.8. To solve this problem numerically, a stable pair V

h

� V , Q

h

� Q of �nite

element spaces has to be chosen. For V assume the standard discretisation with Lagrange

elements of �rst order. The only thing which is missing is how to choose Q

h

. One possibility

is to use Mortar, which is a well developed technique. An other possibility is to use nodal

constraints, which will be considered in the following.

6.2 Nodal Constraints

The idea of nodal constraints is to set the duality pairing

hq

h

; [u

h

]i

Q�Q

0

= hq

h

; u

h;1

� u

h;2

i

Q�Q

0

=

X

x

i

2N

C

h;l

q

i

h

(u

h;1

(x

i

)� u

h;2

(x

i

)) ;
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where q

i

h

2 R and N

C

h;l

= f nodes of surface �

C

generated by the mesh of 


l

g : Now the

question arises are there linear functionals q

i

h;l

: Q

0

! R 2 Q such that

hq

i

h;l

; v

h

i

Q�Q

0

= v

h

(x

i

) 8 v

h

2 W

h

(6.7)

or not. The space W

h

denotes the sum of the traces of V

h;l

at �

C

(see Figure 6.2).

W

h

:= trV

h;1

+ trV

h;2

: (6.8)

w   in W
h h

x σi i

Figure 6.2: Summed trace spaces

The answer isn't obvious because in general the space Q doesn't include point eval-

uating functionals. Having a positive answer, the next question is whether the space

Q

h;l

= spanfq

i

h;l

j x

i

2 N

C

h;l

g and V

h

are a stable pairing, or not. This section is concerned

with answering this questions by formulating an abstract condition for the existence of an

interpolation operator I

l

: trV

l

! trV

h;l

such that

I

l

(v

h

)(x

i

) = v

h

(x

i

) 8 x

i

2 N

C

h;l

8 v

h

2 trV

h;1

+ trV

h;2

(6.9a)

I

l

v

h

= v

h

8 v

h

2 trV

h;l

(6.9b)

kI

l

vk

k;E

�

m

X

j=0

h

j�k

E

jvj

j;!

E

8 0 � k � m 8 v 2 H

m

(�

C

) (6.9c)

X

E2E

C

h;l

h

2(k�m)

E

kv � I

l

vk

2

k;E

� kvk

2

m;�

C

8 0 � k � m � r + 1 8 v 2 H

m

(�

C

) :

(6.9d)

r is the integer which �xes the polynomial degree of the ansatz space (for linear Lagrange

elements r = 1).

Remark 6.9. W.l.o.g. it's possible to refer I

l

: Q

0

! trV

h;l

as an operator from I

l

: V

l

! V

h;l

with property (6.9a)-(6.9d) on V

l

; V

h;l

instead of trV

l

; trV

h;l

and 


l

instead of �

C

. The

reason therefore is

� trV

l

= Q

0

because the trace operator is surjective Theorem 3.5

� I

l

: V

l

! V

h;l

can be constructed like a Scott-Zhang operator using instead of the

usual boundary approximation the operator I

l

: trV

l

! trV

h;l

.
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Indeed I

l

: V

l

! V

h;l

becomes nothing else than a Scott-Zhang operator with special

choice of �

i

for the boundary nodes x

i

2 N

C

h;l

.

With this knowledge it's possible to refer I

h

: V ! V

h

(v

1

; v

2

) 7! (I

1

v

1

; I

2

v

2

) as an

interpolation operator with property (6.9b)- (6.9d).

Remark 6.10. From Section 5.2 it's known that I

l

: V

l

! V

h;l

can be represented via

I

l

(v) =

P

x

i

2N

h;l

I

l

(v)(x

i

)'

i

, where '

i;l

denotes the basis ansatz function in node x

i

. Similar

the interpolation operator I

l

: trV

l

! trV

h;l

is represented via I

l

(v) =

P

x

i

2N

C

h;l

I

l

(v)(x

i

)'

i;l

,

where 8 x

i

2 N

C

h;l

: '

i;l

:= '

i

j

�

C

.

Assuming the existence of such an interpolation operator ful�lling (6.9a)-(6.9d) the

space of nodal evaluating linear functionals Q

h;l

can be de�ned.

De�nition 6.11. The space of nodal evaluating functionals is de�ned by

Q

h;l

=

8

<

:

q 2 Q j q(v) =

X

x

i

2N

C

h;l

q

i

(I

l

v)(x

i

) q

i

2 R

9

=

;

: (6.10)

Remark 6.12. To call the space Q

h;l

the space of nodal evaluating functionals isn't correct

because only functions v 2 W

h

are evaluated correct at the nodal points x

i

2 N

h;l

. Even

continuous functions aren't evaluated at node x

i

.

Considering Q

h;l

as discretisation of Q and with the discretisation V

h

� V the mixed

FE system

a(u

h

; v

h

) + b(p

h

; v

h

)= hf; v

h

i

V

0

�V

8 v

h

2 V

h

b(q

h

; u

h

) = 0 8 q

h

2 Q

h;l

(6.11)

can be considered. To prove existence, uniqueness and approximation results for the mixed

system (6.11) standard assumptions for Theorem 4.25 and Theorem 5.10 have to be veri�ed.

First consider the approximation property of Q

h;l

in Q \X (X = L

2

(�

C

)).

Lemma 6.13. Let I

l

ful�l properties (6.9a)- (6.9d), Q

h;l

be given by De�nition 6.11 and

assume a uniform mesh. Then the operator

I

l

Q

: Q! Q

h;l

p 7! p

h

:=

X

x

i

2N

C

h;l

hp; '

i;l

i

Y�Y

0

I

l

(:)(x

i

) : (6.12)

is an interpolation operator ful�lling

kI

l

Q

pk

Q

�kpk

Q

8 p 2 Q

kp� I

l

Q

k

X

� h

1

2

l

kpk

Q

8 p 2 X :

(6.13)
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Proof. Because of the interpolation theorem (Theorem 3.13) Q is the interpolation space

Q = [Y;X]

1

2

. To hold the notation simple de�ne Q

�

:= [Y;X]

�

. Note that X ,! Y and

thus hp; q

�

i

Q

�

�Q

0

�

= hp; q

�

i

Y�Y

0

: From the de�nition of I

l

Q

follows that

hI

l

Q

p; q

�

i

Q

�

�Q

0

�

= hp;

X

x

i

2N

C

h;l

I

l

(q

�

)(x

i

)'

i;l

i

Y�Y

0

= hp; I

l

q

�

i

Y�Y

0

= hp; I

l

q

�

i

Q

�

�Q

0

�

:

� That I

l

Q

is bounded is proved by proo�ng that I

l

Q

is a bounded linear operator from

I

l

Q

: Q

�

! (Q

h;l

; k:k

Q

�

) for � 2 f0; 1g and then using Theorem 3.11.

kI

l

Q

pk

Q

�

= sup

q

�

2Q

0

�

hI

l

Q

p; q

�

i

Q

�

�Q

0

�

kq

�

k

Q

0

�

= sup

q

�

2Q

0

�

hp; I

l

q

�

i

Q

�

�Q

0

�

kq

�

k

Q

0

�

C:S:

� kpk

Q

�

sup

q

�

2Q

0

�

kI

l

q

�

k

Q

0

�

kq

�

k

Q

0

�

(6.9c)

� kpk

Q

�

� Also the approximation property is proved by proo�ng the corresponding approxima-

tion property in the space Q

�

with � 2 f0; 1g and using the interpolation inequality

(Theorem 3.13).

kp� I

l

Q

pk

Q

�

= sup

q

�

2Q

0

�

hp� I

l

Q

p; q

�

i

Q

�

�Q

0

�

kq

�

k

Q

0

�

= sup

q

�

2Q

0

�

hp; q

�

� I

l

q

�

i

X�X

kq

�

k

Q

0

�

) kp� I

l

Q

pk

Y

(6.9d)

�

r

P

E2E

C

h;l

h

2

E

kpk

2

0;E

� h

l

kpk

X

) kp� I

l

Q

pk

Q

�

Theorem 3.13

� kp� I

l

Q

pk

�

Y

kp� I

l

Q

pk

1��

X

� h

�

l

kpk

X

A direct consequence of Lemma 6.13 is the following proposition.

Proposition 6.14. Let I

l

ful�l properties (6.9a)- (6.9d), Q

h;l

be given by De�nition 6.11

and assume a uniform mesh. Assuming p 2 X, then the following approximation result is

valid.

inf

q

h

2Q

h;l

kp� q

h

k

Q

�

p

h

l

kpk

X

(6.14)

Proposition 6.15. The discretised problem (6.11) ful�ls the discrete LBB condition uni-

formly in h

l

.

Proof. The proof is done by proving that I

h

is a Fortin operator on the subspace V

l

� f0g

and thus for equation (6.6). Using Fortin's criterion (Theorem 5.4) everything is done.

Boundness of I

h

is valid because of requirement (6.9c). The only thing to prove is

hq

h

; v � I

l

vi

Q�Q

0

= 0 8 q

h

2 Q

h;l

8 v 2 V

l

� f0g :
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This is trivial because 8 v 2 V

l

� f0g : I

l

(v) = I

l

(I

h

v) and thus

hq

h

; vi

Q�Q

0

=

X

x

i

2N

C

h;l

q

i

h

I

l

(v)(x

i

)

(6.9b)

=

X

x

i

2N

C

h;l

q

i

h

I

l

(I

h

(v))(x

i

) = hq

h

; I

h

vi

Q�Q

0

: (6.15)

Proposition 6.16. The bilinear form a(:; :) is uniformly V

0h

-elliptic, i.e.

kuk

2

V

� a(u; u) 8 u 2 kerB

h;l

= fv 2 V

h

j b(q

h

; v) = 0 8 q

h

2 Q

h;l

g : (6.16)

Proof. � �

C

\ �

D

= @�

C

: In this case j@


j

\ �

D

j > 0 8 j 2 f1; 2g and thus the

Poincar�e (or Friedrich's) inequality is valid on all of V , i.e. a(:; :) is V-elliptic.

� �

C

\ �

D

= ;: W.l.o.g. j@


2

\ �

D

j = 0 and thus a(:; :) isn't V -elliptic. Thus prove

that a(:; :) + k [ : ] k

2

L

2

(�

C

)

' k:k

2

V

. This is done by verifying the assumptions of

Theorem 3.18 (equivalent norms theorem), i.e. k[ : ]k

L

2

(�

C

)

� k:k

V

and continuous,

and 8 c 2 V (c = const.) : k [c] k

L

2

(�

C

)

= 0 , c = 0 : Both assumptions are trivially

ful�lled. Now consider I

h

u 2 kerB

h;l

, I

l

[I

h

u] = 0. For such functions the term

k [I

h

u] k

L

2

(�

C

)

doesn't vanish in general. Nevertheless it's possible to estimate

k [I

h

u] k

2

L

2

(�

C

)

= k [I

h

I

h

u]� I

l

[I

h

u] k

2

L

2

(�

C

)

= k(I

l

� I

l�1

)(I

h

u)

l�1

k

2

L

2

(�

C

)

� k(I � I

l

)(I

h

u)

l�1

k

2

L

2

(�

C

)

+ k(I � I

l�1

)(I

h

u)

l�1

k

2

L

2

(�

C

)

(6.9d)

�

X

E2E

C

h;l

h

E

k(I

h

u)

l�1

k

2

1

2

;E

(6.4)

� h

l

kI

h

uk

2

V

:

Thus there exists a parameter h

l;max

2 R

+

such that for all mesh-parameters h

l

�

h

l;max

the bilinear form a(:; :) is uniform V

0h

-elliptic.

Note that for every mesh-parameter a(:; :) is trivially V

0h

-elliptic (but not necessary

uniformly) because a(:; :) + kI

l

[ : ] k

2

L

2

(�

C

)

'

h

k:k

2

V

(I

l

is uniformly bounded and kI

l

[c] k =

j�

C

jj [c] j and thus Theorem 3.18 is valid). Per de�nition 8 I

h

u 2 kerB

h;l

: kI

l

[I

h

u]k

L

2

(�

C

)

=

0 and everything is done.

Theorem 6.17. Let (u; p) 2 ((H

2

(


1

)�H

2

(


2

)) \ V )�L

2

(�

C

) be the solution of problem

(6.3) and (u

h

; p

h

) be solution of (6.11), with a uniform mesh, then the following convergence

result holds

ku� u

h

k

V

+ kp� p

h

k

Q

� h

l

kuk

2;


1

+


2

+ h

1

2

l

kpk

X

(6.17)

Proof. Because of the discrete inf-sup condition (Proposition 6.15) the V

0h

ellipticity of

a(:; :) (Proposition 6.16) and the boundness, Theorem 5.10 is valid and thus

ku� u

h

k

V

+ kp� p

h

k

Q

� inf

v

h

2V

h

ku� v

h

k

V

+ inf

q

h

2Q

h;l

kp� q

h

k

Q

Proposition 6.14

� ku� I

h

uk

V

+

p

h

l

kpk

0;�

C

(6.9d)

� h

l

kuk

2;


1

+


2

+

p

h

l

kpk

0;�

C

:
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Remark 6.18. The convergence result of Theorem 6.17 is an optimal result for the dual

variable p and the assumed smoothness. But in the usual case that u 2 H

2

(
) \ H

1

0

(
),

then p 2 H

1

2

(�

C

) due to Theorem 6.6 and thus a better convergence result is expected.

For Mortar techniques this is true but for nodal constraints this can't be proved because

of missing approximation results for negative sobolev indices.

Nevertheless it's possible to achieve a better convergence result for the primal variable

u, if the mixed Laplace problem is consistently modi�ed. How to modify the mixed Laplace

problem consistently such that the convergence result is optimal for the primal variable u

and for nodal constraints, is the aim of the next section.

6.3 Stabilised Mixed FEM

In Section 6.2 a master surface l was chosen and on the master surface l the nodal interpo-

lation functions were de�ned. There may be the idea to expect the nodal restrictions for

both sides (both surfaces). In general this isn't a good idea because either the new kernel

space

kerB

h

= fv 2 V

h

j b(q

h;l

; v) = 0 ^ b(q

h;l�1

; v) = 0 8 q

h;l

2 Q

h;l

8 q

h;l�1

2 Q

h;l�1

g

is equal to the set of functions which are constant on �

C

or the LBB condition isn't ful�lled

or both on some parts of �

C

. The �rst case is too restrictive and the solution will in general

not converge to the continuous one, in the second case the discrete solution isn't unique.

Nevertheless the hanging nodes of the slave surface l � 1 (i.e. nodes which are not

restricted), may in
uence the convergence property. For the Mortar method there are no

hanging nodes. The idea now is to add some consistent penalty term to the bilinear form

a(:; :) which restricts hanging nodes of the slave surface l� 1. The simplest idea is to add

some penalty term for every node at the slave surface l � 1. Note that adding a penalty

term isn't the same as expecting nodal constraints on both sides.

For notation assume that the master-surface is the surface l � 1 (i.e. q

h

2 Q

h;l�1

) and

the slave surface is l. Consider the following consistent modi�ed bilinear form

a

l;s

(u; v) = a(u; v) +

X

E2E

C

h;l

h

�2�

E

Z

E

I

l

[u] I

l

[v] ds : (6.18)

The penalty term is h

l

-dependent and penalises every node of the slave surface. To apply

standard theory, i.e. boundness, V

0h

-ellipticity and LBB condition has to be veri�ed, new

h

l

dependent norms have to be introduced (at least for the primal variable).

kvk

2

V

h;l

:= kvk

2

V

+

X

E2E

C

h;l

h

�2�

E

ku

1

� u

2

k

2

0;E

(6.19)

kqk

2

Q

h;l

:= inf

q=q

1

+q

2

q

1

2Q; q

2

2X

fkq

1

k

2

Q

+

X

E2E

C

h;l

h

2�

E

kq

2

k

2

0;E

g : (6.20)
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Remark 6.19. The h

l

dependent norm k:k

V

h;l

is stronger than the former norm k:k

V

but

the corresponding h

l

dependent norm of the dual variable k:k

Q

h;l

is weaker than k:k

Q

.

Important is that for p 2 X(= L

2

(�

C

))

inf

q

h

2Q

h;l

kp� q

h

k

2

Q

h;l

�

X

E2E

C

h;l

h

2�

E

kpk

2

0;E

:

I.e. the h

l

dependent norm k:k

Q

h;l

is chosen weaker than k:k

Q

such that the approximation

of the dual variable is trivial. Especially for � �

1

2

the approximation result improves for

the dual variable.

Note that this norms are not well suited for numerical implementations but that's not

important because they are only needed for theoretical aspects.

Thus the aim is to check the properties of Theorem 4.25 and Theorem 5.10. To do this

the explicite representation of the dual norm of k:k

Q

h;l

is needed.

Lemma 6.20. The dual norm of k:k

Q

h;l

is

k : k

2

Q

0

h;l

= k : k

2

Q

0

+

X

E2E

C

h;l

h

�2�

E

k : k

2

0;E

: (6.21)

Proof. Let q

�

2 Q

0

, then the norm kq

�

k

Q

0

h;l

is

kq

�

k

Q

0

h;l

= sup

q2Q

hq

�

; qi

Q�Q

0

kqk

Q

h;l

= sup

q2Q

sup

q=q

1

+q

2

q

1

2Q; q

2

2X

hq

�

; q

1

+ q

2

i

Q�Q

0

s

kq

1

k

2

Q

+

X

E2E

C

h;l

h

2�

E

kq

2

k

2

0;E

= sup

q=q

1

+q

2

q

1

2Q; q

2

2X

hq

�

; q

1

+ q

2

i

Q�Q

0

s

kq

1

k

2

Q

+

X

E2E

C

h;l

h

2�

E

kq

2

k

2

0;E

C:S:

� sup

q=q

1

+q

2

q

1

2Q; q

2

2X

kq

�

k

Q

0

kq

1

k

Q

+

s

X

E2E

C

h;l

h

�2�

E

kq

�

k

2

0;E

s

X

E2E

C

h;l

h

2�

E

kq

2

k

2

0;E

s

kq

1

k

2

Q

+

X

E2E

C

h;l

h

2�

E

kq

2

k

2

0;E

C:S:

�

s

kq

�

k

Q

0

+

X

E2E

C

h;l

h

�2�

E

kq

�

k

2

0;E

:

The equality is proved by considering the solution of the following variational equation

hp

1

; q

1

i

Q�Q

+

X

E2E

C

h;l

h

2�

E

hp

2

; q

2

i

0;E

= hq

�

; q

1

+ q

2

i

Q�Q

0

8 q

1

2 Q 8 q

2

2 X :
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Note that Q is a Hilbert space and h:; :i

Q�Q

denotes the scalar product on Q and not the

duality pairing. This variational equality is uniquely solvable because it's Q � L

2

(�

C

)-

elliptic and bounded (not uniformly in h

l

) and thus the theorem of Lax Milgram (Theorem

4.11) is valid. Taking the supremum of the variational equation and using that L

2

(E) �

X(= L

2

(�

C

)) 8E 2 E

C

h;l

it can be concluded that (p

1

; p

2

) ful�ls

kp

1

k

Q

= kq

�

k

Q

0

kp

2

k

2

X

=

X

E2E

C

h;l

h

�2�

E

kq

�

k

2

0;E

:

Substituting this result into above supremum the desired lower bound follows.

Remark 6.21. Note that due to Remark 6.3 it's possible to give an equivalent representation

of k:k

Q

0

h;l

.

kgk

2

Q

0

h;l

= kgk

2

Q

0

+

P

E2E

C

h;l

h

�2�

E

kgk

2

0;E

(6.4)

' inf

w2V

[w]=g

0

@

kwk

2

V

+

P

E2E

C

h;l

h

�2�

E

k [w]j k

2

0;E

1

A

' inf

w2V

[w]=g

kwk

2

V

h;l

:

(6.22)

In this equivalent representation V can be replaced by V

j

� f0g, because V

j

j

�

C

= Q

0

.

This equivalence was also valid for k:k

Q

0

(Remark 6.3) and played an essential role for the

LBB condition (see Proposition 6.4).

To apply standard theory the continuity, the LBB-condition and the kernel ellipticity for

problem (6.3) with the stabilised bilinear form a

l;s

(:; :) ((6.18)) instead of a(:; :) is proved.

Proposition 6.22. a

l;s

(:; :) is continuous and V

0

-elliptic, b(:; :) is continuous and ful�ls

the LBB condition with respect to the h

l

-dependent norms k:k

V

h;l

; k:k

Q

h;l

.

Proof. � Continuity of a

l;s

(:; :):

a

l;s

(u; v) = a(u; v) +

X

E2E

C

h;l

h

�2�

E

Z

E

I

l

[u] I

l

[v] ds

C:S:

� kuk

V

kvk

V

+

X

E2E

C

h;l

h

�2�

E

kI

l

[u] k

0;E

kI

l

[v] k

0;E

C:S:+(6.9c)

�

s

kuk

2

V

+

X

E2E

C

h;l

h

�2�

E

k [u] k

2

0;E

s

kvk

2

V

+

X

E2E

C

h;l

h

�2�

E

k [v] k

2

0;E

= kuk

V

h;l

kvk

V

h;l
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� Continuity of b(:; :):

b(q; u) = hq; [u]i

Q�Q

0

= inf

q=q

1

+q

2

q

1

2Q; q

2

2X

hq

1

+ q

2

; [u]i

Q�Q

0

C:S:

� inf

q=q

1

+q

2

q

1

2Q; q

2

2X

8

<

:

kq

1

k

Q

k [u] k

Q

0

+

X

E2E

C

h;l

h

�

E

kq

2

k

0;E

h

��

E

k [u] k

0;E

9

=

;

C:S:

� inf

q=q

1

+q

2

q

1

2Q; q

2

2X

s

kq

1

k

2

Q

+

X

E2E

C

h;l

h

2�

E

kq

2

k

2

0;E

�

v

u

u

t

k [u] k

2

Q

0

| {z }

'kuk

2

V

+

X

E2E

C

h;l

h

�2�

E

k [u] k

2

0;E

(6.22)

� kqk

Q

h;l

kuk

V

h;l

� LBB-condition:

sup

v2V

b(q; v)

kvk

V

h;l

� sup

v2V

l

�f0g

b(q; v)

kvk

V

h;l

(6.23)

sup

v2V

l

�f0g

b(q; v)

kvk

V

h;l

= sup

g2Q

0

sup

w2V

[w]=g

�

hq; gi

Q�Q

0

kgk

Q

0

kgk

Q

0

kwk

V

h;l

�

Remark 6.21

� sup

g2Q

0

hq; gi

Q�Q

0

kgk

Q

0

h;l

= kqk

Q

h;l

:

� V

0

� ellipticity is trivial because [u] = 0 inQ

0

and thus

a

l;s

(u; u) = a(u; u) � kuk

2

V

= kuk

2

V

h;l

In the same way as in Section 6.2 the uniform LBB-condition, for the h

l

dependent norms

k:k

V

h;l

; k:k

Q

h;l

, can be proved.

Proposition 6.23. The bilinear form b(:; :) ful�ls the discrete LBB condition, with respect

to the h

l

dependent norms k:k

V

h;l

; k:k

Q

h;l

, uniformly in h

l

.

Proof. The prove is done similar as the prove of Proposition 6.15. It's shown that I

h

is

a Fortin operator on V

l

� f0g, i.e. that equation (6.23) ful�ls the uniform LBB-condition

with the associated norm k:k

V

h;l

; k:k

Q

h;l

. The invariance was still proved in Proposition

6.15 equation (6.15) and thus only the continuity of I

h

with respect to the norm k:k

V

h;l

has

to be veri�ed.

kI

h

vk

2

V

h;l

= kI

h

vk

2

V

+

X

E2E

C

h;l

h

�2�

E

k [I

h

v] k

2

0;E

(6.9d)

� kvk

2

V

+

X

E2E

C

h;l

h

�2�

E

k [v] k

2

0;E

= kvk

V

h;l

:
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The rest follows from Fortin's criterion Theorem 5.4.

The only result which is missing to apply standard convergence results for saddle point

problems is the uniform V

0h

-ellipticity with respect to the norm k:k

V

h;l

. The author isn't

in the position to give an general proof for the V

0h

-ellipticity and thus it's assumed. In

Section 6.4 a proof for linear Lagrange elements and the d = 2 is given.

Theorem 6.24. Assume that a

l;s

(:; :) is uniform V

0h

-elliptic, with respect to the norm

k:k

V

h;l

, that the solution (u; p) of (6.3) has the regularity u 2 H

2

(


1

)�H

2

(


2

)\V; uj

�

C

2

H

2

(�

C

); p 2 L

2

(�

C

) and let (u

h

; p

h

) be the solution of the discretised system (6.11), with

a

l;s

(:; :) instead of a(:; :), then the following a-priori error estimate is valid

ku� u

h

k

V

h;l

+ kp� p

h

k

Q

h;l

� inf

v

h

2V

h

q

h

2Q

h;l

fku� v

h

k

V

h;l

+ kp� q

h

k

Q

h;l

g

�

s

P

T2�

h

h

2

T

kuk

2

2;T

+

P

E2E

C

h;l

h

2(2��)

E

kuk

2

2;E

+

P

E2E

C

h;l

h

2�

E

kpk

2

0;E

.

(6.24)

Proof. Because of Proposition 6.22 for the continuous problem and Proposition 6.23 and the

assumed uniform V

0h

-ellipticity, with respect to the norm k:k

V

h;l

, for the discrete problem,

all assumptions for Theorem 5.10 are valid and thus

ku� u

h

k

V

h;l

+ kp� p

h

k

Q

h;l

� inf

v

h

2V

h

q

h

2Q

h;l

fku� v

h

k

V

h;l

+ kp� q

h

k

Q

h;l

g

�

r

ku� I

h

uk

2

V

+

P

E2E

C

h;l

h

�2�

E

ku� I

h

uk

2

0;E

+ kpk

Q

h;l

(6.9d)

�

s

P

T2�

h

h

2

T

kuk

2

2;T

+

P

E2E

C

h;l

h

2(1��)

E

kuk

2

2;E

+

P

E2E

C

h;l

h

2�

E

kpk

2

0;E

Remark 6.25. The best choice for �, to achieve a best possible convergence result, is � = 1.

For a uniform mesh the convergence error in the primal variable u gets ku � u

h

k

V

h;l

�

h(kuk

2;


1

+kuk

2;


2

+kpk

L

2

(�

C

)

) and is thus an optimal result for linear Lagrange elements.

Note that for this optimal convergence result more regularity is assumed as usually

necessary.

Remark 6.26. Sometimes an a-priori error estimate in a weaker norm , as the L

2

-norm, is

from further interest. Usually such an estimate is proved by assuming L

2

�H

2

regularity,

i.e.

if f 2 L

2

(
) then u 2 H

2

(
) ^ kuk

2;


� kfk

L

2

(
)

; (6.25)

and applying the Aubin-Nitsche trick. Note that due to Theorem 6.6 p 2 H

1

2

(�

C

). Mortar

techniques also achieve optimal convergence in the L

2

-norm. For the stabilised version of

nodal constraints this isn't proved by the author, but the numerical results presented in

Section 6.6 give rise to expect optimal convergence results also for the weaker L

2

-norm.
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6.4 2D Example

Assume d = 2 and r = 1 (linear ansatz functions). For this case an interpolation operator

ful�lling (6.9a)- (6.9d) is constructed. Later on the uniform V

0h

-ellipticity with respect to

the norm k:k

V

h;l

is proved.

In the two dimensional case W

h

is nothing else than the linear space which results from

the ordinary linear and continuous ansatz for the new mesh given by joining the nodes of

both sides (N

C

h

:= N

C

h;1

[N

C

h;2

). Note that this new mesh in general degenerates and thus

no interpolation operator with property (6.9a)- (6.9d) exists on W

h

.

Nevertheless it's possible to de�ne an interpolation operator I

W

h

: L

2

(�

C

) ! W

h

such

that

� I

l

w

h

= w

h

8 v

h

2 W

h

� kI

W

h

vk

0;E

� kvk

0;!

E

with!

E

= int

�

S

Kj

�

C

jK \ E 6= ;; K 2 �

h

�

:

This is done by choosing for every x

i

2 N

C

h

the largest element �

i

and set

I

W

h

(v)(x

i

) := P

lin

�

i

(v)(x

i

) :

P

lin

�

i

is the projection operator de�ned in Section 5.2 for Scott-Zhang type operators and

linear ansatz functions. Note that the largest element �

i

has measure of order j�

i

j = O(h

l

).

That's the reason for the uniform boundness of kI

W

h

k

L

2

in h

l

. De�ne I

l

: L

2

(�

C

)! trV

h;l

I

l

u := I

l

N

I

W

h

u =

X

x

i

2N

C

h;l

I

W

h

(v)(x

i

)'

i;l

;

where I

l

N

is the ordinary nodal interpolation operator (see Section 5.2), '

i;l

is the basis

ansatz function '

i

restricted to �

C

. This operator ful�ls (6.9a)- (6.9d).

Lemma 6.27. The operator I

l

= I

l

N

I

W

h

ful�ls property (6.9a)- (6.9d).

Proof. Because of Remark 6.9 it's possible to refer I

l

as an operator I

l

: V

l

! V

h;l

. The

proof is �nished if it's proved that I

l

: V

l

! V

h;l

is an Scott-Zhang operator and thus

ful�ls property (6.9b)-(6.9d). Following the original proof of Scott and Zhang [45] with

a little modi�cation, namely that �

i

on �

C

is chosen as above , then the proof is done.

Because the measure of �

i

is of order h

l

(j�

i

j ' h

l

) all steps of the proof of Scott and

Zhang are valid. The only thing which has to be checked is the property (6.9a). Let

w

h

2 W

h

(or w 2 V

l

such that wj

�

C

= w

h

), then

I

l

(w

h

)(x

i

) = I

l

N

I

W

h

(w

h

) = I

l

N

(w

h

) = w

h

(x

i

) 8 x

i

2 N

C

h;l

:

The existence of this interpolation operator I

l

guarantees the validity of the hole theory

developed in Section 6.3. Especially the existence, uniqueness and convergence results are

valid. For the stabilised mixed FEM the additional assumption, a

l;s

(:; :) is uniformly V

0h

-

elliptic with respect to the norm k:k

V

h;l

, was made. For the 2D case this uniform ellipticity

can also be proved.
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Lemma 6.28. Let d = 2 and assume a linear, quasi uniform Lagrange discretisation.

Then the stabilised bilinear form a

l;s

(:; :) is uniformly V

0h

elliptic, i.e.

a

l;s

(u

h

; u

h

) � ku

h

k

2

V

h;l

8 u

h

2 kerB

h;l�1

: (6.26)

Proof. From Proposition 6.16 it's known that a(:; :) is V

0h

- elliptic, with respect to the

norm k:k

V

and so it's enough to prove that

X

E2E

C

h;l

h

�2�

E

k [I

l

u

h

] k

2

0;E

�

X

E2E

C

h;l

h

�2�

E

k [u

h

] k

2

0;E

:

Every element u

h

2 kerB

h;l�1

can be represented via

hq

h

; [v

h

]i

Q

0

�Q

= 0 8 q

h

2 Q

h;l�1

, v

h;1

(x

i

) = v

h;2

(x

i

) 8 x

i

2 N

C

h;l�1

;

and from the explicit representation ofW

h

= trV

h;1

+trV

h;2

only the following extreme case

has to be considered.

P

S

f

r

a

g

r

e

p

l

a

c

e

m

e

n

t

s

a

b

�

jEj = 1

[u

h

]

I

l

[u

h

]

� 2 (0; 1)

� x

i

2 N

C

h;l

a(1� x) + b

� x

i

2 N

C

h;l�1

(

a

�� x

�

x 2 [0; �]

b

x� �

1� �

x 2 [�; 1]

�

R

E

(I

l

[u

h

])

2

dx =

R

E

(a(1� x)� b)

2

dx =

1

3

(a

2

+ b

2

+ ab)

�

R

E

[u

h

]

2

dx =

R

[0;�]

a

2

�

�� x

�

�

2

dx +

R

[�;1]

b

2

�

x� �

1� �

�

2

dx

=

1

3

(�a

2

+ (1� �)b

2

) :

Summing up gives

2

Z

E

(I

l

[u

h

])

2

dx�

Z

E

[u

h

]

2

dx =

1

3

�

(a

2

(1� �) + b

2

�) + (a + b)

2

�

� 0 ;

and thus the required result.

With the existence of the interpolation operator and the uniform V

0h

- ellipticity, with

respect to the norm k:k

V

h;l

the optimal convergence results for nodal constraints, at least

in 2D, is guaranteed.
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6.5 Implementation of Stabilised FEM

For numerical purposes it's necessary to represent the discretised mixed equation (6.3), with

a

l;s

(:; :) instead of a(:; :), in matrix and vector notation. This is done in a standard way. The

only interesting part is the explicit form of the stabilisation term. In this section it's not

distinguished between (u; p) 2 V

h

�Q

h;l

and the representing vector (u; p) 2 R

N

1

+N

2

�R

N

C

l

.

N

i

is the number of free nodes in the domain 


i

produced by the triangulation �

h;i

(N :=

N

1

+ N

2

). N

C

l

denotes the number of free nodes at the boundary �

C

produced from the

triangulation of domain 


l

. As in Section 6.3 the master surface is denoted by l � 1 and

the slave surface by l. Standard discretisation techniques give the following representation

of the stabilisation term in a

l;s

(:; :) (u 2 V

h

):

X

E2E

C

h;l

h

�2�

E

Z

E

I

l

[u] I

l

[v] ds =

X

x

i

;x

j

2N

C

h;l

[u](x

i

)[v](x

j

)

X

E2E

C

h;l

h

�2�

E

Z

E

'

i;l

'

j;l

ds

| {z }

=: (C

�1

�;l

)

i;j

:

With the setting

(B

l

u)

i

:= [u](x

i

) 8 x

i

2 N

C

h;l

A

ij

:= a('

i

; '

j

) 8 x

i

; x

j

2 N

h

;

the stabilised bilinear form a

l;s

(:; :) can be representation by

a

l;s

(u; v) = hAu; vi

l

2

(R

N

)

+ hB

T

l

C

�1

�;l

B

l

u; vi

l

2

(R

N

)

:

Note that A 2 R

N�N

and B

l

2 R

N�N

c

l

. Using the matrix vector representation of the

bilinear form b(:; :)

b(q; v) =

X

x

i

2N

C

h;l�1

q

i

I

l�1

[v](x

i

) =

X

x

i

2N

C

h;l�1

q

i

[v](x

i

) = hq; B

l�1

vi

l

2

(R

N

C

l�1

)

;

the discretised system (6.11) becomes the following inde�nite system:

�

A+B

l

C

�1

�;l

B

l

B

T

l�1

B

l�1

0

��

u

p

l�1

�

=

�

f

0

�

:

An algorithm to generate the matrix B

l

is given in Section 7.6. From the discrete LBB-

condition Proposition 6.23 it's known that the matrix B

l

has full rank (RgB

l

= N

C

l

). Thus

it's possible to rewrite above inde�nite system into

0

@

A B

T

l�1

B

T

l

B

l�1

0 0

B

l

0 �C

�;l

1

A

0

@

u

p

l�1

p

l

1

A

=

0

@

f

0

0

1

A

:
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Note that the arti�cial introduce vector p

l

2 R

N

C

l

has no interpretation in the space

Q

h;l

! This substitution was only done for numerical purposes. It seems to be di�cult

to calculate the matrix C

�;l

. Assuming a uniform mesh, then calculating C

�;l

is quit

simple. Due to the uniformity of the mesh the stabilisation term

P

E2E

C

h;l

h

�2�

E

R

E

I

l

[u] I

l

[v] ds is

equivalent to h

�2�

l

R

�

C

I

l

[u] I

l

[v] ds. Proceeding as above the stabilisation term is represented

by hB

l

h

�2�

l

M

C

l

B

T

l

u; vi

l

2

(R

N

C

l

)

. The matrix (M

C

l

)

i;j

=

R

�

C

'

i;l

'

j;l

ds denotes the mass matrix

at the boundary �

C

produced by the triangulation of the domain 


l

. For linear ansatz

functions it's known that this mass matrix is spectrally equivalent to a diagonal matrix

(M

C

l

)

ij

=

R

�

C

'

i;l

ds �

ij

; the so called lumped mass matrix. Thus C

�1

�;l

can be replaced

(without loosing any property like existence, uniqueness and convergence) by the diagonal

matrix C

�1

�;l

= h

�2�

l

M

C

l

, which is easy to invert. So it's enough to solve the system

0

@

A B

T

l�1

B

T

l

B

l�1

0 0

B

l

0 �C

�;l

1

A

0

@

u

p

l�1

p

l

1

A

=

0

@

f

0

0

1

A

:

6.6 Numerical Example

To verify the results of Section 6.3 consider the following example and solve it numerically

P

S

f

r

a

g

r

e

p

l

a

c

e

m

e

n

t

s




1




2

�

C

�u = �100 sin(10x)

u = sin(10x) on �

D

= @


Solution u = sin(10x)

In Figure 6.3 the non-matching grid is visualised and in Figure 6.4 the solution for the

mesh-parameter h =

1

40

is visualised. The interesting graphics are the convergence rates

in theH

1

-norm (Figure 6.5) and the L

2

norm (Figure 6.6). For � = 1, i.e. with stabilisation

h

�2

the optimal convergence rates are achieved, as it was proved in Section 6.3.
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Figure 6.3: Mesh, h =

1

10

Figure 6.4: Solution, h =

1

40
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Chapter 7

The Body-Body Contact Problem

In Chapter 4 the primal- or weak- formulation of the body-body contact problem was pre-

sented. For this primal- or weak- formulation some equivalent formulations were presented.

Also the unique solvability of the body-body contact problem was guaranteed in Section

4.4. The aim of this chapter is to reduce the body-body contact problem into something

computable. This is done by standard FEM discretisation, which was presented in Chapter

5. The only thing which isn't obvious is how to approximate the convex sets K; N . There

are several possibilities. One is to use Mortar. This approach is considered in Belgacem,

Hild and Laborde [6] [5] and shouldn't be considered in this thesis. Motivated from

the results of Chapter 6 the body-body contact problem, i.e. the convex sets K; N , are

approximated via nodal constraints. At least for the Signorini problem, this approach is

very common and provides optimal results (see Haslinger, Hlav

�

a

�

cek and Ne

�

cas [29],

Kikuchi and Oden [34], Brezzi, Hager and Raviart [13] [14] and Falk [24]). The

results achieved for the body-body contact problem with nodal constraints aren't optimal

due to a similar reason as foe the non optimality of nodal constraints for non-matching

grids.

Due to large scales of some body-body contact problems adaptive mesh re�nement

will be better suited to solve these problems. For variational inequalities the results on

adaptive mesh re�nement are very sparse (e.g. Kornhuber [38], Ainsworth, Oden

and Lee [3]). To the knowledge of the author there is no a-posteriori error estimator

which is well suited for the body-body contact problem and nodal constraints. For an

augmented lagrangian algorithm Carstensen, Scherf and Wriggers [15] presented

an a-posteriori error estimator for the body-body contact problem, but this estimator

doesn't �t into the solving algorithm used in this thesis. Thus an ad hoc re�nement

algorithm is presented which seems to give good results, at least for the 2D case. The

re�nement algorithm is based on standard error estimators for elliptic equalities, which

can be found in Verf

�

urth [49] [50] or Ainsworth and Oden [2].

In Section 7.1 a short review of the three important equivalent formulations of the body-

body contact problem are given. These formulations are discretised by nodal constraints

in Section 7.2. Some a-priori convergence results for this discretisation are presented in

Section 7.3. The draw back for the nodal constraints is the missing convergence result,

66
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when no regularity of the solution is assumed. In Section 7.4 an ad-hoc adaptive mesh

re�nement algorithm is presented for the body-body contact problem with nodal constraints

as discretisation. This re�nement strategy seems to give \good" results. Motivated from

Chapter 6 the body-body contact problem is stabilised in Section 7.5. The draw back

for the stabilisation applied to the body-body contact problem is, that it isn't consistent

anymore. Finally in Section 7.6 it's explained how to implement the constraints.

7.1 Formulations of the Body-Body Contact Problem

In Chapter 4, three equivalent formulations for the body-body contact problem (with

hA:; :i

V

0

�V

V -elliptic) were presented. Because of the importance of these three equivalent

formulations for this chapter, they are denoted again. The �rst one was the primal- or

weak- formulation (4.4)

u = argmin

v2K

1

2

hAv; vi

V

0

�V

� hF; vi

V

0

�V

; (7.1)

with K the set of admissible displacements (4.2)

K =

�

v 2 V

0

j g � v

R

N

� 0 a.e.

	

:

The second one was the mixed or saddle-point formulation

hAu; vi

V

0

�V

+ hBv; pi

Q

0

�Q

= hF; vi

V

0

�V

8 v 2 V

hBu; qi

Q

0

�Q

� hG; qi

Q

0

�Q

8 q 2 N

hBu�G; pi

Q

0

�Q

= 0 ;

(7.2)

with N := C

0

+

=

n

q 2 H

1

2

(�

C

) j q � 0 a.e.

o

0

:

Remark 7.1. For the primal- and for the mixed- formulation it's not necessary to assume

V -ellipticity for A, ellipticity on K, which is equivalent to the ellipticity on kerB, is enough

to guarantee existence and uniqueness of the solution. Only for the third formulation, the

dual formulation V -ellipticity is necessary.

In the numerical examples presented in this thesis (Chapter 9) j�

1

D

j; j�

2

D

j > 0 and

with Theorem 4.27 A is V -elliptic. If one of the two bodies isn't �xed (w.l.o.g. j�

2

D

j = 0),

then it's possible to achieve a V -elliptic operator A by regularising A, i.e. adding some

h-dependent mass term to A. This is some kind of Tikhonov regularisation and may work

quite well. One problem is to �nd the correct h-dependent factor to keep the problem

stable.

The dual formulation with A is V -elliptic reads as follows

p = argmin

q2N

1

2

hBA

�1

B

�

q; qi

Q

0

�Q

� hBA

�1

F �G; qi

Q

0

�Q

; (7.3)

where u is calculated by solving the equality Au = F �B

�

p.
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Remark 7.2. A dual formulation exists also for a non V -elliptic operator A but the repre-

sentation of this formulation isn't as simple as this one. The algorithm presented in the

next chapter is essentially based on the dual formulation with V -elliptic operator A.

These three equivalent formulations enable a lot of di�erent kinds of discretisation tech-

niques and solving algorithms. In the next section the primal and the mixed formulation

will be discretised and it turns out that both discretisation are equivalent.

7.2 Discretisation of the Body-Body Contact Prob-

lem

For discretising the body-body contact problem the FEM, presented in Chapter 5, is ap-

plied. Thus the discretisation of the space V is done in a standard way, i.e.

V

h

= f v

h

2 C

0;D

(
) j v

h

j

T

2 P

r

(T ) 8T 2 �

h

g :

It's also possible to use FEM to discretise Q, keeping in mind that the pair V

h

� Q

h

has

to be stable. This will result into Mortar techniques, which shouldn't be discussed in this

thesis. For discretisation of the body-body contact problem with Mortar techniques refer

to Belgacem, Hild and Laborde [6] [5]. In this thesis the discretisation of the space

Q should be done by nodal evaluating linear functionals, i.e.

Q

h;l

=

8

<

:

q 2 Q j q(v) =

X

x

i

2N

C

h;l

q

i

(I

l

v)(x

i

) q

i

2 R

9

=

;

:

This nodal evaluating linear functionals and their properties are known from Chapter 6.

To discretise formulations presented above it's not enough to discretise the spaces V;Q,

it's necessary to discretise the convex sets K;N . The �rst idea to approximate the convex

sets K; N may be to use K

h

= K \ V

h

; N

h

= N \ Q

h

. This sets would have a lot of

advantages concerning a-priori and a-posteriori error estimates, but the disadvantage is

that these sets can't be handled numerically, at least not with a reasonable e�ort. Further

more the set N \ Q

h;l

may be empty if I

l

doesn't preserve positive functions. A very

common approximation of the convex set K is the setting

K

h;l

=

�

v

h

2 V

h

j v

h

R

N

(x

i

) � g(X

i

) 8 x

i

2 N

C

h;l

	

: (7.4)

This approximation K

h;l

of the convex set K is very simple to handle numerically, because

the admissibility of v

h

2 V

h

is tested by evaluating v

h

at certain nodes in N

h

. The big

disadvantage of this approximation is that K

h;l

is no subset of K anymore. To prove that

the solution of the discretised primal formulation u

h

converges strongly to the solution of

the body-body contact problem u assumptions (5.15a)-(5.15b) have to be ful�lled (Theorem

5.9). The author isn't in the position to prove (5.15a) and up to the knowledge of the author

there is no proof.
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The discretised primal formulation is also equivalent to a mixed and a dual formulation.

Both are achieved by introducing arti�cial Lagrange multipliers. This isn't very satisfying

because this arti�cial Lagrange multipliers have no interpretation in the space Q.

To get rid of this arti�cial Lagrange multipliers it's necessary to discretise the mixed

or saddle point formulation. The discrete spaces V

h

; Q

h;l

are still �xed. The only thing

which is missing is the approximation of the set N . In Chapter 6 it was seen that I

l

Q

is an

interpolation operator fromQ intoQ

h;l

. To approximate the setN consider I

l

Q

q 8 q 2 N

(equation (6.12)) explicitely.

I

l

Q

q =

X

x

i

2N

C

h;l

h'

i;l

; qi

Q

0

�Q

I

l

(:)(x

i

) (7.5)

If the ansatz functions '

i;l

have polynomial degree less than three, then they are positive

and because q 2 N it's deduced that h'

i;l

; qi

Q

0

�Q

� 0. Thus approximate N via

N

h;l

= I

l

Q

N =

8

<

:

q

h

2 Q

h;l

j q

h

=

X

x

i

2N

C

h;l

q

i

I

l

(:)(x

i

) 8 q

i

� 0

9

=

;

: (7.6)

Also for this approximation N

h;l

is no subset of N .

Remark 7.3. If the interpolation operator I

l

(:) is constructed like in Chapter 6 then I

l

(:)

doesn't map positive functions into positive ones and thus no element ofN

h;l

=f0g is element

of N .

The solution u

h

of the discretised mixed system ful�ls

hBu

h

�G; q

h

� p

h

i

Q

0

�Q

� 0 8 q

h

2 N

h;l

and if I

l

(g) = g this is nothing else than (Bu

h

� g)(x

i

) � 0 8 x

i

2 N

C

h;l

. In fact the

convex set K

h;l

can be represented via

K

h;l

= f v

h

2 V

h

j hBv

h

�G; q

h

i

Q

0

�Q

� 0 8 q

h

2 N

h;l

g :

Thus the discretised primal formulation and the discretised mixed formulation and also the

discretised dual formulation are equivalent. Especially the arti�cial introduced Lagrange

multipliers for the discretised primal formulation becomes a meaning in the space Q.

7.3 Convergence Results

To achieve convergence results the existence and uniqueness of the discrete problem has

to be guaranteed. In Chapter 5 it was proved that it's enough to check the uniform kernel

ellipticity and the uniform LBB condition. Because it was assumed that A is V -elliptic,

the kernel ellipticity is trivial. The LBB condition is in general more complicated, but in

the special case that X

(l)

is the identity map and n is a constant unit vector, the discrete

uniform LBB condition is trivial. The proof is similar to that one of Proposition 6.15. The

only thing what has to be proved is that I

l

is a Fortin operator on the space V

l

� f0g,

which is trivial.
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Remark 7.4. The numeric examples presented at the end of this thesis ful�l both, that A

is V -elliptic, because j�

1

D

j; j�

2

D

j > 0 and the normal unit vector n is constant. Note that

n is constant is nothing else than a special choice of the parametrisations X

(j)

.

In the section before it was mentioned that the author isn't in the position to prove

condition (5.15a) for the primal formulation and condition (5.15b) for the dual formulation

and so Theorem 5.9 can't be applied, i.e. it can't be proved that lim

h!0

+

ku

h

� uk

V

= 0 for

the primal formulation and lim

h!0

+

kp

h

�pk

Q

= 0 for the dual formulation, without assuming

any regularity. Assuming more regularity for the solution u of the primal formulation the

following proposition holds.

Proposition 7.5. Let g 2 H

d�1

2

+�

(�

C

), u 2 (H

d

2

+�

(


1

) � H

d

2

+�

(


2

)) \ K ; be solution of

(7.1), where � is an arbitrary small number, u

h

2 K

h;l

be the corresponding solution of the

discretised formulation (7.1). Furthermore let the polynomial degree of the ansatz functions

be less than three, then

lim

h!0

+

ku� u

h

k

V

= 0 : (7.7)

Proof. The prove is done by using Lemma 5.8, i.e. by estimating the right hand side of

the following inequality.

hAe; ei

V

0

�V

� hF; u� v

h

i

V

0

�V

+ hF; u

h

� vi

V

0

�V

+hAe; u� v

h

i

V

0

�V

+ hAu; v � u

h

i

V

0

�V

+ hAu; v

h

� ui

V

0

�V

;

which is valid 8 v 2 K 8 v

h

2 K

h;l

. Before estimating the last inequality, i.e. choosing v

and v

h

, some facts are denoted.

� Because of the regularity of u and g and the embedding theorem Theorem 3.4 it's

known that u and g are continuous and thus the nodal interpolation operator I

N

is well de�ned. Furthermore it's known that Bu � g � 0 a.e. and due to the

continuity of u and g this inequality is valid everywhere. Thus the function I

N

u

ful�ls (BI

N

u� g)(x

i

) � 0 8 x

i

2 N

C

h;l

. This is nothing else than I

N

u 2 K

h;l

.

� Condition (5.15b) is valid. For the proof assume w

h

2 K

h;l

with w

h

* w. To prove

that w 2 K consider hBw �G; qi

Q

0

�Q

for all q 2 N .

hBw

h

�G; qi

Q

0

�Q

= hBw

h

�G; q � I

l

Q

qi

Q

0

�Q

+ hBw

h

�G; I

l

Q

qi

Q

0

�Q

(�)

� hBw

h

�G; q � I

l

Q

i

Q

0

�Q

� kBw

h

�Gk

Q

0

kq � I

l

Q

qk

Q

(�) I

l

Q

q 2 N

h;l

8 q 2 N because the ansatz functions '

i;l

have polynomial degree

less than three.

Using the weak convergence of w

h

* w, which also guarantees that w

h

is bounded

(uniform boundness principle seeHeuser [31, Satz 40.2]) and Lemma 6.13 it's proved

that hBw �G; qi

Q

0

�Q

� 0 8 q 2 N and thus w 2 K.
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� u

h

is uniformly bounded due to Theorem 4.11 and thus has a weak converging sub-

sequence (Eberlein-Shmulyan see Heuser [31, Satz 60.6]). W.l.o.g. assume that

u

h

* u

�

. Note that u

�

2 K because (5.15b) is valid.

Now consider above inequality an set v

h

= I

N

u and v = u

�

. Noting that A is V -elliptic,

I

N

u converges strong to u the assertion is proved for every subsequence and thus for the

hole sequence.

The last proposition guarantees convergence under some regularity assumptions. Assuming

more regularity a convergence rate is expected. The next proposition provides a conver-

gence rate which is similar to that one of Chapter 6 for nodal constraints without any

stabilising term.

Proposition 7.6. Assume for B and the space V

h

�Q

h;l

the uniform LBB condition. Let

g 2 H

d�1

2

+�

(�

C

), (u; p) 2 ((H

2

(


1

)�H

2

(


2

)) \ V ) � (L

2

(�

C

) \N) ; be the unique solu-

tion of (7.2) and (u

h

; p

h

) the corresponding unique solution of the discretised formulation.

Furthermore assume that the parametrisations X

(i)

are such that Bu 2 H

d�1

2

+�

(�

C

). Then

the following convergence rate holds.

ku� u

h

k

V

+ kp� p

h

k

Q

� O(h

1

2

) (7.8)

Proof. First prove the assertion for the primal variable u by using inequality (5.16) from

Lemma 5.6. I.e. 8 v

h

2 K

h;l

8 q

h

2 N

h;l

the following inequality is valid.

hAe; ei

V

0

�V

� hAe; u� v

h

i

V

0

�V

+ hB(u

h

� v

h

); p� q

h

i

Q

0

�Q

+hB(u� v

h

); q

h

i

Q

0

�Q

+ hBu�G; p� q

h

i

Q

0

�Q

Like in the proof of Proposition 7.5 it follows that I

N

u 2 K

h;l

and I

l

Q

p 2 N

h;l

and thus set

v

h

= I

N

u and q

h

= I

l

Q

p. For notation set X = L

2

(�

C

) and V

+

= H

2

(


1

)�H

2

(


2

).

� hAe; u� I

N

ui

V

0

�V

C:S:

� �kek

2

A

+

1

�

ku� I

N

uk

2

A

(5.8)

� �kek

2

A

+

h

2

�

kuk

2

V

+

�

hB(u

h

� I

N

u); p� I

l

Q

pi

Q

0

�Q

= hB(u

h

� u); p� I

l

Q

pi

Q

0

�Q

+ hB(u� I

N

u); p� I

l

Q

pi

Q

0

�Q

C:S:

� kBk

L(V;Q

0

)

�

kek

V

kp� I

l

Q

pk

V

+

ku� I

N

uk

V

kp� I

l

Q

pk

Q

�

C:S:+(4.22)

� �kek

2

A

+

1

�

(�

1

kBk

L(V;Q

0

)

)

2

kp� I

l

Q

pk

2

Q

+

kBk

L(V;Q

0

)

2

(ku� I

N

uk

2

V

+ kp� I

l

Q

pk

2

Q

)

Lemma 6.13+(5.8)

� �kek

2

A

+

h

l

�

kpk

2

X

+ h

2

kuk

2

V

+
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�

hB(u� I

N

u); I

l

Q

pi

Q

0

�Q

C:S:

� kBk

L(V;Q

0

)

ku� I

N

uk

V

kI

l

Q

pk

Q

Lemma 6.13+(5.8)

� hkuk

V

+

kpk

Q

� Set Y

0

= H

1

(�

C

) and Y its dual space, then

hBu�G; p� I

l

Q

pi

Q

0

�Q

� kBu�Gk

Y

0

kp� I

l

Q

pk

Y

Lemma 6.13

� h

l

kBu�Gk

Y

0

kpk

X

:

Choosing �; � small enough (independent of h) then

ku� u

h

k

2

V

(4.22)

� ku� u

h

k

2

A

� h

�

kuk

2

V

+

+ kpk

2

X

+ kBu�Gk

Y

0

kpk

X

+ kpk

Q

kuk

V

+

�

:

The missing part is the convergence of the dual part kp� p

h

k

Q

� kp� q

h

k

Q

+ kq

h

� p

h

k

Q

.

kq

h

� p

h

k

Q

(5.13)

� sup

v

h

2V

h

hBv

h

; q

h

� p

h

i

Q

0

�Q

kv

h

k

V

(7.2)

= sup

v

h

2V

h

hA(u

h

� u); v

h

i

V

0

�V

� hBv

h

; q

h

� pi

Q

0

�Q

kv

h

k

V

(4.22)

� ku� u

h

k

V

+ kBk

L(V;Q

0

)

kp� q

h

k

Q

With q

h

= I

l

Q

p the assertion is proved.

Remark 7.7. The convergence result ku�u

h

k

V

+kp�p

h

k

Q

� O(h

1

2

) is the best possible for

the assumed regularity, but for the assumed regularity in the primal variable the regularity

in the dual variable is usually better (p 2 H

1

2

(�

C

)). Then this result isn't the best possible.

Comparing the result with that one achieved in Chapter 6 for nodal constraints without

stabilisation, it's the best result which can be expected with the theory given in this thesis.

Remark 7.8. Some regularity results for the body-body contact problem can be found in

Boieri, Gastaldi and Kinderlehrer [7].

7.4 Ad-Hoc Adaptive Mesh Re�nement

One of the numeric example (the real life problem) has a very large scale. Using a uniform

mesh the number of unknowns will become too large before the contact area is \correctly"

described. This problem can be solved by generating the mesh by hand or by using adaptive

mesh re�nement. Up to the knowledge of the author there are no e�cient element error

estimators for the body-body contact problem with nodal constraints as discretisation.

Thus it's necessary to use ad-hoc re�nement algorithm. In Ainsworth and Oden [2]

some gradient based error estimators are presented which can be used.
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The ad-hoc adaptive mesh re�nement which is used in this thesis is based on inequality

(5.17b) from Lemma 5.7.

hAe; ei

V

0

�V

= fhF; e� e

h

i

V

0

�V

� hAu

h

; e� e

h

i

V

0

�V

� hB(e� e

h

); p

h

i

Q

0

�Q

g

+ fhBu�G; p

h

i

Q

0

�Q

g+ fhBu

h

�G; pi

Q

0

�Q

g

There are three terms which should be considered separately.

�

hAu

h

� F; e� e

h

i

V

0

�V

=

P

T2�

h

h�(u

h

); grad(e� e

h

)i

0;T

� h

^

F ; e� e

h

i

0;T

� hL; e� e

h

i

0;@T\�

N

(3.15)

= �

P

T2�

h

hdiv�(u

h

) +

^

F ; e� e

h

i

0;T

+ h�

(�)

; e� e

h

i

0;@T

� hL; e� e

h

i

0;@T\�

N

= �

P

T2�

h

hdiv�(u

h

) +

^

F ; e� e

h

i

0;T

+

P

E2E




h

h[�

�

(u

h

)]; e� e

h

i

0;E

+

P

E2E

N

h

h�

(�)

� L; e� e

h

i

0;E

+

P

E2E

C

h;l

[E

C

h;l�1

h�

(�)

; e� e

h

i

0;E

[ : ] is de�ned as follows: Let E 2 E




h

, then two unique elements T;K 2 �

h

exists

with E = T \K. With this [�

(�)

(u)] := �

(�)

(u)

T

� �

(�)

(u)

K

. Note that � is a unit

normal vector on E. The error term

X

E2E

C

h;l

[E

C

h;l�1

h�

(�)

; e� e

h

i

0;E

;

together with the error term hB(e� e

h

); p

h

i

Q

0

�Q

can't be handled by the author and

are thus omitted. The element error �

T;1

can thus be de�ned by

�

2

T;1

:= h

2

T

kdiv�(u

h

) + fk

2

0;T

+

1

2

P

E2E(T )\E




h

h

T

k[�

(�)

(u

h

)]k

2

0;E

+

P

E2E(T )\E

N

h

h

T

k�

(�)

� Lk

2

0;E

:

Using only this element error �

T;1

for generating an adaptive mesh the mesh will look

like that one illustrated in Figure 7.3. It can be seen that the mesh becomes more

�ner at the slave surface l � 1 than at the master surface l. The hanging nodes at

the slave surface have no reasonable information for the contact. Due to the more

curved surface of the slave surface the gradient of the primal variable u becomes

larger. Especially gradient based error estimators recognise this and re�ne the slave

surface again. The mesh becomes worser and worser. The idea to prevent this may

be to penalise the penetration of the slave surface. This can be done by considering

this penetration in the operator A, similar to Section 6.3 or by re�ning elements at

the master surface, which are penetrated. The �rst idea is presented in Section 7.5

and the second one is done now, by considering further terms of (5.17b).
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� The error term which describes that u

h

62 K

h;l

is hBu

h

�G; pi

Q

0

�Q

. This term can also

be considered as the term which estimates the error resulting from hanging nodes.

In the hope that a correct estimate of this term produces a better mesh than that

one which is produced by using only �

T;1

, this term is considered in the following.

Let w

h

2 V

h

such that hB(u

h

� w

h

)�G; qi

Q

0

�Q

;� 0 8 q 2 N . Note that this (if

the parametrisation is smooth enough) is equivalent to B(u

h

� w

h

)�G � 0 on �

C

and because u

h

; w

h

2 V

h

this is equivalent to B(u

h

� w

h

)(x

i

) � g(x

i

) 8 x

i

2

N

C

h;l

[ N

C

h;l�1

: The term hBu

h

�G;P i

Q

0

�Q

can now be estimated by

hBu

h

�G; pi

Q

0

�Q

= hB(u

h

� (u

h

� w

h

)); pi

Q

0

�Q

+ hB(u

h

� w

h

)�G; pi

Q

0

�Q

� hBw

h

; pi

Q

0

�Q

= hmaxf0; Bw

h

g; pi

Q

0

�Q

� hmaxf0;�Bw

h

g; pi

Q

0

�Q

� hmaxf0; Bw

h

g; pi

Q

0

�Q

� kpk

Q

kmaxf0; Bw

h

gk

Q

0

:

To get an idea how to chose w

h

consider Figure 7.1.

There are several possibilities to choose w

h

. Consider only the two cases that either

d

Figure 7.1: sketch of the penetration (hanging nodes)

the master surface l or the slave surface l�1 is displaced such that B(u

h

�w

h

) � G.

I.e.

w

h

=

X

x

i

2N

C

h;j

d

i

'

i

: (7.9)

j is either l or l � 1. The meaning of d

i

is illustrated in Figure 7.1 and can be

calculated by a post processing step. To calculate d

i

�x the node x

i

and take all

elements T 2 �

h;j

such that x

i

2 T . For this elements calculate the maximal value of

penetration. This maximal value is d

i

. This calculation is simple to implement and

is of optimal time complexity.

hBu

h

�G; pi

Q

0

�Q

� kpk

Q

r

P

T2�

h;j

k

P

x

i

2N

C

h;j

d

i

'

i

k

2

1;!(T )

Theorem 5.2

� kpk

Q

r

P

T2�

h;l

h

�2

T

k

P

x

i

2N

h;j

d

i

'

i

k

2

0;!(T )

(�)

� kpk

Q

r

P

T2�

h;j

d

2

T

h

d�2

T
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(*) It's well known that the mass matrix M

j

is spectral equivalent to h

d

j

I. The same

is true for the local part

k

X

x

i

2N

C

h;j

d

i

'

i

k

0;!(T )

=

X

x

i

;x

n

2N

C

h;j

d

i

d

n

h'

i

; '

n

i

0;!(T )

'

X

x

i

2N

C

h;j

x

i

2!(T )

d

2

i

h

d

T

:

The value d

2

T

is nothing else than

d

2

T

:=

X

x

i

2N

C

h;j

x

i

2!(T )

d

2

i

:

Note that '

i

isn't the ansatz function restricted to �

C

.

The last estimate provides a local error estimate which can be added with a certain

constant (depending on kpkQ to �

T;1

. De�ne this additional term as

�

2

T;2

= d

2

T

h

d�2

T

:

From the construction it's possible that �

T;2

is an additional error added to the slave

surface l � 1 or to the master surface l. In Figure 7.3 it was illustrated that the

slave surface becomes a lot of hanging nodes if �

T;1

is used. Thus the additional term

�

T;2

is added to the master surface l (for penalising penetration or hanging nodes).

In Figure 7.4 the mesh generated by using the element error �

T;1

+ �

T;2

(�

T;2

at the

master surface l) is illustrated. The mesh has much less hanging nodes and seems to

be very satisfying

� The last term remaining is hBu�G; p

h

i

Q

0

�Q

� inf

v

h

2K

h;l

hB(u� v

h

); p

h

i

Q

0

�Q

: It is also

very di�cult to handle this term and thus it's neglected.

For adaptive mesh re�nement set �

T

either �

T;1

or �

T;1

+ �

T;2

. For �

T

it's expected that

X

T2�

h

�

2

T

� TOL :

TOL is the tolerance and chosen by the user. To minimise the number of degrees of

freedom during the re�nement it's expected that the error �

2

T

is equally distributed. Thus

an element T 2 �

h

is re�ned if

�

2

T

�

TOL

j�

h

j

:

The missing and unknown constant is absorbed with TOL. N

T

= j�

h

j is the number of

elements.

Remark 7.9. For Figure 7.3-Figure 7.5 the lower body is that one with the master surface

l and the upper one that one with the slave surface.
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7.5 Stabilisation of the Body-Body Contact Problem

In Chapter 6 a consistent stabilisation term was added to the operator A such that it

was possible to achieve better convergence results for the primal variable. This may be

a motivation to do the same for the body-body contact problem. In Section 7.4 it was

mentioned that the adaptive mesh generator based on the element error �

T;1

isn't very

satisfying due to the �ne mesh at the slave surface. The guessed reason for this �ne mesh

were the hanging nodes which result into a curved surface and thus into large gradients for

the discretised solution u

h

. One idea to prevent this was to penalise hanging nodes. For

a moment assume that the slave surface is the surface l. A consistent penalisation of the

hanging nodes, motivated by Section 6.3 will be

hA

l;s

:; :i

V

0

�V

= hA:; :i

V

0

�V

+

X

E2E

C

h;l

h

�2�

E

hI

l

(B : �G)

+

; I

l

(B : �G)

+

i

2

0;E

;

where ( : )

+

:= maxf0; : g represents the positive part of a function. It's obvious that the

stabilised version is consistent, because the admissible displacements v 2 K ful�l Bv�G �

0 a.e.. The term (B : �G)

+

represents the penetration and thus penalises functions which

aren't in the set of admissible displacements. Consider an element v

h

2 K

h;l�1

. Then the

hanging nodes (see Figure 7.1), which penetrate the body l � 1 are penalised. Thus it's

expected that the curvature of the slave surface becomes smoother and the adaptive error

estimator doesn't re�ne the slave surface as strong as in the original formulation. The

stabilisation term introduced above can't be handled numerically with a reasonable e�ort,

thus the stabilisation term is changed into

hA

l;s

:; :i

V

0

�V

= hA:; :i

V

0

�V

+

X

E2E

C

h;l

h

�2�

E

h

�

I

l

(B : �G)

�

+

;

�

I

l

(B : �G)

�

+

i

2

0;E

:

In general this stabilisation term isn't consistent because the interpolation operator I

l

doesn't preserve positive functions. Thus it isn't guaranteed that the stabilised version

doesn't change the problem seriously. The last stabilised version can be handled numeri-

cally, but also in this case the e�ort for it is too much. Having in mind only the idea of

penalising hanging nodes which penetrate, the stabilisation can be changed into

hA

l;s

:; :i

V

0

�V

= hA:; :i

V

0

�V

+

X

E2E

C

h;l

h

�2�

E

hI

l

+

(B : �G); I

l

+

(B : �G)i

2

0;E

; (7.10)

with I

l

+

(:) :=

P

x

i

2N

C

h;l

maxf0; I

(

:)(x

i

)g'

i;l

: Note that I

l

+

(I

l

( : )) = I

l

+

( : ). The last stabilisa-

tion term is simple to handle, especially for a uniform mesh and linear Lagrange elements.

The reason is similar to that of Section 6.5. Writing down the stabilisation term explicitely

gives

h

�2�

X

x

i

;x

j

2N

C

h;l

I

l

+

(B : �G)(x

i

)I

l

+

(B : �G)(x

j

) h'

i;l

; '

j;l

i

L

2

(�

C

)�L

2

(�

C

)

| {z }

= (M

C

l

)

ij

:
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It's well known that for linear ansatz functions the mass matrix M

C

l

is spectral equivalent

to the lumped mass matrix M

C

l

. Thus the stabilisation term is equivalent to

h

�2�

X

x

i

2N

C

h;l

(I

l

+

(B : �G)(x

i

))

2

(M

C

l

)

ii

:

Introducing arti�cial Lagrange multipliers on the space R

N

C

l

+

the stabilisation term can be

written as supremum of a quadratic constraint minimisation problem.

X

x

i

2N

C

h;l

(I

l

+

(B : �G)(x

i

))

2

(M

C

l

)

ii

= � inf

q2R

N

C

l

+

hM

C

l

q; qi

l

2

(R

N

C

l

)

� 2

X

x

i

2N

C

h;l

q

i

I

l

(B : �G)(x

i

)

Thus the stabilised problem can be denoted as saddle point problem or equivalent as mixed

inequality system.

hAu; vi

V

0

�V

+ hB

l�1

v; p

l�1

i

Q

0

�Q

+ hI

l

B

l

v; p

l

i

Q

0

�Q

= hF; vi

V

0

�V

8 v 2 V

hB

l�1

u�G; q

l�1

� p

l�1

i

Q

0

�Q

� 0 8 q

l�1

2 N

l�1

hI

l

(B

l

u�G) ; q

l

� p

l

i

Q

0

�Q

� h(M

C

l

)

�1

p

l

; q

l

� p

l

i

Q

0

�Q

� 0 8 q

l

2 N

l

(7.11)

Note that in this case the arti�cial Lagrange multipliers have no interpretation in Q. The

identi�cation of the vector q

l

2 R

N

C

l

+

with the functional q

l

2 N

l

is only an arti�cial one

and possible because the inverse of the lumped mass matrix (M

C

l

)

�1

is interpreted as an

operator mapping Q

h;l

! trV

h;l

. More precisely

(M

C

l

)

�1

:=

X

x

i

2N

C

h;l

'

i;l

(M

C

l

)

�1

ii

'

�

i;l

;

with '

�

i;l

: Q

h;l

! R q

h

7! h'

i;l

; q

h

i

Q

0

�Q

:

This system �ts into the theory presented in the last chapters and also �ts into the

class of problems which can be solved by the numerical algorithm presented in the next

chapter.

Remark 7.10. Numerical calculations with the stabilised version are ine�cient because of

missing robust preconditioners for parameter dependent problems. Nevertheless calcula-

tions with this stabilised versions were done. The only result which should be presented

here is the mesh generated by the solution of the stabilised version using only �

T;1

for the

adaptive mesh re�nement (see Figure 7.5). The mesh generated by this version seems to be

the best one compared with the other two possibilities. To get an idea how to construct a

robust preconditoner for the stabilised version and thus how to solve the stabilised version

e�ciently, refer to Sch

�

oberl [44].
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7.6 Generation of B

l

and G

l

In the previous section the discretisation of the body-body contact problem was introduced.

The constraints for the discretised problem were reduced to some nodal constraints. The

link between the values at the node x

i

2 N

C

h;l

and the restrictions was done by the matrix

B

l

. This section is concerned how to generate the matrix B

l

and the gap vector G

l

.

The matrix B

l

and the gap G

l

depend on the choice of the master surface l and on the

parametrisation.

In Chapter 2 it was noted that there is no rule for choosing the parametrisations X

(i)

.

Thus for two possible choices of the parametrisations X

(i)

the generation of B

l

and G

l

is

explained.

a. From the physical point of view it may be reasonable, that the parametrisation is

chosen such that it satis�es the following

ku

R

(X)k

l

2

(R

d

)

= inf

X2�

C







P

�

X

(1)

(X)

�

� P(X

(2)

(X))







l

2

(R

d

)

; (7.12)

where u should be the unknown solution and P(X) := u(X) +X.

Remember that this choice of parametrisation can result into an ill posed problem.

Nevertheless it's a very common choice and gives \good" results.

b. It's also possible to �x the unit vector n(X). This may be done due to geometrical

properties of the bodies or the normal vector of the deformed con�guration is guessed

(or known). In this case the parametrisations X

(i)

are chosen such that

n(X) =

P

�

X

(1)

(X)

�

� P(X

(2)

(X))







P

�

X

(1)

(X)

�

� P(X

(2)

(X))







l

2

(R

d

)

: (7.13)

This kind of choice enables to set n constant and with choosing X

(l)

as the identity

map, the uniform discrete LBB condition becomes trivial.

The domains 


i

are approximated by triangles and so the matrix B

l

and the vector G

l

can be calculated by Algorithm 7.1.

For explanation of the used notation 4; P

i

; : : : see Figure 7.2.
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~
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+t (P
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| {z }

~

R

2

= P � P

1

� hP � P

1

; �(4)i

l

2

(R

d

)

�(4)

�(4) =

~

R

1

�

~

R

2

k

~

R

1

�

~

R

2

k

l

2

(R

d

)

(7.14)

From equation (7.14) it should be obvious how to program the procedure Barycentric.

The only procedure of Algorithm 7.1 which isn't obvious is the procedure Parametri-

sation. One possibility is to calculate for every surface, generated by the 4 2 E

C

h;l�1

,

the point Q which ful�ls either a.) or b.) and checks whether this point is inside the
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Figure 7.2: barycentric coordi-

nates

Q should be the point in 4 such

that either case a.) or case b.) is

ful�lled. �(4) is the out warding

unit normal vector onto 4. The

barycentric coordinates of Q are

determined by equation (7.14)

triangle 4 or not. For 2D problems this may work fast enough, but for 3D problems

this may be rather slow. The time complexity for calculating B

l

and G

l

is in this case

O(N

C

l

N

C

l�1

) = O(h

�2(d�1)

) which isn't optimal in the 3D case. An other possibility to �nd

the triangle4 is the use of an ADT (Alternating Digital Tree). This method was presented

by Bonet and Peraire [8] and shouldn't be explained in this thesis. In this case the time

complexity for generating B

l

and G

l

reduces (in mean) to O(N

C

l

lnN

C

l�1

) = O(h

�(d�1)

lnh).

Remark 7.11. For numerical computation also Lagrange elements of second order were

used. In this case the calculation of the Parametrisation becomes more di�cult. Indeed

it's to di�cult to calculate the point Q on the curved surface generated by 4. One

simpli�cation would be to divide the triangle 4 into four parts, such that every node for

the ansatz functions becomes a corner point of one of these parts. This simpli�cation

is calculate able with a reasonable e�ort. Nevertheless it's enough to consider only the

triangle 4 itself to achieve a similar accuracy as for the partition of the triangle and thus

this was implemented by the author.
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PROCEDURE Generate(B;G; l; case)

BEGIN

WHILE P 2 N

C

h;l

DO

BEGIN

(� �nd 4 2 E

C

h;l�1

such that �)

IF case = a.) THEN

BEGIN

(� a.) 9Q 2 4 : Q = argmin

42E

C

h;l�1

X24

kP(X

(l)

(P ))� P(X

(l�1)

(X))k

l

2

(R

d

)

�)

Parametrisation(P;Q;4; a.))

END

IF case = b.) THEN

BEGIN

(� b.) 9Q 2 49� 2 R : Q = P (X

(l)

(P )) + �n(P ) �)

Parametrisation(P;Q;4; b.))

END

(� calculate barycentric coordinates �)

Barycentric(s ; t ; 4 ; Q ; P )

(� calculate u(Q) via barycentric coordinates �)

u(Q) = (1� t� s)u(P

1

) + su(P

2

) + tu(P

3

)

IF case = a.) THEN

BEGIN

(� a.) calculate n from (2.29) �)

n(P ) =

P(Q)� P(P )

kP(Q)� P(P )k

l

2

(R

d

)

END

(� set B and G �)

B

P;P

= n(P ) ; B

P;P

1

= �(1� t� s)n(P ) ; B

P;P

2

= �sn(P )

B

P;P

3

= �tn(P ) ; G

P

= signh�(4); n(P )i

l

s

(R

d

)

kP �Qk

l

2

(R

d

)

END

END

Algorithm 7.1: generation of B

l

and G

l
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Figure 7.3: mesh generated by �

T;1

Figure 7.4: mesh generated by �

T;1

+ �

T;2

Figure 7.5: mesh generated by stabilised two-sided nodal constraints and �

T;1



Chapter 8

Solving the Body-Body Contact

Problem

The contact problem results into a constraint minimisation problem (CMP). A lot of nu-

merical algorithms are developed to handle such CMP. Some of the classical algorithms

are explained in Glowinski [26]. In Wriggers [51] some algorithms especially for the

contact problem are presented. In this work also some approximations for the contact

condition are discussed. Carstensen, Scherf and Wriggers [15] gave a complete

numerical analysis for the contact problem of elastic bodies. In the last decade a lot of al-

gorithms are published, based on iterative methods, like Hackbusch and Mittelmann

[27], Hoppe and Kornhuber [32], Hoppe [33], Brandt and Cryer [11], Mandel

[40], Kornhuber [36] [37], Tarvainen [47] [48], Dosta

�

al, Gomes Neto and Santos

[20], Sch

�

oberl [43].

The algorithm which is presented in this thesis is as simple and old, as it's new. In

Section 8.1 an simple algorithm for solving CMP is presented in a very abstract way.

For this algorithm convergence results in the A-energy norm are presented. An concrete

example of this algorithm is presented in Section 8.2. This example will be the basis for

solving the body-body contact problem. To achieve a time optimal algorithm for solving

the body-body contact problem some transformations has be done. This transformations

is presented in Section 8.3. For an e�cient solving an equivalent preconditioner for the

transformed body-body contact problem are needed. This preconditioner is a result of the

Bramble Pasciak transformation, which is presented in Section 8.4. As a consequence of

all tools presented up to now, the �nal time optimal solving algorithm for the body-body

contact problem follows. The �nal algorithm and the proof of its optimal time complexity

is presented in Section 8.5. Finally some practical improvements of the solving algorithm

are presented in Section 8.6.

82
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8.1 The Approximate Projection Method

A lot of applications result into a CMP, especially the body-body contact problem is a

CMP. To solve such a problem numerically a CMP solver is needed. In this section such a

solver is developed in an abstract setting. In Section 8.5 this algorithm is applied to the

body-body contact problem such that the resulting algorithm has optimal time complexity.

Consider the CMP

J(v) =

1

2

hAv; vi

V

0

�V

� hF; vi

V

0

�V

u = argmin

v2K

J(v) ;

(8.1)

with A : V ! V

0

a symmetric, positive de�nite and bounded linear operator, F 2 V

0

and

K some closed convex set. Note that an operator is called positive de�nite (spd) i�

hAv; vi

V

0

�V

> 0 8 v 2 V=f0g : (8.2)

The quadratic functional J(v) is called Ritz functional. Usually A is a matrix resulting from

a FEM discretisation. Note that (8.1) has a unique solution because A is spd (Theorem

4.11). Assume that

^

A : V ! V

0

is some spectral equivalent preconditioner of A, i.e. there

are positive constants �; �, such that

� h

^

Av; vi

V

0

�V

� hAv; vi

V

0

�V

� � h

^

Av; vi

V

0

�V

8 v 2 V :

In the following spectral equivalence is denoted by

�

^

A � A � �

^

A ; (8.3)

or using �; �; ' to reduce writing.

Note that in a lot of applications �; � are independent of the mesh parameter h, but in

Section 8.2 there is one application with �; � mesh dependent.

To solve the CMP numerically, a projected, preconditioned richardson iteration can

be applied (see Algorithm 8.1). The parameter � is some relaxation parameter, which is

chosen such that Algorithm 8.1 converges in the

^

A-energy norm.

Note that

^

A was assumed to be spd and thus k:k

2

^

A

:= hA:; :i

V

0

�V

is a norm.

The operator P

K

^

A

: V ! K is a projection operator ontoK with respect to the

^

A-energy

norm (k:k

^

A

), i.e.

P

K

^

A

(~u) = argmin

v2K

kv � ~uk

^

A

: (8.4)

In Theorem 4.10 it was proved that P

K

^

A

is unique and lipschitz continuous with lipschitz

constant 1. Thus it's possible to apply the ordinary theory for the richardson iteration to

achieve convergence results and rates. From this it's known that Algorithm 8.1 converges

in the

^

A-energy norm, with convergence rate

� = �(

^

A� �A) = k

^

A� �Ak � maxfj1� ��j; j1� ��jg < 1 8 � 2]0;

2

�

[ :
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PROCEDURE Projection Algorithm(K;A;

^

A; F; �; u

1

)

BEGIN

FOR k = 1; 2; : : : DO

~u

k

= u

k

+ �

^

A

�1

�

F � Au

k

�

u

k+1

= P

K

^

A

�

~u

k

�

END

Algorithm 8.1: projected preconditioned richardson

Usually the

^

A-energy norm isn't from further interest, because this norm isn't fast com-

putable and has no physical interpretation. More interesting would be a convergence

result in the A-energy norm, at least for the application considered in this thesis. From

the convergence in the

^

A-energy norm the converges in the A-energy norm is deduced, but

this convergence may not be monotone. Sch

�

oberl [43] proved a monotone decay of the

quadratic Ritz functional J(v) and gives an estimate of the convergence rate �. This decay

of the Ritz functional J(v) also forces convergence in the A-energy norm.

Theorem 8.1 (Energy convergence). Let the relaxation parameter � 2]0;

1

�

], u

k

be a

sequence generated by Algorithm 8.1, then the estimate

J(u

k+1

) � �J(u

k

) + (1� �)J(u) (8.5)

holds for every k 2 N with the convergence rate

� = 1�

��

2

< 1 : (8.6)

The error in the A-energy norm is bounded by

ku� u

k

k

2

A

� 2�

k�1

�

J(u

1

)� J(u)

�

: (8.7)

Proof. see Sch

�

oberl [43, Theorem 1].

De�ne the condition number �(

^

A

�1

A) by

�(

^

A

�1

A) :=

�

�

: (8.8)

Note that this de�nition isn't the original one, but it's up to a mesh independent constant

equivalent (provided that �; � are close to the best possible spectral constants). Rewriting

the convergence rate � by setting �̂ = �� 2]0; 1] it's deduces that the convergence rate is

only dependent on the condition number �(

^

A

�1

A) and �̂ .

� = 1�

�̂

2�(

^

A

�1

A)
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The convergence rate is small if the spectral bounds �; � are close, i.e. �(

^

A

�1

A) ' 1.

The time to calculate one projected, preconditioned richardson step depends on the time to

evaluate

^

A

�1

�d; A�d and the time to calculate the projection P

K

^

A

(d). For FEM systems

the application of a multiplication in A is of optimal time complexity because A is usually a

spares matrix. Using a multigrid or multilevel preconditioner for

^

A, then it's possible to get

close spectral bounds and one application

^

A

�1

�d is as fast as an application of A�d. The

only thing which is usually very expansive to compute is the projection P

K

^

A

. To improve

this draw back the exact projection in Algorithm 8.1 is replaced by some approximate

projection

~

P

K

^

A

(Algorithm 8.2). If the approximate projection

e

P

K

^

A

ful�ls a certain decay

PROCEDURE Approximate Projection Algorithm(K;A;

^

A; F; �; u

1

)

BEGIN

FOR k = 1; 2; : : : DO

~u

k

= u

k

+ �

^

A

�1

�

F � Au

k

�

u

k+1

=

e

P

K

^

A

�

~u

k

�

END

Algorithm 8.2: approximate projection algorithm

in the

^

A-energy norm, then it's also possible to proof monotone convergence in the energy

functional J(v) and thus convergence in the A-energy norm, for Algorithm 8.2.

Theorem 8.2. Let the approximate projection

e

P

K

^

A

ful�l

k

e

P

K

^

A

(~u

k

)� ~u

k

k

2

^

A

� �

P

ku

k

� ~u

k

k

2

^

A

+ (1� �

P

) kP

K

^

A

(~u

k

)� ~u

k

k

2

^

A

; (8.9)

with �

P

2 [0; 1[ and let � 2]0;

1

�

] . Then Algorithm 8.2 has a monotone convergence of the

energy functional J(u

k

)

J

�

u

k+1

�

� �J

�

u

k

�

+ (1� �)J(u) ; (8.10)

and convergence of u

k

in the A-energy norm

ku� u

k

k

2

A

� 2�

k�1

�

J(u

1

)� J(u)

�

; (8.11)

for all k 2 N with the setting

� = 1�

��

2

(1� �

P

) < 1 : (8.12)

Proof. see Sch

�

oberl [43, Theorem 1]
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P

S

f

r

a

g

r

e

p

l

a

c

e

m

e

n

t

s

~u

k

u

k

e

P

K

^

A

(~u

k

)

P

K

^

A

(~u

k

)

K

(8.9)

Figure 8.1: sketch of (8.9)

Remark 8.3. Note that �

P

= 0 is nothing else than the exact projection. Condition (8.9) is

graphically illustrated in Figure 8.1. The approximate projection operator

e

P

K

^

A

(~u

k

) has to

be in the hatched area (Figure 8.1). This area is such that the distance between the point

~u

k

, resulting from the preconditioned richardson step, and the new point u

k+1

=

e

P

K

^

A

(~u

k

) 2

K in the hatched area, decreases strict in the

^

A-energy norm (�

P

2 [0; 1[). If �

P

= 0, i.e.

e

P

K

^

A

is the exact projection, this reduction is the best possible.

For practical computation a computable estimate for the iteration error is needed. The

next Corollary provides such an estimate, which is nothing else than the error estimator

for iterative methods for linear systems.

Corollary 8.4. Let the sequence u

k

be generated by Algorithm 8.2. Then the error of the

iteration value u

k+1

is bounded by

ku� u

k+1

k

2

A

�

2�

1� �

hu

k+1

� u

k

; f � Au

k

i

V

0

�V

; (8.13)

with � from Theorem 8.2.

Proof. see Sch

�

oberl [43, Corollary 1].

8.2 An Example of an Approximate Projection

Theorem 8.2 guarantees the convergence of the projected preconditioned richardson with

an approximate projection

e

P

K

^

A

, ful�lling (8.9), instead of the exact projection P

K

^

A

. In this

section a simple example of an approximate projection, ful�lling (8.9), is presented. To
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construct such an approximate projection

e

P

k

^

A

consider the problem of solving the exact

projection P

K

^

A

(~u

k

). This problem is nothing else, than solving the quadratic CMP

u

k+1

ex

:= P

K

^

A

(~u

k

) = argmin

v2K

kv � ~u

k

k

2

^

A

; (8.14)

which is due to Theorem 4.10 equivalent to the variational inequality

h

^

Au

k+1

ex

; u

k+1

ex

� vi

V

0

�V

� h

^

A~u

k

; u

k+1

ex

� vi

V

0

�V

8 v 2 K :

For the preconditioner

^

A it was assumed that it's a spd preconditioner and thus there are

spectral constant �

2

; �

2

such that

�

2

I �

^

A � �

2

I :

Note that if A is from an FEM discretisation, the spectral bounds �

2

; �

2

usually depends on

the mesh parameter h and are not close. Nevertheless apply n steps of the exact projection

algorithm, i.e. a projected richardson with projection in the V -norm (see Algorithm 8.3).

PROCEDURE Approximate Projection(K;

^

A; n; �

2

; u

k

)

BEGIN

w

0

= u

k

FOR j = 0; : : : ; n� 1 DO

~w

j

= w

j

+ �

2

^

A

�

~u

k

� w

j

�

w

j+1

= P

K

I

( ~w

j

)

u

k+1

=

e

P

K

^

A

(~u

k

) := w

n

END

Algorithm 8.3: example of an approximate projection

Remark 8.5. The projector P

K

I

in Algorithm 8.3 is a L

2

-projector. If K is a set of box

constraints, then this L

2

-projection is trivial.

From Theorem 8.1 it's known that the Ritz functional J(v) = kv� ~u

k

k

2

^

A

for Algorithm

8.3 converges monotone in the

^

A-energy with a convergence rate �

2

= 1 �

�̂

2

2�(

^

A)

, if

�̂

2

= �

2

�

2

2]0; 1]. Thus the Ritz functional decreases after applying Algorithm 8.3 by

ku

k+1

� ~u

k

k

2

^

A

� �

n

2

ku

k

� ~u

k

k

2

^

A

+ (1� �

n

2

) ku

k

ex

� ~u

k

k

2

^

A

:

This proves that Algorithm 8.3 is an approximate projection with �

P

= �

n

2

.
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Remark 8.6. Note that �

2

depends on the condition number �(

^

A) and so �

P

depends

on �(

^

A) for a �xed n. If A is the matrix generated by a FEM discretisation of an elliptic

problem, then �(

^

A) = O(h

�2

) (uniformmesh). This isn't very satisfying because Algorithm

8.3 should converge independent from the condition number �(

^

A) and thus from the mesh

parameter h.

To achieve that �

P

is independent of �(

^

A) choose

n = c

2�(

^

A)

�̂

2

; (8.15)

with c > 0 is some arbitrary constant. Substituting this n into �

P

gives

�

P

= �

n

2

=

 

1�

�̂

2

2�(

^

A)

!

c

2�(

^

A)

�̂

2

� e

�c

;

and thus �

P

is a constant, invariant of �(

^

A).

Remark 8.7. That n is depending on the condition number �(

^

A) is a draw back and it seems

so that this approximate projection (Algorithm 8.3) won't be a good idea. Nevertheless in

Section 8.5 this approximate projection proves to be the correct one to construct a solver

for the body-body contact problem with optimal time complexity.

8.3 Augmented Lagrangian Formulation

In Section 4.2 it was proved that the body-body contact problem is equivalent to the dual

formulation, which has the following form.

p = argmin

q2N

1

2

h(BA

�1

B

�

� C

| {z }

=: S

)q; qi

Q

0

�Q

� hq; BA

�1

F �Gi

Q

0

�Q

; (8.16)

and the displacements u 2 V are computed by solving

Au+B

�

p� F = 0 () u = argmin

v2V

kAv +B

�

p� Fk

2

�

: (8.17)

The norm k:k

�

is any norm which is equivalent to k:k

V

. The operator C is either 0 or the

operator which is generated by the stabilisation term (7.10). S is called Schurcomplement.

Problem (8.16) is a quadratic CMP where N has the form of box constraints. Thus

it may thought to solve this quadratic CMP with the approximate projection algorithm

(Algorithm 8.2). This will work but the algorithm which results has no optimal time

complexity, because the Schurcomplement isn't sparse. The main problem is the exact

inversion of the operator A. This problem is omitted by reformulating the CMP.



CHAPTER 8. SOLVING THE BODY-BODY CONTACT PROBLEM 89

Let

^

A be some (scaled) spd preconditioner such that

^

A < A � 


^

A ; (8.18)

de�ne the inexact Schurcomplement

S

in

:= B

^

A

�1

B

�

+ C ;

and let

^

S be some Schurcomplement preconditioner

�

^

S � S � �

^

S :

Note that due to the strict inequality

^

A < A the norm k:k

^

A

�1

�A

�1

is equivalent to the

norm k:k

V

. The reformulation is done by adding zero to the quadratic functional (8.16),

indeed add

1

2

inf

v2V

kAv +B

�

q � Fk

2

^

A

�1

�A

�1

:

Note that this in�num attains its limit value zero for all q 2 Q, because A is V -elliptic and

thus invertible (Theorem 4.11). Thus the problem (8.16) and (8.17) are equivalent to

(u; p) = argmin

(v;q)2V �N

1

2

h(BA

�1

B

�

+ C)q; qi

Q

0

�Q

� hq; BA

�1

F �Gi

Q

0

�Q

1

2

kAv +B

�

q � Fk

2

^

A

�1

�A

�1

:

(8.19)

Some elementary calculations prove that (8.19) can be written as the quadratic CMP

U = argmin

V2V�N

J (V);

with

J (U) =

1

2

hAU ; Ui � hF ;Ui :

The spd operator A and the functional F are known from the Bramble Pasciak transfor-

mation as

A =

�

(A�

^

A)

^

A

�1

A (A�

^

A)

^

A

�1

B

�

B

^

A

�1

(

^

A� A) B

^

A

�1

B

�

+ C

�

F =

�

(A�

^

A)

^

A

�1

F

B

^

A

�1

F �G

�

U =

�

u

p

�

:

(8.20)

This formulation seems to be much more complicated than the original one, nevertheless

it's the correct one for constructing a time optimal algorithm.
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8.4 A Review on Bramble Pasciak Transformation

It was mentioned before that (8.20) is well known from the Bramble Pasciak transforma-

tion. This transformation was originally applied to an matrix equation, where the matrix

was an special inde�nite matrix. This inde�nite matrix is achieved by setting N = Q in

(8.16) and reformulating this minimisation problem into a matrix equation. This equation

reads as follows.

�

A B

�

B �C

��

u

p

�

=

�

F

G

�

(8.21)

For this inde�nite system Bramble and Pasciak introduced an transformation, which trans-

forms it into a spd system. The transformation is nothing else than the multiplication of

the inde�nite system (8.21) by the operator

�

A�

^

A 0

0 I

��

I 0

B �I

��

^

A

�1

0

0 I

�

:

The result of this multiplication is also the spd system

AU = F ;

with A and F presented in (8.20).

The main result of Bramble and Pasciak was the spectrally equivalence of A to some

block diagonal matrix

^

A.

Theorem 8.8. Let

^

A be some scaled preconditioner for A (8.18), then the block diagonal

operator

^

A =

�


(A�

^

A) 0

0 B

^

A

�1

B

�

+ C

�

(8.22)

is spectrally equivalent to the block operator A, de�ned in (8.20), with spectral equivalence

constants

�=1�

q

1�

1




�=1 +

q

1�

1




:

Proof. see Bramble and Pasciak [9] or Sch

�

oberl [43, Theorem 2].

Remark 8.9. � � 2 and � >

1




=

1

�(

^

A

�1

A)

: Thus the condition number �(

^

A

�1

A) �

4�(

^

A

�1

A). The upper bound 2 for � provides a simple choice for the relaxation parameter

� in Algorithm 8.2 and because of the upper estimate of the condition number �(

^

A

�1

A)

by 4�(

^

A

�1

A) the convergence rate of Algorithm 8.2 only depends on �

P

and �(

^

A

�1

A).

Remark 8.10. The reason that the Bramble Pasciak transformation wasn't applied directly

to the mixed system of the body-body contact problem is that it was not obvious that this

transformation preserves the inequality sign.
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Remark 8.11. It's obvious that the operator C can also be replaced by an spectral equiva-

lent one. Indeed it's possible to replace the inexact Schurcomplement S

in

= B

^

A

�1

B

�

+

^

C

by some spectral equivalent Schurcomplement preconditioner

^

S, keeping in mind that then

�; � modi�es!

8.5 Contact Algorithm Based on Neumann DD

In Section 8.3 the body-body contact problem was reformulated into the quadratic CMP

U = argmin

V2V�N

1

2

hAU ; Ui � hF ;Ui ;

with A; F from (8.20). In Section 8.4 it was proved that (8.22) is a good preconditioner

for A. Note that due to Remark 8.11 it's possible to replace the inexact Schurcomplement

by some spectral equivalent Schurcomplement preconditioner

^

S. Now apply Algorithm 8.2,

i.e.

i. Apply one preconditioned richardson step

e

U

k

= U + �

^

A

�1

�

F �AU

k

�

:

With the notations

d

k

u

= F � Au

k

�B

�

p

k

w

k

u

=

^

A

�1

d

k

u

w

k

p

= B

�

w

k

u

�

�

G�Bu

k

+ Cp

k

�

;

(8.23)

the richardson step simpli�es to

�

~u

k

~p

k

�

=

�

u

k

p

k

�

+ �

�

w

k

u

^

S

�1

w

k

p

�

:

It seems so that the inverse of the Schurcomplement preconditoner is needed. This is

usually very expansive, because only the application of

^

S may be cheap. But there

is still one step missing

ii. Apply an approximate projection

U

k+1

=

e

P

V�N

^

A

�

e

U

k

�

:

Because the preconditoner

^

A is block diagonal, the primal and the dual variable

decouples. The primal component is unrestricted and thus the projection for it is

trivial. Therefor the approximate projection acts only on the dual component. For
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understanding the approximate projection of the dual component and its advantage,

consider �rst an exact projection, i.e. solve

p

k+1

ex

= argmin

q2N

kq � ~p

k

k

2

^

S

: (8.24)

Note that kq� ~p

k

k

2

^

S

= kqk

2

^

S

� 2h

^

S~p

k

; qi

Q

0

�Q

+ k~p

k

k

2

^

S

; and with (8.23) the quadratic

functional becomes

kq � ~p

k

k

2

^

S

= kqk

2

^

S

� 2h

^

Sp

k

+ �w

k

p

; qi

Q

0

�Q

+O(1) :

The last calculation proves that the term including

^

S

�1

only occurs in the constant,

which doesn't in
uence the calculation of p

k+1

ex

. Thus every algorithm, which is based

on solving (8.24) approximatively and ful�ls (8.9) is an approximate projection such

that

^

S

�1

never occurs. Especially Algorithm 8.3 is based on solving (8.24) and is

thus a candidate for the approximate projection.

PROCEDURE Augmented Projection Algorithm(N;

^

A;

^

S;A;B; C; F;G; u; p)

BEGIN

WHILE not termination criteria (8.25) DO

BEGIN

d

k

u

= F � Au

k

�B

�

p

k

w

k

u

=

^

A

�1

d

k

u

w

k

p

= Bw

k

u

�

�

G� Bu

k

+ Cp

k

�

(� calculate approximated projection p

k+1

=

e

P

N

^

S

(

^

Sp

k

+ �w

k

p

) �)

ApproximateProjection(N;

^

S;

^

Sp

k

+ �w

k

p

; p

k+1

)

(� update u

k+1

additive or multiplicative �)

u

k+1

add

= u

k

+

�




w

k

u

u

k+1

mul

= u

k+1

add

+

�




^

A

�1

B

�

�

p

k

� p

k+1

�

END

END

Algorithm 8.4: approximate augmented projection

If the Schurcomplement preconditioner is the inexact Schurcomplement

^

S = S

in

and thus,

� � 2, then it's possible to choose � =

1

2

explicitely. A better choice will be

� =

1

�

=

1

1 +

r

1�

1




;
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if 
 is available.

The iteration error can be estimated by Corollary 8.4, which provides a termination

criteria













�

u� u

k+1

p� p

k+1

�













2

A

� c

�

hw

k

u

; d

k

u

i

V

0

�V

+ hp

k+1

� p

k

; w

k

p

i

Q

0

�Q

�

; (8.25)

where c only depends on �; �; �.

Remark 8.12. If A is from a standard multigrid or multilevel algorithm, then the inexact

Schurcomplement isn't sparse. Thus Algorithm 8.4 hasn't optimal time complexity. But

due to Remark 8.11 it's possible to replace the inexact Schurcomplement with some other

spectral equivalent Schurcomplement preconditioner. Note that in this case the spectral

equivalence constants �; � are not determined by Theorem 8.8 and thus the choice of �

isn't known a-priori. The Schurcomplement preconditoner can be constructed such that

it's sparse i.e. one multiplication with

^

S is of time complexity N

C

l

.

Example 8.1. At the beginning of this chapter it was claimed that the solving algorithm for

the body-body contact problem is of optimal time complexity. This is proved for the special

case that the approximate projection is calculated by Algorithm 8.3, that

^

S is some sparse

Schurcomplement preconditioner, that the mesh which generates A; B is uniform and that

the calculation is without the stabilising term C. Essential for the time complexity of

Algorithm 8.3 was the condition number, i.e. �(

^

S). The next lemma provides an estimate

of the condition number �(BA

�1

B

�

) and thus for �(

^

S).

Lemma 8.13. let A be V -elliptic and bounded, B be given by :

R

N

with n constant and X

(l)

the identity map, then condition number of the operator BA

�1

B

�

for an uniform mesh is

�(BA

�1

B

�

) = O(h

�1

l

).

Proof. Let q

h

2 Q

h;l

and consider hBA

�1

B

�

q

h

; q

h

i

Q

0

�Q

= hA

�1

B

�

q

h

; B

�

q

h

i

Q

0

�Q

: De�ne u

h

as the solution of the variational equation

hAu

h

; v

h

i

V

0

�V

= hB

�

q

h

; v

h

i

V

0

�V

8 v

h

2 V

h

:

Thus the term hBA

�1

B

�

q

h

; q

h

i

Q

0

�Q

becomes

hBA

�1

B

�

q

h

; q

h

i

Q

0

�Q

= hAu

h

; u

h

i

V

0

�V

= ku

h

k

2

A

:

Because A is V -elliptic and bounded, the A-energy norm of u

h

can be represented as

ku

h

k

A

= sup

w

h

2V

h

hAu

h

; w

h

i

V

0

�V

kw

h

k

V

' sup

w

h

2V

h

hBw

h

; q

h

i

Q

0

�Q

kw

h

k

V

: (8.26)

This term can be estimated from above due to the continuity of B via

ku

h

k

A

(8.26)

' sup

w

h

2V

h

hBw

h

; q

h

i

Q

0

�Q

kw

h

k

V

� kq

h

k

Q

� kq

h

k

L

2

(�

C

)

:
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The estimate from below is more tricky. First note that

kg

h

k

Q

' inf

w2V

l

�f0g

Bw=g

h

kwk

V

' inf

w

h

2V

h;l

�f0g

Bw

h

=g

h

kw

h

k

V

: (8.27)

ku

h

k

A

(8.26)

' sup

w

h

2V

h

hBw

h

; q

h

i

Q

0

�Q

kw

h

k

V

� sup

w

h

2V

h;l

�f0g

hBw

h

; q

h

i

Q

0

�Q

kw

h

k

V

= sup

g

h

2trV

h;l

sup

w

h

2V

h;l

Bw

h

=g

h

hBw

h

; q

h

i

Q

0

�Q

kw

h

k

V

= sup

g

h

2trV

h;l

hg

h

; q

h

i

Q

0

�Q

inf

w

h

2V

h;l

Bw

h

=g

h

kw

h

k

V

(8.27)

' sup

g

h

2trV

h;l

hg

h

; q

h

i

Q

0

�Q

kg

h

k

Q

Theorem 5.2

� sup

g

h

2trV

h;l

hg

h

; q

h

i

Q

0

�Q

h

�

1

2

l

kg

h

k

L

2

(�

C

)

(�)

= h

1

2

l

sup

g2Q

0

hg; q

h

i

Q

0

�Q

kgk

L

2

(�

C

)

kgk

L

2

(�

C

)

kI

l

gk

L

2

(�

C

)

(�)

� h

1

2

l

sup

g2Q

0

hg; q

h

i

Q

0

�Q

kgk

L

2

(�

C

)

= h

1

2

l

kq

h

k

L

2

(�

C

)

(*) I

l

is a Fortin operator. The proof is, due to the assumption n is constant and X

(l)

is the identity map, similar to the corresponding proof in Proposition 6.15. Summing up

both estimates everything is done.

h

l

kq

h

k

2

L

2

(�

C

)

� hBA

�1

B

�

q

h

; q

h

i

Q

0

�Q

� kq

h

k

2

L

2

(�

C

)

To prove the optimal time complexity rewrite the algorithm

WHILE not termination criteria (8.25) DO

BEGIN

w =

^

A

�1

(F � Au

k

� B

�

p

k

)

d =

^

Sp

k

+ �

�

Bw � (G� Bu

k

)

�

FOR j = 0; : : : ; n

i

� 1 DO

p

k+

j+1

n

i

= P

N

I

�

p

k+

j

n

i

+ �

2

(d�

^

Sp

k+

j

n

i

)

�

(� update u

k+1

additive or multiplicative �)

u

k+1

add

= u

k

+

�




w

u

u

k+1

mul

= u

k+1

add

+

�




^

A

�1

B

�

�

p

k

� p

k+1

�

END

� P

N

I

is a L

2

projection, which is trivial for box constraints and thus for N .

� n

i

large enough (n

i

= O(�(

^

S))) then �

P

< 1 independent of the mesh parameter h

(see Section 8.2) and due to termination criteria (8.25) the algorithm is terminated

after a �nite number (independent of the mesh parameter h) of outer iterations

(n

o

= O(ln �)). � denotes the relative iteration error.
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� �(

^

S) = O(h

�1

l

) (see Lemma 8.13)

� time complexity (uniform re�ned): N = O(h

�d

) N

C

l

= O(h

1�d

l

)

n

o

(c

o

+ n

i

c

i

) = O(ln �)

�

O(N) +O(N

C

l

)O(h

�1

l

)

�

= O(N ln �) :

c

o

denotes the costs for calculating w; d; u

k+1

and c

i

are the costs for calculating the

approximate projection P

N

I

and one multiplication of

^

S, i.e. calculating one time

P

N

I

�

p

k+

j

n

i

+ �

2

(d�

^

Sp

k+

j

n

i

)

�

.

Remark 8.14. It's not usual that the preconditioner

^

A is scaled. If this is not the case, i.e.




^

A < A � 


^

A ;

then

^

A; 
 has to be replaced by

^

A ! 


^

A and 
 !







:

If 
; 
 are not available, then it's possible to calculate them by the Lancos-method,

without losing time complexity.

8.6 Practical Improvements

� In Example 8.1 it was proved that Algorithm 8.4 with the approximate projection

from Algorithm 8.3 and a sparse Schurcomplement preconditioner

^

S is optimal in

time. One disadvantage of Algorithm 8.3 for the approximate projection is that the

relaxation parameter �

2

has to be chosen and thus � with �

^

S � S � �

^

S has to

be known. Furthermore it's known that a richardson iteration converges not as fast

as other iteration algorithms (e.g. cg-iteration). Thus replace Algorithm 8.3 for

the approximate projection by the projection algorithm introduced by Dostal [19].

This algorithm is a cg kind algorithm and thus a faster convergence is expected (not

proved). Furthermore a cg algorithm is self scaling, i.e. the relaxation parameter �

2

isn't necessary any more.

� In Algorithm 8.4 an initial guess (u

0

; p

0

) is needed. For the �rst level (u

0

; p

0

) = (0; 0)

is the simplest choice. For higher levels it's possible to choose (u

0

; p

0

) as in the

�rst level but with this choice information is lost, because the solution of the last

level is known. Thus prolongate the solution from the last level to the new one.

For the primal variable u this is trivial, because u is a grid function, i.e. it has an

interpretation in the continuous space V . The dual variable p is only de�ned in the

nodes at the master surface, or if C 6= 0, p is de�ned in all nodes of both contact

surfaces. Assume that the calculation is done without stabilisation, i.e. C = 0. Then

the nodal constraints has an interpretation in the continuous space Q. From Chapter

6 it's known that

p

L

=

X

x

i

2


C

l;L

p

i;L

I

l

L

(:)(x

i

) :
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L is the index describing the level and l is the number of the master surface. The

prolongation of level L� 1 to level L has to ful�l

hp

L�1

; '

i;l;L

i

Q

0

�Q

= hp

L

; '

i;l;L

i

Q

0

�Q

= p

i;L

8 x

i

2 


C

l;L

:

Note that '

i;l;L

is the basis ansatz function in node x

i

at level L, restricted to �

C

. The

calculation of hp

L�1

; '

i;l;L

i

Q

0

�Q

is di�cult and it's possible that some values p

i;L

< 0.

This kind of prolongation seems to be useless for an initial guess. As an ad hoc guess

try the following approach, which gives good results for linear Lagrange elements.

Multiply the vector p

L�1

with the inverse lumped mass matrix (lumped mass matrix

see Section 6.5). Now consider p

L

as a grid function on �

l

C

and prolongate it to the

next level. The initial value for p

0

L

is then nothing else than the prolongated function

multiplied with the lumped mass matrix of level L. The advantage of this approach

is that every component of p

0

L

� 0. In practical experiments this approach reduces

the time in the approximate projection about

2

3

.

For quadratic Lagrange elements the initial guess for p

0

= 0 seems to be the safest

one.

� From Theorem 8.8 it's known that the spectral constants for the preconditioner

^

A,

with S

in

only depend on the condition number �(

^

A

�1

A) and for standard multigrid,

multilevel preconditioners this condition number �(

^

A

�1

A) ' 1, which guarantees the

best possible theoretical convergence rates. On the other hand it's known that S

in

isn't sparse, i.e. one multiplication of S

in

is of order O(N) and thus it's not possible

to get a time optimal algorithm. Using a sparse Schurcomplement preconditioner

^

S instead of S

in

, the solver will be of optimal time complexity but the condition

number �(

^

A

�1

A) depends on �(

^

A

�1

A) and �(

^

S

�1

S), which results usually in much

worse convergence rates, because it's usually not possible to get �(

^

S

�1

S) as close to

one as �(

^

A

�1

A). The aim is to �nd a compromise at least a practical one.

Remark 8.15. The choice of the preconditioner

^

A is standard. For this refer to Bramble

[10] or other books about multigrid. The choice of the sparse Schurcomplement precondi-

tioner is more tricky. For this refer to Sch

�

oberl [43] [43].
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PROCEDURE Main()

BEGIN

IF L is �rst level THEN

BEGIN

u

0

= 0 ; p

0

= 0

END

ELSE

BEGIN

u

0

= Prolongate(u

L�1

)

p

0

=M:Prolongate(p

L�1

)

END

(� linearise problem (Algorithm 7.1) �)

Generate(B ; G)

(� solve linearised problem (Algorithm 8.4) �)

AugmentedProjectionAlgorithm(N;

^

A;

^

S;A;B; C; F;G; u; p)

(� calculate grid function p �)

p

L

=M

�1

p

END

Algorithm 8.5: \e�cient" body-body contact solver



Chapter 9

Numeric Results

In Chapter 7 a method (nodal constraints) was introduced to discretise the body-body

contact problem. Also an ad-hoc re�nement strategy for the body-body contact problem

was presented. For solving the body-body contact problem a time optimal algorithm was

presented in Chapter 8. With all these results it's possible to solve the body-body contact

problem numerically.

In this section numerical results for both, the solution of academic problems as well as

the solution of a real life problem (the sag of a roll stack), are presented. The calculations

have been carried out within the C++ �nite element code FE++ (Documentation see

Sch

�

oberl [42]). The calculations of the academic results were done on a SGI Origin

2000, CPU R12000, 300MHz, whereas the calculations of the real life problem were done

on a SGI Origin 2000, CPU R10000, 195 MHz.

In the tables presented the following notation is used

Notation:

N...........number of nodes.

N

C

l

........number of nodes at the contact boundary �

l

C

which is equal to the number of

inequalities.

n

o

(�)......number of outer iteration to reduce the error by a factor �.

n

i

..........average number of steps for approximate projection

T

solve

.....total time spent in the solver.

T

proj

......average time spent in the approximate projector.

�(

^

S)......condition number of the Schurcomplement preconditioner

98
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9.1 Contact between a Circle and a Square (2D Prob-

lem)

P

S

f

r

a

g

r

e

p

l

a

c

e

m

e

n

t

s




1




2




1

= 2(0.5,0.5;0.707)




2

= C(0.5,2.5;0.707)

E=1, �=0.3

f=(0,0,-0.01)

The calculation was done for linear Lagrange elements, for both, a uniform re�ned mesh

(Table 9.1) and an adaptive re�ned mesh (Table 9.2). The adaptive re�ned mesh was

generated by using the ad-hoc a-posteriori error estimator �

T;1

+ �

T;2

presented in Section

7.4.

For the preconditioning of

^

A a standard multigrid preconditioner (V-cycle with 1 pre-

and 1 post- smoothing step (V 11)) was used. The Schurcomplement preconditioner

^

S is

more tricky, refer to the references given in Remark 8.15.

In Figure 9.1 the time needed for solving the body-body contact problem T

solve

versus

the number of unknowns N is illustrated in a logarithmic scale. From theory (Section

8.5) it's known that the time complexity of the algorithm is linear if

^

S is sparse and

�(S) = O(h

�1

) (Lemma 8.13). The Schurcomplement preconditioner used for this problem

should be sparse (Remark 8.15), nevertheless Figure 9.1 shows that the gradient is�

3

2

> 1.

The reason therfore is that the intern multiplication for one multigrid step isn't correct

implemented and thus the Schurcomplement preconditioner isn't sparse. In Figure 9.2 the

error, measured by the ad-hoc a-posteriori error estimator �

T;1

+�

T;2

, versus the number of

unknowns N is illustrated. Also the condition number �(

^

S) versus the number of unknowns

is illustrated (see Figure 9.3). For a uniform re�ned mesh the condition number should be

of order h

�1

(Lemma 8.13). The numeric results show a similar behaviour for the adaptive

re�ned mesh.

For the adaptive re�ned mesh, the number of contact nodes N

C

l

, are larger than for

the uniform re�ned mesh. Furthermore the snap shot of the adaptive re�ned mesh (Figure

9.4) shows that the mesh becomes �ner in the region where the contact takes o�. This is

what is expected because the solution a the take o� area is less smooth.
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Nodes N

C

n

o

(10

�3

) n

i

T

solve

/[s] T

proj

/[s] �(

^

S)

4226 33 19 9 3.3 0.66 21.2

16642 65 19 11 15.96 2.75 40.9

66050 129 20 15 149.08 35.46 79.7

263170 257 21 19 910.67 221.09 158.5

Table 9.1: circle square (2D) uniform re�ned

Nodes N

C

n

o

(10

�3

) n

i

T

solve

/[s] T

proj

/[s] �(

^

S)

6800 69 18 22 21.40 7.13 71.8

9522 85 18 29 37.23 13.27 94.9

14443 119 19 31 66.02 25.03 136.0

32418 174 19 33 124.26 47.53 190.6

55196 257 20 37 269.15 105.46 308.8

110652 418 21 44 753.17 338.73 503.2

Table 9.2: circlesquare (2D) adaptive re�ned (�

1

+ �

2

)

9.2 Contact between a Cube and a Sphere (3D Prob-

lem)

P

S

f

r

a

g

r

e

p

l

a

c

e

m

e

n

t

s




1




2




1

= 2(0; 0; 0; 1)




2

= S(0:5; 0:5; 2:5; 0:866)

E=1, �=0.3

f=(0,0,-0.01)

The calculation was done for linear Lagrange elements, for both, a uniform re�ned mesh

(Table 9.3) and an adaptive re�ned mesh (Table 9.4). The adaptive re�ned mesh was

generated by using the ad-hoc a-posteriori error estimator �

T;1

+ �

T;2

presented in Section

7.4.

For the preconditioning of

^

A a standard multigrid preconditioner (V-cycle with 1 pre-
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Figure 9.1: N�T

solve

circle square (2D)
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E
rr

or
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uniform
adaptive

Figure 9.2: N �max

T2�

h

(�

T;1

+ �

T;2

) circle

square (2D)

and 1 post- smoothing step (V 11)) was used. The Schurcomplement preconditioner

^

S is

more tricky, refer to the references given in Remark 8.15.

In Figure 9.6 the time needed for solving the body-body contact problem T

solve

versus

the number of unknowns N is illustrated in a logarithmic scale. From theory (Remark

8.15) it's known that the time complexity of the algorithm is linear if

^

S is sparse and

�(S) = O(h

�1

) (Lemma 8.13). The Schurcomplement preconditioner used for this problem

should be sparse (Remark 8.15), nevertheless Figure 9.6 shows that the gradient is�

3

2

> 1.

The reason therefore is that the intern multiplication for one multigrid step isn't correct

implemented and thus the Schurcomplement preconditioner isn't sparse. In Figure 9.7 the

error, measured by the ad-hoc a-posteriori error estimator �

T;1

+�

T;2

, versus the number of

unknowns N and in Figure 9.8 the condition number �(

^

S) versus the number of unknowns

is illustrated. For the uniform mesh the condition number �(

^

S) increases like it was proved

in Lemma 8.13.

9.3 Sag of a Roll Stack (3D)

The VAi Linz produces sheet metal. To produce sheet metal of high quality for automobile

industry it's necessary to get uniform thin metal. The production of sheet metal is done

by putting metal into a rolling mill. One roll by itself has a weight of about 200 tons. The

rolling sheet causes forces on the rolling mill of about 30 000kN. Because of the large scale
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1

10

100

100 1000 10000 100000

ka
pp
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adaptiv

Figure 9.3: N��(

^

S) circle square (2D)

Nodes N

C

n

o

(10

�2

) n

i

T

solve

/[s] T

proj

/[s]

2482 81 107 8 15.29 5.09

18018 289 112 26 254.38 94.79

137410 1089 115 28 4782.41 1745.61

Table 9.3: cube sphere (3D) contact uniform re�ned

(length) of the rolls, it's obvious that the rolls sag and so the thickness of the sheet varies.

To prevent or reduce this e�ect a supporting roll and a working roll is used. In addition

the rolls aren't cylindrical, they are bulbous. Also the forces at the bears can be varied to

reduce the sag. Because of the high forces, the rolls can't be regarded as rigid, they will

deform. To get the sag of the working roll a body-body contact problem (contact between

support- and working- roll) has to be solved.
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Figure 9.4: snap shot of adaptive re�ned mesh (�

T;1

+ �

T;2

)

Nodes N

C

n

o

(10

�2

) n

i

T

solve

/[s] T

proj

/[s]

7393 405 55 38 126.74 67.74

11696 485 57 43 334.85 170.62

32773 1112 63 55 1424.06 759.31

85074 1963 70 66 5774.01 4143.81

Table 9.4: cubesphere (3D) contact adaptive re�ned �

T;1

+ �

T;2

L

FSteel FRFL

working roll

support roll
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but the eigenvalues of the problem may be very small, and so for numerical stability

it would be better to regularise. Because of the large scale and the small contact zone

a very �ne mesh is needed to resolve the contact zone. In the inner of the domain the

mesh hasn't to be as �ne, because the solution is expected to be more regular there. So an

adaptive re�nement strategy is chosen. The results which are presented in the following are

calculated for two di�erent loads. The Figure 9.15, 9.16 show the sag of the rolls measured

along a line. In Figure 9.14 the notation used, is explained. The reason why it was stressed

out that the sag is measured along a line, is that due to the bulbous form of the working

roll the �gures given in 9.15, 9.16 have to be corrected. This is done by the considering

the \Schli�". The \Schli�"denotes the di�erence of the thickness of the working roll. For

the this calculations the di�erence of this thickness is 150�m.

The calculations were done on a R10000/195 MHz processor of an SGI Origin 2000

machine and took about 90 minutes.

The preconditioner

^

A was a standard multigrid preconditioner, V-cycle with 3 pre- and

3 post- smoothing steps (V 33). For this calculations the Schurcomplement preconditoner

was given by the inexact Schurcomplement and thus

^

S was not sparse. Note that in this

case the solving algorithm has no optimal time complexity. Never mind because a sparse

Schurcompement preconditioner wouldn't work due to the implementation error of the

multiplication of the smoothers.
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Figure 9.5: van mises stress
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Figure 9.9: surface mesh for adaptive re�ned mesh �
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Figure 9.11: mesh for F

steel

= 15KN, L = 1m Nodes: 46611, Tet.:246338, Inequalities:

7089

Figure 9.12: Van Mises stress along a cut surface. F

steel

= 15KN, L = 1m
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Figure 9.13: Isocline for F

steel

= 15KN, L = 1m
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Figure 9.14: notation for Figure 9.15+ 9.16
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Die eitle Einbildung, man verstehe

alles, kann ja nur daher kommen,

da� man nie etwas verstanden hat.

Denn wer nur ein einziges Mal das

Verst

�

andnis einer Sache erlebt hat,

wer wirklich geschmeckt hat, wie

man zum Wissen gelangt, der wei�

auch, da� er von der Unendlichkeit

der

�

ubrigen Wahrheiten nichts wei� .

Galileo Galilei

.....nun steh' ich hier ich, armer Tor

und bin so klug wie jeh zuvor.....

Johann Wolfgang von Goethe


