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Abstract

If the Navier-Stokes equations for incompressible fluids are linearized using fixed point
iterations, the Oseen equations arise. In this thesis we provide concepts for the coupled
algebraic multigrid (AMG) solution of this saddle point system, where ‘coupled’ here is
meant in contrast to methods, where pressure and velocity equations are iteratively decou-
pled, and ‘standard’ AMG is used for the solution of the resulting scalar problems.

We show how the coarse levels can be constructed (where their stability is an important
issue) and which smoothers (known from geometric multigrid methods for saddle point
systems) can be used.

To prove the efficiency of our methods experimentally, we apply them to finite element
discretizations of various problems (model problems and also more complex industrial
settings) and compare them with classical approaches.

Zusammenfassung

Durch die Fixpunkt-Linearisierung der Navier-Stokes Gleichungen für inkompressible Flu-
ide erhält man die sogenannten Oseen Gleichungen. In der vorliegenden Arbeit entwick-
eln wir Konzepte für die numerische Lösung dieses Sattelpunktsystems durch gekoppelte
algebraische Mehrgittermethoden (AMG), wobei “gekoppelt” im Gegensatz zu Vefahren
steht, bei denen Druck- und Geschwindigkeitsgleichungen iterativ entkoppelt werden und
‘Standard’-AMG zur Lösung der entstehenden skalaren Probleme angewandt wird.

Wir präsentieren Möglichkeiten der Konstruktion der Grobgittersysteme (wobei ins-
besondere auf deren Stabilität geachtet wird) und der Anwendung von Glättern, welche
von geometrischen Mehrgittermethoden für Sattelpunktgleichungen her bekannt sind.

Die Effizienz der entwickelten Methoden wird schließlich experimentell gezeigt, indem
sie sowohl für einfachere Modellprobleme als auch für durchaus komplexe industrielle An-
wendungen getestet und mit den klassischen Methoden verglichen werden.
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Notation

We generally use standard characters for scalar values and scalar functions (p, q,. . . ) and
boldface characters for vectors and vector valued functions (u, v,. . . ). We will use the
underline notation (which will be introduced in detail in section 2.2) for finite-element
vectors associated to scalar or vector valued functions (p, q,. . . , resp. u, v, . . . ). The

components of vectors are denoted by (u1, . . . , un)T = u. For matrices we use capital
letters (A,. . . ), or component-notation A = (aij)i,j.
G is an open, connected subset of Rd with space dimension d (generally d = 2 or 3),

∂G its boundary.

Operators

u · v =
∑d

i=1 uivi (scalar product).
u⊗ v = (uivj)i,j=1,...,d (tensor product).

∂jp = ∂p
∂xj

(partial derivative of p with respect to xj).

∂ju = (∂jui)i=1,...,d.

∂tp = ∂p
∂t

(partial derivative of p with respect to t) .
∂tu = (∂tui)i=1,...,d.
∇p = (∂ip)i=1,...,d (gradient of p).
∇u = (∂iuj)i,j=1,...,d.

div u =
∑d

i=1 ∂iui (divergence of u).

(u · ∇)ϕ =
∑d

j=1 uj∂jϕ.

(u · ∇)v = (
∑d

j=1 uj∂jvi)i=1,...,d.

Function spaces

C(G) space of continuous functions on G.
Ck(G) space of functions with continuous k-th derivative on G .
C∞0 (G) space of infinitely smooth functions with compact support in G.
C∞(Ḡ) space of infinitely smooth functions on Ḡ.

Lp(G) Lebesgue space of measurable functions q with finite norm ‖q‖0,p =
(∫
G |q|p

) 1
p .
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NOTATION 8

W k
p (G) Sobolev space of functions with k-th derivatives in Lp(G).

Hk(G) = W k
2 (G).

H1
0 (G) the closure of C∞0 (G) in H1(G).

H−1(G) the dual space of H1
0 (G).

N The natural numbers.
Z The integer numbers.
R The real numbers.

Norms

‖q‖0 = ‖q‖0,2 for q ∈ L2(G).
|q|1 = ‖∇q‖0 for q ∈ H1(G).

‖q‖1 =
√
‖q‖2

0 + ‖∇q‖2
0 for q ∈ H1(G).

‖v‖X =
√

vTXv for v ∈ Rn and a symmetric positive definite matrix X ∈ Rn×n.

‖v‖`2 =
√

vTv for v ∈ Rn.

‖Y ‖α = sup06=v∈� n ‖Y v‖α
‖v‖α for Y ∈ Rn×n

(consistent matrix norm to the vector norm ‖.‖α).

‖Y ‖F =
√∑n

i,j=1 y
2
ij for Y ∈ Rn×n (Frobenius norm).

Often used Indices, etc.

d Space dimension.
L Total number of multigrid levels.
l Index indicating a certain multigrid level (l ∈ {1, . . . , L}).
D Index indicating a diffusive term or Laplacian.
C Index indicating a convective term.
R Index indicating a reaction term.
S Index indicating a stabilization term.
s Index used if we want to emphasize that some operator is scalar.



Chapter 1

Introduction

A very important set of partial differential equations in the field of computational fluid
dynamics are the Navier-Stokes equations. They are capable of describing various phenom-
ena of (in our case incompressible) Newtonian fluid flow, but give rise to many nontrivial
mathematical problems despite of their relatively simple outer form. So, for example, the
existence and smoothness of solutions of their non-stationary form are currently the topic
of one of the prominent one-million-dollar-problems [Fef00, Dic00]. This thesis will un-
fortunately make no contribution to that aspect (in all probability), but to an efficient
numerical solution of the equations.

After deciding which kind of nonlinear iteration to use (in our case fixed point iteration,
which leads to the Oseen equations) and which discretization to choose (in our case the
finite element method) one obtains an (indefinite) saddle point problem, which has to be
solved. Classical iterative methods for that are variants of SIMPLE schemes (as introduced
by Patankar and Spalding [PS72]) or Uzawa’s algorithm [AHU58], having in common an
iterative decoupling of the saddle point system into separate equations for pressure and
velocity, which then can be solved with methods known for the solution of positive definite
systems.

A milestone for the efficient solution of scalar, elliptic problems was set with the de-
velopment of geometric multigrid (GMG) methods, for example by Federenko [Fed61],
Bachvalov [Bac66], Astrachancev [Ast71], Brandt [Bra73], or Hackbusch [Hac76] to name
but a few (see also the monographs e.g. by Korneev [Kor77], Hackbusch [Hac85], Wesseling
[Wes92], Bramble [Bra93], or Trottenberg et.al. [TOS01]). The idea of these methods is
to split the process into two parts, a smoothing of the error (i.e. a reduction of its high
frequency components) and a correction step on a coarser grid.

First steps in the application of multigrid algorithms to saddle point systems were made
by Verfürth [Ver84b] and Wittum [Wit89]. Further important work in this direction was
done by Braess and Sarazin, who showed that it is possible to use the classical Uzawa
method as smoothing iteration [BS97].

When confronted with “real life” applications with complex three dimensional geome-
tries, a hierarchical refinement of a ‘coarse’ initial mesh — which is needed by geometric
multigrid methods — would be impossible with respect to the limitations on computer

9



CHAPTER 1. INTRODUCTION 10

memory and CPU speed of today’s generation of computer hardware. A solution to this
problem are the algebraic multigrid (AMG) methods, where the initial mesh is used as
finest level, and the coarser levels are generated using (almost) only information of the
algebraic system.

A second reason for the popularity of AMG methods is their “black-box” character. In
an ideal situation the user does not need to construct any hierarchy, the method operates
on one single algebraic system and can therefore be used e.g. as a replacement for the direct
solver on the coarsest level of a geometric multigrid algorithm.

Since the pioneering work of Ruge and Stüben [RS86] and Brandt et al. [BMR84]
these methods have been applied to a wide class of linear systems arising (mostly) from
scalar partial differential equations. For an overview of the technique itself and various
applications we refer for example to Stüben [Stü01b].

For the application of AMG to saddle point problems one has the same two general
possibilities as in the geometric multigrid case. The first is the segregated approach, i.e. to
use a classical method (Uzawa, SIMPLE,. . . ) for an outer iteration and to apply AMG to
the resulting elliptic problems. This approach is described e.g. by Griebel et al. [GNR98]
or Stüben [Stü01a]. Another idea in this class is to use a Krylov space method such as
GMRES or BiCGstab with a special preconditioner which again decouples velocity and
pressure equations. This was done for example by Silvester et al. first for the Stokes case
[SW94] and later for the Navier-Stokes problem [SEKW01].

The focus of our work lies on the second possibility, on the coupled approach where
an AMG method for the whole saddle point system is developed (as mentioned above for
GMG methods). Work in this direction has been done for example by Webster [Web94] and
Raw [Raw95] for finite volume discretizations of the Navier-Stokes equations, by Bertling
[Ber02] for a finite element discretization of the Stokes equations, by Adams for contact
problems in solid mechanics [Ada03], and by Bungartz for constrained optimization (with
a small number of constraints) [Bun88].

This thesis is structured as follows. The second chapter contains the preliminaries which
are needed for a numerical solution of the Navier-Stokes equations. We start with the prob-
lem statement, continue with the weak formulation and the finite element discretization,
sketch the analysis of the associated Stokes problem, mention some problems induced by
the convection, and finally discuss classical solution methods for the linear system.

In the third chapter we introduce algebraic multigrid methods. In this chapter we will
apply it only to scalar equations, but the underlying ideas will be important for the saddle
point case, too.

The central part of this work is chapter four, where we develop methods for the coupled
application of AMG methods to saddle point systems. We provide ideas for the construction
of multigrid hierarchies for different types of mixed finite elements, and we will deal with
stability problems which may occur on coarse levels. Unfortunately (but not surprisingly)
we were not able to construct a “black box method” capable of any saddle point problem,
with whatever choice of discretization on an arbitrary mesh. All our methods depend for
example on the concrete choice of the finite element.

Finally, chapter five is devoted to the presentation of numerical results. After a short
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overview of the software package which was developed during the working on this thesis, we
compare different aspects of the methods presented in the first three chapters for various
problems, up to flows in fairly complex three dimensional geometries.

In most of the tests we observe advantages of the coupled approach, it seems as if it
pays off to keep the structure of the problem on the coarser levels. Although there is still
work to be done, the results we have are really promising.



Chapter 2

Preliminaries

The classical process for the numerical solution of partial differential equations (describing
a physical phenomenon, in our case the Navier-Stokes equations describing the flow of
an incompressible fluid, or the related Oseen or Stokes equations) is to derive a weak
formulation, provide analysis, discretize the system (in our case with finite elements), and
finally to solve the resulting linear algebra problems.

This first chapter contains the parts of this process, from the problem formulation to
(non-multigrid) solution methods for the arising linear systems.

2.1 Navier-Stokes Equations

Our main point of investigation will be the Navier-Stokes equations for incompressible flow
(Claude Navier, 1785–1836, and George Stokes, 1819–1903). A mathematically rigorous
derivation from fundamental physical principles and conservation laws can be found in
[Fei93].

We denote by u the velocity of the fluid, p the static pressure, ρ the density of the
fluid, µ its viscosity and f some outer force. Then the instationary flow of incompressible
Newtonian fluids in a domain G (where G is an open, connected subset of Rd with Lipschitz
continuous boundary ∂G) is governed by

ρ
∂

∂t
u− µ∆u + ρ(u · ∇)u +∇p = f (2.1a)

div u = 0. (2.1b)

Equation (2.1a) expresses Newton’s law of motion, (2.1b) the conservation of mass.
The underlying physical assumption for these equations to hold are incompressibility

and Stokes’ hypothesis for the stress tensor

T(u, p) = −pI + µ
(
∇u +∇uT

)
, (2.2)

for incompressible Newtonian fluids.

12



CHAPTER 2. PRELIMINARIES 13

Physical similarity

With the choice of scales u = V u∗, x = Lx∗, t = L/V t∗, p = V 2ρp∗ and f = V 2/Lf∗

(with a characteristic velocity V and a characteristic length L) we get the dimensionless
formulation

∂

∂t∗
u∗ − ν∆∗u∗ + (u∗ · ∇∗)u∗ +∇∗p∗ = f∗, (2.3a)

div∗ u∗ = 0, (2.3b)

where

ν :=
1

Re
:=

µ

ρLV
,

with the dimensionless Reynolds number Re (Osborne Reynolds, 1842–1912). For simplic-
ity in notation we will omit the stars in the following.

We primarily consider two types of boundary conditions (more can be found e.g. in
[Tur99]). Let ∂G = Γ1 ∪ Γ2. On Γ1 we prescribe Dirichlet conditions

u|Γ1 = u1,

on Γ2 natural outflow conditions of the form

(−pI + ν∇uT ) · n = 0.

In the non-stationary case we also need a pair of initial conditions

u|t=0 = u0, p|t=0 = p0.

If we linearize the system by fixed point iteration we get the so called Oseen equations
(Carl Wilhelm Oseen, 1879–1944)

∂

∂t
u− ν∆u + (w · ∇)u +∇p = f , (2.4a)

div u = 0, (2.4b)

where w is the old approximation of the velocity, sometimes also called the wind.
Dropping the convection term leads to the Stokes equations

∂

∂t
u− ν∆u +∇p = f , (2.5a)

div u = 0. (2.5b)

Setting ∂
∂t

u ≡ 0 gives the stationary versions of (2.3), (2.4), and (2.5).
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2.1.0.1 Weak Formulation of the Stationary Problem

Assume for now that we want to solve the stationary problem, we will return to the time
dependent problem in Section 2.3.

Assumption. There exists ũ1 ∈ H1(G)d with

div ũ1 = 0 in G, (2.6)

ũ1 = u1 on Γ1. (2.7)

Now let

U :=
(
H1

0 (G)
)d
,

U(ũ1) :=
{
v ∈ H1(G)d : v − ũ1 ∈ U

}
,

Q :=

{
q ∈ L2 :

∫

G
q dx = 0

}
.

Then one can derive the weak formulation of the Navier-Stokes equations: Find u ∈
U(ũ1) and p ∈ Q such that

ā(u; u,v) + b(v, p) = 〈F,v〉 ∀v ∈ U, (2.8a)

b(u, q) = 0 ∀q ∈ Q, (2.8b)

where
ā(w; u,v) = aD(u,v) + aC(w; u,v),

and

aD(u,v) = ν(∇u,∇v),

aC(w; u,v) = ((w · ∇)u,v) ,

b(u, q) = −(div u, q),

ũ1 as in (2.6), (2.7) and
〈F, .〉 = (f , .)0.

2.1.1 Analysis of the Associated Stokes Problem — the Inf-Sup
Condition

We sketch the analysis of the associated stationary Stokes problem with homogeneous
Dirichlet boundary conditions, because here one can get a first impression of the importance
of a major criterion for stability — the inf-sup condition — which appears again and again
in the analysis and numerical solution of mixed problems. The associated Stokes problem
reads as: Find (u, p) ∈ U×Q such that

aD(u,v) + b(v, p) = 〈F,v〉 ∀v ∈ U, (2.9a)

b(u, q) = 0 ∀q ∈ Q. (2.9b)
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Define
V = {v ∈ U : b(v, q) = 0 for all q ∈ Q}.

The first step is to show existence and uniqueness of solutions of the following subproblem:
Find u ∈ V such that for all v ∈ V

aD(u,v) = 〈F,v〉 . (2.10)

Theorem 2.1. Problem (2.10) has a unique solution.

proof (sketch). aD is a bilinearform, and because one can show that aD is V-elliptic and
continuous and that F = (f , .)0 is contained in the dual space of V, the theorem of Lax
and Milgram completes the proof (c.f. [BF91]).

What remains is to find a unique p ∈ Q solving the problem

b(v, p) = 〈F,v〉 − aD(u,v) ∀v ∈ U, (2.11)

where u is the solution of (2.10). We define B∗ : Q→ U∗, B∗p = b(., p), where U∗ denotes
the dual space of U, and rewrite (2.11) as

B∗p = 〈F, .〉 − aD(u, .), (2.12)

with the right hand side being element of the polar set

V0 := {l ∈ U∗ : l(v) = 0 for all v ∈ V}.

The following theorem introduces the already mentioned criterion for the solvability of
(2.11) resp. (2.12).

Theorem 2.2. The operator B∗ : Q→ V0 is an isomorphism if and only if there exists a
constant c0 > 0 such that

inf
06=q∈Q

sup
06=v∈U

b(v, q)

‖v‖U‖q‖Q
≥ c0. (2.13)

The proof is based on the closed-range theorem (see e.g. [Yos80]) and can be found for
example in [GR86] or [Bra97]. Condition (2.13) is called LBB condition (after Ladyzhen-
skaya, Babuška, and Brezzi) or inf-sup condition.

For instance in [GR86] it is shown that in our concrete case b(., .) fulfills the inf-sup
condition, thus we can combine the theorems above to the following.

Theorem 2.3. Problem (2.9) is uniquely solvable.
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2.2 Finite Element Discretization

We will briefly introduce the concept of mixed Finite Element Methods (FEM). Details
can be found e.g. in [Pir89] or [Bra97].

We assume from now on, that G is a polygonal resp. polyhedral domain.
Let Uh and Qh be finite-dimensional subspaces of U and Q, respectively, and let

Uh(ũ1) :=
{
v ∈ H1(G)d : v − ũ1 ∈ Uh

}
,

Vh := {vh ∈ Uh : b(vh, qh) = 0 for all qh ∈ Qh}.

Now we can formulate a discrete version of problem (2.8): Find a couple (uh, ph) ∈
Uh(ũ1h)×Qh such that

ā(uh; uh,vh) + b(vh, ph) = 〈F,vh〉 ∀vh ∈ Uh, (2.14a)

b(uh, qh) = 0 ∀qh ∈ Qh, (2.14b)

where ũ1h is a reasonable approximation of ũ1.
For reasons which will become obvious later we extend problem (2.14) to

ā(uh; uh,vh) + b(vh, ph) = 〈F,vh〉 ∀vh ∈ Uh,

b(uh, qh)− c(ph, qh) = 〈G, qh〉 ∀qh ∈ Qh,
(2.15)

where c(., .) is a positive semi-definite bilinearform and G ∈ Q∗ (both may be identical
zero).

The following theorem shows that again the inf-sup condition is of major importance
(for the proof we refer to [GR86]).

Theorem 2.4. Assume that aD is Vh-elliptic (with h independent ellipticity constant)
and that there exists a constant c0 > 0 (independent of h) such that the discrete inf-sup
condition

inf
06=q∈Qh

sup
06=v∈Uh

b(v, q)

‖v‖U‖q‖Q
≥ c0, (2.16)

holds.
Then the associated (discretized, stationary) Stokes problem has a unique solution

(uh, ph), and there exists a constant c1 such that

‖u− uh‖U + ‖p− ph‖Q ≤ c1

(
inf

vh∈Uh

‖u− vh‖U + inf
qh∈Qh

‖p− qh‖Q
)
, (2.17)

where (u, p) is the solution of (2.9).

Remark 2.5. In literature (e.g. [GR86], [BF91], or [Bra97]) one can find prominent exam-
ples of what can go wrong with elements not fulfilling the inf-sup condition (‘checkerboard’-
instabilities, spurious pressure modes, etc.). The discrete solution may contain unphysical
oscillations and may for h → 0 not converge to the solution of the continuous problem,
what is illustrated in Figure 2.1
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Figure 2.1 Part of the discrete pressure solution for a driven cavity problem discretized
with an unstable element (unstabilized P1-P1 element, see Section 2.2.1.2). Oscillations in
the pressure can be observed (light-grey indicates high pressure, dark-grey low pressure)

If a basis of Qh is given by {ψ1, . . . , ψm} and of Uh(ũ1h) by {ϕ1, . . . , ϕn}d we can
represent an element qh ∈ Qh by

qh = (ψ1, . . . , ψm) · q
h
, with q

h
∈ Q

h
:= Rm

(where we use the notation (ψ1, . . . , ψm) · q
h

:=
∑m

i=1(q
h
)i · ψi), and analogously the com-

ponents of an element vh =
(
vh
T
1 , . . . , vh

T
d

)T ∈ Uh(ũ1h) by

vhi = (ϕ1, . . . , ϕn) · vhi, with vh =



vh1
...
vhd


 ∈ Uh := (Rn)d.

Then we can write (2.15) in matrix form
(
A(uh) BT

B −C

)(
uh
p
h

)
=

(
fh
g
h

)
. (2.18)

Here A(uh) is defined as

A(uh) =

(
A(uh)

1,1 A(uh)
1,2

A(uh)
2,1 A(uh)

2,2

)

in 2D resp.

A(uh) =



A(uh)

1,1 A(uh)
1,2 A(uh)

1,3

A(uh)
2,1 A(uh)

2,2 A(uh)
2,3

A(uh)
3,1 A(uh)

3,2 A(uh)
3,3




in 3D, with
A(uh)

r,s = (ā(uh;ϕj · er, ϕk · es))j,k,
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where er is the r-th unity vector in Rd. For ā(.; ., .) as defined above we get

A(uh)
r,s ≡ 0 if r 6= s.

Analogously B is defined by the relation

B =
(
B1 B2

)

in 2D resp.
B =

(
B1 B2 B3

)

in 3D, with
Br = b(ϕj · er, ψk))j,k,

and C by
C = (c(ψj, ψk))j,k.

In the same manner we define the mass matrix

M = ((ϕj, ϕk)0)j,k,

the pressure mass matrix
Mp = ((ψj, ψk)0)j,k,

and the Laplacian
AD = (aD(ϕj, ϕk))j,k,

which we will need later in this thesis.
We denote the FE-isomorphisms between the discrete spaces and the spaces of coeffi-

cient vectors by φU : (Rn)d → Uh(ũ1h) and φQ : Rm → Qh. The underline notation is used
to indicate their inverses, i.e.

φUvh = vh, φUvh = vh, (2.19)

φQqh = qh, φQqh = q
h
. (2.20)

If it is clear from the context we omit the underlines and φ’s and identify vh ∈ Uh(ũ1h)
and the associated vh ∈ (Rn)d and analogously qh and q

h
.

2.2.1 Examples of Mixed Elements

We present some popular choices of finite element pairs Uh × Qh, in particular those we
will use later for the construction of algebraic multigrid methods and in the numerical
examples, all of them based on triangular resp. tetrahedral elements. Thus, we assume
that some partitioning of G into triangles resp. tetrahedra G =

⋃
i τi is given, we denote

the diameter of an element τi by hτi , we assume that we can identify some typical diameter
h (the discretization parameter) with

αh ≤ hτi ≤ ᾱh for all i,

where α and ᾱ are some positive constants, and we denote the set of elements by Th =
{τ1, τ2, . . .}. On each element τi we define the space Pk(τi) of polynomials of degree less
than or equal k.
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Figure 2.2 Some mixed finite elements for triangles (first row) and tetrahedra (second
row). The circles/spheres indicate degrees of freedom for velocity-components, the boxes
for pressure.

(a) Taylor-Hood (b) P1-P1 (c) Crouzeix-Raviart

2.2.1.1 (Modified) Taylor-Hood Element

For the Taylor-Hood element, or P2-P1 element, we specify

Uh = {vh ∈ U : vh|τi ∈ P2(τi)
d for all elements τi},

Qh = {qh ∈ Q : qh|τi ∈ P1(τi) for all elements τi}.
(2.21)

An element (vh, qh) in Uh × Qh is uniquely determined by specifying the values of the d
components of vh on the nodes and on the midpoints of edges of the elements and the
values of qh on the nodes of the elements as illustrated in Figure 2.2(a).

The so called modified Taylor-Hood element, or P1isoP2-P1, is a mixed element with
the same degrees of freedom as the classical Taylor-Hood element, which is obtained the
following way. We take Qh as in (2.21), and then refine the mesh as indicated in the 2D-
part of Figure 2.2(a): we divide each triangle into four subtriangles, each tetrahedron into
eight subtetrahedra, and get the finer partitioning G =

⋃
i τ̃i. There we define the velocity

space
Uh = {vh ∈ U : vh|τ̃i ∈ P1(τ̃i)

d for all (sub-) elements τ̃i}.
Both the classical Taylor-Hood element and the modified one fulfill the discrete inf-

sup condition as shown in [BF91]. Thus, their precision can be directly estimated using
(2.17) and the well known approximation results for P1 resp. P2 elements. For the classical



CHAPTER 2. PRELIMINARIES 20

element we get

‖u− uh‖1 + ‖p− ph‖0 ≤ Cht(|u|t+1 + |p|t), for t = 1 or t = 2,

if (u, p) ∈ H t+1(G)d × H t(G). For the modified element, only the estimate with t = 1
remains true.

2.2.1.2 Stabilized P1-P1 Element

If we use piecewise linear basis functions for both pressure and velocity components (Figure
2.2(b)) we obtain an element which is very easy to implement in a concrete computer
program but unfortunately does not fulfill the discrete inf-sup condition. As mentioned
in Remark 2.5, numerical solutions computed using this element often contain unphysical
pressure modes which prevent convergence against the solution of the continuous problem.
A possible way out is the introduction of the following stabilizing c(., .) term in (2.15)

c(p, q) = αS
∑

i

h2
τi

(∇p,∇q)0,τi, (2.22)

and a right hand side term to preserve consistency

〈G, q〉 = −αS
∑

i

h2
τi

(f ,∇q)0,τi , (2.23)

where αS is a positive parameter (intensive discussion on the correct choice of this param-
eter and the local mesh size hτi can be found for example in [Bec95] or [FM93]). We will
refer to this stabilized element as P1-P1-stab.

Remark 2.6. Another possibility of stabilizing the P1-P1 element leads to the so called MINI-
element. Here the velocity space is extended by bubble functions, i.e. uh is an element of
Ũh with

Ũh := {v ∈ U : v|τi = w|τi + bτi ᾱτi with w ∈ Uh and ᾱτi ∈ Rd},
where bτi(x) =

∏
j λj(x), and λj(x) are the barycentric coordinates of x with respect to τi.

It is possible to locally eliminate the bubble-variables, which leads to a similar problem as
(2.15),(2.22),(2.23), with slightly more information on the choice of αS, e.g. that it should
be of order O(1/ν).

Although this element does not fulfill the inf-sup condition, the following result holds
(without proof)

Theorem 2.7. [FS91, theorem 3.1] Suppose that the solution of the continuous Stokes prob-
lem satisfies u ∈ H2(G)d and p ∈ H2(G). Then for αS > 0 the problem (2.15),(2.22),(2.23)
has a unique solution, satisfying

‖u− uh‖1 + ‖p− ph‖0 ≤ C(h|u|2 + h2|p|2). (2.24)
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2.2.1.3 Crouzeix-Raviart Element

Here we drop the requirement that the finite dimensional spaces have to be subsets of
the continuous spaces, insofar as the functions in Uh will not be continuous. We use
nonconforming P1 velocity components (P nc

1 for short), i.e. we define

Uh = {vh : vh|τi ∈ P1(τi)
d for all elements τi,

vh is continuous at the midpoints of all element-edges/faces (in 2D/3D),

vh(bj) = 0 for all midpoints of boundary edges/faces bj on Γ1h.}
(2.25)

and
Qh = {qh ∈ Q : qh|τi ∈ P0(τi) for all elements τi}. (2.26)

The elements in Uh × Qh are determined by their velocity values at the edge-/face-
centers and pressure values at the element centers (see 2.2(c)).

Detailed analysis for this mixed element can be found in [CR73], for example the
convergence result

‖u− uh‖1 ≤ Ch(|u|2 + |p|1)

for (u, p) ∈ H2(G)d ×H1(G).
A nice property of the Crouzeix-Raviart element is the element-wise mass conservation,

which is enforced by the piecewise constant pressure discretization.
Note that the term “Crouzeix-Raviart element”, which we use for P nc

1 -P0, is often
associated to different elements, for example (scalar) P nc

1 or the divergence-free P nc
1 ele-

ment (where a divergence-free basis for the velocities is constructed, and the pressure can
therefore be eliminated from the equations).

In the following we will often drop the h subscripts if it is obvious from the context.

2.2.2 Multi-Element Meshes

All the elements presented above are based on a mesh consisting of triangles resp. tetra-
hedra. We want to mention that they have counterparts for quadrilateral resp. hexahedral
meshes, but we will not go into detail and refer to literature, especially [BF91] and [Tur99].

The following example describes the technique we use when we want to generate FEM
matrices for more general meshes, namely inner condensation.

Example 2.8. Suppose we want to construct an element matrix based on a P1 FE-
discretization of a (scalar) equation for a quadrilateral S1S2S3S4 as in Figure 2.3. If we
construct the midpoint S5, then the discretization on the four resulting subtriangles would
result in an element stiffness matrix



a11 a12 0 a14 a15

a21 a22 a23 0 a25

0 a32 a33 a34 a35

a41 0 a43 a44 a45

a51 a52 a53 a54 a55



.
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Figure 2.3 A quadrilateral is discretized by decomposition into its sub-triangles.

PSfrag replacements

S1
S2

S3

S4

S5

As the midpoint has only connections to S1,. . . ,S4 — also in the fully assembled matrix
— there would be a line like

a51x1 + a52x2 + a53x3 + a54x4 + a55x5 = f5

in the system (where x is the solution vector, f the right hand side). Thus we can locally
eliminate the entries for S5 and get the resulting element matrix




a11 − a15a51/a55 a12 − a15a52/a55 −a15a53/a55 a14 − a15a54/a55

a21 − a25a51/a55 a22 − a25a52/a55 a23 − a25a53/a55 −a25a54/a55

−a35a51/a55 a32 − a35a52/a55 a33 − a35a53/a55 a34 − a35a54/a55

a41 − a45a51/a55 −a45a52/a55 a43 − a45a53/a55 a44 − a45a54/a55




(and additional right hand side terms if f 6= 0).

This idea can be generalized to any cell-type (e.g. pentagons, pyramids, hexahedra,
octahedra, or prisms). First, one has to split the cell into triangles resp. tetrahedra and
then eliminate the auxiliary unknowns locally.

2.3 The Non-Stationary Problem

In the non-stationary case we use the method of lines for time integration. First, the weak
formulation and the FEM approximation in the space variables (with time dependent
coefficients) is performed as shown above to get the system

d

dt
(uh,vh)0 + aD(uh,vh) + aC(uh; uh,vh) + b(vh, ph) = 〈F,vh〉 ,

b(uh, qh) = 0

(plus initial conditions), a system of ordinary differential equations, where standard meth-
ods of time integration can be applied [HWN00].

To show two examples thereof, we assume that the k-th time step has length δk and
that the right hand side is constant in time, and we search the discrete solution (uk, pk) at
time tk = t0 +

∑k
i=1 δi.
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The first example is the one-step-θ scheme, which takes the matrix form

[
1

δk
M + θA(uk)

]
uk +BTpk =

[
1

δk
M + (θ − 1)A(uk−1)

]
uk−1 + f ,

Buk − Cpk = g.

The parameter θ can be chosen in [0, 1], θ = 0 gives the explicit Euler scheme, θ = 1 the
implicit Euler scheme, and θ = 0.5 the Crank-Nicolson scheme scheme.

As second example we present the fractional-step-θ-scheme, where each time step is
divided into three substeps (tk−1 → tk−1+θ → tk−θ → tk):

1.)

[
1

δkθ
M + αA(uk−1+θ)

]
uk−1+θ+BTpk−1+θ =

[
1

δkθ
M − βA(uk−1)

]
uk−1 + f ,

Buk−1+θ −Cpk−1+θ = g,

2.)

[
1

δkθ′
M + βA(uk−θ)

]
uk−θ +BTpk−θ =

[
1

δkθ′
M − αA(uk−1+θ)

]
uk−1+θ + f ,

Buk−θ −Cpk−θ = g,

3.)

[
1

δkθ
M + αA(uk)

]
uk +BTpk =

[
1

δkθ
M − βA(uk−θ)

]
uk−θ + f ,

Buk −Cpk = g,

with θ = 1 −
√

2
2

, θ′ = 1 − 2θ, α ∈ ( 1
2
, 1] and β = 1 − α (where the choice α = 1−2θ

1−θ is
convenient for implementation, because then αθ = βθ′).

In Table 2.1 we list convergence and stability properties of this schemes without going
into the details and without giving any motivation for this properties (what can be found
in [Ran00] or [HW02]). The terms used are described in the following definition.

Definition 2.9. Assume that the discrete solution (with constant time step length) of the
test-problem

y′(t) = λy(t), y(0) = y0,

with λ ∈ C has the form
yk = R(δλ)yk−1,

where R(z) is called the stability function. A scheme is said to be

• A-stable if |R(z)| ≤ 1 for all z ∈ C− := {z ∈ C : Re z ≤ 0},

• strongly A-stable if it is A-stable and limz→∞R(z) < 1, and

• L-stable if it is A-stable and limz→∞R(z) = 0.



CHAPTER 2. PRELIMINARIES 24

Table 2.1 Stability and accuracy of some time stepping methods.

A-stab. str. A-stab. L-stab. accuracy

explicit Euler no no no 1st order
implicit Euler yes yes yes 1st order
Crank-Nicolson yes no no 2nd order
frac.-step-θ yes yes no 2nd order

2.4 The Convective Term

The convective term (u∇)u resp. (w∇)u causes two problems we have to deal with. Firstly
instabilities may occur because of it, secondly we have to cope with its nonlinearity.

2.4.1 Instability

The unstable behavior can already be observed in the following 1D model problem.

Example 2.10. Assume that we want to solve the following scalar convection diffusion
equation for u:

−νu′′(x) + wu′(x) = f for x ∈ (0, 1),

u(0) = u(1) = 0, w, f and ν constant on [0, 1]. A linear finite elements discretization on a
regular grid with mesh-width h leads to the system




2ν
h

− ν
h

+ w
2

− ν
h
− w

2
2ν
h

− ν
h

+ w
2

. . .
. . .

. . .
. . .

. . .
. . .

− ν
h
− w

2
2ν
h




︸ ︷︷ ︸
=:A




u1

u2
...
...
un




=




fh
fh
...
...
fh



.

The corresponding eigenvalue problem reads row-wise

(w
2
− ν

h

)
ui+1 +

(
2ν

h
− λ
)
ui +

(
−w

2
− ν

h

)
ui−1 = 0, for i = 1, . . . , n,

u0 = un+1 = 0,

where λ is the eigenvalue we are searching for. Assume that n is odd and wh 6= 2ν, then

one solution can easily be found as λ = 2ν
h

, u2k = 0, u2k+1 =
(
wh+2ν
wh−2ν

)k
, for k = 0, . . . , n−1

2
.

Thus, for small ν this eigenvalue tends to zero and the very oscillatory eigenvector
(Figure 2.4) is amplified in the solution if h is not small enough.

A solution of this problem is to use a less centered discretization, test-functions with
more weight upstream than downstream. In the Streamline Upwinding Petrov Galerkin
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Figure 2.4 Unphysical eigenmode caused by an unstable convection term.

(SUPG) scheme (details e.g. in [Pir89]) this is realized by applying the test-functions
vh + βh(wh∇)vh instead of vh for the momentum equation, where βh is a parameter of
magnitude O(h) and wh is a “good guess” for the velocity uh, e.g. the solution at the
previous time-step or the latest iterate of the nonlinear iteration (see the following Section
2.4.2). Amongst the terms introduced this way, only

βh ((wh · ∇)uh, (wh · ∇)vh) (2.27)

is of importance for the increase of stability, thus we want to add it to ā(wh; uh,vh).
Just doing this solves the stability problems, but results in a loss of order of accuracy
because the equation is no longer consistent. For example in the stationary case with a
modified Taylor-Hood discretization we could repair this by adding appropriate terms to
the momentum equation, i.e. by using

ν(∇uh,∇vh) + ((wh · ∇)uh,vh)− (ph, div vh)

+
∑

τi

βh [((wh · ∇)uh, (wh · ∇)vh)τi + (∇ph, (wh · ∇)vh)τi]

= 〈F,vh〉+
∑

τi

βh 〈F, (wh · ∇)vh〉τi . (2.28)

2.4.2 Nonlinearity

Because of its super-linear convergence Newton’s method is a frequently used algorithm for
solving nonlinear equations. As the (Gateaux-) derivative of the convective term calculates
as

((u · ∇)u)′ v = (u · ∇)v + (v · ∇)u,

this would lead to equations of the following form (in the stationary case, ignoring for the
moment the stabilizing terms introduced in the previous section)

(AD + AC(uk) + AR(uk))(uk+1 − uk)+B
T (pk+1 − pk)= dk,

B(uk+1 − uk) −C(pk+1 − pk) = ek,
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where AR(w)u is the discretization of (u·∇)w, (uk, pk) are the Newton iterates and (dk, ek)
are some defect right hand sides.

Unfortunately the zero order reaction term AR poses two problems. Firstly it adds
block-off-diagonal entries to matrix A which increase its computational complexity, sec-
ondly it has an uncontrollable effect on the diagonal of A and could cause divergence. Thus
it is common practice to drop this term. This leads to the fixed point method, where in
each iteration step the Oseen equations have to be solved.

A third possibility would be to use (few steps of) an Oseen-preconditioned Richardson-
iteration for the linear problem in each Newton-step, which avoids the reaction term in the
system matrix but puts it to the right hand side.

In the case of strongly dominant convection and stationary equations, the nonlinear
iteration is often hard to control. As this is less the case when solving the instationary
problem, we introduce a pseudo time term, i.e. we obtain an iterative process where uk+1

and pk+1 satisfy (
A(uk) + αM̄ BT

B −C

)(
uk+1

pk+1

)
=

(
f + αM̄uk

g

)
,

where M̄ is the mass matrix or (as we are not interested in the correct reconstruction of a
non-stationary process) a lumped mass matrix and α a (small) parameter.

Besides the stabilization of the nonlinear process, this method has the nice property of
increasing the symmetry of the linear systems.

Summing up, the resulting linear saddle point system which has to be solved (once or
for every nonlinear iteration step and/or for every time step) has the general form (where
we denote the block matrix with K, the solution block vector with x, and the right hand
side block vector with b)

Kx :=

(
A(w) BT

B −C

)(
u
p

)
=

(
f
g

)
=: b, (2.29)

with
A(w) = c1M + AD + c2AC(w) + c3AS(w) + c4AR(w), (2.30)

with mass matrix M , symmetric positive definite Laplacian AD, non-symmetric convection
AC and reaction AR, symmetric positive semi-definite convection stabilization AS and con-
stants c1,. . . ,c4 which may be zero, and symmetric positive semi-definite (or zero) element
stabilization C.

Because of (2.28) it may occur that we have no symmetry in the off-diagonal blocks,
i.e. (

A(w) BT
1

B2 −C

)
,

with B1 6= B2. We will not deal with this situation separately in the remaining of this
thesis, but assume the form (2.29). Note that the case B1 6= B2 would not cause any
additional problems, because then a dominating non-symmetry is already found in A(w).
Therefore we have to deal with a (substantial) non-symmetric system matrix anyway.
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2.5 Iterative Solvers

In this section we give a brief overview over (non-multigrid) iterative solvers which are
applicable to the saddle point system (2.29). Of course, there is a great variety of possible
methods, we have only chosen some prominent examples.

2.5.1 Krylov Space Methods

A first possible family of solvers are those (preconditioned) Krylov space methods which
are capable of solving indefinite and (in the non-Stokes case) non-symmetric problems.
Examples thereof are GMRES and the BiCGstab. An overview of more Krylov space
methods can be found for example in [Vos93] or [Meu99].

2.5.1.1 GMRES

The generalized minimal residual method (GMRES), introduced in [SS86], is a generaliza-
tion of the MINRES method to the non-symmetric case. The idea is to solve in the k-th
iteration step the least squares problem: Find y ∈ Rk such that

‖b−K(x0 +Qky)‖`2 → min,

where the column vectors of Qk build an orthonormal (w.r.t. the `2-scalar product) basis
of the k-th Krylov space

Kk(b, K) = span{b, Kb, . . . , Kk−1b}.

Thus, it could be seen as an exact method, which stops at the solution after finitely many
steps, but which uses an increasing amount of memory in each step. Therefore in practice
we use the GMRES(m) method, i.e. GMRES restarted periodically after m steps.

Algorithm 2.11. Preconditioned GMRES(m). Iterative Solution of Kx = b, with
preconditioner K̂.

Choose starting solution x0;

q1 = K̂−1(b−Kx0);
z1 = ‖q1‖;
q1 = (1/z1) · q1;
repeat

begin
for k = 1 to m do

begin

qk+1 = K̂−1Kqk;
for i = 1 to k do

begin
hik = qi · qk+1; qk+1 = qk+1 − hikqi;
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end
hk+1,k = ‖qk+1‖; qk+1 = qk+1/hk+1,k;

end
for k = 1 to m do

begin

cc =
√
h2
kk + h2

k+1,k;

c = hkk/cc; s = hk+1,k/cc; hkk = cc;
for i = k + 1 to m do(

hk,i
hk+1,i

)
=

(
c s
s −c

)(
hk,i
hk+1,i

)
;

(
zk
zk+1

)
=

(
c s
s −c

)(
zk
0

)
;

end
ym = zm/hmm;
for i = m down-to 1 do

yi =
(
zi −

∑m
j=i+1 hijyj

)
/hii;

xm = x0 +
∑m

i=1 yiqi;

rm = K̂−1(b−Kxm);
x0 = xm; r0 = rm;
z1 = ‖r0‖; q1 = (1/z1) · r0;

end
until |z1| < tolerance

2.5.1.2 BiCGstab

The stabilized bi-conjugate gradient method (BiCGstab) was introduced in [VdV92] (with
slight modifications in [SVdV94]). It is not optimal in each step, i.e. it solves the min-
imization problem only approximately, but as it uses a short range recurrence for the
construction of the orthonormal basis of the Krylov space, it consumes considerably less
computer memory as GMRES.

Algorithm 2.12. BiCGstab. Iterative Solution of Kx = b, with preconditioner K̂.

Choose starting solution x0;

r0 = K̂−1(b−Kx0);
Choose arbitrary r̂0, such that r̂0 · r0 6= 0, e.g. r̂0 = r0;
ρ0 = α = ω0 = 1;
v0 = p0 = 0;
i← 1;
repeat

begin
ρi = r̂0 · ri−1; β = (ρi/ρi−1)(α/ωi−1);
pi = ri−1 + β(pi−1 − ωi−1vi−1);
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y = Kpi; vi = K̂−1y;
α = ρi/(r̂0 · vi);
s = ri−1 − αvi;

y = Ks; t = K̂−1y;
ωi = (t · s)/(t · t);
xi = xi−1 + αpi + ωis;
if xi is accurate enough then quit;

ri = K̂−1(b−Kxi);
i← i+ 1;

end

2.5.2 SIMPLE

If linear solvers for scalar elliptic equations are available, a very popular method is SIM-
PLE (Semi-Implicit Method for Pressure-Linked Equations), developed by Patankar and
Spalding [PS72, Pat80], which iteratively decouples the system to equations for pressure
and for velocity (even for velocity-components in the Oseen or in the Stokes case as then
A is block-diagonal).

We start with the factorization

K =

(
A 0
B S

)(
I A−1BT

0 −I

)
, (2.31)

with the Schur complement S = C+BA−1BT , and then introduce preconditioners Â for A

in the first factor,
ˆ̂
A for A in the second factor and Ŝ for S. Using this in a preconditioned

Richardson method leads to the scheme

Â(ûk+1 − uk) = f − Auk − BTpk, (2.32a)

Ŝ(pk+1 − pk) = Bûk+1 − Cpk − g, (2.32b)

ˆ̂
A(uk+1 − ûk+1) = −BT (pk+1 − pk), (2.32c)

where ûk+1 is some auxiliary vector. Now in (2.32a) Auk is replaced by Âuk, leading to

Âûk+1 = f − BTpk.

In the classical SIMPLE algorithm Ŝ is a preconditioner for the modified Schur complement

C +B
ˆ̂
A−1BT ,

ˆ̂
A is the diagonal of A, denoted by D, and the pressure update is damped.

This leads to the following algorithm.
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Algorithm 2.13. SIMPLE
Choose preconditioners Â for A and Ŝ for the modified Schur complement C +BD−1BT ;

choose a starting solution (u0, p0); k ← 0;
repeat until convergence

begin

solve Âû = f −BT pk;

solve Ŝp̃ = Bû− Cpk − g;
choose a damping parameter γ;
pk+1 = pk + γp̃;
uk+1 = û−D−1BT p̃;
k ← k + 1;

end

In all our numerical tests we use AMG methods for Â and Ŝ, therefore we will sometimes
call the method AMG-SIMPLE.

Remark 2.14. Algorithm 2.13 represents a simple version of this class of algorithms. One
can find many variants in literature, examples are SIMPLER, SIMPLEC or SIMPLEV.
Often the nonlinear iteration in the Navier-Stokes case is also embedded in the SIMPLE-
scheme. For details see e.g. the references above, [GNR98], [AB01] and the references
therein.

2.5.3 Inexact Uzawa Methods

Like the SIMPLE algorithm the methods in this section decouple velocity and pressure
equations iteratively. They are based on the following factorization of the inverse of the
system matrix K,

K−1 =

(
A−1 0

0 I

)(
I −BT

0 I

)(
I 0
0 −S−1

)(
I 0

−BA−1 I

)
. (2.33)

An inexact inverse is built by replacing A−1 and S−1 in (2.33) by preconditioners Â−1 and
Ŝ−1: (

Â−1 0
0 I

)(
I −BT

0 I

)(
I 0

0 −Ŝ−1

)(
I 0

−BÂ−1 I

)
. (2.34)

Now different combinations of these four factors are used to construct a preconditioner
K̂−1.

Using all four factors — which would lead to

K̂ =

(
Â BT

B BÂ−1BT − Ŝ

)
(2.35)
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— for a preconditioned Richardson iteration we get the inexact symmetric Uzawa algorithm

Â(ûk+1 − uk) = f − Auk − BTpk, (2.36a)

Ŝ(pk+1 − pk) = Bûk+1 − Cpk − g, (2.36b)

Â(uk+1 − ûk+1) = −BT (pk+1 − pk). (2.36c)

Factors one, three and four and preconditioned Richardson result in the inexact Uzawa
algorithm

Â(uk+1 − uk) = f − Auk − BTpk, (2.37a)

Ŝ(pk+1 − pk) = Buk+1 − Cpk − g, (2.37b)

which leads for Â = A, Ŝ = σI to the classical Uzawa algorithm, for Â = αI, Ŝ = σI to
the classical Arrow-Hurwicz algorithm [AHU58, BF91].

Details to these two methods can be found e.g. in [LQ87], [BWY90], or [Zul02] .
The combination of factors one, two and three

K̂−1 =

(
Â−1 Â−1BT Ŝ−1

0 −Ŝ−1

)
(2.38)

is studied e.g. in [SEKW01] and [MGW00], the use of the preconditioner

K̂−1 =

(
Â−1 0

0 Ŝ−1

)
(2.39)

in [SW94] and [IRT93].
The preconditioner (2.39) can also be motivated by the following observation for its

exact version

K̂ =

(
A 0
0 S

)
.

We want to have an h-independent upper bound for the condition number of the precon-
ditioned system

condK̂

(
K̂−1K

)
,

where the condition number for a matrix Y with respect to a matrix norm ‖.‖α is defined
as

condα(Y ) := ‖Y ‖α · ‖Y −1‖α.
For this purpose we need the following result.
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Lemma 2.15. Assume that A is positive definite, C positive semi-definite, and that if B
does not possess full row-rank then C is positive definite. Then the generalized eigenvalues
λ of (

A BT

B −C

)(
u
p

)
= λ

(
A 0
0 S

)(
u
p

)

are contained in the set [
−1;

1−
√

5

2

]
∪
[

1;
1 +
√

5

2

]
.

Proof. To solve the problem

λAu = Au +BT p (2.40a)

λSp = Bu− Cp (2.40b)

we distinguish two cases.
First if λ = 1 then (2.40a) can be fulfilled with p = 0 and (2.40a) by any u with Bu = 0.
Now for λ 6= 1 we get u = 1

λ−1
A−1BT p from (2.40a), insert this in (2.40b) and get

(
λ− 1 +

√
5

2

)(
λ− 1−

√
5

2

)
BA−1BTp+ (λ+ 1)(λ− 1)Cp = 0. (2.41)

As both BA−1BT and C are positive semi-definite and at least one of them is positive
definite, (2.41) can only be fulfilled for

λ ∈
[
−1;

1−
√

5

2

]
∪
(

1;
1 +
√

5

2

]
,

which completes the proof.

Remark 2.16. If C ≡ 0 then one can even show that λ ∈ {1, (1±
√

5/2}. Similar and more
general results can be found e.g. in [RW92], [IRT93], or [SW94].

Now we can easily calculate that

‖K̂−1K‖K̂ = ‖K1/2K̂−1K1/2‖`2
and

‖K−1K̂‖K̂ = ‖K̂1/2K−1K̂1/2‖`2 ,
and deduce from Lemma 2.15 that

‖K1/2K̂−1K1/2‖`2 ≤
1 +
√

5

2
,

and

‖K̂1/2K−1K̂1/2‖`2 ≤
2√

5− 1
.

Thus we can estimate

condK̂

(
K̂−1K

)
≤ 3 +

√
5

2
,

where the upper bound is clearly independent of h.
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2.5.3.1 “Black-Box”-Preconditioners

This class of preconditioners — it has been introduced in [SEKW01], [LW02] and [ESW02]
for the Oseen problem and earlier for example in [SW94] for the Stokes problem — is based
on two ideas.

First, one of the preconditioners (2.38), (2.39) is used for a preconditioned Krylov space
method (Section 2.5.1).

Remark 2.17. If we consider the stationary Stokes problem and the exact version of (2.38)
(i.e. Â = A, Ŝ = S) then the eigenvalues of K̂−1K are contained in the set {−1, 1}, which
would cause a Krylov space method to converge to the exact solution in two steps. We
have already mentioned in Remark 2.16 that a similar result applies to the exact version of
(2.39) if C ≡ 0, here the set is

{
1, (1±

√
5)/2

}
and the solution is reached in three steps

(see [MGW00, Ips01]).

The second key point (in the Oseen case and for C ≡ 0, i.e. LBB-stable elements) is
the following heuristic commutativity relation

∇(−ν∆ + (w · ∇))s ≈ (−ν∆ + (w · ∇))∇, (2.42)

where the s-index of the convection diffusion operator indicates its scalar version. Thereof
we can deduce

(−ν∆ + (w · ∇))−1∇ ≈ ∇(−ν∆ + (w · ∇))−1
s .

Applying the divergence on both sides leads to

div(−ν∆ + (w · ∇))−1∇ ≈ ∆s(−ν∆ + (w · ∇))−1
s ,

and inverting gives
[
div(−ν∆ + (w · ∇))−1∇

]−1 ≈ (−ν∆ + (w · ∇))s∆
−1
s , (2.43)

i.e. the inverse of the Schur complement could be approximated by an inverse (pressure)
Laplacian and a (pressure!) convection diffusion operator.

For the Stokes problem the scaled pressure mass matrix 1
ν
Mp is an optimal Schur-

complement-preconditioner, i.e. γ1 and γ2 in

γ1 ≤
νqTSq

qTMpq
≤ γ2 ∀q ∈ Rm

are h-independent, where the lower bound is valid because of the inf-sup-condition (2.16),
the upper bound because of the continuity of b(., .)

|b(v, q)| ≤ √γ2‖v‖A‖q‖Mp

(see also [LQ86, LQ87]). Therefore also in the case of Oseen equations it is suggested not
to use just the two factors indicated by (2.43) but

Ŝ−1 = M̂−1
p A(w)sÂ

−1
Ds
, (2.44)

where M̂p is a preconditioner for the pressure mass matrix (e.g. the lumped mass matrix),

A(w)s the scalar variant of A(w) and ÂDs a preconditioner for the (pressure) Laplacian.
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Remark 2.18. Two possible problems of this preconditioner can arise of the assumption
(2.42). First, the commutativity

∇[(w · ∇)] ≈ (w · ∇)∇,

is not fulfilled in general (except for some special situation, e.g. constant w), what poses
problems if this term dominates (for small ν’s).

Second, for non-constant ν (e.g. due to a k-ε turbulence model, c.f. [MP94] or [RW99])
even the first part of (2.42) would be violated, as in this case

∇ν∆ 6= ν∆∇.



Chapter 3

Multigrid Methods

In the previous chapter we have introduced some iterative methods for the solution of
saddle point systems, most of them having in common that (without preconditioning)
they are not optimal, i.e. the number of arithmetical operations Q(ε) for a reduction of the
residual by a factor ε is considerably larger than O(n), where n is the number of unknowns
of the system.

Multigrid methods, which will be the main topic in the remaining of this thesis, possess
this optimality-property Q(ε) = O(n) (at least geometric multigrid methods), therefore
we want to apply them as solvers (or preconditioners) for our system.

First we will describe a general algebraic multigrid (AMG) method, introduce the
notation and pinpoint some differences to geometric multigrid (GMG) methods. Then we
will give some concrete examples of methods for scalar elliptic equations.

3.1 A General Algebraic Multigrid Method

We want to construct a general AMG method for a set of linear equations

K1x = b1,

where K1 is a regular n1× n1 matrix. The index indicates the level, 1 is the finest level, L
will be the coarsest. For AMG methods, which will be the main focus of this thesis, this
numbering is natural, but note that it is the reverse of the natural numbering for GMG
methods.

The first step in this method is to create a full rank prolongation matrix P 1
2 based

on some coarsening (see later, Section 3.2.2), with P 1
2 : Rn2 → Rn1 and n2 < n1. For

this purpose (almost) only information from some auxiliary matrix H1 is used. Normally
one uses the information from the matrix K1, but the utilization of an auxiliary matrix
(which is suggested for example in [Rei01]) enhances the flexibility of the method. In AMG
methods the size of the (negative) matrix entries is related to the strength of the coupling
of two unknowns, thus different notions of ‘strength’ can be introduced for different choices

35



CHAPTER 3. MULTIGRID METHODS 36

of H1. One could use e.g.

(H1)i,j =





−1/‖ei,j‖ if i 6= j and vertex i and j are connected,∑
k 6=i 1/‖ei,k‖ if i = j,

0 otherwise,

(3.1)

where ‖ei,j‖ is the length of the edge connecting the nodes i and j, to represent a virtual
FE-mesh. For convection diffusion equations, this could be modified for regions with
dominating convection, which causes a faster “transport of information”. More choices
seem conceivable, but will not be dealt with in this thesis.

We also need a restriction matrix R2
1 : Rn1 → Rn2 , for which we use R2

1 = (P 1
2 )T . Now

we can build the Galerkin projected matrix

K2 = R2
1K1P

1
2 ,

and the auxiliary matrix on this level

H2 = R2
1H1P

1
2 .

Repeating this step we end up with a set of prolongation matrices P l
l+1, l = 1, . . . , L−1,

where P l
l+1 : Rnl+1 → Rnl, n1 > n2 > . . . > nL, a set of restriction matrices Rl+1

l , and a
set of coarse level matrices Kl and auxiliary matrices Hl with

Kl+1 = Rl+1
l KlP

l
l+1 (3.2)

and
Hl+1 = Rl+1

l HlP
l
l+1.

Completing the AMG method we need on each level l = 1, . . . , L− 1 an iterative method
for the problem Klxl = bl,

xj+1
l = Sl(xjl , bl),

the smoothing operator.
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Algorithm 3.1. Basic multigrid iteration for the system Klxl = bl.
Let mpre be the number of presmoothing steps, mpost of postsmoothing steps. Suppose we
have chosen a starting solution x0

l on level l.

for k ← 1 to mpre do xkl = Sl(xk−1
l , bl); (presmoothing)

bl+1 ← Rl+1
l (bl −Klx

mpre

l ); (restriction)
if l + 1 = L

Compute the exact solution x̄L of KLx̄L = bL;
else

begin
Apply Algorithm 3.1 (µ times) on

Kl+1xl+1 = bl+1

(with starting solution x0
l+1 = 0)

and get x̄l+1;
end

x
mpre+1
l ← x

mpre

l + P l
l+1x̄l+1; (prolongation and correction)

for k ← 1 to mpost do x
mpre+k+1
l = Sl(xpre+k

l , bl); (postsmoothing)

return x̄l ← x
mpre+mpost+1
l ;

The part from (restriction) to (prolongation and correction) will be referred to as “coarse
grid correction”.

Repeated application of this algorithm until fulfillment of some convergence criterion
yields a basic AMG method. For µ = 1 the iteration is called a ‘V-cycle’, for µ = 2 ‘W-
cycle’. We use the abbreviations V-mpre-mpost resp. W-mpre-mpost for a V- resp. W-cycle
with mpre presmoothing and mpost postsmoothing steps.

Geometric Multigrid. The base for GMG methods is a hierarchical sequence of finer
and finer meshes. Each level has an associated grid, thus P l

l+1 and Rl+1
l can be constructed

using geometric information of two consecutive meshes, the auxiliary matrices Hl are not
needed.

The coarse system matrices need not be built using the Galerkin approach (3.2), direct
discretization of the differential operator on the specific mesh can be performed. For non-
nested FE spaces (e.g. velocity components of the Crouzeix-Raviart element in Section
2.2.1.3) these two approaches differ, the direct discretization seems to be more natural.

3.1.1 Basic Convergence Analysis

The common denominator and key point of all multigrid methods is the splitting of the
error components in two classes. One that can be reproduced on coarser levels/grids and
therefore can be reduced by the coarse grid correction and one that has to be reduced by
the smoother. For the geometric multigrid method the first group consists typically of low
frequency parts the second of high frequency parts of the error. The ability to cope with
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the first group is called approximation property, with the second smoothing property. The
(optimal) convergence of the multigrid method is the consequence of their combination.

The Geometric Multigrid Case. Two classical techniques of proofing the convergence
of geometric multigrid methods assure two-grid convergence (which can be shown to imply
W-cycle convergence) by different splittings of the two-grid iteration operator (without
postsmoothing)

Ml+1
l := (I − P i

l+1K
−1
l+1R

l+1
l Kl)Sml ,

where m is the number of smoothing steps (i.e. m = mpre in Algorithm 3.1) and Sl the itera-
tion matrix of the smoother (for a preconditioned Richardson iteration with preconditioner
K̂l we have Sl = I − K̂−1

l Kl).
The first technique, which was mainly developed by the Russian school [Bac66, Ast71,

Kor77, Lan82] is based on a sum splitting. Here the projections P low and P high (which
project on the subspaces spanned by the low and high frequency eigenvectors of the system
matrix) are introduced, and the identity, decomposed into I = P low ⊕ P high, is inserted
into Ml+1

l (left of Sml ) to get the estimate

‖Ml+1
l ‖ ≤ ‖(I − P i

l+1K
−1
l+1R

l+1
l Kl)P

low‖‖Sl‖m

+ ‖(I − P i
l+1K

−1
l+1R

l+1
l Kl)‖‖P highSml ‖.

Two-grid convergence is then proven by showing that the term ‖(I−P i
l+1K

−1
l+1R

l+1
l Kl)P

low‖
is small (the approximation property) and that ‖P highSml ‖ is arbitrary small for sufficiently
many smoothing steps m (the smoothing property).

The other classical technique can be found in Hackbusch [Hac85]. Here a product
splitting is constructed after inserting the identity I = K−1

l Kl into Ml+1
l (left of Sml ).

Then again two properties have to be shown. One is the approximation property which
here reads as

‖K−1
l − P l

l+1K
−1
l+1R

l+1
l ‖`2 ≤ c/‖Kl‖`2 (3.3)

the other the smoothing property

‖KlSml ‖`2 ≤ η(m)‖Kl‖`2 (3.4)

where c is a positive constant and η(m) the so called smoothing rate (independent of level
l) with

η(m)→ 0 for m→∞.
They together imply the convergence of the two-grid method if m is large enough.

Remark 3.2. Instead of (3.3) and (3.4) the approximation and smoothing properties are
often formulated directly using the h-scaling induced by Kl, i.e.

‖K−1
l − P l

l+1K
−1
l+1R

l+1
l ‖ ≤ chδl

and
‖KlSml ‖ ≤ η(m)h−δl ,

with appropriate δ and ‖.‖.
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The Algebraic Multigrid Case. Convergence analysis for algebraic multigrid meth-
ods has been mostly restricted to the symmetric positive definite case up to now. For a
symmetric positive definite system matrix Kl the smoothing property (according to Ruge
and Stüben [RS86]) takes the form

‖Sle‖2
Kl
≤ ‖e‖2

Kl
− c1‖Kle‖2

D−1
l

for all e, (3.5)

with c1 > 0 independent of e and Dl the diagonal of Kl. This implies that the smoother
has to reduce an error e strongly if ‖Kle‖D−1

l
is large (compared to ‖e‖Kl). If additionally

the approximation property

‖(I − P l
l+1K

−1
l+1R

l+1
l Kl)e‖2

Kl
≤ c2‖Kl(I − P l

l+1K
−1
l+1R

l+1
l Kl)e‖2

D−1
l

(3.6)

is fulfilled with c2 independent of e then

‖Sl(I − P i
l+1K

−1
l+1R

l+1
i Kl)e‖2

Kl
≤‖(I − P i

l+1K
−1
l+1R

l+1
l Kl)e‖2

Kl

− c1‖Kl(I − P l
l+1K

−1
l+1R

l+1
l Kl)e‖D−1

l

≤ (1− c1

c2
)‖(I − P l

l+1K
−1
l+1R

l+1
l Kl)e‖2

Kl

≤ (1− c1

c2
)‖e‖2

Kl
,

i.e. the two-grid algorithm with one postsmoothing step converges.

3.2 Examples in the Scalar Elliptic Case

Assume for this section, that the system we want to solve results from a FE approximation
of the scalar elliptic model problem: Find u : G → R such that

∆u(x) = b(x) for x ∈ G,
u(x) = 0 for x ∈ ∂G,

which leads to the linear system
K1u = b1.

3.2.1 Geometric Multigrid

Basic point wise iterations like the ω-Jacobi or the Gauss-Seidel method can be used as
smoothers in the case of our model problem.

For nested FE spaces X1 ⊃ X2 ⊃ . . . (again the index indicates the level) the construc-
tion of the prolongation is straight-forward, it only has to reproduce identity.
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In the case of non-nested spaces different strategies are needed. For the example of P nc
1

finite elements (e.g. the velocity components of the Crouzeix-Raviart element) one could
use

(
P l
l+1uh

)
e

=

{
uh(e) if e is a fine grid edge inside a coarse grid element,
1
2

[uh|τ1(e) + uh|τ2(e)] if e = τ1 ∩ τ2 for two coarse grid elements τ1, τ2

(3.7)
(c.f. [BV90] or [Bre93]).

3.2.2 Algebraic Multigrid

We assume now that the discretization of our model problem is nodal based, i.e. each
unknown is associated with a unique mesh node.

The smoother can again consist of ω-Jacobi or Gauss-Seidel iterations. For the con-
struction of the coarse levels, i.e. the assembling of the prolongation matrices there are
various possibilities, we will describe those which will be important later in this theses.

3.2.2.1 AMG Based on C/F-Splitting

The classical AMG methods use a splitting of the set of nodes into a set of coarse nodes
(C) which will also be used on the coarse level, and a set of fine nodes (F) which ‘live’ only
on the fine level, details can be found in [BMR84], [RS86] or [Stü01a].

Suppose that — after such a splitting has been chosen — the unknowns are sorted
F-unknowns (living on F-nodes) first, then C-unknowns (living on C-nodes). This induces
a block structuring of the linear system

Klu =

(
K l
FF K l

FC

K l
CF K l

CC

)(
uF
uC

)
=

(
bF
bC

)
= b

(and the same structuring for Hl and P l
l+1). Now for the prolongation it is obviously a

good choice to leave the C-unknowns unchanged, i.e. to use

P l
l+1 =

(
P F
C

I

)
(3.8)

(omitting the level index l in P F
C ), where again there are many variants for P F

C , some of
them will be described in what follows. All of them have in common that each coarse node
prolongates only to a very restricted set of fine nodes to prevent fill-in in the coarse level
matrices and a resulting explosion of complexity.

One possibility is to do averaging on the F nodes, i.e. we could define

(P F
C )j,k =

{
1
mj

if k is a neighboring C node of a F node j,

0 otherwise,
(3.9)

where mj is the number of neighboring C nodes of the F node j, and the neighbor-relation
is induced by non-zero entries in the auxiliary matrix Hl.
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Remark 3.3. If the fine level mesh was constructed by a hierarchical refinement of a coarse
mesh, the C and F nodes are chosen accordingly, and the underlying discretization is the
P1 element, then this strategy reproduces the geometric multigrid method.

A more sophisticated prolongation can be found in [Stü01a]. Before presenting it we
need the concepts of M-matrices and of essentially positive type matrices.

Definition 3.4. A matrix H = (hij) is called M-matrix if

1. hii > 0 for all i,

2. hij ≤ 0 for all i 6= j,

3. H is regular, and H−1 ≥ 0 (where here ‘≥’ is meant component-wise).

(One can skip the first requirement because it is a consequence of 2. and 3., see e.g. [Hac93].)

Definition 3.5. A matrix H = (hij) is said to be of essentially positive type if it is positive
definite and there exists a constant ω > 0 such that for all e,

∑

i,j

(−hij)(ei − ej)2 ≥ ω
∑

i,j

(−h−ij)(ei − ej)2, (3.10)

with

h−ij =

{
hij if hij < 0,

0 otherwise

(and h+
ij = hij − h−ij).

Remark 3.6. If H is a M-matrix than condition (3.10) is fulfilled with ω = 1. The class
of essentially positive type matrices was introduced to capture “almost M”-matrices with
small positive off-diagonal entries which can be ‘repaired’ (see [Bra86]).

Lemma 3.7. If a matrix H is of essentially positive type with ω as in (3.10) then for all e

2

ω
eTDHe ≥ eTHe, (3.11)

where DH is the diagonal of H.

Proof. It is easy to check that

2

ω
eTDHe ≥ eTHe− 1

2

∑

j

∑

k 6=j
hjk

[(
2

ω
− 1

)
e2
j + 2ejek +

(
2

ω
− 1

)
e2
k

]

︸ ︷︷ ︸
=:Λ

and that
(

2

ω
− 2

)
(e2
j + e2

k) ≤
(

2

ω
− 1

)
e2
j + 2ejek +

(
2

ω
− 1

)
e2
k ≤

2

ω
(e2
j + e2

k).
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Thus

Λ ≤ 2

ω

∑

j,k
j 6=k

hjk(e
2
j + e2

k)− 2
∑

j,k
j 6=k

h−jk(e
2
j + e2

k). (3.12)

With e = (0, . . . , 0, 1, 0, . . . , 0)T , the i-th unit vector, we get from (3.10)

∑

j
j 6=i

hij ≤ ω
∑

j
j 6=i

h−ij,

which together with (3.12) gives
Λ ≤ 0

and therefore completes the proof.

From now on we will write
A ≥ B

for two matrices A and B if A − B is positive semi-definite (or A > B if it is positive
definite), e.g. we can express (3.11) as 2

ω
DH ≥ H.

We shortly sketch the construction of a reasonable P F
C for an essentially positive type

matrix Hl = (hij)ij according to [Stü01a]. The construction is done in a way that for a
coarse level vector eC the interpolation P F

C eC “fits smoothly” to eC , i.e. that if we set

e =

(
P F
C

I

)
eC

then
hiiei +

∑

j∈Ni
hijej ≈ 0, for i ∈ F , (3.13)

where Ni is the set of neighboring F- and C-nodes of F-node i, i.e.

Ni := {j : j 6= i, hij 6= 0}

the direct neighborhood. We will denote the subset of Ni with negative matrix connections
with N−i , and Pi ⊆ C ∩ N−i will be the set of interpolatory nodes, i.e. the set of C-nodes
which prolongate to F-node i. If we assume that for smooth error e

1∑
j∈Pi hij

∑

j∈Pi
hijej ≈

1∑
j∈Ni hij

∑

j∈Ni
hijej

we could approximate (3.13) by

hiiei + κi
∑

j∈Pi
hijej = 0,
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with

κi =

∑
j∈Ni hij∑
j∈Pi hij

.

But for practical reasons (details can be found in [Stü01a]) we add all positive entries to
the diagonal, i.e. we use

h̃iiei + κ̃i
∑

j∈Pi
h−ijej = 0,

with
h̃ii = hii +

∑

j∈Ni
h+
ij

and

κ̃i =

∑
j∈Ni h

−
ij∑

j∈Pi h
−
ij

.

Thus we set
(P F

C )j,l = −κjh−jl/h̃jj. (3.14)

If P l
l+1 is of the form (3.8) a sufficient condition for the approximation property (3.6)

is given by the following theorem (without proof).

Theorem 3.8. [RS86] If for all e =

(
eF
eC

)

‖eF − P F
C eC‖2

Dl,F
≤ c‖e‖2

Kl
, (3.15)

where c is independent of e, and Dl denotes the diagonal of Kl, then (3.6) is satisfied (here
‖.‖Dl,F denotes the ‘F-part’ of the norm).

For the prolongation (3.14) with Hl ≡ Kl we can find another sufficient condition, again
without proof.

Theorem 3.9. [Stü01a, Theorem A.4.5] Let Kl = (hj,k)j,k > 0 be of essentially positive-
type with

∑
k hjk ≥ 0 for all k. With fixed σ ≥ 1, select a C/F-splitting such that, for each

j ∈ F , there is a set Pj ⊆ C ∩N−j satisfying

∑

k∈Pj
|h−jk| ≥

1

σ

∑

k∈Nj
|h−jk|. (3.16)

Then the interpolation (3.14) satisfies for all e

‖eF − P F
C eC‖2

Dl,F
≤ σ

ω
‖e‖2

Kl
, (3.17)

with ω from (3.10).
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Choice of C nodes. What still has to be fixed is a concrete C/F-splitting. A very easy
to implement algorithm for this purpose is the red-black-coloring method [Kic98].

Algorithm 3.10. Red-Black Coloring

repeat until all the nodes are colored
begin

step 1: choose an uncolored node (e.g. with minimal node number);
step 2: this node is colored black;
step 3: all uncolored neighbors are colored red;

end

The black nodes are then used as C nodes.

A first variation of this algorithm is to use a different notion of ‘neighboring’ in step 3,
to color only the strongly negatively coupled (snc) nodes, where a node j is said to be snc
to a node k if

−hjk ≥ εstr max
i
|h−ji|, (3.18)

with fixed parameter εstr ∈ (0, 1] (typically εstr = 0.25). We denote the set of strongly
negative couplings of a node j by

Sj = {k ∈ Nj : j is snc to k} (3.19)

and the set of transposed strongly negative couplings by

STj = {k : j ∈ Sk}. (3.20)

Now step 3 can be replaced by

“all uncolored nodes which are snc to the black node are colored red”. (3.21)

Another variant concerns step 1. The order in which the C nodes are chosen may be
crucial if we want to obtain a uniform distribution of C and F nodes. One suggestion in
this direction in [RS86] is to introduce a “measure of importance” λj for each node j in
the set of ‘undecided’ nodes U , and to choose a node with maximal λj as next C node.
One possibility for this measure is

λj = |STj ∩ U | + 2|STj ∩ F |, (3.22)

which can be evaluated for all nodes in a preprocessing step and updated locally after each
iteration step.
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3.2.2.2 Element Agglomerating AMGe

The algorithms in the previous section were based on heuristics for M-matrices (or ‘al-
most’ M-matrices, like the class of essentially positive type matrices). AMGe (AMG using
element stiffness matrices) was developed to obtain more general methods for FEM systems,
where it takes advantage of the element matrices. In [BCF+00] AMGe was introduced,
the coarse grid construction, i.e. the C/F-splitting was adopted from standard AMG, the
interpolation was built using the new technique.

An approach which combined the AMGe idea with a method yielding detailed topologic
information on coarse levels (i.e. elements, faces, edges, nodes) was presented in [JV01],
we will show the basic ideas and algorithms.

Assume that on one level (e.g. on the discretization level) we know the element-to-node
connectivity, i.e. which nodes are part of a given element. Assume further that a method
for the agglomeration of elements is known, satisfying the requirements that each element
is part of one unique agglomerate and that each agglomerate is a connected set, meaning
that for any two elements part of the the same agglomerate there exists a connected path of
elements of this agglomerate connecting the two elements. Then we can apply the following
algorithm for the creation of the coarse level topology.

Algorithm 3.11. [JV01] AMGe coarse level topology

1. Agglomerate the fine elements to coarse elements Ej (with the above properties).

2. Consider all intersections Ej ∩ Ek for all pairs of different agglomerated elements
Ej and Ek. If such an intersection is maximal, i.e. is not contained in any other
intersection, then it is called a face.

3. Consider the faces as sets of nodes. For each node n compute the intersection⋂{all faces which contain n}. Now the set of minimal, nonempty intersections de-
fines the vertices.

We have formulated the algorithm for the 3D case, but it can be directly applied to 2D
problems (then the ‘faces’ correspond to edges). If (in the 3D case) one additionally wants
to construct edges, then this can be done in step 3 using the set of minimal, nonempty
intersections which are not already vertices.

For the construction of the interpolation we first define the neighborhood of a (fine-
level) node n by

Ω(n) :=
⋃
{all agglomerated elements that contain n}

and the minimal set

Λ(n) :=
⋂
{all agglomerated elements that contain n}

(Λ(n) can be a node, edge, face or element). For the coarse-level nodes we use again
identity prolongation (they are the C-nodes of standard AMG) and for the edges, faces,
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cells we proceed recursively as follows. Assume for a set Λ(n) that the interpolation on
the unknowns in ∂Λ(n) has been fixed,1 and we want to calculate the interpolation on the
nodes in Λ(n) \ ∂Λ(n). For that we build the local stiffness matrix of Ω(n) (consisting
of the element stiffness matrices of elements in Ω(n)) with the underlying partitioning
(Ω(n) \ ∂Λ(n)) ∪ ∂Λ(n)

KΩ(n) =

(
Kii Kib

Kbi Kbb

)
} Ω(n) \ ∂Λ(n)
} ∂Λ(n)

(i stands for interior, b for boundary) and perform local energy minimization:

find ui such that (uTi u
T
b )

(
Kii Kib

Kbi Kbb

)(
ui
ub

)
is minimized, with given ub,

with the result (for symmetric, positive definite KΩ(n))

ui = −K−1
ii Kibub.

Now we can set

(P F
C )j,k =

[
−K−1

ii Kib

(
P̃j

(
0
1

)
← vertices of Λ(j) \ {k}
← k .

)

∂Λ(j)

]

j

,

where P̃j is the localized version of P l
l+1.

Remark 3.12. The drawback of this method is a possibly expensive set-up phase, as many
local minimization problems have to be solved and one has to save all the element stiffness
matrices. Approaches to overcome this difficulty can be found in [HV01].

Remark 3.13. A very nice property of element agglomerating AMGe is the complete infor-
mation about grid topology on the coarse levels. This could be utilized in various ways, so
e.g. stability analysis for saddle point problems can be performed nearly as in a geomet-
ric context (c.f. Section 4.1.3) or as another example one could use the information to
construct some FAS-like schemes2 for nonlinear problems, which is done in [JVW02].

What we have not specified yet is how to construct the coarse agglomerates. One
possibility for that is the following algorithm.

1The ‘boundary’ ∂Λ(n) is defined straightforward: if Λ(n) is a face then ∂Λ(n) are those nodes of Λ(n)
which belong to more than one face, if Λ(n) is an agglomerated element then ∂Λ(n) is the union of faces
of this element.

2FAS . . . full approximation storage, a multigrid method which is capable of solving nonlinear problems,
developed by Brandt [Bra77].
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Algorithm 3.14. [JV01] Jones-Vassilevski element agglomeration
Assume we have a set of finer level elements {ej} and faces {fj}, and introduce an integer
weight w(fj) for each face fj.

• initiate. Set w(f)← 0 for all faces f ;

• global search. Find a face f with maximal w(f), if w(f) = −1 we are done; set
E ← ∅;

1. Set E ← E ∪ e1 ∪ e2, where e1 ∩ e2 = f and set wmax ← w(f), w(f)← −1

2. Increment w(f1) ← w(f1) + 1 for all faces f1 such that w(f1) 6= −1 and f1 is a
neighbor of f ;

3. Increment w(f2) ← w(f2) + 1 for all faces f2 such that w(f2) 6= −1, f2 is a
neighbor of f , and f2 and f are faces of a common element;

4. From the neighbors of f , choose a face g with maximal w(g); if w(g) ≥ wmax

set f ← g and go to step 1.;

5. If all neighbors of f have smaller weight than wmax, the agglomerated element
E is complete; set w(g)← −1 for all faces of the elements e contained in E;
go to global search;

Remark 3.15. In [JV01] also modifications to this algorithm are presented which allow some
kind of semi-coarsening, i.e. coarsening with the focus in one specific direction (for example
determined by convection).

For the 2D case this algorithm mostly produces nice agglomerated elements, in the 3D
case some strange shapes may occur, therefore some adjustments of the algorithm seem to
be necessary.

A second method which produces good agglomerates, but often leads to a too strong
coarsening (what has a disadvantageous influence on the h-independence) is the following.

Algorithm 3.16. Red-grey-black element agglomeration

repeat until all elements are colored
begin

choose an uncolored element, this is colored black;
color all uncolored or grey neighboring elements red

(where ‘neighboring’ could be induced by faces, edges or nodes);
color all uncolored elements neighbored to red elements grey;

end
the black elements plus surrounding red elements build the agglomerated elements;
each grey element is appended to the agglomerate where it “fits best”

(e.g. to the agglomerate it shares the largest face with);



Chapter 4

AMG Methods for the Mixed
Problem

We now come back to the original problem, i.e. to solve the saddle point system (2.29)

(
A(w) BT

B −C

)(
u
p

)
=

(
f
g

)
,

using algebraic multigrid methods.

The Segregated Approach. A first possibility is the segregated approach. One could
use an outer solver which iteratively decouples the equations — for example SIMPLE
(Section 2.5.2), Uzawa (Section 2.5.3), or the preconditioner in Section 2.5.3.1 combined
with a Krylov space method (section 2.5.1) — and then use an AMG method for the
resulting scalar elliptic problems. This direction is followed e.g. in [GNR98], [Stü01a] or
[SEKW01] and related publications.

A very nice property of this approach is the simplicity of its realization in a concrete
computer program. If components like scalar solvers are available they are easily assem-
bled to a full solver for saddle point problems. One important subproblem here is the
development of a fast and robust (multigrid-) solver for convection diffusion problems. We
will not go into detail about that but refer to the literature, for example (without claiming
completeness) [Reu95, BW97, OGWW98, YVB98, PTV00, DMS01, Reu02].

Unfortunately, sometimes (especially for Navier-Stokes resp. Oseen equations) the seg-
regated approach has the drawback of a loss of optimality, i.e. an asymptotic complexity
considerably larger than O(n) (n being the number of unknowns).

This is one of the reasons why we want to follow a different way. We will develop
AMG methods for the coupled problem. As the techniques of the previous chapter mostly
require positive definite systems, we have to adapt the ingredients to fit to our problem
and develop some new methods.

48
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4.1 Construction of the Coarse Level Systems

The first important part of our strategy is to avoid a mixture of velocity components and
pressure on the coarse levels (which could occur if one just applies some “off-the-shelf”
solver to the whole saddle point system), thus we choose a prolongation

P l
l+1 =

(
Ĩ ll+1

J ll+1

)
,

with

Ĩ ll+1 =

(
I ll+1

I ll+1

)
in 2D

resp.

Ĩ ll+1 =



I ll+1

I ll+1

I ll+1


 in 3D,

where
I ll+1 : Rnl+1 → Rnl

is the prolongation matrix for one velocity component,

J ll+1 : Rml+1 → Rml

for pressure. We denote the corresponding restriction matrices by Ĩ l+1
l , I l+1

l , J l+1
l and use

Ĩ l+1
l = (Ĩ ll+1)T , I l+1

l = (I ll+1)T , J l+1
l = (J ll+1)T .

The system matrix on level l is denoted by
(
Al BT

l

Bl −Cl

)
.

the spaces for velocity and pressure unknown vectors by Ul := (Rnl)d and Q
l

:= Rml and
the coarse function spaces by

Ul :=
{

v : ∃w ∈ Ul such that v = Ĩ1
2 Ĩ

2
3 . . . Ĩ

l−1
l w

}
,

Ql :=
{
p : ∃q ∈ Q

l
such that p = J1

2J
2
3 . . . J

l−1
l q

}
.

Analogous to (2.19) we introduce the FE-AMG-isomorphisms φlU : Ul → Ul and φlQ :
Q
l
→ Ql, and we will often identify elements of Ul and Ul, and Q

l
and Ql (see also Figure

4.1). In situations where it is not obvious which level the underline notation refers to, we

will use the operators φlU
−1

and φlQ
−1

explicitly.
The system matrix on level l is constructed by Galerkin projection from the finer level

l − 1 as described in Section 3.1, we only have to take extra care of the stabilizing terms
for unstable elements as in Section 2.2.1.2 or convection as in Section 2.4.1.
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Figure 4.1 Using the FE-AMG-isomorphism we can associate coarse basis functions with
basis vectors of Rml. Here we have three basis functions for a certain Ql.

Both are especially delicate in the multigrid setting, because if the modes illustrated in
Figures 2.1 and 2.4 occur on a coarse level, then the smoother on the finer level might not
damp them (they have lower frequency than the modes the smoother is intended to reduce)
and the whole iteration might fail. As both terms have a non-standard h-dependence we
try to reproduce this on coarser levels to avoid a ‘flattening’ of the stabilization. Numerical
tests show that for the SUPG term aS in (2.27) it is sufficient to do a simple scaling, i.e.

ASl+1
= d

√
nl
nl+1

Ĩ l+1
l ASi Ĩ

l
l+1. (4.1)

The scaling of the element stabilization will be dealt with later (Section 4.1.2).
Another major part of our strategy is to somehow project the relation of the velocity

and pressure unknowns, which is indicated by the specific finite element, to the coarser
levels. This makes it obvious that we will not construct a “black box” method, i.e. a
method where the user just has to feed in the matrix, and the solution is found in optimal
computation time. We try to exploit more information and hope that this will pay off.

We will now construct coarse level systems, which comply with this strategy, for the
conforming linear elements of Section 2.2.1, namely the modified Taylor-Hood element
P1isoP2-P1, the P1-P1-stab element, and the Crouzeix-Raviart element P nc

1 -P0.
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Figure 4.2 Motivation for the construction of the coarse level hierarchy for the modified
Taylor-Hood element. Red dots indicate velocity nodes, blue dots (partially behind the
red dots) pressure nodes.
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4.1.1 The P1isoP2-P1 Hierarchy

The motivation for the construction of the hierarchy is based on the GMG method for this
element. If we look at Figure 4.2 we see that the velocity nodes on one level are exactly
the pressure nodes of the next finer level. In the AMG case we use this observation for
reversing the construction.

We start with the pressure unknowns on a given mesh. We take a method of Chapter
3 with auxiliary matrices as in (3.1) or equal to a (pressure) Laplacian, and construct a
hierarchy with prolongation matrices J ll+1.

The given “velocity mesh” for the P1isoP2-P1 element is the once refined (pressure)
mesh. Thus, the first coarsening step for the velocities can be performed purely geomet-
rically, the prolongation is simply the interpolation from one (pressure) grid to the once
refined (velocity) grid. For the coarser part of the velocity hierarchy we then take the
shifted pressure hierarchy, i.e. I ll+1 = J l−1

l for l ≥ 2.

Remark 4.1. A discretization using the P1isoP2-P1 element requires a refinement of a given
mesh (for the velocities). If we want to avoid this (e.g. because of limitations of computer
memory), then we could use the given mesh as “velocity mesh”, construct the hierarchy
based on the velocity nodes, and take the first coarsened level as first pressure ‘mesh’.
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Figure 4.3 In the original approach, which is sketched in the upper part of the figure,
the pressure nodes of one level are the velocity nodes of the coarser nodes. In the 2-shift
strategy (lower part of the figure) there is a gap in between (except for the finest level).
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Note that in this case the discretization and the solution process are no longer fully
separated, the pressure unknowns have no direct interpretation in a finite element context,
only their interpolation to the velocity mesh.

A problem which now turns up again is the fulfillment of the inf-sup condition. If the
coarse level systems get unstable then this will influence the approximation property badly,
and that they can get unstable can easily be seen by a (we admit pathological) example.

Take at one coarsening step J ll+1 = I, the identity matrix. Then the velocity and
pressure unknowns will collapse to an (unstabilized!) P1-P1 situation.

It is clear that this example is too extreme, nevertheless one observes (especially in the
3D case) problems in the numerical tests. It seems as if some methods for the construction
of the hierarchy are less prone to these stability problems than others, but up to now we
have found no general criterion, which could for example guarantee the inf-sup condition
on the coarser levels.

A first (purely heuristical) way out is the following. The inf-sup condition requires
roughly spoken, that there are enough velocity unknowns per pressure unknown to get a
big enough quotient. We could satisfy this by a larger shift between velocity and pressure
nodes, for example a 2-shift (illustrated in Figure 4.3), i.e. I ll+1 = J l−2

l−1 .
A better way (with analytical background) was found for the P1-P1-stab element.
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4.1.2 The P1-P1-stab Hierarchy

Here the unknowns for the velocity components and for the pressure unknowns ‘live’ on
the same positions of the element, on the nodes. Thus it seems to be a good choice to take
an arbitrary strategy from Chapter 3 for the construction of say I ll+1 and use J ll+1 = I ll+1

for the pressure.
With some weak assumptions on I ll+1 it will be possible to show stability of the coarser

levels, what has to be specified first is the construction of the coarse level stabilizing
matrices Cl. For reasons which will become apparent in the proof of Lemma 4.3 we propose
the following. Set

C̃1 = C1, C̃l+1 = J l+1
l C̃lJ

l
l+1, for l ≥ 1 (4.2)

and

Cl+1 =
λmax(D−1

l Ml)

h2
C̃l+1, for l ≥ 1, (4.3)

where h is the discretization parameter of the finest level, Ml the Galerkin projection of
the mass matrix M1 to level l, Dl the diagonal of one (component-) block of the Galerkin
projection of the vector-Laplacian ADl, and λmax(D−1

l Ml) denotes the largest eigenvalue of
D−1
l Ml. For practical computation we will use very rough estimates for λmax(D−1

l Ml).
Now we will show stability of the coarse level systems in the form

sup
06=v∈Ul
06=q∈Q

l

Bl(u, p; v, q)
‖v‖ADl + ‖q‖Ml

≥ ζ (‖u‖ADl + ‖p‖Ml
) ∀(u, p) ∈ Ul ×Ql

, (4.4)

with a constant ζ and

Bl(u, p; v, q) = uTADlv + pTBlv + uTBT
l q − pTClq.

For this we use the ideas given in [FS91, FHS93] and just ‘translate’ them to our algebraic
setting.

Remark 4.2. Condition (4.4) is the inf-sup condition needed by the theorem of Babuška and
Aziz [BA72], [Bra97, theorem 3.6]. It would be a consequence of the LBB condition needed
by Theorem 2.2, the reverse does obviously not hold.

The main point of the stability analysis will be the following lemma, which has been
proven in [Ver84a] for the geometric case.
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Lemma 4.3. Assume that for all elements τj ∈ Th the diameter hτj fulfills

αh ≤ hτj ≤ ᾱh, (4.5)

with positive constants α and ᾱ and the discretization parameter h, and assume further
that ADl is symmetric and of essentially positive type (see Definition 3.5) and that for all
vl ∈ Ul we can find Πl+1

l vl ∈ Ul+1 such that

‖vl − Ĩ ll+1Πl+1
l vl‖2

Dl
≤ β1‖vl‖2

ADl
, (4.6)

with some constant β1.
Then for all levels l ∈ {1, . . . , L} there exist positive cl and dl such that

sup
06=v∈Ul

vBT
l p

‖v‖ADl
≥ cl‖p‖Ml

− dl
(
pTClp

) 1
2 ∀p ∈ Ql. (4.7)

Proof. Since in the course of this proof we will have to distinguish between the elements
of Ul, Ql

and their representatives in Ul, Ql we will again use the “underline-notation”.
Obviously

‖xl‖2
Ml
≤ λmax(D−1

l Ml)‖xl‖2
Dl

for any xl, hence
‖vl − Ĩ ll+1Πl+1

l vl‖2
Ml
≤ λmax(D−1

l Ml)β1‖vl‖2
ADl

,

therefore there exists Πl+1
l vl ∈ Ul+1, such that

‖vl − Πl+1
l vl‖2

0 ≤ λmax(D−1
l Ml)β1‖vl‖2

1. (4.8)

Because ADl is essentially positive definite we know from Lemma 3.7 that

2

ω
xTDlx ≥ xTADlx. (4.9)

Because of

‖Ĩ ll+1Πl+1
l vl‖ADl − ‖vl‖ADl ≤ ‖Ĩ

l
l+1Πl+1

l vl − vl‖ADl

≤
√

2

ω
‖Ĩ ll+1Πl+1

l vl − vl‖Dl

≤
√

2β1

ω
‖vl‖ADl

we see that

‖Ĩ ll+1Πl+1
l vl‖ADl ≤

(
1 +

√
2β1

ω

)

︸ ︷︷ ︸
=:β2

‖vl‖ADl . (4.10)
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We will now show by induction that on all levels l we can estimate

(div wl, pl) ≥ cl‖wl‖1‖pl‖0 − dl‖wl‖1

(
pT
l
Clpl

)1/2

for all pl ∈ Ql. (4.11)

For that we assume that (4.11) is valid on some level l (for l = 1 it is valid because there
we are in the geometric case). Set wl+1 = Πl+1

l wl. Then

(div wl+1, pl+1) = (div(wl+1 −wl), pl+1) + (div wl, pl+1)

= (wl −wl+1,∇pl+1) + (div wl, pl+1)

≥ −
(∑

j

h−2
τj
‖wl −wl+1‖2

0,τj

)1/2

·
(∑

j

h2
τj
‖∇pl+1‖2

0,τj

)1/2

+ (div wl, pl+1).

(4.12)

We will now derive estimates for the terms in the last inequality. Because of (4.5) and
(4.8) we know that

∑

j

h−2
τj
‖wl −wl+1‖2

0,τj
≤ (αh)−2‖wl −wl+1‖2

0

≤ β1

α2

λmax(D−1
l Ml)

h2
‖wl‖2

1,

with the definition of C1, C̃l+1, and Cl+1 we get

∑

j

h2
τj
‖∇pl+1‖2

0,τj
= pT

l+1
C̃l+1pl+1

=
h2

λmax(D−1
l Ml)

pT
l+1
Cl+1pl+1

,

and because of (4.11) we can derive that

(div wl, pl+1) ≥ cl‖wl‖1‖pl+1‖0 − dl‖wl‖1

(
pT
l+1
J l+1
l ClJ

l
l+1pl+1

)1/2

= cl‖wl‖1‖pl+1‖0 − dl
√

λmax(D−1
l Ml)

λmax(D−1
l−1Ml−1)

‖wl‖1

(
pT
l+1
Cl+1pl+1

)1/2

.

Combining these results with (4.12) gives

(div wl+1, pl+1) ≥ −
√
β1

α
‖wl‖1

(
pT
l+1
Cl+1pl+1

)1/2

+ (div wl, pl+1)

≥ −
(√

β1

α
+ dl

√
λmax(D−1

l Ml)

λmax(D−1
l−1Ml−1)

)
· ‖wl‖1

(
pT
l+1
Cl+1pl+1

)1/2

+ cl‖pl+1‖0‖wl‖1.
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With (4.10) we get

(div wl+1, pl+1)

‖wl+1‖1
≥ β−1

2

(div wl+1, pl+1)

‖wl‖1

≥ cl/β2‖pl+1‖0

−
(√

β1

β2α
+
dl
β2

√
λmax(D−1

l Ml)

λmax(D−1
l−1Ml−1)

)
·
(
pT
l+1
Cl+1pl+1

)1/2

,

hence, with

cl+1 := cl/β2 and

dl+1 :=

√
β1

β2α
+
dl
β2

√
λmax(D−1

l Ml)

λmax(D−1
l−1Ml−1)

we complete the proof.

We are now ready to prove stability.

Theorem 4.4. Suppose that the assumptions of Lemma 4.3 hold. Then

sup
06=v∈Ul
06=q∈Q

l

Bl(u, p; v, q)
‖v‖ADl + ‖q‖Ml

≥ ζ
(
‖u‖ADl + ‖p‖Ml

)
∀(u, p) ∈ Ul ×Ql

, (4.13)

with some ζ > 0 (where ζ may depend on l).

Proof. Choose (for given u and p) w ∈ Ul such that the supremum in Lemma 4.3 is
attained and that ‖w‖ADl = ‖p‖Ml

. Now

Bl(u, p; w, 0) = uTADlw + pTBlw
Lemma 4.3
≥ −‖u‖ADl‖w‖ADl + cl‖w‖ADl‖p‖Ml

− dl‖w‖ADl
(
pTClp

)1/2

= −‖u‖ADl‖p‖Ml
+ cl‖p‖2

Ml
− dl‖p‖Ml

(
pTClp

)1/2

xy≤
x2
ε +εy2

2≥ − 1

2ε
‖u‖2

ADl
− ε

2
‖p‖2

Ml
+ cl‖p‖2

Ml
− dl

2ε
pTClp−

dlε

2
‖p‖2

Ml

= −θ1‖u‖2
ADl

+ θ2‖p‖2
Ml
− θ3p

TClp,

where cl and dl are the constants given by Lemma 4.3 and θ1 := 1
2ε

, θ2 := cl − ε
2
(1 + dl),

and θ3 := dl
2ε

are positive constants if we choose 0 < ε < 2cl
1+dl

.

We now take (v, q) = (u + ϑw,−p) with a parameter ϑ and get

Bl(u, p; v, q) = Bl(u, p; u + ϑw,−p)
= Bl(u, p; u,−p) + ϑBl(u, p; w, 0)

≥ ‖u‖2
ADl

+ pTClp− ϑθ1‖u‖2
ADl

+ ϑθ2‖p‖2
Ml
− ϑθ3p

TClp.
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We choose 0 < ϑ < min
(

1
θ1
, 1
θ3

)
, resulting in

Bl(u, p; v, q) ≥ θ4

(
‖u‖2

ADl
+ ‖p‖2

Ml

)
,

with some appropriate constant θ4. Since

‖v‖ADl + ‖q‖Ml
= ‖u + ϑw‖ADl + ‖p‖Ml

≤ ‖u‖ADl + ϑ‖w‖ADl + ‖p‖Ml

≤ (1 + ϑ)
(
‖u‖ADl + ‖p‖Ml

)

we can sum up

Bl(u, p; v, q)
‖v‖ADl + ‖q‖Ml

≥ θ5

‖u‖2
ADl

+ ‖p‖2
Ml

‖u‖ADl + ‖p‖Ml

≥ θ5

2

(
‖u‖ADl + ‖p‖Ml

)

(where θ5 = θ4/(1 + ϑ)).

Now the question remains, how restrictive assumption (4.6) is. For the Ruge-Stüben
prolongation (3.14) we have discussed a similar property in Theorems 3.8 and 3.9. Since
property (3.16) in Theorem 3.9 is fulfilled if every F node is strongly coupled to a C
node (which is the case for Algorithm 3.10 with the modifications concerning the strongly
negative couplings), we get that (3.17) holds, i.e.

‖eF − P F
C eC‖2

Dl,F
≤ c‖e‖2

ADl
.

Thus, (4.6) is fulfilled for

Πl+1
l vl = Πl+1

l

(
vF
vC

)
= vC .

As the methods presented in Sections 4.1.1 and 4.1.2 were more or less tailor-made
for mixed elements constructed from linear elements, the question on generalizations could
arise. One possibility could be the strategy developed by John, Knobloch, Matthies and To-
biska in [JKMT02] for geometric multigrid methods. There the first fine-to-coarse transfer
is an element-type transfer, in their case from higher-order elements (which possess prefer-
able discretization properties) to the P nc

1 -P0 element (which possesses preferable properties
in connection with the linear solver). Adapting this idea to our needs, we could discretize
using an arbitrary mixed-element, transfer to the P1-P1-stab element and then use the
hierarchy presented above. To us this seems to be a good possibility, however we have not
made any numerical experiences in this direction up to now.

Another general method is the application of the element agglomerating AMGe tech-
nique (Section 3.2.2.2) on mixed elements. We exemplarily present this for the Crouzeix-
Raviart element in the following section.
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Figure 4.4 When constructing the coarse level shape function associated to the dark-
grey edge, we set the fine (edge-) unknowns which are part of this coarse edge to 1, the
fine (edge-) unknowns which are part of the light-grey edges to 0 and perform energy
minimization in the interior.

4.1.3 The P nc
1 -P0 Hierarchy — Applying AMGe

In the previous sections the AMG prolongation was always motivated by the prolongation
which would have been constructed in the GMG case. For the P nc

1 -P0 element the geo-
metric hierarchy is non-nested, a property which cannot be achieved by AMG methods (at
least not in a straight-forward manner), as the Galerkin approach here implies that the
constructed hierarchy is nested. Nevertheless we try to construct a “geometric reasonable”
hierarchy.

Using the element agglomeration approach of Section 3.2.2.2 we obtain on each coarse
level a topology of elements, faces, edges and nodes. Now like in the geometric case we
associate each face with a velocity ‘node’, i.e. two resp. three velocity component unknowns,
and each element with a pressure unknown.

The interpolation for pressure is trivial, we do identity prolongation for all fine-level
elements which are part of one coarse-level element. We propose to use identity prolonga-
tion also from each coarse-level face to the fine-level faces which are part of it and use the
energy minimization approach in the interior of the element, as illustrated in Figure 4.4.

Remark 4.5. The set-up process for this element is computationally cheaper as in the case
described in Section 3.2.2.2, because we only have to perform energy minimization in the
interior of each element, not for each element pairing connected by a face, and we do not
have to save the element stiffness matrices separately (we do not need any face-to-face
entries, and the interior-to-face and interior-to-interior entries are found explicitly in the
global matrix).

Again we can show the inf-sup condition on all levels by applying the following lemma
inductively.
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Lemma 4.6. Assume that there exists a linear Operator Πl
l−1 : Ul−1 → Ul with

b(Πl
l−1vl−1, ql) = b(vl−1, J

l−1
l ql) for all ql ∈ Ql and vl−1 ∈ Ul−1 (4.14)

and that
‖Πl

l−1vl−1‖1 ≤ δ‖vl−1‖1 for all vl−1 ∈ Ul−1, (4.15)

with δ independent of h and l.
Then the inf-sup condition in Ul−1 ×Ql−1 implies the inf-sup condition in Ul ×Ql.

Proof.

inf
06=ql∈Ql

sup
06=vl∈Ul

b(vl, ql)

‖vl‖1‖ql‖0
≥ inf

06=ql∈Ql
sup

06=vl−1∈Ul−1

b(Πl
l−1vl−1, ql)

‖Πl
l−1vl‖1‖ql‖0

= inf
06=ql∈Ql

sup
06=vl−1∈Ul−1

b(vl−1, J
l−1
l ql)

‖vl−1‖1‖ql‖0

· ‖vl−1‖1

‖Πl
l−1vl−1‖1

≥ δ̃

The proof of the following theorem is rather technical as we often have to switch between
two consecutive levels and the finest level.

Theorem 4.7. Assume that
hmax

hmin
≤ γ, (4.16)

where hmax is the maximal element diameter and hmin the minimal diameter (at the finest
level), and γ is a positive constant, and assume that the coarse levels are built as described
above.

Then the inf-sup condition holds on all levels.

Proof. For the proof we will construct an operator Πl
l−1 with properties (4.14), (4.15).

We consider the 2D case first (illustrated in Figure 4.5). Define on level l the index
sets E lj of all (l − 1)-level edges which are part of l-level edge j. We define the length of a
l-level edge recursively by

elj :=
∑

k∈E lj

el−1
k (for l > 1),

for l = 1 it is determined by the mesh.
We now construct Πl

l−1 as follows. For some (l−1)-level function vl−1 the l-level function
Πl
l−1vl−1 is determined by its values on the (l-level) edges. We set the value on a certain

l-level edge to the weighted mean of the values of vl−1 on the (l− 1)-level edges which are
part of the edge, i.e. (

Πl
l−1vl−1

)
j

=
1

elj

∑

k∈E lj

el−1
k

(
vl−1

)
k
.
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Figure 4.5 The solid thick black lines describe two level l elements, the dashed lines level
l−1 elements and the solid thin lines the finest level elements. For edge j this figure shows
the sets E lj and Ẽ lj, for edge k the tube Θk.
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For a vector valued function vl−1 the term Πl
l−1vl−1 will denote the application of Πl

l−1 to
the components.

The fact that Πl
l−1 fulfills (4.14) is seen as follows. We want to show that

∑

j

∫

τj

div(Πl
l−1vl−1) · ql dx =

∑

j

∫

τj

div vl−1 · (J l−1
l ql) dx.

Because ql = J l−1
l ql (in functional notation), because ql is piecewise constant on the l-

level agglomerates Ej, and because both vl−1 and Πl
l−1vl−1 are piecewise linear on the

(finest level) elements τj and continuous at the midpoints of their edges, we can use partial
integration to derive

∑

j

∫

τj

div(Πl
l−1vl−1) · ql dx =

∑

j

ql(Ej)

∫

∂Ej

(Πl
l−1vl−1) · n

and ∑

j

∫

τj

div vl−1 · (J l−1
l ql) dx =

∑

j

ql(Ej)

∫

∂Ej

vl−1 · n.

By the definition of Πl
l−1 we see that

∫

∂Ej

(Πl
l−1vl−1) · n =

∫

∂Ej

vl−1 · n for all agglomerates Ej,

therefore (4.14) is shown to be true.
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What remains to show is (4.15). This will be done by the introduction of an auxiliary
operator Π̃l

l−1 on the finer level Ul−1, which fulfills (4.15) and which is identical to Πl
l−1 on

the coarse edges. Because we use energy minimization for the interpolation in the interior
of agglomerates we will then be able to estimate Πl

l−1 by Π̃l
l−1 which will complete the

proof.
We define Π̃l

l−1 : Ul−1 → Ul−1 by

Π̃
l

l−1(vl−1)j :=

{
(vl−1)j if j /∈ E lk for all k,(

Πl
l−1vl−1

)
k

if j ∈ E lk for a certain k.

Note that Π̃l
l−1vl−1 still ‘lives’ on level l−1, only the values at the l-level faces are averaged.

We try to find an upper bound for
∣∣∣vl−1 − Π̃l

l−1vl−1

∣∣∣
1
. Define Ẽ lj the index set of all

finest-level edges which lie on coarse edge j. Set ṽ1 (component of finest-level function
ṽ1 ∈ U1) equal to vl−1 − Π̃l

l−1vl−1 on all (finest level) degrees of freedom in
⋃
j Ẽ lj and zero

on all other (finest level) degrees of freedom. Then because of the energy minimization in
the prolongation

∫

G
∇
(
vl−1 − Π̃l

l−1vl−1

)
∇
(
vl−1 − Π̃l

l−1vl−1

)
dx ≤

∫

G
∇ṽ1∇ṽ1 dx

≤
∑

l-level
edges j

∫

Θj

∇ṽ1∇ṽ1 dx,
(4.17)

where Θj is the tube of (finest level) elements which share a point or edge with l-level edge
number j.

For a (finest level) triangle PQR and the basis function ϕPQ, which is equal to 1 at the
midpoint of PQ and zero at the midpoints of QR and RP one can easily calculate

∫

PQR

∇ϕPQ∇ϕPQ dx =
|PQ|2

A(PQR)
,

where A(PQR) denotes the area of the triangle PQR. Now with

c1 := max
τj

(length of longest edge of τj)
2

A(τj)
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Figure 4.6 Detail of Figure 4.5, the set S l−1
m .

PSfrag replacements

(φ1
U
−1
vl−1)j

(φ1
U
−1
vl−1)k

vl−1(a1)

vl−1(a2)
r1

r2

r3

we get

∫

Θj

∇ṽ1∇ṽ1 dx ≤ c1

∑

s∈Ẽ lj

((ṽ1)s)
2

= c1

∑

s∈Ẽ lj




1∑
k∈Ẽ lj ek

∑

k∈Ẽ lj

ek

((
φ1
U
−1
vl−1

)
s
−
(
φ1
U
−1
vl−1

)
k

)



2

≤ c1

∑
k∈Ẽ lj

e2
k

(∑
k∈Ẽ lj ek

)2

∑

s∈Ẽ lj ,
k∈Ẽ lj

((
φ1
U
−1
vl−1

)
s
−
(
φ1
U
−1
vl−1

)
k

)2

≤ c1

∑

s∈Ẽ lj ,
k∈Ẽ lj

((
φ1
U
−1
vl−1

)
s
−
(
φ1
U
−1
vl−1

)
k

)2

≤ c̄1

∑

s∈E lj ,
k∈E lj

((
vl−1

)
s
−
(
vl−1

)
k

)2
,

(4.18)

where φ1
U
−1
v is the representation of a coarse function v on U1 as in Section 4.1.

We note that ∇vl−1 is constant on each finest level element. Therefore we can derive
the following estimate (illustrated in Figure 4.6). Assume that the (l−1)-level edges j and
k share the node m. We denote the set of all finest level elements which share the node
m with S l−1

m , its index set with S l−1
m (where we assume w.l.o.g. S l−1

m = {1, 2, . . . , i + 1}).
For each element τe in S l−1

m we denote the edge-vector of the edge not connected to m (“in
direction” j → k) with re.
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Then

(vl−1)k − (vl−1)j = ((vl−1)k − vl−1(a1)) + (vl−1(a1)− vl−1(a2)) + . . .+ (vl−1(ai)− (vl−1)j)

=
1

2

(
∇vl−1|τ1 · r1 + . . .+∇vl−1|τi+1

· ri+1

)

≤ 1

2

(√
∇vl−1|τ1 · ∇vl−1|τ1 |r1|+ . . .+

√
∇vl−1|τi+1

· ∇vl−1|τi+1
|ri+1|

)
,

where a1,. . . ,ai are finest level edge midpoints as in Figure 4.6, thus (using the algebraic-
geometric mean inequality)

(
(vl−1)k − (vl−1)j

)2 ≤ i + 1

4

[
|r1|2 (∇vl−1|τ1)2 + . . .+ |ri+1|2

(
∇vl−1|τi+1

)2
]

≤ c2

∫

Sl−1
m

∇vl−1∇vl−1 dx.
(4.19)

We apply this estimate to the last term in (4.18), which is done directly for those (l − 1)-
level edges s and k which share a node. For all others we have to build a chain of connecting
edges.

This leads to ∫

Θl

∇ṽ1∇ṽ1 dx ≤ c3

∫

Θl

∇vl−1∇vl−1 dx.

Now because of (4.17) we get

∥∥∥vl−1 − Π̃l
l−1vl−1

∥∥∥
1
≤ c4‖vl−1‖1,

thus ∥∥∥Π̃l
l−1vl−1

∥∥∥
1
≤ (1 + c4)‖vl−1‖1.

Because we use energy minimization for the interpolation in the interior of coarse agglom-
erates, Ĩ l−1

l Πl
l−1vl−1 has minimal energy amongst all l−1-level functions which are identical

to it on the l-level edges, therefore

∥∥Πl
l−1vl−1

∥∥
1
≤ c5

∥∥∥Π̃l
l−1vl−1

∥∥∥
1
≤ c5(1 + c4)‖vl−1‖1. (4.20)

3D case. For 3D tetrahedral elements we replace c1 in (4.18) by c1hj,max, where hj,max

is the maximal element height in tube Θj, and c2 in (4.19) by c2/hj,min, where hj,min is the
minimal element height in this tube. Then because of (4.16) the argumentation remains
unchanged, only the scaling argument is based on the (finest level) tetrahedron PQRS

∫

PQRS

∇ϕPQR∇ϕPQR dx =
A(PQR)2

V (PQRS)
,

where V (PQRS) is the volume of the tetrahedron.
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4.2 Smoothers

Now that the coarse levels are constructed we need smoothers for the coupled systems on
all levels. We will give a short overview of some possibilities thereof, and then go into
detail for the two methods we primarily use, namely Braess-Sarazin and Vanka smoothers.

To the author’s knowledge there is no smoothing-theory for algebraic multigrid methods
for fundamentally indefinite systems, i.e. not just disturbed positive definite systems. We
admit that we have no contributions in this direction either, thus we will apply the following
heuristic.

Hypothesis 4.8. If a smoother for a saddle point problem performs ‘well’ in the geometric
multigrid situation, then it will also do so in the algebraic multigrid situation.

In the light of this heuristic an important quality factor for the smoothers is the smooth-
ing rate, which we introduced in Section 3.1.1.

Note that the parts of the following sections which concern the analysis of the smoothers
all base on geometric multigrid and on a symmetric system matrix, i.e. the Stokes case.
As the smoothers (mostly) operate on one single level, we will drop the level index in the
following sections.

4.2.1 Standard Smoothers for the Squared System

As the system we are interested in is indefinite, it is not possible to apply standard smooth-
ing methods (e.g. Richardson, Jacobi, Gauss-Seidel) at first. This could be overcome by
applying those smoothers to the squared (and thus symmetric, positive definite) system

(
A BT

B −C

)T (
A BT

B −C

)(
u
p

)
=

(
A BT

B −C

)T (
f
g

)
.

This idea is used for example in [Ver84b] (here the second block row is scaled by 1/h2) or
[Bre93], both use Richardson iterations on the squared system which can be shown to lead

to a (geometric) smoothing rate η(m) of order O
(

1√
m

)
.

4.2.2 Transforming Smoothers

This class of smoothers was introduced by Wittum in [Wit89, Wit90] and is based on a
generalization of the factorization for the SIMPLE scheme (2.31), namely

K =

(
A 0
B E

)

︸ ︷︷ ︸
=:K1

(
I A−1BT

0 −E−1S

)

︸ ︷︷ ︸
=:K2

with an arbitrary positive definite matrix E (in (2.31) we had E = S). The idea is
to transform K by a multiplication from the right with K−1

2 to K1, and then to find
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smoothers for the block-triangular K1 (in [Wit89] it is shown that they only have to fulfill
the smoothing property for the diagonal blocks A and E). Suggested choices for E are
S or As (the scalar, i.e. pressure variant of A). The latter does not lead to a practicable
method at first, (heuristic) considerations about commuting operators (similarly as in
Section 2.5.3.1) are needed, but we will not go into detail here.

In [Wit90] damped Jacobi, Gauss-Seidel and ILU smoothers are used for the trans-

formed system. For damped Jacobi a smoothing rate of order O
(

1√
m

)
is shown, for the

other two only O
(

lnm√
m

)
, but it is stated that in numerical practice a rate of order O

(
1
m

)

is observed for the ILU transforming smoother.

4.2.3 Braess-Sarazin Smoother

This smoother consists of the application of the inexact symmetric Uzawa algorithm (2.36),
which we repeat here for convenience of reading:

Â(ûk+1 − uk) = f − Auk − BTpk, (4.21a)

Ŝ(pk+1 − pk) = Bûk+1 − Cpk − g, (4.21b)

Â(uk+1 − ûk+1) = −BT (pk+1 − pk), (4.21c)

where now Ŝ is a preconditioner for the inexact Schur-complement C +BÂ−1BT .
The smoothing property with a rate of O

(
1
m

)
for this method was shown in [BS97]

under the assumption that the pressure update (4.21b) is done (almost) exactly, i.e. Ŝ ≡
C + BÂ−1BT . In [Zul00] we find that the same behavior can be obtained under weaker
assumptions.

Theorem 4.9. [Zul00, theorem 2] Let A and C be symmetric positive semi-definite ma-
trices, Â and Ŝ symmetric positive definite matrices, satisfying

Â ≥ A, (4.22a)

Ŝ ≤C +BÂ−1BT , (4.22b)

C +BÂ−1BT ≤ (1 + β)Ŝ, (4.22c)

and
‖Â‖`2 ≤ c1h

−2, ‖Â−1‖`2 ≤ c2h
2, ‖B‖`2 ≤ c3h

−2, ‖C‖`2 ≤ c4h
−2.

Then the smoothing property
‖KSm‖`2 ≤ η(m)h−2

is satisfied with

η(m) = max

[
(1 + ρ)ρm−1,

(m− 1)m−1

mm

]
, with ρ = β +

√
β2 + β.
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For β < 1/3 we get ρ < 1, thus the second term in the maximum will dominate for m
large enough. As this term can be bounded by

(m− 1)m−1

mm
=

(
1− 1

m

)m

(m− 1)
≤ 1

e(m− 1)
for m > 1

we get the smoothing rate O( 1
m

) mentioned above.

We use an (inner) AMG method for C + B
ˆ̂
A−1BT as Ŝ−1, where

ˆ̂
A = α ·D, with the

diagonal D of A, (damped Jacobi iteration; thus we are able to explicitly construct the
matrix, what is needed for the AMG method). For Â we want to use some damped SSOR
(or SSUR) iteration, i.e.

Â = δ(D + γE)D−1(D + γF ),

where E is the lower left triangular part (with zero diagonal), and F the upper right
triangular part (with zero diagonal) of A, and δ and γ are some parameters. The following
corollary shows the impact of (4.22) on the choice of the parameters α, δ and γ, under the
assumption that A is an M-matrix. For essentially positive type matrices similar results as
the following could be shown, for simplicity of presentation we will not go into the details
but restrict ourselves to the M-matrix case.

Corollary 4.10. Assume that

• A is an M-matrix, that

• Â and Ŝ are constructed as indicate above, and that

• the estimate

(1− ηk)Ŝ ≤ C +
1

α
BD−1BT ≤ Ŝ, (4.23)

where η < 1 is the convergence rate of the multigrid method and k the number of
iterations, is valid,

and define

ω := sup
06=p∈� m

pTCp

pTBD−1BTp
.

Then (4.22) is fulfilled if

δ(1− γ) ≥ 2, (4.24a)

δ(1 + γ + ρ2γ2) ≤ α
1− ηk

1 + ωηk
, and (4.24b)

(1 + β)δ(1− γ) ≥ α (4.24c)

hold, where

ρ :=
maxi aii
mini aii

.
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Proof. It is easily seen that

αD ≤ (1 + β)δ(D + γF + γE + γ2ED−1F )

is a sufficient condition for (4.22c), which is certainly fulfilled for (4.24c).
Analogously one can show that (4.24a) is sufficient for (4.22a).
What remains is (4.22b), a sufficient condition would be

δ(D + γE + γF + γ2ED−1F ) ≤ α
1− ηk

1 + ωηk
D.

To estimate the last term on the left hand side we split as follows

xTED−1Fx

xTx
≤ ‖ED−1/2‖∞‖D−1/2F‖∞

and calculate

‖ED−1/2‖∞ = max
i

(
i−1∑

j=1

|aij|√
ajj

)
≤ ρmax

i

(
i−1∑

j=1

|aij|√
aii

)
≤ ρ‖D1/2‖∞

and similarly
‖D−1/2F‖∞ ≤ ‖D1/2‖∞.

Now we get for all x
xTED−1Fx

xTx
≤ ρ‖D‖∞ ≤ ρ2 xTDx

xTx

and summing up

D + γE + γF + γ2ED−1F = (1− γ)D + γA+ γ2ED−1F

≤ (1 + γ + ρ2γ2)D.

Thus we get the sufficient condition for (4.22b)

δ(1 + γ + ρ2γ2) ≤ α
1− ηk

1 + ωηk
.

Remark 4.11. Condition (4.23) is fulfilled e.g. if Ŝ originates in a convergent, symmetric
multigrid method and some additional (but weak) assumption hold (for example that the
coarse level systems are constructed with the Galerkin approach), for details we refer e.g.
to [Hac93].
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Figure 4.7 If we use Galerkin projections for the inner AMG, we have to build and keep
all the matrices Ŝi,j
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Equations (4.24a)–(4.24c) provide a set of sufficient conditions for (4.22) but are for
γ > 0 very pessimistic as we will show in the numeric results. If we assume for example
that k is large enough and therefore

1− ηk
1 + ωηk

≈ 1,

and further that ρ = 1, which corresponds to a uniform mesh, then we can only calculate
a maximal admissible γ = 0.135 and δ ≥ 2.32, α ≥ 2.68. For γ = 0, i.e. Jacobi iteration
for Â, we get a minimal allowed α = 2 and then δ = 2, which is also the choice for the
numerical tests in [Zul00].

Remark 4.12. It seems to be a good idea (at least from the point of view of computer-
memory consumption) to build the coarse matrices for the (inner) Ŝ-AMG method using
the coarse level versions of the matrices C, B and A. Instinctively one may think that it
does not make a big difference that this does not correspond to the Galerkin approach. But
especially for complex 3D problems we run into convergence problems, which we do not
have if we use Galerkin projected matrices.

Unfortunately the plain Galerkin approach causes an increase of memory-usage because
we have to perform the coarsenings for Ŝ on each level, illustrated in Figure 4.7.

4.2.4 Vanka Smoothers

The discretization of the Navier-Stokes equations which was used by Vanka when he intro-
duced this method [Van86] was a finite volume method on a staggered grid with pressure
nodes at the cell-centers and velocity nodes at the cell-faces. Small subproblems are set up
cell by cell — i.e. with one pressure degree of freedom and the connected velocity unknowns
— and the solutions are combined using a multiplicative Schwarz iteration. The smoothing
property of this method in a finite element context was analyzed (for the additive Schwarz
case) in [SZ03]. We will sketch shortly the prerequisites needed therein.

The local sub-problems are set up using the (local) prolongators (on a fixed multigrid-
level l)

πj : Rnl,j → Rnl, σj : Rml,j → Rml ,
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where j is the index of the sub-problem and nl,j and ml,j determine its dimension, and we
assume ∑

j

πjπ
T
j = I (4.25)

and that ∑

j

σjσ
T
j is nonsingular. (4.26)

The small problems are now constructed as
(
Âj BT

j

Bj
1
β

[
(β − 1)BjÂ

−1
j BT

j − Cj
]
)(

vj
qj

)
=

(
πTj r
σTj s

)
,

where r and s are the global residuals, β some relaxation parameter, and the following
relations have to be fulfilled for all j

πTj Â = Âjπ
T
j , (4.27a)

σTj B = Bjπ
T
j , (4.27b)

Cj = σTj Cσj, (4.27c)

where Â is a preconditioner for A.

Remark 4.13. In [SZ03, theorem 1] we find that for the additive Schwarz case the method
can again be represented as preconditioned Richardson iteration with preconditioner

K̂ =

(
Â BT

B BÂ−1BT − Ŝ

)
, (4.28)

with Ŝ =
(∑

j σjŜ
−1
j σTj

)−1

and Ŝj = 1
β
(Cj + BjÂ

−1
j BT

j ), and is therefore contained in the

class of inexact symmetric Uzawa algorithms (compare with (2.35)).
The smoothing result obtained in this situation is summarized in the following theorem

(without proof).

Theorem 4.14. [SZ03, theorem 4] For K̂ as in (4.28) with Â and Ŝ symmetric positive
definite,

Â ≥ A, (4.29)

Ŝ ≥ C +BÂ−1BT , (4.30)

and
‖K̂ −K‖`2 ≤ c‖K‖`2

we get that the smoothing property

‖KSm‖`2 ≤ η(m)‖K‖`2
is satisfied with η(m) = O(1/

√
m).
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We will now present one possibility of constructing the small systems meeting the
requirements (4.25), (4.26) and (4.27) on a specific level. Choose a partitioning of the set
of pressure unknowns

⋃
j Pj (with Pj ∩ Pk = ∅ for j 6= k) and build corresponding sets of

velocity nodes Vj, where a velocity node is contained in Vj if and only if it is connected to
a pressure node in Pj via an entry in the matrix B.

The matrix Â is now constructed by setting those entries aij of A to zero where i 6= j
and i ∈ Vı̂, j ∈ V̂ for some ı̂, ̂ with ı̂ 6= ̂. This can be interpreted as the application of
a Jacobi method on the boundary of the sets Vj and using the full matrix information in
the interior. Some scaling may be needed because of (4.29).

Then σj can be chosen as the canonical embedding from Rml,j into Rml. For πj we start
with the canonical embedding from Rnl,j into Rnl, which we denote with π̂j and then scale
each row with 1/

√
s, where s is the number of sets Vk that the node associated to the row

is part of, to fulfill (4.25).
Now Âj is extracted from the matrix Â as one might expect, with the full block for the

interior unknowns and the diagonal for the boundaries of the patch. The local matrix Bj is
directly extracted directly from B but with a scaling according to the above construction
of πj and (4.27b). Finally β has to be chosen such that (4.30) is fulfilled.

Computationally cheaper versions of Â can be built by using only the diagonal of the
interior-unknown-blocks, the upper triangle (corresponds to Gauss-Seidel), or by applying
some sort of lumping.

Remark 4.15. If one wants to use information of the whole patch blocks of A but wants the
matrices Âj to be diagonal (because then the small problems can be solved faster), numerical
experiments have shown that they should be constructed based on the following heuristics.

We first build the full local matrix Ãj = (ãkl) which we want to approximate by a

diagonal matrix Âj. Assume that for given fj the vectors x̃ and x̂ are the solutions of

Ãjx̃ = fj and Âjx̂ = fj.

Now we want x̂ to fulfill
Ãjx̂ ≈ fj,

thus we try to minimize
‖Ãjx̂− Ãjx̃‖`2.

Now

‖Ãjx̂− Ãjx̃‖`2 = ‖(I − ÃjÂ−1
j )fj‖`2

≤ ‖(I − ÃjÂ−1
j )‖F‖fj‖`2 ,

where ‖.‖F is the Frobenius norm. If we determine Â = diag{â1, . . . , ânl,j} such that

‖(I − ÃjÂ−1
j )‖F is minimal, then this leads to

âk =
1

ãkk

∑

l

ã2
lk.



Chapter 5

Software and Numerical Studies

Now we fill the methods of the previous chapters with life, which means that we apply them
to problems with various levels of complexity. But before that, we give a short overview
of the software developed in the course of the working on this thesis.

5.1 The Software Package AMuSE

All the numerical tests in this thesis were performed using the software package AMuSE
— Algebraic Multigrid for Stokes-type Equations — which was developed by the author.
It is based on the mesh generator and AMG solver for potential equation and plain strain
elasticity problems NAOMI by Ferdinand Kickinger1 [Kic96, Kic97a, Kic97b, Kic98] and
was also contributed to by Christoph Reisinger2.

Apart from this thesis AMuSE or its earlier incarnation NAOMI have been used as
solvers for mixed problems in several projects [RW99, Him02, Bec02, Pönng].

It is mostly written in C++ and takes advantage of the object oriented capabilities of
this programming language (we will not go into detail about that but refer to the standard
literature, e.g. [Str97]). We want to emphasize that there may be faster codes than ours
for some of the methods mentioned in this thesis (in fact, the author is very sure that there
are), many modern and efficient programming techniques (e.g. expression templates, cache
aware programming, etc.) or parallelization were not applied. But the aim was not to
develop a code which is the fastest for one method, but to have a tool to compare various
methods using the same basic programming environment. Thus, we do not to compare
different implementations but really different methods. Therefore it may not be sensible
to look at the absolute timings presented in the sections with numerical results, but only
to compare different timings for different methods.

We will now shortly sketch the structure of AMuSE, where we will use typewriter

font for expressions directly related to the source code of the package.

1now at AVL List GmbH, Graz, Austria
2now at University of Heidelberg, Germany

71
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Figure 5.1 The general structure of AMuSE. More complex dependencies (e.g. due to
moving meshes, etc.) were omitted in this figure.

PSfrag replacements

MeshHandler FEMGeneration

TimeStepper

NavierStokesSolver

BlockSystemSolver

method of lines + ODE

linearization

AMG solver for(
A BT

B −C

)

5.1.1 Structure

The structure of the program is sketched in Figure 5.1. The central part (at least concerning
this thesis) is the block-system solver, its components are described in Figure 5.2.

The following external libraries and packages are used in parts of the program:

• Template Numerical Toolkit (TNT), Mathematical and Computational Sciences Divi-
sion, National Institute of Standards and Technology, Gaithersburg, MD USA. Used
for the direct solution of the coarse level systems.

• General Mesh Viewer (gmv), Applied Physics Division, Los Alamos National Labo-
ratory, CA USA. Used for the visualization of the numerical results.

Figure 5.2 The block-system-solvers are implemented as derived classes of the base
AMuSE BlockSolver. Each one (except the direct solvers) can use a preconditioner, i.e.
an object which is derived from AMuSE BlockPrecond. And the preconditioners (which use
some AMG solver) can use and manipulate the structures needed for an AMG method.

AMuSE BlockSolver

• Richardson,
• GMRES,
• BiCGstab,
• SIMPLE,
• direct,. . .

AMuSE BlockPrecond

• CoupledAMG,
• “Black-Box”

(sec.2.5.3.1)

AMG ‘tools’
• AMuSE GridTransfer

• AMuSE BlockSmoother

• AMuSE EllipticSmoother
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• gzstream, Deepak Bandyopadhay and Lutz Kettner, and zlib, Jean-Loup Gailly and
Mark Adler. Used for the compressed output of solutions.

• Linuxthreads, Xavier Leroy. Used for the shared memory parallelization of the FEM
matrix generation.

5.1.2 Matrices

AMuSE provides several sparse matrix classes which are substantial for the components
described above. As some non-standard ideas are used for their construction, we will sketch
them in this section.

The basic (templated) class is AMuSE SparseMatrixData< T >, where elements of type
T are stored in a similar way as compressed row storage (CRS) format, the only difference
is, that we use separate arrays for the element and index data of each single row, not one
long array for all elements. The template parameter T could be a scalar type like float

or double or again a small matrix (class AMuSE SmallMatrix< T, m, n >, where T is the
type of the entries and m and n are the row and column dimensions). This is used to store
block matrices like 



A1,1 A1,2 · · · A1,j

A2,1 A2,2 · · · A2,j

· · · · · · · · · · · ·
Aj,1 Aj,2 · · · Aj,j


 ,

with k × k blocks Al,m (k � j) with similar sparsity pattern, efficiently as




a1,1 a1,2 · · · a1,k

a2,1 a2,2 · · · a2,k

· · · · · · · · · · · ·
ak,1 ak,2 · · · ak,k


 ,

with small j × j matrices al,m, where

(al,m)a,b = (Aa,b)l,m.

The AMuSE SparseMatrixData< T > class is only used for the storage of sparse matrices.
The ‘mathematical’ objects (which can be multiplied with vectors, ‘inverted’, etc.) are of
type AMuSE SparseMatrix< T >.

The next generalization AMuSE MaskedSparseMatrix< T > can be understood in the
following way. Assume we want to store the matrix A of the Oseen linearized problem,
which for example in 3D in general has the form



Ā

Ā
Ā


 . (5.1)
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Saving it as AMuSE SparseMatrix< AMuSE SmallMatrix< double, 3, 3 > > would be a
waste of computer memory, thus it is saved as AMuSE SparseMatrix< double >. For cer-
tain types of boundary conditions, e.g. symmetry planes, matrix A does not totally fit
structure (5.1), some entries differ in the three diagonal blocks but most do not. Us-
ing for example AMuSE MaskedSparseMatrix< AMuSE SmallMatrix< double, 3, 3 > >

hides this problem from the user. From outside it behaves like AMuSE SparseMatrix<

AMuSE SmallMatrix< double, 3, 3 > >, but internally it tries to use and save only
double instead of AMuSE SmallMatrix< double, 3, 3 > elements.

5.2 Numerical results

All the rates which will be stated in this section are based on the `2 norm of the residual
after the i-th iteration step, i.e. on

‖ri‖`2 = ‖b−Kxi‖`2.

Because we compare methods with different costs per iteration step we prefer the following
two measures for efficiency:

• the average reduction of the norm of the residual per minute CPU time (which will
be abbreviated by “red./min.” in the tables below, “asympt. red./min.” will be the
average reduction per minute in an asymptotic region of the convergence history)
and

• the measure

T0.1 :=

(
average CPU time in minutes for the reduction
of the norm of the residual by a factor of 0.1

)

number of unknowns
.

This number would be constant for different levels of refinement if we had an optimal
method, i.e. if the work for a given reduction of the residual is O(n), where n is the
number of unknowns.

Not all tests have been carried out on the same computers, thus a cross-comparison of those
values for different tests may not be sensible. In all cases we used standard Linux-PCs.

If not stated differently the results for the Oseen problems are always based on the
linear problem with w near the solution of the corresponding Navier-Stokes equations.

The geometries in Figures 5.4, 5.11, and 5.12 were provided by AVL List GmbH, Graz,
Austria.

5.2.1 2D Test Cases

We have stated to show how the methods behave for complex 3D problems, nevertheless
we start with 2D problems with moderately complex geometry. The reason is, that here
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Figure 5.3 The initial mesh and the numerical solution of the driven cavity Stokes problem
(lighter grey indicates higher velocities)

we can carry out parameter-studies for various methods on different levels in a reasonable
period of time, which would not be possible otherwise.

Our two model problems are the following:

• Driven cavity. The initial grid (and the numerical solution of the Stokes problem)
can be found in Figure 5.3. The problem is easily described, on a unit square we pose
a Dirichlet condition with velocity (1, 0) on the upper boundary and homogeneous
Dirichlet conditions on the rest of the boundary (the walls). The finer levels were
generated by a hierarchical refinement of the coarse grid.

• 2D valve. Here the geometry is one half of the region round a valve with inlet-size
0.03 and the distance between the walls at the narrowest part 0.003. The meshes
were generated using Ferdinand Kickinger’s NAOMI.

We pose two problems, one with symmetry boundary conditions along the symmetry
plane, the other one with homogeneous Dirichlet conditions there. In both cases
we set Dirichlet condition with quadratic profile (with maximum velocity 1) on the
upper boundary, natural outflow conditions on the lower boundary. The geometry
and the solutions for the two problems (Navier-Stokes, ν = 5 · 10−4) are illustrated
in Figure 5.4.

Dependence on Mesh Width

In the first set of tests we want to check the “h-independence” of the methods, i.e. we solve
the same Stokes problem on different levels of refinement and compare the efficiencies.
We solve the driven cavity problem with modified Taylor-Hood-discretization and the red-
black coloring algorithm with averaging for the coarse level construction. Just doing this
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Figure 5.4 Valve problems. The upper part shows the absolute values of the velocity-
solution of the problem with symmetry boundary condition, the lower part of the problem
with homogeneous Dirichlet conditions at the symmetry plane (in both cases only the
problem on one half of the geometry shown was solved).

on the fine level leads to a geometric multigrid method (as mentioned in Remark 3.3), the
results can be found in Table 5.1 and Figure 5.5(a) (there ‘BBPre’ denotes the “black-
box” preconditioner of Section 2.5.3.1 and ‘MSM’ the Vanka smoother of Section 4.2.4,
where the patches consist of one pressure unknown and the connected velocity degrees of
freedom). If we randomly mix the numbering of the fine level nodes, then the red-black
algorithm is not able to reproduce the hierarchy, thus we have a real AMG method, for
which we show the results in Table 5.2 and Figure 5.5(b). One can also apply the idea of
Remark 4.1, i.e. to use the given mesh as “velocity-mesh” and to do one coarsening step
to get the first pressure level, which leads to the results in Figure 5.5(c). For all tests the
linear solver was stopped after a reduction of the residual by a factor of 10−5.

The corresponding results for different AMG methods for the P1-P1-stab-discretized
driven cavity problem can be found in Table 5.3 and Figure 5.6.

In both cases, for the P1isoP2-P1 and the P1-P1-stab element, we see common behaviors
of the solvers. First, for the GMG situation T0.1 is (nearly) constant for the coupled
methods, as predicted by theory. For the AMG situation this gets a little worse, but is still
acceptable. The efficiency of the AMG-SIMPLE method suffers if h gets small, which is
not surprising. The “black-box” preconditioner for BiCGstab performs best, which also is
not surprising as it is cheap and at the same time optimal (i.e. the rates are h-independent)
for the Stokes case, according to theory (c.f. Section 2.5.3.1).

Dependence on Convection

Now we take a single mesh and check how the methods perform when we want to solve the
Oseen problem for different intensities of convection. For each Oseen problem we take the
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Table 5.1 The results for driven cavity Stokes flow with hierarchically refined grid (→
GMG) and modified Taylor-Hood discretization.

refinement-level 5 6 7 8 9
total number of unknowns 10,571 52,446 166,691 665,155 2,657,411
on finest level

Coupled, Braess red./min 8.6e-41 4.0e-8 0.03 0.47 0.84
SSUR 0.8, W-6-6 T0.1 2.4e-6 3.2e-6 3.9e-6 4.6e-6 4.9e-6
Coupled, Braess red./min 1.6e-8 0.043 0.36 0.80 0.95
Jacobi, W-12-12 T0.1 1.2e-5 1.7e-5 1.4e-5 1.6e-5 1.7e-5
Coupled, MSM red./min 2.8e-33 3.3e-6 0.2 0.72 0.92
W-11-11 T0.1 2.9e-6 3.5e-6 8.6e-6 1.1e-5 9.9e-6
BiCGstab + red./min 1.3e-163 5.1e-35 2.4e-9 6.6e-3 0.33
Black-Box Prec. T0.1 5.8e-7 5.6e-7 7.0e-7 1.7e-7 7.8e-7
AMG-SIMPLE red./min 0.044 0.842 0.9869 0.9986 —

T0.1 7.0e-5 2.6e-4 1e-3 2.5e-3 —

Table 5.2 The results for driven cavity Stokes flow with hierarchically refined grid and
renumbering (→ AMG) and modified Taylor-Hood discretization.

refinement-level 5 6 7 8 9
total number of unknowns 10,571 52,446 166,691 665,155 2,657,411
on finest level

Coupled, Braess red./min 1.8e-27 1.2e-4 0.26 0.79 0.94
SSUR 0.8, W-6-6 T0.1 3.5e-6 4.9e-6 1.0e-5 1.5e-5 1.4e-5
Coupled, Braess red./min 4.6e-9 0.028 0.59 0.89 0.97
Jacobi, W-12-12 T0.1 1.1e-5 1.2e-5 2.6e-5 3.0e-5 2.8e-5
Coupled, MSM red./min 2.3e-26 3.7e-5 0.24 0.76 0.94
W-15-15 T0.1 3.7e-6 4.3e-6 9.7e-6 1.2e-5 1.3e-5
BiCGstab + red./min 6.1e-128 7.1e-31 1.6e-6 0.068 0.51
Black-Box Prec. T0.1 7.4e-7 6.3e-7 1.0e-6 1.3e-6 1.3e-6
AMG-SIMPLE red./min 0.049 0.82 0.98 0.998 —

T0.1 7.2e-5 2.2e-4 7.6e-4 1.8e-3 —
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Figure 5.5 The efficiencies of the methods for driven cavity Stokes flow with modified
Taylor-Hood discretization.
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Table 5.3 The results for driven cavity Stokes flow with hierarchically refined grid and
renumbering (→ AMG) and P1-P1-stab discretization. (mp. . . memory problems, i.e. the
solver ran out of computer memory)

refinement-level 5 6 7 8 9
total number of unknowns 14,067 55,779 222,147 886,659 3,542,787
on finest level

Coupled, Braess red./min 0.048 0.55 0.89 0.97 mp
SSUR 0.8, W-6-6 T0.1 5.4e-5 6.9e-5 8.9e-5 8.4e-5 mp
Coupled, Braess red./min 0.084 0.70 0.94 0.99 mp
Jacobi, W-12-12 T0.1 6.6e-5 1.2e-4 1.7e-4 2.0e-4 mp
Coupled, MSM red./min 1.6e-11 0.021 0.56 0.90 0.96
W-15-15 T0.1 6.6e-6 1.1e-5 1.8e-5 2.4e-5 2.6e-5
BiCGstab + red./min 1.0e-100 2.3e-10 0.0016 0.17 0.67
Black-Box Prec. T0.1 7.1e-7 1.9e-6 1.6e-6 1.5e-5 1.6e-6
AMG-SIMPLE red./min 0.089 0.88 0.99 1.0 —

T0.1 6.8e-5 3.1e-4 1.3e-3 2.7e-3 —

Figure 5.6 The efficiencies of the (AMG) methods for driven cavity Stokes flow with
P1-P1-stab discretization.
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Table 5.4 Dependence of the efficiency of the methods on varying strength of convection
for the two-dimensional valve problem.

ν 1 0.1 3.2e-3 1e-3 7e-4 5e-4 4.2e-4

Coupled, Braess red./min 3.8e-8 1.4e-3 1.9e-3 5.1e-3 0.019 0.06 0.087
SSUR 0.8, W-4-4 T0.1 1.3e-6 3.4e-6 3.6e-6 4.2e-6 5.6e-6 7.9e-6 9.1e-6
Coupled, Braess red./min 2.8e-5 0.19 0.19 0.21 0.28 0.40 0.48
Jacobi, W-10-10 T0.1 2.1e-6 1.3e-5 1.3e-5 1.4e-5 1.8e-5 2.4e-5 3.0e-5
Coupled, MSM red./min 3.1e-6 1.8e-5 0.080 0.042 5.8e-4 4.7e-4 1.4e-3
W-8-8 T0.1 1.8e-6 2.0e-6 8.8e-6 7.0e-6 3.0e-6 2.9e-6 3.4e-6
BiCGstab+ red./min 8.4e-7 3.1e-4 8.3e-4 4.8e-4 2.8e-3 0.023 0.042
Black-Box Prec. T0.1 1.6e-6 2.8e-6 3.1e-6 2.9e-6 3.8e-6 5.9e-6 7.0e-6
AMG-SIMPLE red./min 0.51 0.51 0.39 0.38 0.38 0.37 0.39

T0.1 3.3e-5 3.3e-5 2.4e-5 2.3e-5 2.3e-5 2.2e-5 2.4e-5

convection speed w near the solution of the Navier-Stokes problem with given ν (therefore
the dependence of the linear problem on ν is twofold, via ν itself and via w(ν)), and we
stop the linear iteration after a reduction of the residual by a factor of 10−3.

The first geometry here is the two-dimensional valve, it is discretized with the modified
Taylor-Hood element with 103,351 unknowns (in total) on the discretization level. The
results can be found in Figure 5.7(a) and Table 5.4. In Figure 5.8 we plot residuals vs.
CPU-time for the nonlinear iteration for ν = 8 · 10−4, where we use different methods for
the solution of the linear problems, and the linear iterations are stopped after a reduction
of the residual by a factor of 10−2. There, we also put a comparison of the Oseen iterations
and this variant of Newton’s method, where the linear problems are solved by (in this case
three steps of) a “Oseen-preconditioned” Richardson iteration, as suggested in Section
2.4.2.

The same test (Oseen problem, fixed h, varying ν and w(ν)) was carried out for the
driven cavity problem, again with modified Taylor-Hood discretization and 166,691 un-
knowns. The dependence on ν is plotted in Figure 5.7(b).

We see that for moderate convection again the “black-box” preconditioner performs
well, although it is not as cheap as in the Stokes case (an additional pressure-Laplace-
AMG has to be performed). For smaller ν the coupled method (especially with the local
smoother) is preferable (at least in these examples). It is remarkable that the AMG-
SIMPLE method is robust in ν over a large interval, in the valve-example its rates start
to get worse only shortly before the whole nonlinear iteration breaks down. In the driven
cavity example the AMG method (with red-black coarsening and simple averaging as in-
terpolation) for the A-problem was divergent for ν < 8 · 10−4, thus we have no results for
the AMG-SIMPLE method and the “black-box” preconditioner for smaller ν.

The comparison of the Oseen iteration with the “Oseen-preconditioned Richardson”-
Newton iteration gives no clear result. Asymptotically the second method performs better
— the asymptotic reduction of the residual per minute is 0.42 compared to 0.54 for the
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Figure 5.7 T0.1 for the Oseen problem on one fixed grid with different ν and with w near
the solution of the Navier-Stokes problem, for different methods, for the 2D valve and the
driven cavity problem.
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Figure 5.8 Residual-histories for the nonlinear iteration. The linear iterations were solved
with the different methods until a mild reduction (factor 10−2) of the (linear) residual was
reached. The second BiCGstab result (“hi.-pr”) was reached with a stronger reduction
(factor 10−3) of the (linear) residual.
proThe second picture compares the Oseen iterations (“Coupled,MSM” from the first
picture) with the Newton method, where the linear problem is solved with Oseen-
preconditioned Richardson iterations.
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Table 5.5 Different methods for the coarse level construction in the coupled method (with
local smoother) for the P1-P1-stab discretized valve problem. “Ruge-Stüben splitting”
means the modification (3.21) of the red-black algorithm, “Ruge-Stüben interpolation”
the method (3.14).

asympt. red./min T0.1

reduction/step
system matrix, 0.24 0.00286 1.1e-5
red-black splitting, averaging
system matrix, 0.13 0.127 3.2e-5
Ruge-Stüben splitting, averaging
system matrix, 0.18 0.0453 2.1e-5
Ruge-Stüben splitting and interpolation
distance matrix, 0.15 0.0475 2.2e-5
Ruge-Stüben splitting, averaging
distance matrix, 0.13 0.00975 1.4e-5
Ruge-Stüben splitting and interpolation

Oseen iteration. But in practice one is not interested in a solution of the problem up
to a very strong reduction of the residual, the first three or four powers of ten are more
important, and in this initial phase the standard Oseen iteration is faster.

Influence of C/F-Splitting and Interpolation

In Section 3.2.2.1 we have presented different possibilities for the C/F-splitting and for
the prolongator. In Table 5.5 we compare the standard red-black coloring Algorithm 3.10,
the modification (3.21), and the interpolation by averaging and (3.14), all applied to the
system matrix and to the distance matrix (3.1). Theses methods are used for the coarse
level construction of a coupled AMG method with the local smoother (W-15-15) for the
Oseen problem (ν = 5 · 10−4) on the P1-P1-stab discretized valve (with 34,863 unknowns).

It seems clear that the advanced methods result in better convergence rates than the
simple red-black coloring with averaging. What is a bit surprising at first glance is that
the situation is the other way round when we look at the efficiencies. The reason thereof
are slightly denser coarse level matrices generated by the modified red-black splitting, but
this could be repaired in various ways (some can be found e.g. in [Stü01a]). Thus, the
better rates indicate that some more thoughts in this direction could pay off.

AMGe for the Crouzeix-Raviart Element

AMuSE is not yet capable of solving Crouzeix-Raviart-discretized problems in any other
way than with the coupled AMGe method, presented in Section 4.1.3. Therefore, we are
not able to present comparisons of different solvers, but only to show how the method
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Figure 5.9 The agglomerates of one coarse level of the valve problem.

Figure 5.10 The efficiency of the coupled AMGe method with Braess-Sarazin and local
smoother for different levels of refinement. The figure on the left comes from the driven
cavity problem, on the right from the 2D valve.
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performs for the two test problems. There are also no 3D tests for AMGe in this thesis, as
our experiences there are still at a very basic level.

In Figure 5.9 we illustrate the formation of agglomerates on a coarse level for the valve
problem. The results for the solution of the driven cavity and the valve problem, both with
Stokes flow, for increasingly finer grids can be found in Table 5.6 and Figure 5.10. For both
smoothers we applied, the level dependence of our version of the AMGe method is surely
improvable, especially the Braess-Sarazin smoother seems to barely fit to the rest of the
algorithm. The local smoother performs all right for the driven cavity problem, but also
deteriorates for the valve. What we have observed is, that up to a certain number of coarse
levels the method behaves nicely and then suddenly gets worse (note for example the jump
in the convergence rates of the valve problem from two to three refinement levels), which
we assume is related to ill shaped agglomerates on the coarser levels. Thus, we think that
improvement is possible if a more sophisticated agglomeration algorithm is used.
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Table 5.6 The efficiency of the coupled method with Braess-Sarazin and local smoother
for different levels of refinement.

Driven Cavity
refinement-level 5 6 7 8
total number of unknowns 37,024 147,776 590,464 2,360,576
on finest level

Coupled, Braess asympt.red./step 0.39 0.45 0.43 0.52
SSUR 0.8, W-6-6 T0.1 1.1e-5 1.4e-5 1.9e-5 2.7e-5
Coupled, MSM asympt.red./step 0.11 0.26 0.23 0.29
W-10-10 T0.1 2.9e-6 4.2e-6 4.6e-6 5.3e-6

2D Valve
refinement-level 1 2 3 4
total number of unknowns 22,932 91,112 363,216 1,450,400
on finest level

Coupled, MSM asympt.red./step 0.046 0.098 0.30 0.40
W-10-10 T0.1 3.0e-6 3.7e-6 6.3e-6 8.5e-6

5.2.2 3D Problems

The two three-dimensional geometries we use in this thesis are the following:

• 3D valves. In Figure 5.11 we show this geometry with two valves. We prescribe a
velocity of 0.5 at the inlets, the distance between the walls at the narrowest part is
0.03. The mesh was generated with Joachim Schöberl’s ‘netgen’ [Sch97].

• For the so called rotax (illustrated in Figure 5.12) a multi-element mesh is used,
which was provided by the AVL List GmbH and which consists of 302 tetrahedra,
142,339 hexahedra, 5095 pyramids, and 10019 prisms with triangular basis. Thus,
we apply the strategy explained in Section 2.2.2.

We prescribe a velocity of 0.05 at the inlets, the outlets have a diameter of 0.045.

Modified Taylor-Hood Element

We want to solve the problem obtained by a modified Taylor-Hood discretization of the
valve, which has a total number of unknowns of 2,092,418. For the coupled method with
Braess smoother and standard, single-shifted red-black coarsening we observe a poor per-
formance (see Figure 5.13) as neither for the Stokes problem, nor for the Oseen problem
it is clearly faster than the AMG-SIMPLE method. If we use the local smoother the situ-
ation is even worse, it is hardly possible to obtain a converging method with a reasonable
number of smoothing steps. Here the stability problems mentioned in Section 4.1.1 strike,
therefore we apply the 2-shift strategy and get slightly better (at least better than with
AMG-SIMPLE) but not satisfactory results.
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Figure 5.11 The 3D valve problem. The fluid enters at the two inlets on the right, passes
the valves, enters the wider area and leaves it again via two holes on the left (which can
not be recognized in this picture).

Figure 5.12 The so called rotax. It has two inlet ports in an angle of π/2 and two smaller
outlets. The lower part of the figure provides a view inside the geometry, with a viewpoint
indicated by the arrow.



CHAPTER 5. SOFTWARE AND NUMERICAL STUDIES 87

Figure 5.13 Convergence behavior of the Stokes (on the left) and the Oseen problem with
ν = 10−3 (on the right) for the P1isoP2-P1 discretized 3D valves.
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One could suppose that the better performance of the 2-shift strategy originates in the
increase of smoothing steps on the fine (velocity-) level. Therefore we have included the
results for the 1-shift method with a doubled number of smoothing steps on the finest level,
to show that this is not the case.

An illustration of the solution of the Navier-Stokes problem can be found in Figure
5.14.

P1-P1-stab Element

As indicated by the results of Section 4.1.2 the results for the P1-P1-stab discretization are
more promising. We use it on the rotax problem and get a total number of 658,528 (visible)
unknowns. Because of the strategy of Section 2.2.2 our problem has implicitly more degrees
of freedom, but they are locally eliminated (which results in a denser matrix). For example
for a hexahedron we need seven auxiliary nodes which nearly doubles the number of the
eight ‘real’ nodes.

In Figure 5.15 and Table 5.8 we compare the efficiencies of the AMG-SIMPLE method
and the coupled AMG method (with Braess-Sarazin smoother) and see that in this situation
again the coupled method has to be preferred.

In Figure 5.16 we show the solution of the Navier-Stokes problem with ν = 5 · 10−4.
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Table 5.7 Efficiencies for the Stokes and the Oseen problem with ν = 10−3 for the P1isoP2-
P1 discretized 3D valves. For the coupled method for the Stokes problem we used the Braess
smoother and a W-11-11 cycle, for the Oseen problem a W-14-13 cycle.

Stokes problem
asympt. red./min. asympt. T0.1

AMG-SIMPLE 0.85 6.9e-6
Coupled, standard red-black 0.84 6.2e-6
Coupled, 2-shift 0.82 5.7e-6
Coupled, doubled number of 0.88 8.3e-6
smooth. steps on finest lev.

Oseen problem
asympt. red./min. asympt. T0.1

AMG-SIMPLE 0.82 5.5e-6
Coupled, standard red-black 0.84 6.4e-6
Coupled, 2-shift 0.79 4.8e-6

Figure 5.14 Pressure distribution on the boundary and flow around the valves for the 3D
valve problem with ν = 10−3.
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Figure 5.15 Comparison of the AMG-SIMPLE method and the coupled approach for the
P1-P1-stab discretization of the rotax (Oseen problem, ν = 5 · 10−4).
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Table 5.8 Efficiencies of the AMG-SIMPLE method and the coupled approach for the
P1-P1-stab discretization of the rotax (Oseen problem, ν = 5 · 10−4).

asympt. red./min. asympt. T0.1

AMG-SIMPLE 0.97 1.0e-4
Coupled 0.95 6.4e-4

5.3 Conclusions and Outlook

In this thesis we have investigated the application of several possible components for the
AMG solution of the saddle point problem arising in the finite element discretization of
the Oseen equations.

Our main achievements lie in the development of coupled algebraic multigrid solvers
for such problems, to be concrete

• we have found a technique for the construction of coarse grid hierarchies for problems
discretized with the modified Taylor-Hood element, and we have given some heuristics
for their stabilization,

• we have developed an AMG method for the P1-P1-stab element and have proven that
the coarse level systems there are stable,

• we have made first steps in the application of AMGe to the coupled problem and
have shown exemplarily, that if it is used in a certain way for the Crouzeix-Raviart
element, then again one obtains stable coarse level systems,

• we have shown how to apply smoothers known from geometric multigrid methods in
a purely algebraic context, and
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Figure 5.16 Pressure on the surface and main flow of the solution of the rotax problem
with ν = 5 · 10−4.

• we have developed a software package which is capable of most of the techniques de-
scribed in this thesis (and some more) and which has provided us with the possibility
of

• applying the methods to “real-life” industrial problems and of

• comparing our approach with methods using the segregated approach (e.g. AMG-
SIMPE or the “black-box” preconditioner).

We have seen that if AMG is applied using the segregated approach, then this has clear
advantages with respect to the simplicity of development. One just needs “off the shelf”
AMG solvers for elliptic problems and can plug them in some relatively easy to implement
method, and that is it.

Most of this “black-box” character is lost for the coupled method on which we have
focused, as the behavior of the solver depends for example strongly on the chosen finite
element pairing and its stability properties. But, as the numerical experiments indicate,
if the coarse grid is constructed carefully and if the smoother fits, then the method can
become powerful and can outperform solvers using the segregated approach.

Of course, much more work can be invested in different aspects of these methods, on the
practical and on the theoretical side. One question is the possibility of generalizations to
arbitrary finite elements. We have shortly discussed this in Chapter 4, but our numerical
experiences in this direction are still very rudimentary.
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Other questions arise on the analytic side. We have proven (in some cases) the stability
of the coarse level system, but what about convergence? What about stability results for
a more general class of elements?

If the methods presented here should be used in an industrial context, then some more
thought should also be spent on an efficient implementation, on modern programming
techniques, on parallelization aspects, etc.

Nevertheless, we have developed a coupled method which can compete with classical
approaches, and which has an area of application beyond unit square problems with weak
convection.
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A-stable, 23
strongly, 23

agglomeration, see element agglomeration
AMG-SIMPLE, 30
AMGe, 45
AMuSE, 71

external libraries, 72
matrices, 73
structure, 72

approximation property, 38, 39
Arrow-Hurwicz algorithm, 31
auxiliary matrix, 35

BiCGstab, 28
black box preconditioner, 33
Braess-Sarazin smoother, see smoother

C/F-splitting, 40
coarse grid correction, 37
condition number, 31
convective term

instability, 24
nonlinearity, 25

Crank-Nicolson scheme, 23
Crouzeix-Raviart element, 21

direct neighborhood, 42
discretization parameter, 18

element agglomeration, 47
red-grey-black, 47

essentially positive type, 41
Euler scheme

explicit, 23
implicit, 23

FE-AMG-isomorphism, 49

FE-isomorphism, 18
finite element method, 16
fractional-step-θ-scheme, 23

Galerkin projection, 36
geometric multigrid methods, 37–39
GMRES, 27

inf-sup condition, 15, 16, 52, 53
inner condensation, 21

Krylov space methods, 27–29

L-stable, 23
Laplacian, 18
LBB condition, 15, 16, 53, see inf-sup con-

dition

M-matrix, 41
mass matrix, 18
multi-element meshes, 21

Navier-Stokes equations, 12

one-step-θ scheme, 23
Oseen equations, 13

P1isoP2-P1 element, 19, 51
P nc

1 -P0 element, 21, 58
P1-P1 element

stabilized, 20, 53
unstabilized, 17

P2-P1 element, 19
polar set, 15
pressure mass matrix, 18
prolongation matrix, 35

red-black-coloring method, 44
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restriction matrix, 36

segregated approach, 48
SIMPLE, 29, 64
smoother

Braess-Sarazin, 65
squared system, 64
transforming, 64
Vanka, 68

smoothing operator, 36
smoothing property, 38, 39
smoothing rate, 38
stability function, 23
Stokes equations, 13
streamline upwinding Petrov Galerkin scheme,

25
strongly negatively coupled, 44

transposed, 44

T0.1, 74
Taylor-Hood element, 19

modified, 19
transforming smoother, see smoother
two-grid operator, 38

Uzawa method
classical, 31
inexact, 31
inexact symmetric, 31, 65

Vanka smoother, see smoother

weak formulation, 14
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AUTOGEN”.

06.2000 – 05.2001: Zivildienst beim Roten Kreuz in Traun.
06.2001 – 09.2001: Mitarbeiter an der J.K. Universität in Linz, am Institut für Nu-

merische Mathematik. Arbeit an einem Industrieprojekt in Ko-
operation mit der AVL List GmbH, Graz.

seit 10.2001: Mitarbeiter an der J.K. Universität, Institut für Numerische Mathe-
matik. Arbeit am FWF-Projekt “Robust Algebraic Multigrid Meth-
ods and their Parallelization”.

102


