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ABSTRACT: This paper presents an adaptive FEM-BEM coupling method to solve non-linear 
problems involving elasto-plastic deformations. Unlike the existing coupling approaches, the 
present method facilitates an automatic generation of the FEM zone/zones of discretization so 
as to include zones where non-linearity (plasticity) occurs. The generation of the FEM and 
BEM zones of discretization eliminates the need of a user predefinition of the discretization 
zones. Furthermore, the FEM and BEM zones of discretization are subsequently adapted 
according to the state of computation. The presented adaptive FEM-BEM coupling method 
employs considerably smaller FEM meshes, which plainly leads to reduction of required 
system resources. 
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INTRODUCTION 

In many practical applications, nonlinearities are concentrated in relatively small portions of the 
computational domain (plasticity, phase change, etc.). In such case the idea of using the finite 
element method (FEM) to deal with nonlinearities while using the boundary element method 
(BEM) in the remaining portion of the body naturally arises. Examples include, but not limited 
to, the detailed stress analysis in the surrounding of pressure tunnels in an infinite/semi-infinite 
geological medium. The generalized structure that can have nonlinear characteristics and 
possibly contains a nonlinear and/or nonhomogeneous part of the surrounding is modeled with 
the FEM. The remaining unbounded geological medium may be best represented by the BEM. 
The same is true for many problems in solid mechanics. Typical two-dimensional bodies with 
their discretization by coupled FEM-BEM are given in Figure 1. 
 
The idea of coupling FEM and BEM was addressed for the first time by Zienkiewicz et al.1, 2, 
suggesting a ‘mariage à la mode - the best of both worlds’. The theory and algorithms of 
coupling FEM and BEM solutions reached, by now, a fairly matured state. In the conventional 
(direct) FEM-BEM coupling formulation (see, e.g., references1-12 not to mention many others), 
the discretized equations for both the FEM and BEM sub-domains are combined, resulting in a 
global coupled system of equations. 
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Figure 1. FEM-BEM discretization of two-dimensional bodies 
 
As an alternative to the conventional (direct) FEM-BEM coupling approach, iterative solution 
procedures can be employed where the equations for both the FEM and BEM sub-domains are 
solved separately, avoiding the assembly and solution of a global coupled system of equations. 
Boundary conditions at the coupling interface are updated iteratively until convergence is 
achieved. In order to achieve and accelerate convergence, relaxation parameters are often 
applied within the iterative procedure. Interface relaxation FEM-BEM coupling methods are 
discussed in details in references13-19. 
 
The symmetric coupling of BEM and FEM goes back to Costabel3,4. With the Symmetric 
Galerkin Boundary Element Method, FEM-like stiffness matrices can be produced which are 
suitable for coupling the Boundary Element Method and the Finite Element Method (see, e.g., 
references5,6,8,11,12,20,21). During the last decade iterative substructuring solvers for symmetric 
coupled boundary and finite element equations have been developed by Langer21, Haase et al.20, 
Hsiao et al.22, Steinbach23 for elliptic boundary value problems in bounded and unbounded, two 
and three-dimensional domains. Parallel implementations showed high performance on several 
platforms20. Langer and Steinbach24 introduced the boundary element tearing and 
interconnecting (BETI) methods as boundary element counterparts of the well-established finite 
element tearing and interconnecting (FETI) methods. As a logical continuation of the BETI 
technique, Langer and Steinbach25 introduced the coupled finite and boundary element tearing 
and interconnecting methods (FETI/BETI). 
 
Brink et al.7 investigated a coupling of mixed finite elements and Galerkin boundary elements 
in linear elasticity, taking into account adaptive mesh refinement based on a posteriori error 
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estimators. Carstensen et al.9 presented an h-adaptive FEM-BEM coupling algorithm (mesh 
refinement of the boundary elements and the finite elements) for the solution of viscoplastic 
and elasto-plastic interface problems. Mund and Stephan10 derived a posteriori error estimate 
for nonlinear-coupled FEM-BEM equations by using hierarchical basis techniques. They 
presented an algorithm for adaptive error control, which allows independent refinements of the 
finite elements and the boundary elements.  
 
In the existing FEM-BEM coupling approaches, the finite element and the boundary element 
zones of discretization (FEM and BEM sub-domains) are defined a priori and do not change 
during the computation. This requires preliminary expert knowledge about the problem at hand 
and the computational cost can be higher than necessary depending on the definition of the 
finite element and boundary element zones of discretization (FEM and BEM sub-domains). 
This paper presents an adaptive FEM-BEM coupling method to solve non-linear problems 
involving elasto-plastic deformations. The present method facilitates an automatic generation of 
the FEM zone/zones of discretization so as to include zones where non-linearity (plasticity) 
occurs. Furthermore, the FEM and BEM zones of discretization are subsequently adapted 
according to the state of computation. The paper is organized as follows: Section 2 gives a brief 
overview of the basic BEM equations in elasticity, FEM equations in elasto-plasticity, 
compatibility and equilibrium conditions at the FEM-BEM sub-domains interface and the 
interface relaxation methods for coupling of FEM and BEM discretized systems of equations. 
Section 3 discusses the preliminaries of our coupling method, general features of the adaptive 
concept and the progressive adaption of the FEM and BEM zones of discretization. Example 
application in Section 4 shows the potential of our adaptive FEM-BEM coupling method. 

BASIC EQUATIONS 

The adaptive FEM-BEM coupling method given in succeeding sections is capable of utilizing 
conventional (direct) or domain decomposition (preconditioning/interface relaxation) 
approaches for coupling of FEM and BEM discretized systems of equations. The novelty of our 
adaptive coupling method is the automatic generation and successive adaption of the FEM and 
BEM zones of discretization. 
 
Let us consider an arbitrary domain, Ω , with known boundary conditions specified at the entire 
boundary, Γ . If in some portion of Ω , the problem to be solved is non-linear and in remaining 
part linear or domain itself is infinite, we decompose it into two sub-domains, namely, FΩ  and 

BΩ . In all following equations subscripts F and B stand for Finite Element and Boundary 
Element sub-domains, respectively. Decomposition yields unknown values of displacements 

I
Fu , I

Bu , forces I
Ff , and tractions I

Bt  at the interface, I, of sub-domains. In the remaining parts 
of sub-domains, we define displacements as, F

Fu , B
Bu , forces F

Ff , and tractions B
Bt . 

Elastic region - BEM basic equations 

Disregarding body forces, the assembled boundary element equations, in a partitioned form, are 
given by: 
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where H  and G  denote the influence coefficient matrices. 

Elasto-plastic region – FEM basic equations 

For an elasto-plastic analysis, the incremental form of the FEM equations, in a partitioned form, 
can be written as: 
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where TK  is the tangent stiffness matrix and ψ∆  is the residual (or out-of-balance) force 
vector. It should be noted that for each load increment Equations (2) are nonlinear and therefore 
are solved iteratively. 
 
Standard solution procedure, at each load increment, contains iterations over computations of 
tangent stiffness (based on current stress, and plastic strain, if required), applied loads based on 
current configuration, internal force and force residual. Then, displacement increment is 
calculated. With updated displacements the plastic strain increments at element integration 
points are obtained. Finally, check on convergence is carried out. If the procedure converged, 
plastic strains are updated and next increment proceeds. 

Compatibility and equilibrium conditions 

At the sub-domains interface, the compatibility and equilibrium conditions are: 

 II
F

I
B on Γ= uu  (3) 

 II
B

I
F on Γ=+ 0tMf  (4) 

where M  is the transforming matrix, due to the weighting of the boundary tractions by the 
interpolation functions at the interface. 

Coupled FEM-BEM discretized systems of equations 

In this subsection we give a brief description of the interface relaxation coupling approach13,16. 
The Dirichlet-Neumann coupling method in elasto-plasticity is outlined as: 
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I
Bu . (where n  is the iteration number). 
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 FEM sub-domain ( m...,,,i 21= , where m  is a specified number of increments): 
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  apply ( )( ) ( )( ) ( )( )in
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accelerate convergence 
 
The geometric contraction based coupling method in elasto-plasticity is outlined as: 
Set initial guess ( ) 0=n

I
Fu  and ( ) 0=n
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Bu  (where n  is the iteration number). 
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 FEM sub-domain ( m...,,,i 21= , where m  is a specified number of increments): 
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ADAPTIVE COUPLING OF FEM AND BEM 

As pointed out previously, in the available FEM-BEM coupling approaches, the finite element 
and the boundary element zones of discretization (FEM and BEM sub-domains) are defined a 
priori and do not change during the computation. This requires preliminary expert knowledge 
about the problem at hand. Furthermore, a predefined FEM zone of discretization will probably 
result in either an under/overestimation of the nonlinear region where the FEM is employed. In 
the former case, inaccurate solutions is obtained to the problem at hand while for the later the 
computational cost may be higher than necessary. The key idea of our adaptive coupling 
method is to eliminate the disadvantages of a prior definition and manual localization of the 
FEM and BEM zones of discretization. The basic steps of implementation of the adaptive 
concept in elasto-plasticity are summarized as follows (Figure 2): 
1. Data input and initial BEM discretization. 

In our adaptive method, the user has only to define an initial BEM discretization as in the 
case of elastic analysis. 

2. Load increment and BEM elastic analysis with the initial discretization. 
The implementation of the BEM computation is straightforward. 

3. Detection of FEM discretization zones. 
The detection of FEM discretization zones can be carried out by a loop over stress/strain 
based maximum values computed at predefined points inside the BEM sub-domain (within a 
user-defined distance). In this work, violation to the yield condition is utilized as a 
discretization measure (predictor) for the generation of FEM zones of discretization. 
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However, this predictor based on elastic analysis will give a rough, though not accurate, 
estimate of the zones sensible for discretization by the FEM (Figure 3). 

4. Automatic generation of FEM zone of discretization. 
If the chosen discretization criterion is fulfilled at a particular region, the region is replaced 
by a FEM discretization. 
It is useful to reuse the BEM internal points as finite element nodes for the FEM descritezed 
region, as they are conveniently distributed in the particular area of interest. This will result 
in a reduction of the complexity of data management and ease of the automatic generation 
and adaption of the FEM zone of discretization. 

5. Construction of the interface for the coupling of both FEM and BEM discretizations. 
In order to ensure the compatible coupling between the remaining BEM zone and the FEM 
zone, the interface is constructed reflecting the current situation. 

6. Coupled FEM-BEM stress analysis involving elasto-plastic deformations. 
For the present work and without loss of generality, we choose the interface relaxation 
approach for the coupling of FEM and BEM discretized system of equations. 

7. Consequent to the FEM-BEM coupled analysis; the finite elements at the coupling interface 
are checked for yield condition. 
If any finite element at the coupling interface is found to be yielded, the BEM zone 
surrounding the yielded element is included into the FEM zone of discretization. This can be 
achieved by adding finite elements to the nodes at the interface that belong to the yielded 
element (within a prescribed distance). A coupled FEM-BEM analysis is then performed 
and the process is iterated (Figure 4). 

8. Next load increment requires a repetition of steps 2-7. 

EXAMPLE APPLICATION 

In this section we present an example application of coupling FEM-BEM by means of the 
adaptive algorithm presented in Section 3. Calculation results are compared with those obtained 
by conventional FEM models (with rigid truncation boundary). 
The application deals with the stress analysis in a surrounding of a deep tunnel (radius, 

m 1.0=r ) subjected to a non-uniform pressure, P, which is assumed to be as high as 70 Mpa 
(Figure 5). The analysis involves elasto-plastic deformations in geological medium of infinite 
extent. Material properties of the geological medium are described by Young’s modulus 

GPa21=E , Poisson's ratio 180.=ν , cohesion MPa10=c  and angle of internal friction 
o41=φ . Moreover, we assume a Drucker-Prager formulation, with no hardening effect, as a 

yield function and plane strain loading conditions. Figure 5 further shows the initial BEM 
discretization. The loads are applied incrementally (total of 7 increments is used). Figure 6 and 
7 shows the automatically generated coupled FEM-BEM discretization at increments 2 and 7 
(that is equivalent to loads of P=20 MPa and P=70 MPa), respectively. Figures 6 and 7 show 
the equivalent plastic strains computed using our adaptive FEM-BEM coupling method at 
increments 2 and 7. The figures further compare the computed results with those obtained by 
conventional finite element solutions. For the FEM models, the infinite domain is truncated at 
radius 8.7 and 15 m from the center of the tunnel (448 and 608 quadrilateral finite elements), 
respectively. The FEM solutions converge to those of the adaptive coupled FEM-BEM method. 
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The results clearly show the advantages of the adaptive coupled FEM-BEM models in terms of 
accuracy, no-requirement of a user predefinition of the FEM and BEM discretization zones and 
smaller FEM meshes. 

CONCLUSIONS 

This paper presents an adaptive coupled FEM-BEM for elasto-plastic analysis. The FEM zone 
of discretization is automatically generated. FEM and BEM zones of discretization are 
progressively adapted according to the state of computation. The key idea of the adaptive FEM-
BEM coupling method is the elimination of the disadvantages of prior definition and manual 
localization of the FEM and BEM zones of discretization. Furthermore, the adaptive FEM-
BEM coupling method employs considerably smaller FEM meshes while achieving better 
accuracy. 
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Figure 2: Adaptive FEM-BEM coupling method for elasto-plastic analysis 
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Figure 5: Deep tunnel subjected to non-uniform pressure and initial BEM discretization 
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Figure 6: Adaptive coupled FEM-BEM method and comparison of final solutions with 
conventional FEM – increment2 
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