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Abstract. In this paper we study second-order optimality conditions for non-convex set-
constrained optimization problems. For a convex set-constrained optimization problem, it
is well-known that second-order optimality conditions involve the support function of the
second-order tangent set. In this paper we propose two approaches for establishing second-
order optimality conditions for the non-convex case. In the first approach we extend the
concept of the support function so that it is applicable to general non-convex set-constrained
problems, whereas in the second approach we introduce the notion of the directional regular
tangent cone and apply classical results of convex duality theory. Besides the second-order
optimality conditions, the novelty of our approach lies in the systematic introduction and
use, respectively, of directional versions of well-known concepts from variational analysis.
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1 Introduction

Second-order optimality conditions have long been recognized as an important tool in opti-
mization theory and algorithms. In this paper we aim at developing second-order optimality
conditions for a set-constrained optimization problem in the form of

(P ) min f(x) s.t. g(x) ∈ Λ, (1)

where f : Rn → R and g : Rn → Rm are twice continuously differentiable, and Λ is a closed
subset in Rm. For the case where Λ is convex, a complete theory of second-order necessary
and sufficient optimality conditions has been developed by Bonnans, Cominetti and Shapiro
in [3] and the results have been reviewed in the monograph of Bonnans and Shapiro [5].
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In recent years, some important problem classes which can be reformulated in the form
of problem (P) with non-convex Λ have attracted much attention from the optimization
community. These problems include the mathematical program with complementarity con-
straints (MPCC) (see e.g. [23]), the mathematical program with second-order cone com-
plementarity constraints (SOC-MPCC) (see e.g. [34]) and the mathematical program with
semi-definite cone complementarity constraints (SDC-MPCC) (see e.g. [8]). Unlike the
first-order optimality conditions for which much research works have been appeared, there
is very little research done with the second-order optimality conditions for MPCC, SOC-
MPCC and SDC-MPCC, let alone the general non-convex set-constrained problem (1). The
classical second-order necessary optimality condition for MPCCs was given in [32, Theorem
7(1)] under the MPCC strict Mangasarian-Fromovitz constraint qualification (SMFCQ).
Some weaker second-order necessary optimality conditions for MPCCs were derived in [21].
For the case when Λ is the union of finitely many convex polyhedral sets, which comprises
MPCCs, strong second-order necessary optimality conditions were given in [14] under a
directional metric subregularity constraint qualification which is much weaker than SM-
FCQ. Recently a second-order necessary optimality condition is derived in [7, Theorem 5.1]
for SOC-MPCCs under the nondegeneracy condition (equivalently the generalized linear
independence constraint qualification, generalized LICQ).

To our knowledge, there is no work dealing with the second-order optimality condition
for the general non-convex set-constrained problem in the form (1). The main purpose of
this paper is to fill this gap.

In case of non-convex set Λ, first-order necessary optimality conditions can be derived
by means of variational analysis. From the work of Bonnans, Cominetti and Shapiro [3],
it is well known that the second-order optimality condition must involve in some way the
second-order tangent set to the set Λ, and the non-convexity of this second-order tangent set
is also an issue. We consider two different approaches for handling non-convex second-order
tangent sets. In the first approach, solely based on non-convex variational analysis, we first
show that directional metric subregularity of the feasible set mapping carries over to the
second-order linearized subproblem. Then we introduce the concept of lower generalized
support function (which coincides with the support function in the convex case) in order to
state the second-order necessary optimality conditions in Theorem 2.

In the second approach, convex duality plays an essential role. We first introduce the
directional regular (Clarke) tangent cone to Λ and state its relations with the directional
limiting normal cone and the second-order tangent set. Using these relations we introduce a
new constraint qualification called directional Robinson’s constraint qualification and we can
carry over the ideas already employed in [3] to obtain the second-order necessary optimality
conditions of Corollary 4. We show that these second-order conditions are equivalent with
primal second-order conditions and are in general stronger than the one obtained with our
first approach. However, they also require a stronger constraint qualification and their
practical use is limited by the fact that we have not only one condition for every critical
direction, but for every convex set contained in the second-order tangent set. If we further
strengthen the constraint qualification to some directional non-degeneracy condition, this
drawback vanishes and we can state a single condition involving the support function of the
second-order tangent set.

Second-order optimality condition have in general the form that for every critical direc-
tion some condition is fulfilled. It seems to be that Penot [28] was the first who recognized
that only some directional form of a constraint qualification (directional metric subregu-
larity) is required for stating the necessary conditions. We pursue this approach and, as
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a byproduct of the second-order optimality conditions, we introduce and analyze a lot of
new directional objects like the directional regular tangent cone, the directional Robinson’s
constraint qualification and directional non-degeneracy. These results are of its own interest.

We organize our paper as follows. Section 2 contains the preliminaries and preliminary
results. In Sections 3 and 4, we derive the primal and dual form of second-order necessary
optimality conditions, respectively. Section 5 discusses second-order sufficient conditions
for optimality. In Section 6 we present four examples which illustrate our second-order
necessary and sufficient conditions.

2 Preliminaries and preliminary results

In this section we clarify the notations, recall some background material we need from
variational analysis and develop some preliminary results.

The unit sphere in Rn is denoted by S and the open and closed unit balls are denoted by
B and B respectively. For a set C, denote by intC, riC, clC, bdC, coC, Ccomp its interior,
relative interior, closure, boundary, convex hull, and its complement, respectively. For a
closed set C ⊆ Rn, let C◦ and σC(x) or σ(x|C) stand for the polar cone and the support
function of C, respectively, i.e., C◦ := {v| 〈v, w〉 ≤ 0, ∀w ∈ C} and σC(x) = σ(x|C) :=
sup{〈x, x′〉|x′ ∈ C} for x ∈ Rn. Let o(λ) : R+ → Rm stand for a mapping with the property

that o(λ)/λ→ 0 when λ ↓ 0. z
S→ x means z ∈ S and z → x. For a mapping Φ : Rn → Rm,

we denote by ∇Φ(x) ∈ Rm×n the Jacobian and by ∇2Φ(x) the second order derivative as
defined by

uT∇2Φ(x) := lim
t→0

∇Φ(x+ tu)−∇Φ(x)

t
∀u ∈ Rn.

Hence, for a scalar mapping f : Rn → R, ∇2f(x) can be identified with the Hessian and for
a mapping Φ : Rn → Rm, we have

∇2Φ(x)(d, d) := dT∇2Φ(x)d = (dT∇2Φ1(x)d, . . . , dT∇2Φm(x)d)T ∀d ∈ Rn.

Let Φ : Rn ⇒ Rm be a set-valued mapping. We denote by lim supx′→x Φ(x′) and
lim infx′→x Φ(x′) the Painlevé-Kuratowski upper and lower limit, i.e.,

lim sup
x′→x

Φ(x) :=
{
v ∈ Rm

∣∣∣∃xk → x, vk → v with vk ∈ Φ(xk)
}

lim inf
x′→x

Φ(x) :=
{
v ∈ Rm

∣∣∣∀xk → x,∃vk → v with vk ∈ Φ(xk)
}
,

respectively.

Definition 1 (Tangent cones). [4, Definitions 2.54 and 3.28] Given S ⊆ Rn and x ∈ S,
the regular/Clarke and (Bouligand-Severi) tangent/contingent cone to S at x are defined
respectively by

T̂S(x) := lim inf
x′ S→x
t↓0

S − x′

t
=
{
d ∈ Rn

∣∣∣ ∀ tk ↓ 0, xk
S→ x, ∃dk → d with xk + tkdk ∈ S

}
,

TS(x) := lim sup
t↓0

S − x
t

=
{
d ∈ Rn

∣∣∣∃ tk ↓ 0, dk → d with x+ tkdk ∈ S
}
.
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For x ∈ S and d ∈ TS(x), the outer second-order tangent set to S in the direction d is
defined by

T 2
S(x; d) := lim sup

t↓0

S − x− td
1
2 t

2

=

{
w ∈ Rn | ∃ tk ↓ 0, vk → w such that x+ tkd+

1

2
t2kvk ∈ S

}
.

Alternatively, the contingent cone and the second-order tangent set can be written in
the form

TS(x) =
{
d ∈ Rn

∣∣ ∃ tk ↓ 0, dist(x+ tkd, S) = o(tk)
}
, (2)

T 2
S(x; d) =

{
w ∈ Rn

∣∣∃ tk ↓ 0,dist(x+ tkd+
1

2
t2kw, S) = o(t2k)

}
, (3)

respectively; see [5, (2.87) and (3.50)]. The regular tangent cone is always a closed convex
cone. The tangent cone is always a closed cone and it is a closed convex cone provided that
the set S is convex. However the outer second-order tangent set may be a non-convex set
even when the set S is convex (see [5, Example 3.35]). While the tangent cone contains
zero always, the second-order tangent set may not be a cone and it may be empty (see e.g.
[5, Example 3.29]).

We now introduce a concept of directional regular/Clarke tangent cone which we will
need later. The following definition is motivated by the formula T̂S(x) = lim inf

x′
S→x

TS(x′),

whenever S is locally closed at x, cf. [31, Theorem 6.26].

Definition 2 (Directional regular/Clarke tangent cone). Given S ⊆ Rn, x ∈ S and d ∈ Rn,
the regular/Clarke tangent cone to S at x in direction d is defined by

T̂S(x; d) := lim inf
t↓0,d′→d
x+td′∈S

TS(x+ td′)

=
{
v ∈ Rn

∣∣ ∀tk ↓ 0, dk → d, x+ tkdk ∈ S,∃vk → v with vk ∈ TS(x+ tkdk)
}
.

It is easy to see from definition that for a closed set S the directional version of the regular
tangent cone contains the non-directional one and it coincides with the non-directional one
when the direction is equal to zero, i.e., T̂S(x; d) ⊇ T̂S(x) and T̂S(x; 0) = T̂S(x).

We now derive some properties of first and second-order tangent sets. The formula for
the second-order tangent set extends the one in [31, Proposition 13.12].

Proposition 1. Given a closed set S ⊆ Rn, for every x ∈ S and every d ∈ TS(x) one has

TTS(x)(d) + T̂S(x; d) = TTS(x)(d), T 2
S(x; d) + T̂S(x; d) = T 2

S(x; d).

Proof. The inclusion ⊇ in both equations is clear, since 0 ∈ T̂S(x; d). In order to show the
inclusion ⊆ in the first equation, consider w ∈ TTS(x)(d) and v ∈ T̂S(x; d) and we prove that
w+ v ∈ TTS(x)(d) by contradiction. To the contrary, suppose that w+ v 6∈ TTS(x)(d). Then
by virtue of (2) there is some ε > 0 and some t̄ > 0 such that

dist
(
d+ t(w + v), TS(x)

)
≥ 4εt ∀t ∈ (0, t̄).
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Consequently, d+ t(w+ v) 6∈ TS(x) and hence for every t ∈ (0, t̄) there is some ᾱt > 0 with

dist
(
x+ α(d+ t(w + v)), S

)
≥ 3εαt ∀α ∈ (0, ᾱt).

Since w ∈ TTS(x)(d), by definition there are sequences tk ↓ 0 and wk → w such that

d + tkwk ∈ TS(x) for all k. Thus, for every k there is a sequence αki ↓ 0 and dki → d, as
i → ∞ satisfying x + αki (d

k
i + tkwk) ∈ S for all i. For every k sufficiently large we have

tk < t̄, ‖wk − w‖ < ε and we can find some index i(k) such that αki(k) < min{ 1
k , ᾱtk} and

‖dki(k) − d‖ < εtk. It follows together with Lipschitz property of the distance function that

dist
(
x+ αki(k)(d

k
i(k) + tk(wk + v)), S

)
≥ dist

(
x+ αki(k)(d+ tk(w + v)), S

)
− αki(k)(‖d

k
i(k) − d‖+ tk‖wk − w‖)

> 3εαki(k)tk − 2εαki(k)tk = εαki(k)tk

implying
(xk + τk(v + εB)) ∩ S = ∅

with xk := x+αki(k)(d
k
i(k) + tkwk) ∈ S and τk := αki(k)tk. By the proof of [31, Theorem 6.26],

there exists x̃k ∈ S ∩ (xk + τk(‖v‖+ ε)B) such that

dist(v, TS(x̃k)) ≥ ε. (4)

Since

‖x̃k − (x+ αki(k)d)‖ ≤ ‖x̃k − xk‖+ ‖xk − (x+ αki(k)d)‖

≤ αki(k)

(
tk(‖v‖+ ε) + ‖dki(k) − d‖+ tk‖wk‖

)
= o(αki(k)),

we have x̃k = x + αki(k)dk with some sequence dk → d. Together with (4) this implies that

v 6∈ T̂S(x; d) which contradicts the assumption that v ∈ T̂S(x; d) and hence we have proved
that w + v ∈ TTS(x)(d). Indeed, to the contrary if v ∈ T̂S(x; d), then by definition of the

directional regular tangent cone, for the sequence αki(k) ↓ 0, dk → d, x̃k ∈ S, there must

exists a sequence vk → v with vk ∈ TS(x̃k), contradicting (4).
We show the inclusion ⊆ in the second equation in a similar way. Let w ∈ T 2

S(x; d), v ∈
T̂S(x; d) and we prove that w + v ∈ T 2

S(x; d) by contradiction. To the contrary, suppose
that w + v 6∈ T 2

S(x; d). Then by virtue of (3) there exists ε > 0, tk ↓ 0, wk → w such that
x+ tkd+ 1

2 t
2
kwk ∈ S and

dist(x+ tkd+
1

2
t2k(wk + v), S) ≥ 1

2
t2kε.

Denote by xk := x + tkd + 1
2 t

2
kwk, τk := 1

2 t
2
k, the above inequality is equivalent to saying

that
(xk + τk(v + εB)) ∩ S = ∅.

Now we can proceed similar as before to obtain the contradiction v 6∈ T̂S(x; d). 2
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Definition 3 (Normal Cones). (See e.g. [25]) Given S ⊆ Rn and x ∈ S, the regular/Fréchet
normal cone to S at x is given by

N̂S(x) :=
{
v ∈ Rn

∣∣∣ 〈v, x′ − x〉 ≤ o(‖x′ − x‖), ∀x′ ∈ S} ;

the limiting/Mordukhovich normal cone to S at x is defined as

NS(x) := lim sup
x′
S→x

N̂S(x′),

and the Clarke normal cone to S at x is N c
S(x) := cl coNS(x).

The limiting normal cone is in general non-convex whereas the Fréchet normal cone is
always convex. In the case of a convex set S, both the Fréchet normal cone and the limiting
normal cone coincide with the normal cone in the sense of convex analysis, i.e.,

NS(x) :=
{
v ∈ Rn

∣∣ 〈v, x′ − x〉 ≤ 0, ∀x′ ∈ S
}
.

Recently a directional version of limiting normal cones were introduced in [11] and
extended to general Banach spaces in [13].

Definition 4 (Directional Limiting Normal Cones). Given a set S ⊆ Rn, a point x ∈ S
and a direction d ∈ Rn, the limiting normal cone to S in direction d at x is defined by

NS(x; d) := lim sup
t↓0,d′→d

N̂S(x+ td′) =
{
v|∃tk ↓ 0, dk → d, vk → v with vk ∈ N̂S(x+ tkdk)

}
.

From definition, it is obvious that NS(x; d) = ∅ if d 6∈ TS(x), NS(x; d) ⊆ NS(x), and
NS(x; 0) = NS(x). When S is convex and d ∈ TS(x) there holds

NS(x; d) = NS(x) ∩ {d}⊥ = NTS(x)(d), (5)

cf. [14, Lemma 2.1]. The following result is the directional counterpart of the fact that the
limiting normal cone mapping is outer semicontinuous (see e.g.[31, Proposition 6.6]).

Proposition 2. Given a set S ⊆ Rn, a point x ∈ S and a direction d ∈ Rn, one has

NS(x; d) = lim sup
t↓0,d′→d

NS(x+ td′) =
{
v|∃tk ↓ 0, dk → d, vk → v with vk ∈ NS(x+ tkdk)

}
.

Proof. The inclusion NS(x; d) ⊆ lim sup
t↓0,d′→d

NS(x + td′) follows easily from the fact that for

every x′ we have N̂S(x′) ⊆ NS(x′). In order to show the reverse inclusion, consider sequences
tk ↓ 0, dk → d and vk → v with vk ∈ NS(x + tkdk). By the definition of limiting normals,
for every k there exist sequences xik → x + tkdk and vik → vk as i → ∞ with vik ∈ N̂S(xik).
Using a standard diagonal process, for every k we can find some index i(k) satisfying

‖xi(k)
k − (x+ tkdk)‖ ≤

tk
k
, ‖vi(k)

k − vk‖ ≤
1

k
.

Setting d′k := (x
i(k)
k − x)/tk, it follows that ‖d′k − dk‖ ≤

1
k and consequently d′k → d. Since

limk→∞ v
i(k)
k = limk→∞ vk = v and v

i(k)
k ∈ N̂S(x + tkd

′
k), v ∈ NS(x; d) follows. Hence, the

inclusion NS(x; d) ⊇ lim sup
t↓0,d′→d

NS(x+ td′) is also established and the proof is complete. 2

From the definition of the Clarke normal cone in Definition 3, it is natural to define the
directional Clarke normal cone as follows.
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Definition 5 (Directional Clarke Normal Cones). Given a set S ⊆ Rn, a point x ∈ S and
a direction d ∈ Rn, the Clarke normal cone to S in direction d at x is defined by

N c
S(x; d) := cl coNS(x; d).

Similarly to the directional limiting normal cone, we also have N c
S(x; d) = ∅ if d 6∈ TS(x),

N c
S(x; d) ⊆ N c

S(x) and N c
S(x; 0) = N c

S(x).
Similar to the standard tangent-normal polarity (see [31, Theorem 6.28], [6]), we have

the following directional tangent-normal polarity.

Proposition 3 (Directional Tangent-Normal Polarity). For a closed set S, x ∈ S, and
d ∈ Rn, one has

T̂S(x; d) = NS(x; d)◦ = N c
S(x; d)◦, T̂S(x; d)◦ = N c

S(x; d).

In particular, the directional regular tangent cone T̂S(x; d) is closed and convex.

Proof. Firstly we show T̂S(x; d) ⊆ NS(x; d)◦. For any given w ∈ T̂S(x; d), take v ∈ NS(x; d).
By the definition of directional normal cone, there exist vn → v with vn ∈ N̂S(x+ tndn) for
some tn ↓ 0 and dn → d and x + tndn ∈ S. Since w ∈ T̂S(x; d), for this sequence, by the
definition of directional regular tangent cone, there exists wn → w with wn ∈ TS(x+ tndn).
It follows that 〈wn, vn〉 ≤ 0 since vn ∈ N̂S(x + tndn) = (TS(x + tndn))◦. Taking the limit
yields 〈w, v〉 ≤ 0, which implies that w ∈ NS(x; d)◦. Hence T̂S(x; d) ⊆ NS(x; d)◦.

Secondly we show T̂S(x; d) ⊇ NS(x; d)◦. Suppose that w /∈ T̂S(x; d). Then there exist
tn ↓ 0, dn → d, x + tndn ∈ S such that w /∈ lim inf

n→∞
TS(x + tndn). Hence by [31, Exercise

4.2(a)], lim sup
n→∞

d(w, TS(x + tndn)) > 0, i.e., there exists ε > 0 and some subsequence N ⊆

{1, 2, . . . , } such that dist(w, TS(x+ tndn)) > ε for all n ∈ N . According to [31, Proposition
6.27(b)], there exists vn ∈ NS(x̄+ tndn) ∩ S such that

〈w, vn〉=dist(w, TS(x̄+ tndn)) > ε (6)

for all n ∈ N . Since vn is bounded, we can assume by further taking subsequence if necessary
that vn → v (as n → ∞ and n ∈ N ). Clearly by Proposition 2, v ∈ NS(x̄; d). Hence we
obtain 〈w, v〉 ≥ ε by (6). So w /∈ NS(x; d)◦.

Thus we have shown T̂S(x; d)comp ⊆ (NS(x; d)◦)comp and the inclusion T̂S(x; d) ⊇
NS(x; d)◦ follows. We conclude T̂S(x; d) = NS(x; d)◦ and therefore the directional regu-
lar tangent cone is closed and convex as a polar cone.

The rest of proofs follow from the fact that the directional Clarke normal cone is closed
and convex as well. 2

In this paper, we rely on the following stability property of a set-valued map in devel-
oping our results.

Definition 6. [13, Definition 1] Let ϕ : Rn → Rm, C ⊆ Rm and ϕ(x̄) ∈ C. We say that
the set-valued map M(x) := ϕ(x) − C is metrically subregular (MS) at (x̄, 0) in direction
d ∈ Rn, if there exist κ, ρ, δ > 0 such that

dist(x,M−1(0)) ≤ κdist(ϕ(x), C), ∀x ∈ x̄+ Vρ,δ(d), (7)

where

Vρ,δ(d) :=
{
w ∈ ρB

∣∣∥∥‖d‖w − ‖w‖d∥∥ ≤ δ‖w‖‖d‖}
7



=

{
ρB if d = 0

{0}∪{w ∈ ρB\{0}|‖ w
‖w‖ −

d
‖d‖‖ ≤ δ} if d 6= 0

is a directional neighborhood of the direction d. In the case where d = 0, we simple say that
M is metrically subregular at (x̄, 0) or metric subregularity constraint qualification (MSCQ)
holds at x̄.

The infimum of κ over all such combinations of κ, ρ and δ fulfilling (7) is called the
modulus of the respective property.

It is well-known that the metric subregularity of a set-valued map M at (x̄, 0) is equiva-
lent to the property of calmness/pseudo upper-Lipschitz continuity of the inverse map M−1

at (0, x̄); see [31, 33] for definition and [9] for discussions about the equivalence.

Proposition 4. [16, Theorem 1] Let ϕ : Rn → Rm be continuously differentiable, C ⊆ Rm
be closed and ϕ(x̄) ∈ C. The set-valued map M(x) := ϕ(x)− C is metrically subregular at
(x̄, 0) in direction d satisfying ∇ϕ(x̄)d ∈ TC(ϕ(x̄)) if the first order sufficient condition for
metric subregularity (FOSCMS) for direction d holds:

∇ϕ(x̄)Tλ = 0, λ ∈ NC(ϕ(x̄);∇ϕ(x̄)d) =⇒ λ = 0.

Recently, weaker sufficient conditions than FOSCMS such as the directional quasi/pseudo-
normality was introduced in [1]. More sufficient conditions based on directional normal
cones or/and for specific systems can be found e.g. in [16, 19, 35].

Classical sufficient conditions for metric subregularity include the case where ϕ is affine
and C is the union of finitely many polyhedral sets by Robinson’s polyhedral multifunction
theory [29] and the no nonzero abnormal multiplier constraint qualification (NNAMCQ)
holds:

∇ϕ(x̄)Tλ = 0, λ ∈ NC(ϕ(x̄)) =⇒ λ = 0,

by Mordukhovich criteria for metric regularity (see e.g., [31, Theorem 9.40]). Note that
when C is convex, by [5, Corollary 2.98], NNAMCQ is equivalent to Robinson’s constraint
qualification [5, (2.178)]

0 ∈ int{ϕ(x̄) +∇ϕ(x̄)Rn − C},
which in turn is equivalent to

∇ϕ(x̄)Rn + TC(ϕ(x̄)) = Rm

in finite dimensions.
In the following result, we show that the directional metric subregularity of the mapping

M(x) := ϕ(x)−C is carried over to its linearized mapping, the so-called graphical derivative.
Recall that for a set-valued mapping M : Rn ⇒ Rm the graphical derivative to M at a point
(x̄, ȳ) ∈ gphM is the mapping DM(x̄, ȳ) : Rn ⇒ Rm satisfying

gphDM(x̄, ȳ) = TgphM (x̄, ȳ),

resulting in D(ϕ(·)− C)(x̄, ȳ)(w) = ∇ϕ(x̄)w − TC(ϕ(x̄)− ȳ).

Lemma 1. Let ϕ : Rn → Rm be continuously differentiable, C ⊆ Rm be closed and ϕ(x̄) ∈
C. If M(x) := ϕ(x)− C is metrically subregular at (x̄, 0) in direction

d ∈ ∇ϕ(x̄)−1(TC(ϕ(x̄)) := {d|∇ϕ(x̄)d ∈ TC(ϕ(x̄))}

with modulus κ̄, then the graphical derivative DM(x̄, 0)(w) = ∇ϕ(x̄)w − TC(ϕ(x̄)) is met-
rically subregular at (d, 0) with modulus no larger than κ̄.
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Proof. Choose κ, ρ, δ > 0 such that (7) holds and consider w ∈ Vρ,δ(d) together with
v ∈ TC(ϕ(x̄)) satisfying dist

(
∇ϕ(x̄)w, TC(ϕ(x̄))

)
= ‖∇ϕ(x̄)w − v‖. Then tw ∈ Vρ,δ(d) for

all t ∈ [0, 1] and, by picking a sequence tk ↓ 0 with dist(ϕ(x̄) + tkv, C) = o(tk), we have

dist(x̄+ tkw,M
−1(0)) ≤ κdist(ϕ(x̄+ tkw), C)

= κ
(
dist(ϕ(x̄) + tk∇ϕ(x̄)w + o(tk), C)

)
= κ

(
dist(ϕ(x̄) + tk∇ϕ(x̄)w,C) + o(tk)

)
≤ κ

(
tk‖∇ϕ(x̄)w − v‖+ o(tk)

)
,

where the second equality follows from the Lipschitz property of the distance function.
Thus we can find a sequence xk satisfying ϕ(xk) ∈ C and

‖xk − (x̄+ tkw)‖ ≤ κ
(
tk‖∇ϕ(x̄)w − v‖+ o(tk)

)
. (8)

It follows that (xk − x̄)/tk is bounded and, by possibly passing to a subsequence, we may
assume that (xk − x̄)/tk converges to some w′. Dividing (8) by tk and passing to the limit
we obtain ‖w − w′‖ ≤ κ‖∇ϕ(x̄)w − v‖. Further,

dist(ϕ(x̄) + tk∇ϕ(x̄)w′, C) ≤ ‖ϕ(x̄) + tk∇ϕ(x̄)w′ − ϕ(xk)‖ = o(tk)

showing ∇ϕ(x̄)w′ ∈ TC(ϕ(x̄)) and thus w′ ∈ DM(x̄, 0)−1(0). Since the directional neigh-
borhood Vρ,δ(d) is also a neighborhood of d in the classical sense, we can find some ρ′ > 0
such that d+ Vρ′,δ(0) = d+ ρ′B ⊆ Vρ,δ(d). Thus we have shown that for all w ∈ d+ Vρ′,δ(0)
there holds

dist(w,DM(x̄, 0)−1(0)) ≤ ‖w − w′‖ ≤ κ‖∇ϕ(x̄)w − v‖ = κdist
(
∇ϕ(x̄)w, TC(ϕ(x̄))

)
showing metric subregularity of DM(x̄, 0) at (d, 0) 2

2.1 Uniform MSCQ for the second-order linearized mapping

From now on we denote by F the feasible region of problem (P), i.e., F := {x | g(x) ∈ Λ} =
M−1(0), where M(x) := g(x)− Λ is the feasible mapping. If the feasible mapping M(x) is
metrically subregular at (x̄, 0), then

TF (x̄) = DM(x̄, 0)−1(0) = {d | ∇g(x̄)d ∈ TΛ(g(x̄))},

see, e.g., [22, Proposition 1] or [18, Corollary 4.2], where DM(x̄, 0)(d) = ∇g(x̄)d−TΛ(g(x̄))
denotes the graphical derivative of M at (x̄, 0). Moreover, by [15, Lemmas 3 and 4] (a
variant of [12, Proposition 2.1]), there is some κ > 0 such that

dist(d, TF (x̄)) ≤ κdist(0, DM(x̄, 0)(d)) = κdist(∇g(x̄)d, TΛ(g(x̄))) ∀d ∈ Rn,

which is some kind of uniform metric subregularity of the graphical derivative. We will now
show that an analogous relation holds for the second-order tangent set T 2

F (x̄; d) and the
second-order linearized mapping

D2M(x̄, 0; d)(w) := ∇g(x̄)w +∇2g(x̄)(d, d)− T 2
Λ

(
g(x̄);∇g(x̄)d

)
. (9)

To prove the result, we need the following lemma.
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Lemma 2. For any x ∈ Rn and a set-valued mapping C : Rm ⇒ Rn, one has

lim inf
u′→u

dist(x,C(u′)) = dist(x, lim sup
u′→u

C(u′)).

Proof. Let {un} be a sequence satisfying

lim inf
n→∞

dist(x,C(un)) = lim inf
u′→u

dist(x,C(u′)).

Then according to [31, Exercise 4.8] we have

lim inf
n→∞

dist(x,C(un)) = dist(x, lim sup
n→∞

C(un)) ≥ dist(x, lim sup
u′→u

C(u′)).

Hence
lim inf
u′→u

dist(x,C(u′)) ≥ dist(x, lim sup
u′→u

C(u′)).

Conversely, take r satisfying r > dist(x, lim supu′→uC(u′)). Then there exists x′ ∈
lim supu′→uC(u′) such that ‖x − x′‖ < r. Since x′ ∈ lim supu′→uC(u′), then there exists
un → u and x′n ∈ C(un) and x′n → x′. So ‖x − x′n‖ < r as n large enough. Hence
dist(x,C(un)) ≤ ‖x− x′n‖ < r. So

r ≥ lim inf
n→∞

dist(x,C(un)) ≥ lim inf
u′→u

dist(x,C(u′)).

Due to the arbitrariness of r > dist(x, lim supu′→uC(u′)), we obtain

dist(x, lim sup
u′→u

C(u′)) ≥ lim inf
u′→u

dist(x,C(u′)).

2

Proposition 5. Let x̄ ∈ F and suppose that the set-valued map M(x) := g(x) − Λ is
metrically subregular at (x̄, 0) in direction d with modulus κ. Then

d ∈ TF (x̄) ⇔ ∇g(x̄)d ∈ TΛ(g(x̄)) (10)

and for any d satisfying g(x̄)d ∈ TΛ(g(x̄)), one has

T 2
F (x̄; d) = {w | ∇g(x̄)w +∇2g(x̄)(d, d) ∈ T 2

Λ

(
g(x̄);∇g(x̄)d

)
} = D2M(x̄, 0; d)−1(0) (11)

with D2M(x̄, 0; d) given by (9). Moreover,

dist(w, T 2
F (x; d)) ≤ κdist

(
∇g(x̄)w +∇g2(x̄)(d, d), T 2

Λ

(
g(x̄);∇g(x̄)d

))
(12)

= κdist
(
0, D2M(x̄, 0; d)(w)

)
∀w ∈ Rn.

Proof. The equivalence (10) follows from [18, Proposition 4.1]. Next we will prove the
inequality (12). Let w ∈ Rn be fixed and consider κ′ > κ. It follows that for t > 0
sufficiently small

dist(x̄+ td+
1

2
t2w,F)

≤ κ′dist(g(x̄+ td+
1

2
t2w),Λ)

10



= κ′dist
(
g(x̄) + t∇g(x̄)d+

1

2
t2
(
∇g(x̄)w +∇2g(x̄)(d, d)

)
+ o(t2),Λ

)
= κ′dist

(
g(x̄) + t∇g(x̄)d+

1

2
t2
(
∇g(x̄)w +∇2g(x̄)(d, d)

)
,Λ
)

+ o(t2),

where the first and second equalities follow from Taylor expansion and the Lipschitz con-
tinuity of the distance function. Dividing both sides of the above inequality by 1

2 t
2 we

obtain

dist

(
w,
F − x̄− td

1
2 t

2

)
≤ κ′dist

(
∇g(x̄)w +∇2g(x̄)(d, d),

Λ− g(x̄)− t∇g(x̄)d
1
2 t

2

)
+
o(t2)

1
2 t

2
.

Taking the inf-limits on the both sides of the above inequality and using Lemma 2 yields

dist(w, T 2
F (x̄; d))

= dist

(
w, lim sup

t↓0

F − x̄− td
1
2 t

2

)
= lim inf

t↓0
dist

(
w,
F − x̄− td

1
2 t

2

)

≤ κ′ lim inf
t↓0

dist

(
∇g(x̄)w +∇2g(x̄)(d, d),

Λ− g(x̄)− t∇g(x̄)d
1
2 t

2

)

= κ′ dist

(
∇g(x̄)w +∇2g(x̄)(d, d), lim sup

t↓0

Λ− g(x̄)− t∇g(x̄)d
1
2 t

2

)

= κ′ dist
(
∇g(x̄)w +∇2g(x̄)(d, d), T 2

Λ(g(x̄);∇g(x̄)d)
)
.

Since κ′ > κ can be chosen arbitrarily close to κ, the bound (12) follows. From (12) we
may conclude

T 2
F (x̄; d) ⊇ {w | ∇g(x̄)w +∇2g(x̄)(d, d) ∈ T 2

Λ

(
g(x̄);∇g(x̄)d

)
}.

There remains to show the reverse inclusion. Consider w ∈ T 2
F (x̄; d) together with sequences

tk ↓ 0 and wk → w with x̄+ tkd+ 1
2 t

2
kwk ∈ F . Then

g(x̄+ tkd+
1

2
t2kwk) = g(x̄) + tk∇g(x̄)d+

1

2
t2k
(
∇g(x̄)w +∇2g(x̄)(d, d)

)
+ o(t2k) ∈ Λ

implying ∇g(x̄)w + ∇2g(x̄)(d, d) ∈ T 2
Λ

(
g(x̄);∇g(x̄)d

)
. This shows the inclusion ⊆ in (11)

and the proof of the proposition is complete. 2

The chain rule (11) was derived in [31, Proposition 13.13] under the assumption of metric
regularity of M and in [24] under (non-directional) metric subregularity, see also [26]. For
a related result under directional metric subregularity we refer to [28, Proposition 4.1].

It is known that the second-order tangent set may be empty even if the set considered
is a convex set [5]. As a consequence of Proposition 5, we can show that T 2

F and T 2
Λ are

either empty or nonempty at the same time under the metric subregularity.

Corollary 1. Suppose that the set-valued map M(x) := g(x) − Λ is metrically subregular
at (x̄, 0) in direction d with x̄ ∈ F and ∇g(x̄)d ∈ TΛ(g(x̄)). Then T 2

F (x; d) 6= ∅ if and only
if T 2

Λ

(
g(x̄);∇g(x̄)d

)
6= ∅.

Proof. Suppose first that T 2
Λ

(
g(x̄);∇g(x̄)d

)
6= ∅. Then T 2

F (x; d) 6= ∅ by virtue of (12),
because otherwise the left-hand side of (12) must be equal to infinity while the right-hand
side is finite which is impossible. The reverse statement follows immediately from (11).
2
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2.2 On estimates of the normal cone of the tangent sets

In this subsection we give some estimates on the limiting normal cone to the first and the
second-order tangent set which will be used in the necessary optimality condition we are
developing.

Lemma 3. Let S be a closed subset in Rn, x ∈ S, d ∈ TS(x) and w ∈ T 2
S(x, d). Then

NTS(x)(d) ⊆ NS(x; d), (13)

NT 2
S(x;d)(w) ⊆ NS(x; d). (14)

Proof. We only prove (14) since (13) can be proved similarly. Take v ∈ NT 2
S(x,d)(w). Note

that T 2
S(x; d) = lim sup

t↓0

S−x−td
1
2
t2

. It follows from [31, Exercise 6.18] that there exists tk ↓ 0,

wk ∈ Tk := S−x−tkd
1
2
t2k

and vk ∈ N̂Tk(wk) with vk → v and wk → w. Since Tk = {w|x +

tkd + 1
2 t

2
kw ∈ S}, by the change of coordinates formula in [31, Exercise 6.7] we have vk ∈

N̂Tk(wk) = N̂S

(
x+ tkd+ 1

2 t
2
kwk

)
= N̂S

(
x+ tk(d+ 1

2 tkwk)
)
. Hence v ∈ NS(x; d). 2

The inclusion (13) can be strict. For example, take S := {0, 1, 1
2 ,

1
n , . . . }. It is easy

to see that TS(0) = R+ and NTS(0)(0) = R−. Take d = 1 ∈ TS(0). Then NS(0; d) ⊇
lim supn→∞ N̂S( 1

n) = R, since 1
n is an isolated point in S. So NS(0; d) = R. Hence {0} =

NTS(x)(d)  NS(x; d) = R at x = 0.
By (5), the inclusion (13) holds as an equality whenever S is convex. However (14) can

fail to be an equality even if S is polyhedral; see e.g. Example 1.

Example 1. Let S = R2
+ and x = (0, 0). Then TS(x) = S. Take d = (1, 0) ∈ TS(x). Then

T 2
S(x; d) = TTS(x)(d) = TS(d) = R × R+. Take w = (0, 1) ∈ T 2

S(x; d). Then NT 2
S(x;d)(w) =

{(0, 0)} and NTS(x)(d) = NS(d) = {0} × R−. So NT 2
S(x;d)(w)  NTS(x)(d).

3 Primal form of second-order necessary optimality condi-
tions

In this section we derive the primal form of second-order necessary optimality conditions for
the general problem (P) under directional metric subregularity. Recall the following basic
second-order necessary condition.

Theorem 1 (cf. [27, Corollary 1.3]). Let x̄ be a locally optimal solution of (P). Then for
all d ∈ TF (x̄) with ∇f(x̄)d = 0 one has

∇f(x̄)w +∇2f(x̄)(d, d) ≥ 0, ∀w ∈ T 2
F (x̄; d).

We shall now apply this theorem under the assumption of directional metric subregu-
larity. Define the critical cone at x̄ as:

C(x̄) :=
{
d | ∇g(x̄)d ∈ TΛ(g(x̄)),∇f(x̄)d ≤ 0

}
.

Lemma 4. Let x̄ be a locally optimal solution of (P). Suppose that the feasible set mapping
g(x)− Λ is metrically subregular at (x̄, 0) in direction d ∈ C(x̄). Then ∇f(x̄)d = 0.
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Proof. Since x̄ is a locally optimal solution of (P), we have

∇f(x̄)d ≥ 0 ∀d ∈ TF (x̄).

By Proposition 5 we have d ∈ TF (x̄) ⇐⇒ ∇g(x̄)d ∈ TΛ(g(x̄)) and hence ∇f(x̄)d ≥ 0. By
definition of the critical cone, it follows that ∇f(x̄)d = 0. 2

The following second-order necessary optimality condition in primal form follows now
immediately from Lemma 4, Theorem 1 and Proposition 5. It improves [5, Lemma 3.44]
in that Λ does not need to be convex and the result holds under the directional metric
subregularity instead of Robinson’s constraint qualification.

Corollary 2. Let x̄ be a locally optimal solution of (P). Suppose that the feasible set mapping
g(x) − Λ is metrically subregular at (x̄, 0) in direction d ∈ C(x̄). Then for all w satisfying
∇g(x̄)w +∇2g(x̄)(d, d) ∈ T 2

Λ(g(x̄);∇g(x̄)d) one has

∇f(x̄)w +∇2f(x̄)(d, d) ≥ 0.

4 Dual form of second-order optimality conditions

In this section we will derive the dual form of second-order necessary optimality conditions
for the general problem (P). By Corollary 2 we know, that at a local solution x̄ of (P) for ev-
ery critical direction d satisfying a directional metric subregularity constraint qualification,
the optimal value of the program

min
w

∇f(x̄)w +∇2f(x̄)(d, d)

s.t. ∇g(x̄)w +∇2g(x̄)(d, d) ∈ T 2
Λ(g(x̄);∇g(x̄)d)

is nonnegative. The second-order necessary conditions for (P) presented below are necessary
conditions and charcterizations, respectively, of this fact.

Recall that for a set S, its support function is defined as σS(λ) := supu∈S λ
Tu. Suppose

that the supremum σS(λ) is achieved at ū ∈ S. Since ū ∈ S is an optimal solution for
supu∈S λ

Tu if and only if λ ∈ NS(ū) as S is convex, the support function in convex case
can be represented as

σS(λ) = λTu if λ ∈ NS(u) for some u ∈ S. (15)

Inspired by the above expression for the support function when the set is convex and the
supremum is achieved, we define the following function which will play an important role
for our analysis. It turns out that this function is in general smaller and coincides with the
support function when the set is convex.

Definition 7. Given a nonempty closed set S ⊆ Rn we define the lower generalized support
function to S as the mapping σ̂S : Rn → R ∪ {∞} by

σ̂S(λ) := lim inf
λ̃→λ

inf
u
{λ̃Tu | λ̃ ∈ NS(u)}.

Further, for every subset A ⊆ Rn we define the lower generalized support function to S
with respect to A as the mapping σ̂S,A : Rn → R ∪ {∞} by

σ̂S,A(λ) := lim inf
λ̃→λ

inf
u
{λ̃Tu | u ∈ N−1

S (λ̃) ∩A}.
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By convention, σ̂S(λ) := +∞ if S = ∅. By the definition, we have σ̂S ≤ σ̂S,A for every
subset A ⊆ Rn and σ̂S,B ≤ σ̂S,A whenever A ⊆ B ⊆ Rn.

We can show that the limiting normal cone in the above definition of σ̂S can be replaced
by the regular normal cone.

Lemma 5. Let S ⊆ Rn be closed. Then

σ̂S(λ) = lim inf
λ̃→λ

inf
u
{λ̃Tu | λ̃ ∈ N̂S(u)}, ∀λ ∈ Rn.

Proof. It follows easily that by the definition of the limiting normal cone that we have
N̂S(u) ⊆ NS(u) and for every u ∈ S, every λ̃ ∈ NS(u) and every ε > 0 we can find uε and
λ̃ε ∈ N̂S(uε) such that

‖u− uε‖ ≤ ε, ‖λ̃− λ̃ε‖ ≤ ε, |λ̃Tu− λ̃Tε uε| ≤ ε.

2

In the following proposition we show that the lower generalized support function is
always less than or equal to the support function and that both functions coincide when
the underlying set is convex.

Proposition 6. 1. For every nonempty closed set S ⊆ Rn one has

σ̂S(λ) ≤ σS(λ), ∀λ.

2. For every nonempty closed convex set S ⊆ Rn one has

σ̂S(λ) = σS(λ), ∀λ.

Proof. 1. If σS(λ) =∞, then there is nothing to prove. Now assume that σS(λ) <∞.

Then for any ε > 0, there exists an ε-optimal solution, say uε satisfying

−λTuε + δS(uε) < −σS(λ) + ε,

where δS(·) denotes the indicator function of set S. By Ekeland’s variational principle,
for any µ > 0 satisfying µ(‖uε‖ + 1) ≤ ε, there exists ũε ∈ uε + ε/µB with −λT ũε +
δS(ũε) ≤ −λTuε+δS(uε) and arg minu{−λTu+δS(u)+µ‖u− ũε‖} = {ũε}. According
to the first-order optimality conditions, we have

0 ∈ −λ+ ∂
(
δS(u) + µ‖u− ũε‖

)
|u=ũε ⊆ −λ+ µB +NS(ũε),

where the second inclusion follows from the subdifferential sum rule [31, Corollary
10.9]. Hence there exists λ′ε such that ‖λ′ε − λ‖ ≤ µ ≤ ε and λ′ε ∈ NS(ũε). Note that
λ′ε → λ as ε→ 0 and

‖λ′ε − λ‖‖ũε‖ ≤µ(‖uε‖+ ε/µ) = µ‖uε‖+ ε ≤ 2ε. (16)

Thus

σ̂S(λ) = lim inf
λ̃→λ

inf
u
{λ̃Tu | λ̃ ∈ NS(u)} ≤ lim inf

ε→0+
inf
u
{(λ′ε)Tu | λ′ε ∈ NS(u)}
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≤ lim inf
ε→0+

〈λ′ε, ũε〉 = lim inf
ε→0+

〈λ, ũε〉+ 〈λ′ε − λ, ũε〉

≤ lim inf
ε→0+

σS(λ) + ‖λ′ε − λ‖‖ũε‖

≤ lim inf
ε→0+

σS(λ) + 2ε

= σS(λ),

where we have used the fact (16).

2. By virtue of 1, we only need to prove the inequality σ̂S(λ) ≥ σS(λ). Consider an
arbitrary λ. If σ̂S(λ) =∞ there is nothing to show. Hence we can assume σ̂S(λ) <∞.
Then we can find a sequences λk converging to λ such that

σ̂S(λ) = lim inf
λ̃→λ

inf
u
{λ̃Tu | λ̃ ∈ NS(u)} = lim

k→∞
inf
u
{λTk u | λk ∈ NS(u)}.

By convexity of S we have by (15) that λTk u = σS(λk) whenever λk ∈ NS(u). It
follows by the above and the lower semi-continuity of the support function that

σ̂S(λ) = lim inf
λ̃→λ

inf
u
{λ̃Tu | λ̃ ∈ NS(u)} = lim inf

λk→λ
σS(λk) ≥ σS(λ).

2

Let the Lagrange function of problem (P) be

L(x, λ) := f(x) + g(x)Tλ.

Consider the following directional Mordukhovich (M-) multiplier set:

Λ(x̄; d) := {λ | ∇xL(x̄, λ) = 0, λ ∈ NΛ(g(x̄);∇g(x̄)d)}.

The following directional first-order necessary optimality condition holds at a local mini-
mizer under the directional metric subregularity.

Proposition 7. Let x̄ be a local optimal solution of problem (P). Suppose that the set-valued
map M(x) := g(x)−Λ is metrically subregular at (x̄, 0) in direction d with d ∈ C(x̄). Then
the directional M-multiplier set Λ(x̄; d) is nonempty.

Proof. By [13, Theorem 7] there is some λ satisfying

0 ∈ ∇f(x̄) +D∗M((x̄, 0); (d, 0))(λ)

where the directional limiting coderivative D∗M((x̄, 0); (d, 0)) is defined by

u∗ ∈ D∗M((x̄, 0); (d, 0))(λ)⇐⇒ (u∗,−λ) ∈ NgphM ((x̄, 0); (d, 0)).

Since gphM = {(x, y)| g(x)− y ∈ Λ}, we obtain from [2, Corollary 3.2]

NgphM ((x̄, 0); (d, 0)) ⊆ {(∇g(x̄)Tµ,−µ) | µ ∈ NΛ

(
g(x̄);∇g(x̄)d

)
}

yielding the assertion of the proposition. 2

In the following theorem we give a second-order necessary optimality condition for prob-
lem (P) in terms of directional M-multipliers under the directional metric subregularity
condition.
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Theorem 2. Let x̄ be a local optimal solution of problem (P). Suppose that the set-valued
map M(x) := g(x) − Λ is metrically subregular at (x̄, 0) in direction d with d ∈ C(x̄) and
T 2

Λ

(
g(x̄);∇g(x̄)d

)
6= ∅. Then there exists a directional M-multiplier λ ∈ Λ(x̄; d) such that

for every set A satisfying A ⊇ ∇g(x̄)T 2
F (x̄; d) +∇2g(x̄)(d, d) one has

∇2
xxL(x̄, λ)(d, d)− σ̂T 2

Λ(g(x̄);∇g(x̄)d),A(λ) ≥ 0. (17)

In particular, there exists a multiplier λ ∈ Λ(x̄; d) such that

∇2
xxL(x̄, λ)(d, d)− σ̂T 2

Λ(g(x̄);∇g(x̄)d)(λ) ≥ 0. (18)

Proof. Note that by Corollary 1, under the assumptions of the theorem we have T 2
F (x̄; d) 6=

∅. Consider for every ε > 0 the optimization problem

min
w
∇f(x̄)w +

ε

2
‖w‖2 subject to w ∈ T 2

F (x̄; d). (19)

Since ε > 0, problem (19) has a globally optimal solution wε because the objective is coercive
and the set T 2

F (x̄; d) is closed and nonempty. We claim that limε↓0 ε‖wε‖ = 0. Indeed, by
Theorem 1 together with the optimality of wε we obtain

−∇2f(x̄)(d, d) +
ε

2
‖wε‖2 ≤ ∇f(x̄)wε +

ε

2
‖wε‖2 ≤ ∇f(x̄)w̄ +

ε

2
‖w̄‖2

for arbitrarily chosen w̄ ∈ T 2
F (x̄; d), yielding

ε‖wε‖ ≤
√

2ε
(
∇f(x̄)w̄ +∇2f(x̄)(d, d) +

ε

2
‖w̄‖2

) 1
2
.

Taking the limit on the both sides of the above inequality yields ε‖wε‖ → 0 as ε ↓ 0. By
[31, Theorem 6.12], the basic first-order optimality condition for problem (19) at wε

−∇f(x̄)− εwε ∈ NT 2
F (x̄;d)(wε) (20)

is fulfilled. By Proposition 5, T 2
F (x̄; d) = {w |P (w) ∈ D}, where P (w) := ∇g(x̄)w +

∇2g(x̄)(d, d), D := T 2
Λ

(
g(x̄);∇g(x̄)d

)
, and MSCQ holds at wε ∈ T 2

F (x̄; d) for the system
P (w) ∈ D with modulus κ which is the modulus of metric subregularity of M at (x̄, 0) in
direction d. It follows by [19, Theorem 3] that

NT 2
F (x̄;d)(wε) ⊆ {z|∃λε ∈ κ‖z‖B ∩ND(P (wε)) with z = ∇P (wε)

Tλε}.

By virtue of (20) and the above inclusion, there is some multiplier

λε ∈ κ‖∇f(x̄) + εwε‖B ∩NT 2
Λ(g(x̄);∇g(x̄)d)

(
∇g(x̄)wε +∇2g(x̄)(d, d)

)
(21)

such that
∇f(x̄) + εwε +∇g(x̄)Tλε = 0. (22)

Since εwε → 0 as shown above, λε is bounded as ε sufficiently small. Hence we can take a
sequence of positive numbers εk converging to 0 such that the corresponding sequence of
multipliers λεk converges to some λ. Taking limits as εk → 0 in (22) we obtain

∇f(x̄) +∇g(x̄)Tλ = 0.
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By (21) and Lemma 3, we have

λε ∈ NT 2
Λ(g(x̄);∇g(x̄)d)

(
∇g(x̄)wε +∇2g(x̄)(d, d)

)
⊆ NΛ(g(x̄);∇g(x̄)d).

Taking limits as εk → 0, we obtain λ ∈ NΛ(g(x̄);∇g(x̄)d) and consequently λ ∈ Λ(x̄; d).
Now consider any set A ⊇ ∇g(x̄)T 2

F (x̄; d) + ∇2g(x̄)(d, d). Setting uk := ∇g(x̄)wεk +
∇2g(x̄)(d, d) we have λεk ∈ NT 2

Λ(g(x̄);∇g(x̄)d)(uk) and uk ∈ A. Taking into account (22) and

∇f(x̄)wεk +∇2f(x̄)(d, d) ≥ 0 by virtue of Theorem 1 we obtain

∇2
xxL(x̄, λ)(d, d) = lim

k→∞

{
∇2
xxL(x̄, λεk)(d, d) +

(
∇f(x̄) + εkwεk +∇g(x̄)Tλεk)Twεk

}
= lim

k→∞

(
∇f(x̄)wεk +∇2f(x̄)(d, d) + λTεkuk + εk‖wεk‖

2
)

≥ lim sup
k→∞

λTεkuk ≥ lim sup
k→∞

inf{λTεku | u ∈ N
−1
T 2

Λ(g(x̄);∇g(x̄)d)
(λεk) ∩A}

≥ lim inf
λ̃→λ

inf{λ̃Tu | u ∈ N−1
T 2

Λ(g(x̄);∇g(x̄)d)
(λ̃) ∩A}

= σ̂T 2
Λ(g(x̄);∇g(x̄)d),A(λ).

In particular if we take A = Rm, then σ̂T 2
Λ(g(x̄);∇g(x̄)d),A = σ̂T 2

Λ(g(x̄);∇g(x̄)d) and hence (18)
holds. 2

Among all possible choices for A, the second-order necessary condition (17) is strongest
for A = Aopt := ∇g(x̄)T 2

F (x̄; d) + ∇2g(x̄)(d, d) and weakest for A = Rm. There is also
an intermediate choice of Amid := ∇g(x̄)Rn + ∇2g(x̄)(d, d). The optimal choice Aopt in-
volves the second-order tangent cone T 2

F (x̄; d) which is in general hard to compute and,
moreover, if the second-order cone T 2

F (x̄; d) is known we may use the primal optimality
condition Theorem 1 instead. On the other hand, choosing A = Rm results in the weakest
optimality condition but more trackable lower generalized support function σ̂T 2

Λ(g(x̄);∇g(x̄)d).

The intermediate choice Amid := ∇g(x̄)Rn +∇2g(x̄)(d, d) may result in stronger optimality
conditions and slightly harder to calculate σ̂T 2

Λ(g(x̄);∇g(x̄)d),Amid
than σ̂T 2

Λ(g(x̄);∇g(x̄)d).
Note that in Theorem 2, even the first order optimality condition is stronger than the

classical M-stationary condition since the directional limiting normal cone is in general
smaller than the nondirectional limiting normal cone. However in the case where Λ is
convex, the directional M-stationary condition in a critical direction coincides with the
classical stationary condition and the directional M-multiplier set Λ(x̄; d) coincides with
the classical multiplier set

Λ(x̄) := {λ ∈ NΛ(g(x̄)) | ∇xL(x̄, λ) = 0}

for every critical direction d ∈ C(x̄). Indeed, the inclusion Λ(x̄; d) ⊆ Λ(x̄) obviously holds.
Now pick any λ ∈ Λ(x̄). Since ∇g(x̄)d ∈ TΛ(g(x̄)) and λ ∈ NΛ(g(x̄)), we have

0 ≥ λT∇g(x̄)d = −∇f(x̄)d ≥ 0

implying λ ∈ {∇g(x̄)d}⊥. Owing to (5) we conclude λ ∈ NΛ(g(x̄);∇g(x̄)d) and λ ∈
Λ(x̄; d) follows. We now specialize Theorem 2 under the additional assumption that Λ is
convex and T 2

Λ(g(x̄);∇g(x̄)d) is convex. In this case, we obtain the same second order
necessary optimality as the classical result of [5, Theorem 3.45] under the directional metric
subregularity which is weaker than the Robinson’s constraint qualification.
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Corollary 3. Let x̄ be a local optimal solution of problem (P) where Λ is convex. Suppose
that the set-valued map M(x) := g(x) − Λ is metrically subregular at (x̄, 0) in direction d
with d ∈ C(x̄). If the second-order tangent cone T 2

Λ(g(x̄);∇g(x̄)d) is convex, then there
exists a multiplier λ ∈ Λ(x̄) such that

∇2
xxL(x̄, λ)(d, d)− σT 2

Λ(g(x̄);∇g(x̄)d)(λ) ≥ 0.

Proof. If T 2
Λ

(
g(x̄);∇g(x̄)d

)
= ∅, then σT 2

Λ(g(x̄);∇g(x̄)d)(λ) = −∞ by convention and so there

is nothing to prove. The case of T 2
Λ

(
g(x̄);∇g(x̄)d

)
6= ∅ follows from (18) and Proposition

6(2). 2

Consider the following directional Clarke (C-) multiplier set:

Λc(x̄; d) := {λ | ∇xL(x̄, λ) = 0, λ ∈ N c
Λ(g(x̄);∇g(x̄)d)}.

It is clear that the set of directional C-multipliers is closed convex and in general larger
than the set of directional M-multipliers.

In what follows, we derive a second-order necessary optimality condition for problem
(P) in terms of directional C-multipliers under the constraint qualification condition

∇g(x̄)Tλ = 0, λ ∈ N c
Λ(g(x̄);∇g(x̄)d) =⇒ λ = 0 (23)

which we will call directional Robinson’s constraint qualification (DirRCQ) in direction d.
Condition (23) is stronger than FOSCMS in direction d, under which by virtue of Propo-
sition 4 the constraint mapping M(x) = g(x) − Λ is metrically subregular in direction
d.

Lemma 6. The following three statements are equivalent:

(i) DirRCQ in direction d holds.

(ii)
∇g(x̄)Rn + T̂Λ(g(x̄);∇g(x̄)d) = Rm. (24)

(iii) The set Λc(x̄; d) is compact, whenever it is nonempty.

Proof. Condition (23) can be equivalently written as

ker∇g(x̄)T ∩N c
Λ(g(x̄);∇g(x̄)d) = {0}. (25)

By taking polars on both sides of the equation and using the rule for polar cones [31,
Corollary 11.25] and the fact that

(
N c

Λ(g(x̄);∇g(x̄)d)
)◦

= T̂Λ(g(x̄);∇g(x̄)d), we can see that

condition (23) is equivalent to saying cl
(
∇g(x̄)Rn+T̂Λ(g(x̄);∇g(x̄)d)

)
= Rm. Obviously the

set ∇g(x̄)Rn + T̂Λ(g(x̄);∇g(x̄)d) is convex and thus ri (∇g(x̄)Rn + T̂Λ(g(x̄);∇g(x̄)d)) = Rm
by [30, Theorem 6.3]. It follows that condition (24) holds and thus the implication“(i)⇒(ii)”
is established. In order to show the reverse implication, just note that by taking polars on
both sides of (24) we obtain (25). Finally, the equivalence between (i) and (iii) follows from
[30, Theorem 8.4] together with the fact that the recession cone to Λc(x̄; d) is exactly the
set on the left hand side of (25). 2
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Proposition 8. Let x̄ be feasible for the problem (P). Suppose that d ∈ C(x̄) satisfies
T 2

Λ(g(x̄);∇g(x̄)d) 6= ∅ and DirRCQ. Then the following three statements are equivalent:

(i) The primal second-order necessary condition

∇f(x̄)w +∇2f(x̄)(d, d) ≥ 0, ∀w ∈ T 2
F (x̄; d)

of Theorem 1 holds.

(ii) For every u ∈ T 2
Λ(g(x̄);∇g(x̄)d), there exists λu ∈ Λc(x̄; d) such that

∇2
xxL(x̄, λu)(d, d)− λTuu ≥ 0.

(iii) For every nonempty convex subset C ⊆ T 2
Λ(g(x̄);∇g(x̄)d), there exists λ ∈ Λc(x̄; d)

such that
∇2
xxL(x̄, λ)(d, d)− σC(λ) ≥ 0.

Proof. Since condition (23) implies the metric subregularity in direction d, by Proposition
5 we have

w ∈ T 2
F (x̄; d)⇐⇒ ∇g(x̄)w +∇2g(x̄)(d, d) ∈ T 2

Λ(g(x̄);∇g(x̄)d). (26)

We first show the implication “(i)⇒(ii)”. Take u ∈ T 2
Λ(g(x̄);∇g(x̄)d). Then

u+ T̂Λ(g(x̄);∇g(x̄)d) ⊆ T 2
Λ(g(x̄);∇g(x̄)d)

by virtue of Proposition 1. Since ∇f(x̄)w + ∇2f(x̄)(d, d) ≥ 0 for all w ∈ T 2
F
(
x̄; d
)
, the

following conic linear program

min
w
∇f(x̄)w +∇2f(x̄)(d, d)

s.t. ∇g(x̄)w +∇2g(x̄)(d, d) ∈ u+ T̂Λ(g(x̄);∇g(x̄)d) (27)

has nonnegative optimal value. The dual program of the conic linear program (27) is

max
λ∈(T̂Λ(g(x̄);∇g(x̄)d))◦

∇2
xxL(x̄, λ)(d, d)− λTu

s.t. ∇f(x̄) +∇g(x̄)Tλ = 0.

Since by Proposition 3, (T̂Λ(g(x̄);∇g(x̄)d))◦ = N c
Λ(g(x̄);∇g(x̄)d), the above dual problem

can be equivalently written as

max
λ∈Λc(x̄;d)

{∇2
xxL(x̄, λ)(d, d)− λTu}.

By Lemma 6, condition (23) is equivalent to (24) and it is easy to see that the latter implies

0 ∈ int{∇g(x̄)Rn +∇2g(x̄)(d, d)− T̂Λ(g(x̄);∇g(x̄)d)},

cf. [5, (2.354)]. Consequently by [5, Theorem 2.187], there is no dual gap and the dual
program has an optimal solution λu such that

max
λ∈Λc(x̄;d)

{∇2
xxL(x̄, λ)(d, d)− λTu} = ∇2

xxL(x̄, λu)(d, d)− λTuu ≥ 0.
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This proves “(i)⇒(ii)”.
In order to show the reverse implication, take w ∈ T 2

F (x̄; d) together with u := ∇g(x̄)w+
∇2g(x̄)(d, d) ∈ T 2

Λ(g(x̄);∇g(x̄)w), where the existence of such w is guaranteed by virtue of
(26), and λu ∈ Λc(x̄; d) fulfilling ∇2

xxL(x̄, λu)(d, d)− λTuu ≥ 0. Then

∇f(x̄)w +∇2f(x̄)(d, d) = −λTu∇g(x̄)w +∇2f(x̄)(d, d) = ∇2
xxL(x̄, λu)(d, d)− λTuu ≥ 0

showing “(ii)⇒(i)”.
Since “(iii)⇒(ii)” always hold, there remains to show “(ii)⇒(iii)”. Consider a nonempty
convex subset C ⊆ T 2

Λ(g(x̄);∇g(x̄)d). Since σC = σclC , we may assume that C is closed.
For every u ∈ C the corresponding λu according to (ii) fulfills λu ∈ Λc(x̄; d) and hence
Λc(x̄; d) is nonempty. We conclude from Lemma 6 that Λc(x̄; d) is compact and therefore
by the minimax theorem in [30, Corollary 37.3.2] we have

inf
u∈C

sup
λ∈Λc(x̄;d)

∇2
xxL(x̄, λ)(d, d)− λTu = sup

λ∈Λc(x̄;d)
inf
u∈C
∇2
xxL(x̄, λ)(d, d)− λTu (28)

= sup
λ∈Λc(x̄;d)

∇2
xxL(x̄, λ)(d, d)− σC(λ). (29)

Due to (ii) the quantity on left hand side of (28) is nonnegative. On the other hand, the
supremum in (29) is attained at some λ, since Λc(x̄; d) is compact and −σC(·) is upper
semi-continuous. This completes the proof. 2

The following second-order necessary optimality condition follows immediately by The-
orem 1 and Proposition 8.

Corollary 4. Let x̄ be a local optimal solution of problem (P). Suppose that d ∈ C(x̄)
satisfies T 2

Λ(g(x̄);∇g(x̄)d) 6= ∅ and DirRCQ. Then, for every nonempty convex subset C ⊆
T 2

Λ(g(x̄);∇g(x̄)d) there is some λ ∈ Λc(x̄; d) such that

∇2
xxL(x̄, λ)(d, d)− σC(λ) ≥ 0.

A close look at the proof of Theorem 2 shows that the second-order necessary conditions
stated therein are implied by the primal second-order necessary condition of Theorem 1.
Hence, in view of Proposition 8, the second-order necessary condition of Corollary 4 are
stronger than the one of Theorem 2. However, the constraint qualification DirRCQ used in
Corollary 4 is also stronger than the one of Theorem 2.

We now want to compare Corollary 4 with the classical result of [5, Theorem 3.45]
under the additional assumption that Λ is convex. By (5) and using the convexity of
NΛ(g(x̄);∇g(x̄)d), for every d with ∇g(x̄)d ∈ TΛ(g(x̄)) there holds

∇g(x̄)Tλ = 0, λ ∈ N c
Λ(g(x̄);∇g(x̄)d) ⇔ ∇g(x̄)Tλ = 0, λ ∈ NΛ(g(x̄)), λ ∈ {∇g(x̄)d}⊥

⇔ ∇g(x̄)Tλ = 0, λ ∈ NΛ(g(x̄))

⇔ λ ∈ (∇g(x̄)Rn)⊥ ∩NΛ(g(x̄)).

Thus, by [5, Proposition 2.97] the directional Robinson’s constraint qualification is equiva-
lent to the non-directional one

∇g(x̄)Rn + TΛ(g(x̄)) = Rm.
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Since we also have Λc(x̄; d) = Λ(x̄) as pointed out above, in case of convex Λ the Corollary
4 is equivalent with [5, Theorem 3.45].

When the directional C-multiplier set Λc(x̄; d) = {λ0} is a singleton, it is easy to see
from Proposition 8(ii) and Theorem 1 that

∇2
xxL(x̄, λ0)(d, d)− σT 2

Λ(g(x̄);∇g(x̄)d)(λ0) ≥ 0 (30)

is a necessary second-order condition at a local minimizer x̄. Note that by definition
σT 2

Λ(g(x̄);∇g(x̄)d)(λ0) = −∞ whenever T 2
Λ(g(x̄);∇g(x̄)d) = ∅. In this case the above second-

order optimality condition holds automatically. We now try to enhance the condition (23)
so that the directional C-multiplier set Λc(x̄; d) is a singleton. As we will show below this
is achieved by the directional non-degeneracy condition

∇g(x̄)Tλ = 0, λ ∈ span NΛ(g(x̄);∇g(x̄)d) =⇒ λ = 0 (31)

defined for x̄ feasible for the problem (P) and direction d satisfying ∇g(x̄)d ∈ TΛ(g(x̄)),
where span S denotes the affine hull of the set S.

Recall that by [19, Definition 6] we call a subspace L the generalized linearity space of set
C and denote it by L(C) provided that it is the largest subspace L such that C+L ⊆ C. Note
that when C is a convex set, the generalized linearity space is reduced to the linearity space
([30, page 65]) and in the case when C is a closed convex cone, we have L(C) = (−C) ∩C.

Given d ∈ C(x̄), define the set of strong multipliers in direction d as

Λs(x̄; d) := {λ ∈ N̂TΛ(g(x̄))(∇g(x̄)d) | ∇xL(x̄, λ) = 0}.

By (13) we have Λs(x̄; d) ⊆ Λ(x̄; d).

Lemma 7. Let x̄ be a local optimal solution of problem (P) and suppose that the directional
non-degeneracy condition (31) holds for a critical direction d ∈ C(x̄). Then

Λs(x̄; d) = Λ(x̄; d) = Λc(x̄; d) = {λ0}

is a singleton.

Proof. Since d ∈ C(x̄) implies that ∇g(x̄)d ∈ TΛ(g(x̄)) and (31) implies that

∇g(x̄)Tλ = 0, λ ∈ NΛ(g(x̄);∇g(x̄)d) =⇒ λ = 0,

FOSCMS for direction d holds and by Proposition 4, the set-valued map g(x) − Λ is met-
rically subregular at (x̄, 0) in direction d. By definition there are reals κ, ρ, δ > 0 such
that

dist(x,F) ≤ κdist(g(x),Λ) ∀x ∈ x̄+ Vρ,δ(d). (32)

We now show by contradiction that d is a locally optimal solution of the program

min
d′
∇f(x̄)d′ subject to ∇g(x̄)d′ ∈ TΛ(g(x̄)). (33)

Assume on the contrary that there is a sequence dk → d satisfying ∇g(x̄)dk ∈ TΛ(g(x̄))
and ∇f(x̄)dk < 0 = ∇f(x̄)d. Then we can find some index k̄ and some t̄ > 0 such that
‖t̄dk̄‖ < ρ and∥∥‖d‖dk̄ − ‖dk̄‖d∥∥ ≤ ∥∥‖d‖dk̄ − ‖d‖d∥∥+

∣∣‖dk̄‖ − ‖d‖∣∣‖d‖ ≤ 2‖dk̄ − d‖‖d‖ ≤ δ‖dk̄‖‖d‖
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implying tdk̄ ∈ Vρ,δ(d) ∀t ∈ [0, t̄]. By (32), there is some sequence tn ↓ 0 such for all tn < t̄
we can find some xn ∈ F satisfying

‖xn − (x̄+ tndk̄)‖ ≤ κdist(g(x̄+ tndk̄),Λ) = κ
(
dist(g(x̄) + tn∇g(x̄)dk̄,Λ) + o(tn)

)
= o(tn),

where the last equality follows from the fact that ∇g(x̄)dk̄ ∈ TΛ(g(x̄)). It follows that
f(xn) = f(x̄) + tn∇f(x̄)dk̄ + o(tn) < f(x̄) for all tn sufficiently small contradicting the
optimality of x̄ for the problem (P). Hence d is a local minimizer for the problem (33) and
the basic optimality condition [31, Theorem 6.12]

−∇f(x̄) ∈ N̂
∇g(x̄)−1

(
TΛ(g(x̄))

)(d) (34)

is fulfilled.
By taking polars in both sides of the directional non-degeneracy condition (31), we have

∇g(x̄)Rn +
(
spanNΛ(g(x̄);∇g(x̄)d)

)◦
= Rm.

Since

span NΛ(g(x̄);∇g(x̄)d) = span cl coNΛ(g(x̄);∇g(x̄)d) = spanN c
Λ(g(x̄);∇g(x̄)d)

and the Clarke directional normal cone is a closed convex cone, we have(
span NΛ(g(x̄);∇g(x̄)d)

)◦
=

(
span N c

Λ(g(x̄);∇g(x̄)d)
)◦

=
(
N c

Λ(g(x̄);∇g(x̄)d)−N c
Λ(g(x̄);∇g(x̄)d)

)◦
= N c

Λ(g(x̄);∇g(x̄)d)◦ ∩
(
−N c

Λ(g(x̄);∇g(x̄)d)
)◦

= T̂Λ(g(x̄);∇g(x̄)d) ∩
(
− T̂Λ(g(x̄);∇g(x̄)d)

)
= L(T̂Λ(g(x̄);∇g(x̄)d)),

where the last equality follows from the fact that the directional regular tangent cone is a
closed convex cone. Hence we have shown that the directional non-degeneracy condition
(31) is equivalent to

∇g(x̄)Rn + L(T̂Λ(g(x̄);∇g(x̄)d)) = Rm.

Note that L(T̂Λ(g(x̄);∇g(x̄)d)) ⊆ L(TTΛ(g(x̄))(∇g(x̄)d)) because

TTΛ(g(x̄))(∇g(x̄)d) + T̂Λ(g(x̄);∇g(x̄)d) = TTΛ(g(x̄))(∇g(x̄)d)

by Proposition 1. It follows that

∇g(x̄)Rn + L(TTΛ(g(x̄))(∇g(x̄)d)) = Rm

and, since the mapping w ⇒ ∇g(x̄)w−TΛ(g(x̄)) is metrically subregular at (d, 0) by Lemma
1, we may invoke [17, Theorem 4] to obtain N̂

∇g(x̄)−1
(
TΛ(g(x̄))

)(d) = ∇g(x̄)T N̂TΛ(g(x̄))(∇g(x̄)d).

By (34), it follows that ∅ 6= Λs(x̄; d) ⊆ Λ(x̄; d) ⊆ Λc(x̄; d). Since

N c
Λ(g(x̄);∇g(x̄)d)−N c

Λ(g(x̄);∇g(x̄)d) = span N c
Λ(g(x̄);∇g(x̄)d) = span NΛ(g(x̄);∇g(x̄)d),

condition (31) ensures that Λc(x̄; d) is a singleton {λ0}. Hence the claimed result Λs(x̄; d) =
Λ(x̄; d) = Λc(x̄; d) = {λ0} follows. 2

22



Corollary 5. Let x̄ be a local optimal solution of problem (P). Suppose that for d ∈ C(x̄) the
directional non-degeneracy condition (31) holds. Then Λs(x̄; d) = Λ(x̄; d) = Λc(x̄; d) = {λ0}
and the second-order condition (30) is fulfilled.

The following result extends the second-order necessary optimality condition for convex
set-constrained problems as in [5, Proposition 3.46] to allow the set Λ to be non-convex. Note
that in [5, Proposition 3.46], both Robinson’s constraint qualification and the uniqueness
of the multipliers are required while we derive our result under a nondegeneracy condition
which is stronger than Robinson’s CQ but guarantees the uniqueness of the multipliers.

Corollary 6. Let x̄ be a local optimal solution of problem (P) and assume that the non-
degeneracy condition

∇g(x̄)Tλ = 0, λ ∈ span NΛ(g(x̄)) =⇒ λ = 0 (35)

holds. Then there is a unique multiplier λ0 satisfying the first-order optimality conditions

∇xL(x̄, λ0) = 0, λ0 ∈ N̂Λ(g(x̄)). (36)

Further, for all d ∈ C(x̄) we have

∇2
xxL(x̄, λ0)− σT 2

Λ(g(x̄);∇g(x̄)d)(λ0) ≥ 0.

Proof. The existence and uniqueness of the multiplier λ0 fulfilling (36) follows from Lemma
7 applied with d = 0. Further,

{λ0} = {λ ∈ N̂Λ(g(x̄)) | ∇xL(x̄, λ) = 0} ⊆ {λ ∈ NΛ(g(x̄)) | ∇xL(x̄, λ) = 0} = Λ(x̄)

and the non-degeneracy condition (35) ensures that Λ(x̄) = {λ0}. Further note that for
every d ∈ C(x̄) the condition (35) implies (31) and ∅ 6= Λ(x̄; d) ⊆ Λ(x̄) = {λ0}. This shows
Λ(x̄; d) = {λ0} and the second statement follows from Corollary 5. 2

Remark 1. According to [10], the first-order optimality conditions (36) are called S-
stationarity conditions.

5 Second-order sufficient conditions

We now consider sufficient conditions for optimality. We need the following definition of an
upper second order approximation set of Λ which is a special case of the definition given in
[5, Definition 3.82].

Definition 8. Let x̄ be a feasible solution of problem (P) and d ∈ C(x̄). We say that a closed
set A(d) is an upper second-order approximation set for Λ at g(x̄) in direction ∇g(x̄)d ∈
TΛ(g(x̄)), if for any sequence yn ∈ Λ of the form yn := g(x̄)+tn∇g(x̄)d+ 1

2 t
2
n(∇g(x̄)wn+an),

where tn ↓ 0 and {an} being a convergent sequence and {wn} satisfying tnwn → 0, the
following condition holds

lim
n→∞

dist(∇g(x̄)wn + an,A(d)) = 0.
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Consider the so-called generalized Lagrangian Lg : Rn × R× Rm → R defined by

Lg(x, α, λ) = αf(x) + g(x)Tλ.

It is easy to check that the following variant of [5, Theorem 3.83] holds for a non-convex
set Λ.

Theorem 3. Let x̄ be a feasible point of (P). Assume that every d ∈ C(x̄) corresponds to
A(d), an upper second-order approximation set for Λ at g(x̄) in direction d. Further assume
that for every d ∈ C(x̄)\{0} there is some (α, λ) ∈ R× Rm satisfying

α ≥ 0, α∇f(x̄)d = 0, ∇xLg(x̄, α, λ) = 0 (37)

and
∇2
xxL

g(x̄, α, λ)(d, d)− σA(d)(λ) > 0. (38)

Then the second order growth condition holds at x̄, i.e., there exists a neighborhood U of x̄
and δ > 0 such that

f(x) ≥ f(x̄) + δ‖x− x̄‖2 ∀x∈ U s.t. g(x) ∈ Λ.

The second-order condition (38) has the following two implications. Firstly, if A(d) 6= ∅
it is easy to see that (α, λ) 6= (0, 0). Secondly, we have λ ∈ N c

Λ(g(x̄);∇g(x̄)d) whenever
T 2

Λ(g(x̄);∇g(x̄)d) 6= ∅. Indeed, by the definition we have ∅ 6= T 2
Λ(g(x̄);∇g(x̄)d) ⊆ A(d)

for every upper second-order approximation set and hence λ ∈
(
T̂Λ(g(x̄);∇g(x̄)d)

)◦
=

N c
Λ(g(x̄);∇g(x̄)d) by virtue of Propositions 1 and 3, since otherwise

σA(d)(λ) ≥ σT 2
Λ(g(x̄);∇g(x̄)d)(λ) =∞.

In general T 2
Λ(g(x̄);∇g(x̄)d) may not be an upper second-order approximation set for Λ

at g(x̄) in direction∇g(x̄)d. But if T 2
Λ(g(x̄);∇g(x̄)d) is an upper second-order approximation

set for Λ at g(x̄) in direction ∇g(x̄)d, then we say that Λ is outer second-order regular at
g(x̄) in direction ∇g(x̄)d; see [5, Definition 3.85].

Combining theorems 2 and 3, we obtain immediately the following “no-gap” necessary
and sufficient optimality conditions under the outer second order regularity of Λ. Thus [5,
Theorem 3.86] is extended to the non-convex set Λ and Robinson’ constraint qualification
is weakened to directional metric subregularity.

Theorem 4. Let x̄ be a feasible solution of (P) and assume that Λ is outer second-order
regular at g(x̄) in direction ∇g(x̄)d for every d ∈ C(x̄)\{0}. If for every d ∈ C(x̄)\{0} there
is some (α, λ) ∈ R× Rm satisfying (37) and

∇2
xxL

g(x̄, α, λ)(d, d)− σT 2
Λ(g(x̄);∇g(x̄)d)(λ) > 0, (39)

then the second order growth condition holds at x̄. If, in addition, the feasible map-
ping M(x) = g(x) − Λ is metrically subregular at (x̄, 0) in direction d, ∇f(x̄)d = 0 and
T 2

Λ(g(x̄);∇g(x̄)d) is convex for every d ∈ C(x̄)\{0}, then the second order conditions

sup
λ∈Λ(x̄;d)

(
∇2
xxL(x̄, λ)(d, d)− σT 2

Λ(g(x̄);∇g(x̄)d)(λ)
)
> 0, ∀d ∈ C(x̄)\{0} (40)

are necessary and sufficient for the second order growth condition at the point x̄.

24



Proof. The sufficiency of (40) for the quadratic growth condition follows from (39) by taking
α = 1. There remains to show the necessity of (40) for the quadratic growth condition.
Assume that f(x) ≥ f(x̄) + δ‖x− x̄‖2 holds for all feasible x sufficiently close to x̄ for some
δ > 0 and consider d ∈ C(x̄)\{0}. Then Λ(x̄; d) 6= ∅ by Proposition 7 and x̄ is a local
minimizer of the problem

min
x
f(x)− δ‖x− x̄‖2 subject to g(x) ∈ Λ.

By Theorem 2, there is some λ ∈ Λ(x̄; d) such that

∇2
xxL(x̄, λ)(d, d)− 2δ‖d‖2 − σ̂T 2

Λ(g(x̄);∇g(x̄)d)(λ) ≥ 0.

But by assumption T 2
Λ(g(x̄);∇g(x̄)d) is convex and hence

σ̂T 2
Λ(g(x̄);∇g(x̄)d)(λ) = σT 2

Λ(g(x̄);∇g(x̄)d)(λ)

by Proposition 6(2), and (40) follows, provided T 2
Λ(g(x̄);∇g(x̄)d) 6= ∅. On the other hand,

if T 2
Λ(g(x̄);∇g(x̄)d) = ∅ then (40) automatically holds because the support function of the

empty set is identical −∞ by definition. 2

6 Examples

In this section we use some examples to illustrate our theory. We will apply our theory to
the class of SOC-MPCCs and MPCCs in a forthcoming paper [20].

Example 2. Consider the one-dimensional problem

min
x∈R
−1

2
x2 s.t. g(x) := (x2, x) ∈ Λ := C1 ∪ C2

at the reference point x̄ = 0, where C1 := {(x1, x2) | (x1 − 1)2 + x2
2 ≤ 1} and C2 :=

{(x1, x2) | (x1 + 1)2 + x2
2 ≤ 1} are unit circles with center (1, 0) and (−1, 0), respectively.

Clearly, the feasible region is F = [−1, 1] and thus x̄ is not a local minimizer. We want to
check whether we can reject x̄ as a local minimizer by our theory. First at all note that the
feasible set mapping g(x)−Λ is metrically subregular at (x̄, 0) because all x ∈ R sufficiently
close to x̄ are feasible. Straightforward calculations yield

TΛ(g(x̄)) = TC1(g(x̄)) ∪ TC2(g(x̄)) = (R+ × R) ∪ (R− × R) = R2,

N̂Λ(g(x̄)) = {(0, 0)}, and C(x̄) = R. Consider the critical direction d = 1, the discussion
for the opposite direction d = −1 could be performed similarly. Utilizing [5, Propositions
3.30 and 3.37] it is not difficult to show that

T 2
Λ(g(x̄);∇g(x̄)d) = T 2

C1
(g(x̄);∇g(x̄)d) ∪ T 2

C2
(g(x̄);∇g(x̄)d)

= ({t | t ≥ 1} × R) ∪ ({t | t ≤ −1} × R).

Since ∇g(x̄)0 + ∇2g(x̄, x̄)(d, d) = (2, 0) ∈ T 2
Λ(g(x̄);∇g(x̄)d), we obtain 0 ∈ T 2

F (x̄; d) from
(11). By observing ∇f(x̄)0 + ∇2f(x̄)(d, d) = −1 < 0, we may conclude from Theorem 1
that x̄ is not a local minimizer.

Next let us apply Theorem 2. Since for all sufficiently small x > 0 the point y1(x) =
(1 −

√
1− x2, x) belongs to C1 but not to C2, we obtain N̂Λ(y1(x)) = N̂C1(y1(x)) =
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R+(−
√

1− x2, x). Together with limx↓0
y1(x)−(0,0)

x = (0, 1) = ∇g(x̄)d we obtain R+(−1, 0) =

R−×{0} ⊆ NΛ(g(x̄);∇g(x̄)d). Similar arguments using the points y2(x) = (
√

1− x2−1, x)
show R+×{0} ⊆ NΛ(g(x̄);∇g(x̄)d) and in fact, it follows that NΛ(g(x̄);∇g(x̄)d) = R×{0}.
It follows that for every λ ∈ NΛ(g(x̄);∇g(x̄)d) we have ∇g(x̄)Tλ = 0 and consequently
Λ(x̄; d) = NΛ(g(x̄);∇g(x̄)d) = R× {0}. By taking

A = ∇g(x̄)R+∇2g(x̄)(d, d) = {2} × R ⊂ int T 2
Λ(g(x̄);∇g(x̄)d)

we have

σ̂T 2
Λ(g(x̄);∇g(x̄)d),A(λ) =

{
0 if λ = (0, 0),

∞ else,

because u ∈ N−1
T 2

Λ(g(x̄);∇g(x̄)d)
(λ) ∩A = ∅ whenever λ 6= (0, 0). Thus we obtain

∇2
xxL(x̄, λ)− σ̂T 2

Λ(g(x̄);∇g(x̄)d),A(λ) =

{
−1 if λ = (0, 0),

−∞ else

violating condition (17). Thus we can also conclude from Theorem 2 that x̄ is not a local
minimizer.

On the other hand, for λ := (1, 0) ∈ Λ(x̄; d) we have N−1
T 2

Λ(g(x̄);∇g(x̄)d)
(λ) = {−1}×R and

σ̂T 2
Λ(g(x̄);∇g(x̄)d)(λ) = −1 follows. Hence

∇2
xxL(x̄, λ)− σ̂T 2

Λ(g(x̄);∇g(x̄)d)(λ) = −1− (−1) = 0

and the second-order necessary condition (18) is fulfilled.
Note that we can not apply Theorem 4 because condition (23) fails to hold because of

∇g(x̄)Tλ = 0 with λ = (1, 0) ∈ NΛ(g(x̄);∇g(x̄)d).

Example 3. Consider the MPCC

min f(x1, x2, x3) := x1 − x2 + x3 +
1

2
x2

2 − x2
3

s.t. g(x1, x2, x3) :=


−x1

−x2

−4x1 + x2 − x3

−3x2 − x3

 ∈ Λ := DCC × R− × R−,

at x̄ = (0, 0, 0), where DCC := {(a, b) ∈ R2
− | ab = 0} denotes the complementarity cone

in R2. By considering points of the form (0, t, t) with t > 0 it is easy to see that x̄ is
not a local minimizer and we want to verify this with our theory. We claim that C(x̄) =
{(0, t, t) | t ≥ 0}. Indeed, the inclusion “⊇” obviously holds and we only have to verify the
opposite inclusion. Since g is linear and Λ is a cone, every critical direction d must fulfill
g(d) ∈ Λ, from which, by considering the third and fourth component of the system, the
inequality

d2 − d3 ≤ min{4d1, 4d2} = 0

follows. Together with ∇f(x̄)d = d1 − (d2 − d3) ≤ 0 and d1 ≥ 0 we conclude d1 = 0 and
d3 = d2 ≥ 0 proving our claim. Now consider a critical direction d = (0, t, t) with t > 0. By
using [14, Lemma 4.1] we obtain

NΛ(g(x̄);∇g(x̄)d) = R× {0} × R+ × {0} = N c
Λ(g(x̄);∇g(x̄)d)
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and thus both DirRCQ (23) and the directional non-degeneracy condition (31) are fulfilled.
Straightforward calculation yield that Λ(x̄; d) = Λc(x̄; d) = Λs(x̄; d) = {λ0} with λ0 =
(−3, 0, 1, 0). Further, T 2

Λ(g(x̄);∇g(x̄)d) = {0} × R × R− × R and σT 2
Λ(g(x̄);∇g(x̄)d)(λ0) = 0.

Hence
∇2
xxL(x̄, λ0)(d, d)− σT 2

Λ(g(x̄);∇g(x̄)d)(λ0) = t2 − 2t2 = −t2 < 0

and we can reject x̄ as a local minimizer by means of Corollary 5. Further we could reject
x̄ also by Theorem 2 together with Proposition 6(2) due to convexity of the second-order
tangent set T 2

Λ(g(x̄);∇g(x̄)d). However, we cannot apply Corollary 6 because condition (35)
is not fulfilled. This example demonstrates that directional non-degeneracy condition (31)is
strictly weaker than the non-directional condition (35), which, in terms of the literature on
MPCC, is equivalent to MPCC-LICQ.

Example 4. Consider the problem

min f(x1, x2, x3) := x1 − x2 + x3 +
1

2
x2

2 − x2
3

s.t. g(x1, x2, x3) :=


−x1

−x2

−4x1 + x2 − x3 + x2
2

−3x2 − x3

 ∈ Λ := DCC × R− × R−,

at x̄ = (0, 0, 0), which differs from the problem in the preceding example only by the presence
of the term x2

2 in the third component of g. Thus C(x̄) remains unchanged and it is easy
to see that Λ is outer second-order regular at g(x̄) in direction ∇g(x̄)d for every critical
direction d = (0, t, t) with t > 0. Further,

∇2
xxL(x̄, λ0)(d, d)− σT 2

Λ(g(x̄);∇g(x̄)d)(λ0) = t2 > 0

and therefore the sufficient second-order condition (39) is fulfilled implying that x̄ is a strictly
local minimizer satisfying the second-order growth condition.

Example 5. Consider the program

min f(x1, x2) = −x1 +
1

2
x2

2

s.t. g(x1, x2) =

 −x1

−x2

x2
1 − x2

 ∈ Λ := Dcc × R−

at x̄ = (0, 0). Then C(x̄) = ({0} × R+) ∪ (R+ × {0}) and Λ is outer second-order regular
at g(x̄) in direction ∇g(x̄)d for every critical direction d ∈ C(x̄). If d = (t, 0), t > 0, then
NΛ(g(x̄);∇g(x̄)d) = {0} × R × R+ and T 2

Λ(g(x̄);∇g(x̄)d) = R × {0} × R− and condition
(39) is fulfilled with α = 0 and λ = (0,−1, 1). On the other hand, for d = (0, t), t > 0, we
have NΛ(g(x̄);∇g(x̄)d) = R×{0}× {0} and T 2

Λ(g(x̄);∇g(x̄)d) = {0}×R×R. Now (39) is
fulfilled with α = 1, λ = (−1, 0, 0) and we have verified that x̄ is a strictly local minimizer
fulfilling the second-order growth condition.
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