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Cubature Rules for Harmonic Functions Based
on Radon Projections

Irina Georgieva∗ Clemens Hofreither†

Abstract

We construct a class of cubature formulae for harmonic functions on
the unit disk based on line integrals over 2n + 1 distinct chords. These
chords are assumed to have constant distance t to the center of the disk,
and their angles to be equispaced over the interval [0, 2π]. If t is chosen
properly, these formulae integrate exactly all harmonic polynomials of
degree up to 4n + 1, which is the highest achievable degree of precision
for this class of cubature formulae. For more generally distributed chords,
we introduce a class of interpolatory cubature formulae which we show to
coincide with the previous formulae for the equispaced case. We give an
error estimate for a particular cubature rule from this class.

1 Introduction
For univariate functions, quadrature is typically done by exactly integrating a
polynomial which interpolates the integrand on a set of prescribed points which
usually lie within the integration interval. This approach is met with well-known
difficulties in the multivariate case. Most importantly, the Lagrangian interpo-
lation problem for multivariate polynomials is not always solvable. In recent
years, many researchers have proposed alternative schemes for multivariate in-
terpolation and cubature where the given data comes not in the form of point
evaluations, but rather as mean values over a set of prescribed hyperplanes. We
point in particular to the results of Bojanov and Petrova [2, 3], who showed the
existence of a unique cubature formula for the disk that uses n line integrals
and is exact for all bivariate polynomials of degree up to 2n− 1, a result which
is not possible using the same number of point evaluations.

Besides the more convincing mathematical theory, we point out that this
kind of data appears naturally in the real world, e.g., in computer tomography
with its many applications in medicine, radiology, geology, etc. These tech-
niques have their mathematical foundation in the work of Johann Radon on
∗Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,

Acad. G. Bonchev, Bl. 8, 1113, Sofia, Bulgaria, irina@math.bas.bg
†Institute of Computational Mathematics, Johannes Kepler University, Altenberger Str. 69,

4040 Linz, Austria, chofreither@numa.uni-linz.ac.at

1



the so-called Radon transform [15]. Reconstruction of functions from their line
integrals can be formulated as an interpolation problem where not the func-
tion itself, but its Radon transform is sampled on a discrete set. Early major
contributions on the topic of multivariate interpolation using integrals over hy-
perplanes are due to Marr [13] and Hakopian [12]. Research on this topic was
continued in the previous decade by many researchers [1, 4, 9, 10, 8, 11].

In [14] a family of cubature rules for the unit disk using Radon projections
along symmetrically located chords was found. In the present paper we derive
cubature rules for harmonic functions using Radon projections. This subject
turns out to be closely related to the interpolation of harmonic polynomials
studied in [7], [6], [5]. However, we will find that the optimal choice of chords
for the purpose of cubature is somewhat different from that for interpolation,
and certain configurations which do not yield uniquely solvable interpolation
problems still result in good cubature rules.

2 Preliminaries
Let D ⊂ R2 denote the open unit disk and ∂D the unit circle. By I(θ, t) we
denote a chord of the unit circle at angle θ ∈ [0, 2π) and distance t ∈ (−1, 1)
from the origin (see Figure 1), parameterized by

s 7→ (t cos θ − s sin θ, t sin θ + s cos θ)>, where s ∈ (−
√

1− t2,
√

1− t2).

0

I t

t

1

Figure 1: The chord I(θ, t) of the unit circle.

Definition 1. Let u(x, y) be a real-valued bivariate function in the unit disk D.
The Radon projection Rθ(u; t) of u in direction θ is defined by the line integral

Rθ(u; t) :=

∫
I(θ,t)

u(x) dx =

∫ √1−t2

−
√
1−t2

u(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Johann Radon [15] showed in 1917 that a differentiable function u is uniquely
determined by the values of its Radon transform,

u 7→
{
Rθ(u; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
.
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2.1 Radon projections of harmonic polynomials
Let Π2

n denote the space of real bivariate polynomials of total degree at most n.
In the following, we will often work with the subspace

Hn =
{
p ∈ Π2

n : ∆p = 0
}

of real bivariate harmonic polynomials of total degree at most n, which has
dimension 2n+ 1.

We use the basis of the harmonic polynomials

φ0(x, y) = 1, φk,1(x, y) = Re(x+ iy)k, φk,2(x, y) = Im(x+ iy)k. (1)

In polar coordinates, they have the representation

φk,1(r, θ) = rk cos(kθ), φk,2(r, θ) = rk sin(kθ).

The following result, which gives a closed formula for Radon projections
of the basis harmonic polynomials, can be considered a harmonic analogue to
the famous Marr’s formula [13]. A special case of this harmonic version was
first derived using tools from symbolic computation [7]. Later, Georgieva and
Hofreither [6] have given an analytic proof in a more general setting.

Theorem 1 ([6]). The Radon projections of the basis harmonic polynomials are
given by ∫

I(θ,t)

φk,1 dx =
2

k + 1

√
1− t2Uk(t) cos(kθ),∫

I(θ,t)

φk,2 dx =
2

k + 1

√
1− t2Uk(t) sin(kθ),

where k ∈ N, θ ∈ R, t ∈ (−1, 1), and Uk(t) is the k-th Chebyshev polynomial of
second kind.

3 Cubature formulae on equispaced chords
For an integrable function u on D, we denote

I[u] :=

∫
D

u(x) dx.

For the integrals of the basis harmonic polynomials over the unit disk D, it is
easy to compute that

I[φk,1] =

{
π, k = 0,

0, k ≥ 1,

I[φk,2] = 0, k ≥ 1.

(2)
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In the following, we will construct cubature formulae for the unit disk D for
harmonic functions using Radon projections along a set of chords

I = {I(θj , t) : j = 1, . . . , 2n+ 1}

with a constant distance t ∈ (−1, 1) to the origin.
Let n ∈ N0, fix some c ∈ R and t ∈ (−1, 1) and define the cubature rule

Q[u] := c

2n+1∑
j=1

Rθj (u, t).

Using Theorem 1, we obtain

Q[φk,1] = c
2n+1∑
j=1

Rθj (φk,1, t) = c
2

k + 1

√
1− t2Uk(t)

2n+1∑
j=1

cos(kθj),

Q[φk,2] = c

2n+1∑
j=1

Rθj (φk,2, t) = c
2

k + 1

√
1− t2Uk(t)

2n+1∑
j=1

sin(kθj).

We can rewrite the sums over trigonometric functions in the above formulas
as the real and imaginary parts, respectively, of

∑2n+1
j=1 eikθj . With the special

choice of equispaced angles

θj =
2jπ

2n+ 1
, j = 1, 2, . . . , 2n+ 1, (3)

we can use known summation formulas for complex roots of unity to obtain

Q[φk,1] =

{
2c
k+1

√
1− t2Uk(t)(2n+ 1), k ∈ N0 · (2n+ 1),

0, otherwise.

Q[φk,2] = 0, k ≥ 1.

Comparing with (2), for the cubature formula Q to be exact for all the harmonic
polynomials of degree up to 2n, i.e., Q[φk,j ] = I[φk,j ], k = 0, . . . , 2n, we only
have to require

I[φ0,1] = π = 2c
√

1− t2(2n+ 1) = Q[φ0,1].

This gives us the choice
c =

π

(4n+ 2)
√

1− t2
.

If, in addition, we choose t to be a zero of U2n+1, then

Q[φ2n+1,1] = 0 = I[φ2n+1,1]

and the formula Q is exact for all harmonic polynomials of degree up to 4n+ 1,
since the conditions for k = 2n+ 2, . . . , 4n+ 1 are automatically satisfied. Since
U2n+1 and U4n+2 share no roots, the degree of precision of Q is 4n+ 1.

Thus we have proved the following theorem.
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Theorem 2. Consider the cubature formula

I[u] ≈ Q[u] =
π

(4n+ 2)
√

1− t2

2n+1∑
j=1

Rθj (u, t) (4)

with equispaced angles θj as in (3).

• For every t ∈ (−1, 1), Q is exact at least for all harmonic polynomials of
degree up to 2n.

• If t ∈ (−1, 1) is a zero of U2n+1, then the cubature formula Q is exact for
all harmonic polynomials of degree up to 4n+ 1, and there exist harmonic
polynomials of degree 4n+ 2 for which it is not exact.

We point out that, for properly chosen t, the cubature rule Q using 2n + 1
chords integrates exactly all harmonic polynomials from a space of dimension
dimH4n+1 = 8n+ 3.

4 Interpolatory cubature

4.1 Interpolation by harmonic polynomials
For the sake of completeness, we state here some previous results from [6, 7] on
interpolation of harmonic functions using Radon projections.

For prescribed chords

I = {I(θj , tj) : j = 1, . . . , 2n+ 1}

of the unit circle and associated given values {γI}, we wish to find a harmonic
polynomial p ∈ Hn such that∫

I

p(x) dx = γI ∀I ∈ I. (5)

Expanding the harmonic polynomial p in the basis (1),

p = p0φ0 +

n∑
k=1

(pk,1φk,1 + pk,2φk,2), (6)

we obtain a linear system Ap = γ equivalent to (5) with the matrix

A =


∫
I1

1
∫
I1
φ1,1 . . .

∫
I1
φn,1

∫
I1
φn,2∫

I2
1

∫
I2
φ1,1 . . .

∫
I2
φn,1

∫
I1
φn,2

...
...

. . .
...

...∫
I2n+1

1
∫
I2n+1

φ1,1 . . .
∫
I2n+1

φn,1
∫
I2n+1

φn,2


and the vector p = {p0, p1,1, p1,2, . . . , pn,1, pn,2}> ∈ R2n+1.
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We call I regular if the interpolation problem (5) has a unique solution for all
given values {γI}. Clearly, the scheme I is regular if and only if A is regular. We
cite here a result on regularity of a family of schemes I with constant distances
of the chords.

Theorem 3 (Existence and uniqueness [6]). The interpolation problem (5) al-
ways has a unique solution for the choice I = {I(θj , tj) : j = 1, . . . , 2n + 1}
with

0 < θ1 < θ2 < . . . < θ2n+1 ≤ 2π,

while the distances tj = t ∈ (−1, 1) are constant and t is not a zero of any
Chebyshev polynomial of the second kind U1, . . . , Un.

In the following, we use the notations

c(k) := (cos(kθ1), . . . , cos(kθ2n+1))>,

s(k) := (sin(kθ1), . . . , sin(kθ2n+1))>,

G :=

 . . .
1 c(1) s(1) . . . c(n) s(n)

. . .

 ,

αk :=
2

k + 1

√
1− t2Uk(t),

βk :=


1

2(2n+1) (
√

1− t2)−1 = 1
2n+1α

−1
k , k = 0,

k+1
2n+1 (

√
1− t2Uk(t))−1 = 2

2n+1α
−1
k , k ≥ 1,

F := diag(α0, α1, α1, . . . , αn, αn),

E := diag(β0, β1, β1, . . . , βn, βn).

For equally spaced angles, the columns of G are orthogonal. This fact allows
a simple representation of the inverse of the system matrix A in this case.

Theorem 4 ([6]). Assume chords with equally spaced angles θj = 2πj
2n+1 and

fixed distance tj = t ∈ (0, 1), j = 1, . . . , 2n + 1, such that Uk(t) 6= 0 for all
k ∈ {0, . . . , n}. Then the inverse of A is given by

A−1 = EG>.

4.2 Interpolatory cubature
Consider a regular scheme of chords I with arbitrary distinct angles

0 < θ1 < θ2 < · · · < θ2n+1 ≤ 2π

and fixed distance tj = t ∈ (0, 1), j = 1, . . . , 2n + 1, such that Uk(t) 6= 0 for
all k ∈ {0, . . . , n}. According to Theorem 3, for any given harmonic function
u on D, there exists a unique harmonic polynomial pu ∈ Hn with Rθj (pu, t) =

6



k 0 1 2 3 4 5
Q∗[φk,1] 3.141 0 0 0 −0.159 0.016
Q∗[φk,2] 0 0 0 0.0181 0.127

Table 1: Result of cubature with non-equispaced angles for the harmonic basis
functions

Rθj (u, t) for all j = 1, . . . , 2n+1. Thus we can define the interpolatory cubature
formula

Q∗[u] := I[pu] = πp0,

where p0 is the coefficient of the constant part of pu as in (6). The above formula
holds since I[φ0] = π and the integrals of all other basis functions vanish.

Theorem 5. The interpolatory cubature rule Q∗ with constant distances t such
that Uk(t) 6= 0, k = 0, . . . , n, is precise at least for harmonic polynomials of
degree up to n.

If the angles are equispaced, we have Q∗ ≡ Q as in (4).
If in addition t is a root of U2n+1, then again Q∗ is exact for all harmonic

polynomials of total degree up to 4n+ 1.

Proof. The fact that the formula is precise up to degree n follows immediately
from the existence of a unique interpolant, Theorem 3. For equispaced angles,
we see from Theorem 4 that

p0 = [EG>γ]1 = β0

2n+1∑
j=1

Rθj (u, t).

From the definitions, it follows that

Q∗[u] =
π

(4n+ 2)
√

1− t2

2n+1∑
j=1

Rθj (u, t),

which is (4). The last statement then follows with Theorem 2.

Remark. A simple numerical example for interpolatory cubature with non-
equispaced angles confirms that in general these rules are precise only up to
degree n. For Table 1, we chose chords with angles θj = 2jπ

7 − 0.4 sin(1.3j),
j = 1, . . . , 7, and t = 0.4. We use interpolatory cubature over these chords to
approximate the integrals of the harmonic basis functions φk,1 and φk,2. As
expected, the cubature yields exact values up to degree n = 3, since 2n+ 1 = 7
chords were used. (Values with magnitude smaller than 10−14 which occurred
due to limited precision were rounded to 0.)
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5 Error estimate
In this section, we derive an error estimate for the special case of a cubature
rule with equispaced angles and a distance t which is sufficiently large in the
sense that it is larger by some bound than the largest root of Un. For this, we
make use of our previous results from [6] on the error in the coefficients of the
interpolating polynomial. In the process, we generalize a statement from this
previous paper to hold in a more general setting.

We start by proving a more general version of a technical lemma from [6].

Lemma 6. Let

a(k, n) :=
k + 1

Uk(cosx(n))
, 0 < x(n) ≤ π − ε

n+ 1
,

with ε > 0. For n ∈ N, we have

1 = a(0, n) ≤ a(1, n) ≤ . . . ≤ a(n− 1, n) ≤ a(n, n) <
π − ε

sin(π − ε)
.

Proof. By the definition of Uk(t), we have that

a(k, n) =
(k + 1) sinx(n)

sin [(k + 1)x(n)]
=

sin(x(n))
x(n)

sin(y(k,n))
y(k,n)

, (7)

with y(k, n) = (k + 1)x(n).
All arguments to sin are in the range (0, π), and thus the sines are all positive.

Thus, Uk(cosx(n)) > 0, and we use the well-known fact |Uk(t)| ≤ k + 1 to
conclude that 1 ≤ a(k, n).

In the following, we use the well-known properties of the sinc function
y 7→ sin y

y that in (0, π) it is positive, bounded by 1 and monotonically decreas-
ing. By assumption on x(n) and because k ≤ n, we have y(k, n) ∈ (0, π − ε].
Since clearly y(k, n) is monotonically increasing in k, we have that sin(y(k,n))

y(k,n) is
monotonically decreasing in k, and from (7) we conclude that a(k, n) is mono-
tonically increasing in k.

We now bound a(n, n) from above. Because x(n) ∈ (0, π), we have sin(x(n))
x(n) <

1. We use that y(n, n) ≤ π − ε and the monotonicity of the sinc function to
bound

sin(y(n, n))

y(n, n)
≥ sin(π − ε)

π − ε
,

from which the desired upper bound for a(n, n) follows.

The following lemma is a straightforward generalization of an analogous
result in [6].

Lemma 7. Assume that f = u|∂D has a uniformly convergent Fourier series

f(θ) = f0 +

∞∑
k=1

(fk cos(kθ) + f−k sin(kθ)). (8)
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and its Fourier coefficients (fk)k∈Z decay like |fk| ≤M |k|−s with M > 0, s > 1.
Let

p(n) = p
(n)
0 φ0 +

n∑
k=1

(p
(n)
k φk + p

(n)
−kφ−k) ∈ Hn

be the interpolating polynomial of degree n according to Theorem 3, where the
angles θj are chosen equispaced as in (3) and t = cos(x(n)) with 0 < x(n) ≤ π−ε

n+1
and ε > 0.

Then the error in the coefficients of the interpolating polynomial p(n) satisfies

|fk − p(n)k | ≤MCs,εn
−s ∀|k| ≤ n,

where Cs,ε > 0 is a constant which depends only on s and the ε.

Proof. The lemma was proved in [6] for the special choice t = cos π
2n+1 , i.e.,

x(n) = π
2n+1 . Lemma 6 provides a generalization of [6, Lemma 5] for more

general choices of x(n) and thus of t. The proof can then be followed step by step,
replacing the estimates for a(k, n) by the more general version in Lemma 6.

With this result, an error estimate for the cubature rule Q, which in this
setting coincides with the interpolatory cubature rule Q∗, follows immediately.

Theorem 8. Let the assumptions of Lemma 7 be satisfied. Then, for the cuba-
ture rule Q using 2n+ 1 Radon projections, we have the cubature error estimate

|Q[u]− I[u]| = π|f0 − p(n)0 | ≤ πMCs,εn
−s,

Proof. The identity
|Q[u]− I[u]| = π|f0 − p(n)0 |

follows immediately from (2), and the statement from Lemma 7.

6 Numerical examples

6.1 Example 1
We test our cubature rule (4) on the harmonic function

u(x, y) = log
√

(x− 1)2 + (y − 1)2.

In Figure 2 we plot the cubature errors for varying degree n (x-axis) with the
choice t = cos nπ

2n+2 (circles) and t = 0 (squares). Convergence is exponential
for both choices of t, with the case t = 0 yielding considerably smaller errors.

In Figure 3 we plot the cubature errors for varying t (x-axis) with degree
n = 3 (circles), n = 5 (squares) and n = 7 (rhombuses). We observe that choices
of t which are optimal in the sense of Theorem 2 (t-s are zeros of U2n+1) also tend
to yield smaller errors in practice. This is seen from the dips in the error plots
which coincide with the non-negative roots of U7, U11, and U13, respectively.

For this particular example, it seems that t = 0 is always the most favorable
choice. However, in the next example we will see that this is not always true.
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Figure 2: (Ex. 1) Cubature errors for varying degree n (x-axis) with the choice
t = cos nπ

2n+2 (circles) and t = 0 (squares).
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Figure 3: (Ex. 1) Cubature errors for varying t (x-axis) with degree 3 (circles),
5 (squares), 7(rhombuses)

6.2 Example 2
In order to test the cubature rule for functions with less smoothness, we con-
struct the harmonic extension of the boundary function f(θ) = θ2 on the unit
circle in radial coordinates, where the argument θ is chosen in the interval
[−π, π]. This function is only C0 on the unit circle, but analytic within the
unit disk. By expanding f into its Fourier series, it can be shown that the
corresponding harmonic function has the representation

u(x, y) = Re

(
π2

3
+ 2(Li2(−x− iy) + Li2(−x+ iy))

)
,

where

Li2(z) =

∞∑
k=1

zk

k2
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is the dilogarithm or Spence’s function. See Figure 4 for a plot of the harmonic
function u.

The boundary function f satisfies the smoothness assumption from Lemma 7
with s = 2. In Figure 5, we plot the cubature errors for t = 0 with the degree
n varying from 1 to 15. We find that the decay of the error is approximately
O(n−2.7), which is slightly faster than the rate O(n−s) predicted by Theorem 8.
In Figure 6, we plot the cubature errors for fixed degree n = 3 with t varying
in [0, 1). As in Example 1, we find that the smallest errors are attained when
t is chosen as a root of U2n+1 = U7. In contrast to the previous example, here
not 0, but the largest root of U7 yields the smallest overall error.

7 Conclusions
We have constructed cubature rules for harmonic functions on the unit disk
using Radon projections as their given data. The below table categorizes the
presented rules in terms of the angles {θm} and distances t of the used chords.
The third column indicates the degree k of the space Hk on which a rule of the
respective type using 2n+ 1 pieces of data is precise.

θm t (constant) deg. of precision ref.
distinct not a root of U1, . . . , Un n Theorem 5

equispaced arbitrary 2n Theorem 2
equispaced root of U2n+1 4n+ 1 Theorem 2
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Figure 4: (Ex. 2) The harmonic function u with C0 boundary data
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