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Abstract. This paper is devoted to the generalized differential study of the normal cone mappings asso-
ciated with a large class of parametric constraint systems (PCS) that appear, in particular, in nonpolyhedral
conic programming. Conducting a local second-order analysis of such systems, we focus on computing the
(primal-dual) graphical derivative of the normal cone mapping under the C2-cone reducibility of the constraint
set together with the fairly weak metric subregularity constraint qualification and its uniform parametric coun-
terpart known as Robinson stability. The obtained precise formulas for computing the underlying second-order
object are applied to the derivation of comprehensive conditions ensuring the important stability property of
isolated calmness for solution maps to parametric variational systems associated with the given PCS.
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1 Introduction and Initial Discussions
Our starting point here is a general class of parametric constraint systems (PCS) given by

(1.1) g(p,x) ∈C with x ∈ X := Rn and p ∈ P := Rm,

where x is the decision variable and p is the perturbation parameter. Imposing the standard smooth-
ness assumption on g : P×X → Y with Y := Rl and the C2-cone reducibility assumption on C ⊂ Y
(see below), we define the set-valued solution map Γ : P ⇒ X to (1.1) by

Γ(p) :=
{

x ∈ X
∣∣ g(p,x) ∈C

}
for all p ∈ P(1.2)

and fix the reference feasible pair (p̄, x̄) ∈ gphΓ from the graph of Γ. Furthermore, we associate with
(1.2) the normal cone mapping defined by

(1.3) Ψ(p,x) := NΓ(p)(x) for all p ∈ P and x ∈ Γ(p),

where the normal cone NΓ(p) is understood in the classical sense of convex analysis provided that the
sets Γ(p) are convex for all p. However, we do not impose any convexity of Γ(p) in this paper, while
our assumptions throughout the paper ensure that all the major normal cones of variational analysis
(regular, limiting, and convexified) agree for the sets under consideration, and thus we may use the
generic normal cone symbol N below; see Section 2 for more details.
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In what follows we fix a generalized normal x̄∗ ∈ NΓ(p̄)(x̄) and pay the main attention to comput-
ing the graphical derivative DΨ(x̄, p̄, x̄∗) of the normal cone mapping (1.3) at (x̄, p̄, x̄∗), which is a
primal-dual object of second-order variational analysis defined and discussed in Section 2. Such a
computation was first done by Rockafellar and Wets [20] when C is a convex polyhedron and (1.1)
satisfies the metric regularity condition, which is equivalent to the Mangasarian-Fromovitz qualifica-
tion condition (MFCQ) in the polyhedral/nonlinear programming (NLP) setting under consideration.
A number of recent publications has been devoted to computing DΨ in some particular cases of non-
parameterized constraint systems (1.1), i.e., when g = g(x) therein, under weaker assumptions on g
and C with further applications to stability and optimization; see [3, 4, 6, 8, 9, 10, 15, 16] for precise
results and discussions. We specially emphasize the approach by Gfrerer and Outrata [8] on comput-
ing DΨ in the polyhedral setting of C without assuming MFCQ and/or other standard qualification
conditions. The approach of [8] was then employed by Chieu and Hien [3] with imposing merely
the metric subregularity constraint qualification (MSCQ) on the NLP constraint system. The quite
recent paper by Hang, Mordukhovich and Sarabi [10] is the first one in the literature to compute DΨ

by developing a novel approach that relays only on the MSCQ condition in the nonpolyhedral setting
of (1.1) with g = g(x) generated by the second-order/Lorentz/ice-cream cone C therein.

The main goal of this paper is to compute DΨ for the general parametric constraint systems (1.1)
with establishing significantly new results even for the nonparametric setting under imposing merely
the MSCQ condition. Indeed, the precise formulas derived below are applied to PCS (1.1) generated
by any C2-cone reducible set C, which covers the most interesting theoretically and important in
applications constraint systems in conic programming including those generated by products of the
ice-cream cones, the SDP cone of symmetric positive semidefinite matrices, etc. No other assumptions
but MSCQ are required in the nonparametric case of (1.1).

The general parametric setting of (1.1) is more involved and diverse. We impose here a uniform
parametric counterpart of MSCQ called the Robinson stability (RS) in [7]. If g does not depend on
the parameter, the Robinson stability reduces to MSCQ, whereas in case when ∇pg(p̄, x̄) is surjective,
RS is equivalent to the metric regularity qualification condition. Under RS we obtain lower and
upper inclusions for the graphical derivative DΨ(x̄, p̄, x̄∗). These estimates are shown to be exact
under a certain additional assumption. If g(p,x) weakly depends on the parameter (∇pg(p̄, x̄) = 0),
this assumption is automatically fulfilled, and we are in the same framework as in the nonparametric
setting. In the case where g strongly depends on the parameter (as, e.g., when ∇pg(p̄, x̄) is surjective),
then this assumption amounts to a nondegeneracy condition.

One alternative to the latter is the polyhedrality in the reduction, while we discover another one,
which is the strict complementarity condition in the vein of Bonnans and Shapiro [2].

The obtained computation formulas for DΨ have high potentials for various applications to opti-
mization, equilibrium, and related problems. We focus here on applications to isolated calmness of
solutions maps for parametric variational systems (PVS) associated with the normal cone mapping
(1.3). Employing these formulas allows us to establish verifiable conditions for the validity of a new
Hölderian counterpart of isolated calmness for the PVS under consideration and then derive neces-
sary and sufficient conditions for isolated calmness (Lipschitzian in nature) in both cases of weak and
strong perturbations discussed above. It seems that the results obtained here are the best and most
general in the literature even for parameter-independent mappings Γ in (1.2).

The rest of the paper is organized as follows. In Section 2 we recall and briefly discuss some
notions from variational analysis and generalized differentiation that are systematically used in the
sequel. Our standing assumptions are also formulated and discussed in this section together with
preliminary results employed below. Section 3 studies second-order properties of PVS under the
MSCQ assumption imposed on the reduction system. In Section 4 we derive formulas for computing
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the graphical derivative in the reduced PCS under imposing the RS condition on the reduction data.
The subsequent Section 5 contains major results on computing DΨ in terms of the given data of

PCS (1.1). These results are applied in Section 6 to deriving verifiable conditions for isolated calmness
of parametric variational systems associated with (1.1). We also present here a numerical example
that illustrates the significance of the (rather mild) assumptions made for deriving the computation
formulas and the obtained conditions for isolated calmness. Section 7 summarizes the main paper
developments and discusses some directions of the future research.

Throughout the paper we use the standard notation of variational analysis (see, e.g., [14, 20])
together with more special ones defined in the text. Recall that N := {1,2, . . .}, BX is the closed unit
ball of X , [x] := {tx | t ∈R}, and linK is the largest linear subspace contained in a closed convex cone
K; it is known as the lineality space of K. Observe that linK = K ∩ (−K), and that its annihilator
(linK)⊥ = K∗−K∗ is the smallest subspace containing the dual cone K∗. To ease the reading, we
want to clearly distinguish between primal and dual objects in our notation. Dual objects are marked
by an asterisk except multipliers that are denoted by the Greek letters λ and µ for historical reasons.
Although all spaces X ,P,Y . . . appearing in the paper are finite-dimensional, we do not identify the
dual spaces X∗,P∗,Y ∗, . . . with the primal ones. For differentiable mappings f : U →V , the (Fréchet)
derivative at a point ū is denoted by ∇ f (ū) and is a linear mapping from U to V . Consequently, its
adjoint mapping ∇ f (ū)∗ is a mapping between the dual spaces V ∗ and U∗. Bidual spaces are identified
with the primal spaces. E.g., given a mapping f : P×X→ X∗, its derivative at a point (p̄, x̄) is a linear
mapping from P×X to X∗ and its adjoint ∇ f (p̄, x̄)∗ is a linear mapping from X to P∗×X∗.

2 Standing Assumptions and Preliminaries
We start with recalling the notion of C2-cone reducibility of sets that has been well recognized and
employed in optimization. Following [2], a closed set C ⊂ Y is said to be C2-reducible to the closed
cone K ⊂ E in finite dimensions at a point ȳ ∈C if there exists a neighborhood V ⊂Y of ȳ and a twice
continuously differentiable mapping h : V → E such that

h(ȳ) = 0, ∇h(ȳ) is surjective , and C∩V =
{

y ∈V
∣∣ h(y) ∈ K

}
.(2.1)

As discussed in [2], the most important constraint sets in conic programming (including products of
the ice-cream cones, the SDP cone, etc.) are C2-cone reducible at all their feasible points ȳ ∈C.

The next basic notion systematically used in the paper is a weak qualification condition coined
in [6] as the metric subregularity constraint qualification (MSCQ). We say that MSCQ holds for
the system g(z) ∈ C at the feasible point z̄ if the set-valued mapping M(z) := g(z)−C is metrically
subregular at (z̄,0), i.e., there exists a constant/modulus κ ≥ 0 such that

dist
(
z;M−1(0)

)
≤ κ dist

(
0;M(z)

)
for all z close to z̄.(2.2)

It has been well recognized in variational analysis that metric subregularity of an arbitrary set-valued
mapping is equivalent to the so-called calmness property of its inverse. The reader is referred to
[6] for more details on MSCQ, sufficient conditions for its validity, and its relationships with other
qualification conditions in NLPs. Note that MSCQ is essentially weaker than its metric regularity
counterpart, which corresponds to (2.2) with replacing ȳ = 0 in both parts therein by any y ∈ Y of
small norm. The latter condition (but not MSCQ) reduces to MFCQ and the Robinson constraint
qualification in NLPs and conic programming, respectively.

A crucial role in the general parametric setting of (2.2) is played by the stability notion introduced
recently in [7] as an extension of the one first studied by Robinson [18] in particular situations. We
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say that PCS (1.1) enjoys the Robinson stability (RS) property at (p̄, x̄) with modulus κ ≥ 0 if there
are neighborhoods U of x̄ and W of p̄ such that

(2.3) dist
(
x;Γ(p)

)
≤ κ dist

(
g(p,x);C

)
for all (p,x) ∈W ×U

in terms of the usual point-to-set distance. This property was largely studied in [7] with deriving
efficient first-order and second-order conditions for its validity and various applications. It is clear
from (2.3) that RS can be interpreted as metric subregularity of the mapping x 7→ g(p,x)−C at (x̄,0)
for every point x ∈ Γ(p) near x̄, where the modulus κ is uniform with respect to parameters p ∈W .

For the rest of the paper we impose the following requirements on the given data of (1.1).

Standing Assumptions: (i) The mapping g : P×X → Y is C2-smooth around (p̄, x̄).
(ii) The set C ⊂ Y is C2-reducible at g(z̄) to a closed and convex cone K ⊂ E.

Besides these standing assumptions, each result below requires the validity of either the MSCQ or
RS condition at the reference point.

Now it is time for entering and discussing constructions of generalized differentiation widely used
in the paper. First we clarify the meaning of the normal cone in (1.2) in the nonconvex setting. Given
a closed set Ω⊂ Z with z̄ ∈Ω, the (Fréchet) regular normal cone to Ω at z̄ is defined by

N̂Ω(z̄) :=
{

z∗ ∈ Z∗
∣∣∣ limsup

z Ω→z̄

〈z∗,z− z̄〉
‖z− z̄‖

≤ 0
}
,(2.4)

where the symbol z Ω→ z̄ indicates that z→ z̄ with z ∈ Ω. It has been realized that (2.4) fails to have
good properties required for generalized normals to nonconvex sets, namely: it may be trivial (= 0)
at boundary points, nonrobust with respect to perturbations of the initial data, does not enjoy calculus
rules, etc. As shown in [14, 20], the aforementioned and other desired properties hold–in spite of its
nonconvexity–for the (Mordukhovich) limiting normal cone to Ω at z̄ ∈Ω defined by

NΩ(z̄) :=
{

z∗ ∈ Z∗
∣∣ ∃zk

Ω→ z̄, z∗k ∈ N̂Ω(zk) with z∗k → z∗ as k→ ∞
}
,(2.5)

which is however more challenging in computation. Luckily, the assumptions imposed in this paper
ensure that the normal cones (2.4) and (2.5) agree for the sets under considerations, and thus we can
combine good properties of NΩ with the computational advantages of N̂Ω. Indeed, the C2-reducibility
(2.1) of the set C at ȳ ∈C to the convex cone K yields by the surjectivity of the derivative ∇h(ȳ) and
the well-known calculus rule for normals to inverse images (see, e.g., [20, Theorem 6.14]) that

N̂C(ȳ) = N̂h−1(K)

(
h(ȳ)

)
= ∇h(ȳ)∗N̂K

(
h(ȳ)

)
= ∇h(ȳ)∗NK

(
h(ȳ)

)
= NC(ȳ).(2.6)

Furthermore, the MSCQ (and hence RS) conditions imposed on (1.1) at (p̄, x̄) imply that

N̂g−1(C)(p̄, x̄) ⊂ Ng−1(C)(p̄, x̄)⊂ ∇g(p̄, x̄)∗NC
(
g(p̄, x̄)

)
= ∇g(p̄, x̄)∗N̂C

(
g(p̄, x̄)

)
⊂ Ng−1(C)(p̄, x̄),

(2.7)

where the first inclusion follows from [11, Theorem 4.1], the equality comes from and (2.6), and the
last inclusion is a consequence of [20, Theorem 6.14]. This ensures equalities in the inclusions in
(2.7) and thus implies by (1.2) that

N̂gphΓ(p̄, x̄) = NgphΓ(p̄, x̄) and N̂Γ(p̄)(x̄) = NΓ(p̄)(x̄).(2.8)
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The normal regularity relationships in (2.6)–(2.8) show that the normal cones therein agree also with
the (Clarke) convexified normal cone to these sets, which is the convex closure of the limiting one
(2.5). It allows us to use in this paper the generic symbol N for all the three major cones.

Following [2], we say that the strict complementarity condition holds for the system g(z) ∈C at
(z̄,z∗) with g(z̄) ∈C and z∗ ∈ Ng−1(C)(z̄) if there is µ ∈ riNC(g(z̄)) such that z∗ = ∇g(z̄)∗µ . We refer
the reader to [2] for more discussions on this condition and its relationships with the classical notions.

In conventional understanding, normals are dual-space constructions while tangents are primal-
space ones. The tangent collection intensively used below is known as the (Bouligand-Severi) tangent
or contingent cone to Ω at z̄ ∈Ω being defined by

TΩ(z̄) :=
{

w ∈ Z
∣∣ ∃ tk ↓ 0, wk→ w with z̄+ tkwk ∈Ω for all k ∈ N

}
.(2.9)

A tangent vector w ∈ TΩ(z̄) is derivable if there exists a vector function ξ : [0,ε]→ Ω with ε > 0
such that ξ (0) = z̄ and ξ ′+(0) = w, where ξ ′+(·) stands for the right derivative of ξ (·). By the finite
dimensionality of the spaces in question we always have N̂Ω(z̄) = TΩ(z̄)∗. If the set Ω is normally
regular at z̄, then there is the following tangent-normal duality:

TΩ(z̄) = NΩ(z̄)∗ :=
{

w ∈ Z
∣∣ 〈w,z∗〉 ≤ 0 if z∗ ∈ NΩ(z̄)

}
and NΩ(z̄) = TΩ(z̄)∗.(2.10)

Using the tangent cone (2.9), define next the critical cone to Ω at (z̄, z̄∗) with z̄ ∈ Ω and z̄∗ ∈ NΩ(z̄),
which is generated by (2.9) and the orthogonal complement {z̄∗}⊥ := {w ∈ Z| 〈w, z̄∗〉= 0

}
of z̄∗ as

KΩ(z̄, z̄∗) := TΩ(z̄)∩
{

z̄∗}⊥.(2.11)

Another primal-space construction generated by the tangent cone (2.9) is the graphical derivative of
a set-valued mapping Ψ : Z ⇒U at the given point (z̄, ū) ∈ gphΨ defined by

DΨ(z̄, ū)(w) :=
{

v ∈U
∣∣ (w,v) ∈ TgphΨ(z̄, ū)} for all w ∈ Z(2.12)

via the tangent cone (2.9) to the graph of Ψ at (z̄, ū). Our major goal in what follows is to compute
the graphical derivative (2.12) for the normal cone mapping Ψ given in (1.3).

We conclude this section with the following auxiliary proposition, which combines some facts
often used below in the proofs of the main results of the paper.

Proposition 2.1 (normal and critical directions to inverse images). Let f : Z → Y be C1-smooth
around z̄ with f (z̄) ∈ Ω, where Ω is a closed convex set. If the constraint system f (z) ∈ Ω satisfies
MSCQ at z̄ with modulus κ , then N f−1(Ω)(z̄) = ∇ f (z̄)∗NΩ( f (z̄)) and for every z∗ ∈ N f−1(Ω)(z̄) we have

(2.13) z∗ ∈ ∇ f (z̄)∗
(
NΩ( f (z̄))∩κ‖z∗‖BY ∗

)
.

Furthermore, for all such z∗ ∈ N f−1(Ω)(z̄) the dual cone to (2.11) is represented by

K f−1(Ω)(z̄,z
∗)∗ = cl

(
∇ f (z̄)∗NΩ( f (z̄))+ [z∗]

)
,(2.14)

where the closure operation can be omitted if the strict complementarity condition holds at (z̄,z∗).
Proof. Inclusion (2.13) follows from [7, Lemma 2.1] and implies that N f−1(Ω)(z̄)⊂∇ f (z̄)∗NΩ( f (z̄).

The opposite inclusion is a consequence of [20, Theorem 6.14], and thus we get the claimed equality
for N f−1(Ω)(z̄). To proceed with (2.14), pick any z∗ ∈ N f−1(Ω)(z̄) and observe that

K f−1(Ω)(z̄,z
∗)∗ =

(
Tf−1(Ω)(z̄)∩{z∗}⊥

)∗
= cl

(
N f−1(Ω)(z̄)+ [z∗]

)
= cl

(
∇ f (z̄)∗NΩ( f (z̄))+ [z∗]

)
,
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which verifies (2.14). If strict complementarity holds at (z̄,z∗), take µ ∈ riNΩ( f (z̄)) with z∗ =
∇ f (z̄)∗µ and get by the convexity of NΩ( f (z̄)) that NΩ( f (z̄))+R+µ ⊂ NΩ( f (z̄)). This yields

∇ f (z̄)∗NΩ

(
f (z̄)

)
+[z∗] = ∇ f (z̄)∗

(
NΩ( f (z̄))+ [µ]

)
= ∇ f (z̄)∗

(
NΩ( f (z̄))−R+µ

)
= ∇ f (z̄)∗

(
R+

(
NΩ( f (z̄))−µ)

)
= cl

(
∇ f (z̄)∗

(
R+(NΩ( f (z̄))−µ

))
= cl

(
∇ f (z̄)∗NΩ( f (z̄))+ [z∗]

)
since R+(NΩ( f (z̄))− µ) is the subspace parallel to the affine hull of NΩ( f (z̄)) and hence the set
∇ f (z̄)∗(R+(NΩ( f (z̄))−µ)) is a subspace as well. The closedness of the later shows that the closure
operation can be removed from (2.14), which completes the proof of the proposition. �

3 Second-Order Properties of PCS under Reduction
In this section we study, under the standing assumptions formulated above, some second-order prop-
erties on the reduced system with imposing in addition the MSCQ condition on its data. Denoting
z̄ := (p̄, x̄) ∈ Z := P×X and using the reduction data h and K from (2.1), we consider the mapping

(3.1) G : Z→ E with G(z) := h
(
g(z)

)
and G(z̄) = 0,

where the latter condition is essential in what follows. Observe that the reduced PCS given by
G(p,x) ∈ K is equivalent to the original one (1.1) in the following sense. Taking the neighborhood V
of g(p̄, x̄) from (2.1) and choosing open neighborhoods U of x̄ and Q of p̄ with Q×U ⊂ g−1(V ), for
each p ∈ Q we get that Γ(p)∩U = Γ̃(p)∩U , where Γ̃(p) := {x |G(p,x) ∈ K}. Therefore we have

N̂Γ(p)(x) = N̂Γ(p)∩U(x) = N̂
Γ̃(p)∩U(x) = N̂

Γ̃(p)(x)

whenever (p,x) ∈ Q×U . This shows that the graphical derivative of the normal cone mapping Ψ at
(p̄, x̄, v̄) coincides with the one of the mapping (p,x)⇒ N̂

Γ̃(p)(x). To simplify the notation, suppose

that Γ(p) = Γ̃(p) for all p sufficiently close to p̄. Note that gphΓ = {z ∈ Z |g(z) ∈ C}, and hence
gphΓ∩W = {z ∈W |G(z) ∈ K} for some neighborhood W of z̄.

In the rest of this section we present three statements concerning second-order properties of the
reduced system, which are of their own interest while playing an important role in establishing the
main results of the paper. The first proposition justifies the (Robinson) upper Lipschitzian property
(see, e.g., [2, 20]) of an auxiliary set-valued mapping built upon the data in (2.1) and (3.1).
Proposition 3.1 (upper Lipschitzian property of the second-order auxiliary mapping). Assume
that MSCQ holds for the system G(z) ∈ K ⊂ E at z̄ with modulus κ and take v ∈ Z with ∇G(z̄)v ∈ K.
Then we can find a positive number κ such that for every pair (w,q) ∈ Z×E with

(3.2) ∇G(z̄)w+
1
2

∇
2G(z̄)(v,v)+q ∈ TK

(
∇G(z̄)v

)
there exists a vector w̃ ∈ Z satisfying the conditions

(3.3) ∇G(z̄)w̃+
1
2

∇
2G(z̄)(v,v) ∈ TK(∇G(z̄)v) and ‖w̃−w‖ ≤ κ‖q‖.

The latter condition can be reformulated as the upper Lipschitzian property

Θ(q)⊂Θ(0)+κ‖q‖BZ for all q ∈ E(3.4)

of the auxiliary set-valued mapping Θ : E ⇒ Z defined by

Θ(q) :=
{

w ∈ Z
∣∣∣ ∇G(z̄)w+

1
2

∇
2G(z̄)(v,v)+q ∈ TK(∇G(z̄)v)

}
.
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Proof. The imposed MSCQ gives us a neighborhood W of z̄ and a number κ > 0 such that
dist(z;G−1(K))≤ κdist(G(z);K) for all z ∈W . Consider (w,q) satisfying (3.2), we observe that

TK
(
∇G(z̄)v

)
= cl

(
K +[∇G(z̄)v]

)
and fix ε > 0. Then there are yε ∈ K, qε ∈ E, and αε ∈ R with

‖qε −q‖ ≤ ε and ∇G(z̄)w+
1
2

∇
2G(z̄)(v,v)+qε = yε −αε∇G(z̄)(v).

Given any positive number t, we have the representations

G
(
z̄+ tv+ t2(w+αεv)

)
= t∇G(z̄)v+ t2

(
∇G(z̄)(w+αεv)+

1
2

∇
2G(z̄)(v,v)

)
+o(t2)

= t∇G(z̄)v+ t2(yε −qε)+o(t2).

Since both ∇G(z̄)v and yε are contained in the convex cone K, we have t∇G(z̄)v+ t2yε ∈ K, which
yields the estimate dist(G(z̄+ tv+ t2(w+αεv));K)≤ t2‖qε‖+o(t2). Hence for every small number
t > 0 there is sε(t) with ‖sε(t)‖ ≤ κ(‖qε‖+ o(t2)

t2 ) and G
(
z̄+ tv+ t2(w+αεv+ sε(t))

)
∈ K. Thus we

can find a sequence tk ↓ 0 such that the sequence sε(tk) converges to some sε satisfying ‖sε‖ ≤ κ‖qε‖.
Using again the conic structure of K tells us that the quantities

G
(
z̄+ tkv+ t2

k (w+αεv+ sε

(
tk)
)

t2
k

=
( 1

tk
+αε

)
∇G(z̄)v+∇G(z̄)(w+ sε

(
tk)
)
+

1
2

∇
2G(z̄)(v,v)+

o(t2
k )

t2
k

belong to the convex cone K. This clearly implies that

∇G(z̄)
(
w+ sε(tk)

)
+

1
2

∇
2G(z̄)(v,v)+

o(t2
k )

t2
k
∈ K +[∇G(z̄)v],

which in turn yields by passing to the limit as t ↓ 0 the inclusion

∇G(z̄)(w+ sε)+
1
2

∇
2G(z̄)(v,v) ∈ cl

(
K +[∇G(z̄)v]

)
= TK

(
∇G(z̄)v

)
.

Considering an arbitrary sequence εk ↓ 0 and passing to a subsequence if necessary, suppose that sεk

converges to some s∈ Z and then obtain ‖s‖≤ κ‖q‖ and ∇G(z̄)(w+s)+ 1
2 ∇2G(z̄)(v,v)∈ TK(∇G(z̄)v),

which verifies (3.3) with w̃ = w+ s and thus completes the proof of the proposition. �

Given z∗ ∈ NgphΓ(z̄) and a critical direction v ∈KgphΓ(z̄,z∗), we define now the following (dual)
problem of conic linear programming:

(Dv,z∗) sup
µ

1
2
〈
µ,∇2G(z̄)(v,v)

〉
subject to µ ∈ K∗ and ∇G(z̄)∗µ = z∗.(3.5)

The next proposition establishes an important property in conic programming called the “approximate
duality” in [10], where it was obtained for second-order cone programs by using their specific features.
Here we proceed in the general framework by exploiting MSCQ.
Proposition 3.2 (approximate duality in conic linear programming). Assume that MSCQ holds for
the system G(z)∈K at z̄ and consider the conic linear program (3.5) generated by some z∗ ∈NgphΓ(z̄)
and v ∈KgphΓ(z̄,z∗). Then the set of optimal solution to (Dv,z∗) is nonempty and for every optimal
solution µ̂ to (Dv,z∗) and for every ε > 0 there is some wε satisfying the conditions

dist
(

∇G(z̄)wε +
1
2

∇
2G(z̄)(v,v);K

)
≤ ε and 〈z∗,wε〉+

1
2
〈
µ̂,∇2G(z̄)(v,v)

〉
≥−ε.(3.6)
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Proof. Consider the primal conic linear program (P̃v,z∗) and its dual (D̃v,z∗) given by

(P̃v,z∗) inf
w
−〈z∗,w〉 subject to ∇G(z̄)w+

1
2

∇
2G(z̄)(v,v) ∈ TK

(
∇G(z̄)v

)
and

(D̃v,z∗) sup
µ

1
2
〈
µ,∇2G(z̄)(v,v)

〉
subject to µ ∈ NK

(
∇G(z̄)v

)
, ∇G(z̄)∗µ = z∗,

respectively. By the well-known relationship NK(∇G(z̄)v) = K∗∩
[
∇G(z̄)v

]⊥ , for every µ feasible to
(Dv,z∗) we get 〈µ,∇G(z̄)v〉= 〈z∗,v〉= 0, which shows that the programs (D̃v,z∗) and (Dv,z∗) from (3.5)
are equivalent. It follows from the upper Lipschitzian property (3.4) verified in Proposition 3.1 and
the results of [2, Propositions 2.147 and 2.186] that the set of optimal solutions to (Dv,z∗) is nonempty
and that the optimal values of (P̃v,z∗) and (Dv,z∗) agree. Hence for every optimal solution µ̂ to (3.5)
and every ε > 0 there is some ŵε feasible to (P̃v,z∗) satisfying −〈z∗, ŵε〉 − 1

2〈µ̂,∇
2G(z̄)(v,v)〉 ≤ ε .

Furthermore, we can find a real number αε such that

dist
(

∇G(z̄)ŵε +
1
2

∇
2G(z̄)(v,v)+αε∇G(z̄)v;K

)
≤ ε.

Taking finally into account that 〈z∗,v〉= 0 as shown above, we arrive at both conditions in (3.6) with
wε = ŵε +αεv and thus complete the proof of the proposition. �

To proceed further, fix z∗ ∈ NgphΓ(z̄), form the set of multipliers

M (z̄,z∗) :=
{

µ ∈ K∗
∣∣ ∇G(z̄)∗µ = z∗},

and define the multiplier set in the direction v ∈KgphΓ(z̄,z∗) by

M (z̄,z∗;v) := argmax
{
〈µ,∇2G(z̄)(v,v)〉 |µ ∈M (z̄,z∗)

}
.(3.7)

Observe that M (z̄,z∗;v) is the set of optimal solutions to the dual program (Dv,z∗) from (3.5), and thus
it is nonempty by Proposition 3.2 under the imposed MSCQ condition.

Now we are ready to derive the main result of this section that establishes primal-dual relationships
between second-order elements of the constraint system (1.1) and of its reduction (3.1) under MSCQ.
It is convenient to use in what follow the product projection operator defined by

πX∗ : P∗×X∗→ X∗ with πX∗(p∗,x∗) := x∗,(3.8)

where the decision space X and the parameter space P are taken from (1.1).
Theorem 3.3 (second-order primal-dual relationships for PCS). Assume that MSCQ holds for the
system G(z) ∈ K at z̄. Then for every z∗ ∈ NgphΓ(z̄)∩π

−1
X∗ (x̄

∗), every v = (q,u) ∈KgphΓ(z̄,z∗), every
µ̂ ∈M (z̄,z∗;v), and every w∗x∗ ∈ X∗ such that there is a sequence of w∗k ∈KgphΓ(z̄,z∗)∗ with

w∗x∗ = lim
k→∞

πX∗(w∗k) and lim
k→∞

〈w∗k ,v〉= 0

we have the following inclusion into the tangent cone to the graph of the solution map Γ from (1.2):(
q,u,∇

(
∇xG(·)∗µ̂

)
(z̄)v+w∗x∗

)
∈ TgphΨ(p̄, x̄, x̄∗),

where these tangents are derivable. It gives us, in particular, that(
q,u,∇

(
∇xG(·)∗µ̂

)
(z̄)v+πX∗(w∗)

)
∈ TgphΨ(p̄, x̄, x̄∗) for all w∗ ∈ NKgphΓ(z̄,z∗)(v)(3.9)

along with the elements (z∗,v,u.µ̂) listed above.
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Proof. Since z∗ = ∇G(z̄)∗µ̂ by (3.7), it follows from Proposition 2.1 that

KgphΓ(z̄,z∗)∗ = cl
(
∇G(z̄)∗K∗+[z∗]

)
= cl

(
∇G(z̄)∗(K∗+[µ̂])

)
.

Hence for every k ∈N there exist µ̃k ∈ K∗ and αk ∈R such that ‖w∗k−∇G(z̄)∗(µ̃k−αkµ̂)‖ ≤ k−1. Let
us recursively construct a sequence of real numbers βk for k ∈ N by

β1 := max
{
−α1 +1,0

}
, βk+1 := max

{
(k+1)(|αk+1|+‖µ̃k+1‖),βk +αk +1

}
−αk+1 as k ≥ 1.

We get that the sequence {βk +αk} is strictly increasing with βk +αk ≥ k as k ∈ N and

lim
k→∞

αk

βk +αk
= lim

k→∞

‖µ̃k‖
βk +αk

= 0.

Define tk := (βk +αk)
−1 and µk := (µ̃k +βkµ̂)/(βk +αk) ∈ K∗ for all k ∈ N and observe that µk−µ̂

tk
=

µ̃k−αkµ̂ , which yields the relationships

lim
k→∞

µk− µ̂ = lim
k→∞

µ̃k−αkµ̂

βk +αk
= 0 and ‖w∗k− w̃∗k‖ ≤ k−1 with w̃∗k := t−1

k ∇G(z̄)∗(µk− µ̂).

For each t ∈ (0,1) we find k ∈N such that t ∈ (tk+1, tk] and let µt := ((tk− t)µk+1+(t− tk+1)µk)/(tk−
tk+1). This gives us µt ∈ K∗, µt → µ̂ as t ↓ 0, and

∇G(z̄)∗
µt − µ̂

t
=

(tk− t)tk+1

(tk− tk+1)t
∇G(z̄)∗

µk+1− µ̂

tk+1
+

(t− tk+1)tk
(tk− tk+1)t

∇G(z̄)∗
µk− µ̂

tk

=
(tk− t)tk+1

(tk− tk+1)t
w̃∗k+1 +

(t− tk+1)tk
(tk− tk+1)t

w̃∗k .

The nonnegativity of both tk− t and t− tk+1 together with the relationships (tk− t)tk+1+(t− tk+1)tk =
(tk− tk+1)t and ‖w∗k− w̃∗k‖→ 0 as k→ ∞ imply the limiting conditions

(3.10) lim
t↓0

∇xG(z̄)∗
µt − µ̂

t
= lim

t↓0
πX∗
(

∇G(z̄)∗
µt − µ̂

t

)
= w∗x∗ , lim

t↓0

〈
∇G(z̄)∗

µt − µ̂

t
,v
〉
= 0.

By 〈z∗,v〉= 〈∇G(z̄)∗µ̂,v〉= 0, the latter condition yields

(3.11) 〈µt ,∇G(z̄)v〉= 〈∇G(z̄)∗µt ,v〉= 〈∇G(z̄)∗µ̂,v〉+o(t) = o(t).

To proceed further, fix ε > 0 and consider the following optimization problem:

min‖w‖ subject to 〈z∗,w〉+ 1
2

〈
µ̂,∇2G(z̄)(v,v)

〉
≥−ε, dist

(
∇G(z̄)w+

1
2

∇
2G(z̄)(v,v);K

)
≤ ε,

which admits an optimal solution wε by Proposition 3.2. Note that the feasible region of this program
is closed and convex. It is also easy to see that the function ε → ‖wε‖ is decreasing, convex, and
hence continuous. Considering first the case where ‖wε‖ is not identically zero, for every t > 0 define

σt := max
{

t,sup{‖∇G(z̄)∗(µτ − µ̂)‖|τ ≤ t}
}

and εt := inf
{

ε > 0 |σt‖wε‖ ≤ ε
}
.

Since εt > 0 and ‖wε‖ is continuous, we get σt‖wεt‖ = εt . Observe that the functions t → σt and
t→ εt are increasing and that σt ↓ 0 as t ↓ 0, which allows us to claim that εt ↓ 0 as t ↓ 0. Indeed, pick
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δ > 0 and t̄ > 0 with σt̄ < δ/‖wδ‖. Then for every 0 < t < t̄ we have σt‖wδ‖ ≤ σt̄‖wδ‖ < δ . This
clearly yields εt < δ and thus verifies the claim. Furthermore, it follows by setting w̄t := wεt that

liminf
t↓0

〈
µ̂,∇G(z̄)w̄t +

1
2

∇
2G(z̄)(v,v)

〉
= liminf

t↓0
〈z∗, w̄t〉+

1
2
〈
µ̂,∇2G(z̄)(v,v)

〉
≥ 0,(3.12a)

lim
t↓0

〈
µt − µ̂,∇G(z̄)w̄t

〉
= lim

t↓0

〈
µt − µ̂,∇G(z̄)w̄t +

1
2

∇
2G(z̄)(v,v)

〉
= 0,(3.12b)

lim
t↓0

dist
(

∇G(z̄)w̄t +
1
2

∇
2G(z̄)(v,v);K

)
= 0

together with t‖w̄t‖→ 0 as t ↓ 0. Observe also that these conditions hold with w̄t = 0 if ‖wε‖= 0 for
all ε > 0. Taking now ∇G(z̄)v ∈ K into account, we get therefore that

dist
(
G(z̄+ tv+ t2w̄t ;K)

)
= dist

(
t∇G(z̄)v+ t2(

∇G(z̄)w̄t +
1
2

∇
2G(z̄)(v,v)

)
+o(t2);K

)
= o(t2).

Applying MSCQ, for every t > 0 we find zt = (pt ,xt) with G(zt) ∈ K and zt = z̄+ tv+ t2w̄t + o(t2).
Next choose α > 0 so small that α‖∇2

xx〈µ̂,G〉(z̄)‖ < 1
2 . Since πX∗(z∗) = x̄∗ and z∗ = ∇G(z̄)∗µ̂ , we

have ∇xG(z̄)∗µ̂ = x̄∗ and deduce from the second-order sufficient condition in [2, Theorem 3.63] that
x̄ is a strict local solution to the optimization problem

(3.13) min
1
2
‖x̄+αJX(x̄∗)− x‖2 subject to G(p̄,x) ∈ K,

where JX : X∗→ X stands for the classical Riesz isomorphism. Choose ρ > 0 so that x̄ is the unique
global solution to this program on Bρ(x̄) and for every t ∈ (0,1] denote by x̄t a global solution to

(3.14) min
1
2
‖xt +αJX(x∗t )− x‖2 subject to x ∈ Γ(pt)∩Bρ(x̄)

with x∗t := ∇xG(zt)
∗µt . Observe that xt is feasible to the latter program for all t > 0 sufficiently small.

It is not hard to check that x̄t converges to x̄ as t ↓ 0. Indeed, suppose that ‖x̄tk − x̄‖ ≥ δ > 0 for
tk ↓ 0, and so x̄tk converges to some x̃ along a subsequence with G(p̄, x̃) = limk→∞ G(ptk , x̄tk) ∈ K and
δ ≤ ‖x̃− x̄‖ ≤ ρ . Then passing to the limit in the relationships

1
2
‖xtk +αJX(x∗tk)− x̄tk‖

2 ≤ 1
2
‖xtk +αJX(x∗tk)− xtk‖

2 =
α2

2
‖JX(x∗tk)‖

2

gives us the inequality 1
2‖x̄+JX(x̄∗)− x̃‖2 ≤ 1

2‖x̄+JX(x̄∗)− x̄‖2, which contradicts the uniqueness
of the minimizer x̄ for (3.13) on Bρ(x̄). Hence we get x̄t → x̄ and ‖x̄t − xt‖→ 0 as t ↓ 0.

The feasibility of xt in (3.14) yields ‖xt +αJX(x∗t )− x̄t‖2 ≤ ‖αJX(x∗t )‖2, and thus

‖xt − x̄t‖2 ≤ 2α〈x∗t , x̄t − xt〉= 2α〈µt ,∇xG(zt)(x̄t − xt)〉(3.15)

= 2α〈µt ,G(pt , x̄t)−G(pt ,xt)〉−α∇
2
xx〈µt ,G〉(pt ,xt)(x̄t − xt , x̄t − xt)+o(‖x̄t − xt‖2),

where the second equality is a consequence of the above definition of x∗t and of the adjoint operator.
It follows from (3.11), (3.12b), limt↓0 µt = µ̂ , and the inequality in (3.12a) with taking into account
the construction of z∗ therein that〈

µt ,G(pt ,xt)
〉

= t
〈
µt ,∇G(z̄)v

〉
+ t2

〈
µt ,∇G(z̄)w̄t +

1
2

∇
2G(z̄)(v,v)

〉
+o(t2)

= t
〈
µt ,∇G(z̄)v

〉
+ t2

〈
µ̂,∇G(z̄)w̄t +

1
2

∇
2G(z̄)(v,v)

〉
+o(t2)≥ o(t2).
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On the other hand, we have 〈µt ,G(pt , x̄t)〉 ≤ 0 due to G(pt , x̄t) ∈ K and µt ∈ K∗. Combining this with
(3.15) verifies the validity of the estimate

‖xt − x̄t‖2 ≤−α∇
2
xx〈µt ,G〉(pt ,xt)(x̄t − xt , x̄t − xt)+o(‖x̄t − xt‖2)+o(t2).

Since limt↓0 ∇2
xx〈µt ,G〉(pt ,xt) = ∇2

xx〈µ̂,G〉(z̄), we get α‖∇2
xx〈µt ,G〉(pt ,xt)‖ ≤ 5

8 whenever t > 0 is
small, and hence −α∇2

xx〈µt ,G〉(pt ,xt)(x̄t − xt , x̄t − xt)≤ 5
8‖xt − x̄t‖2. Then 1

4‖xt − x̄t‖2 ≤ o(t2) and

(3.16) ‖xt − x̄t‖= o(t) and ‖(x̄t , pt)− (z̄+ tv)‖= o(t)

for all t > 0 sufficiently small. Furthermore, it follows from (3.10) that

x∗t = ∇xG(zt)
∗
µt = ∇xG(z̄)∗µ̂ +

(
∇xG(zt)

∗
µ̂−∇xG(z̄)∗µ̂

)
+∇xG(zt)

∗(µt − µ̂)

= x̄∗+ t
(

∇
(
∇xG(·)∗µ̂

)
(z̄)v+∇xG(z̄)∗

µt − µ̂

t

)
+o(t)

= x̄∗+ t
(
∇(∇xG(·)∗µ̂)(z̄)v+w∗x∗

)
+o(t).

Remembering that x̄t → x̄ as t ↓ 0 and using the well-known necessary optimality condition (see, e.g.,
[20, Theorem 6.12]) for the optimal solution x̄t to program (3.14) tell us that

0 ∈J −1
X (x̄t − xt)−αx∗t +NΓ(pt)(x̄t) for all small t > 0.

Since NΓ(pt)(x̄t) is a cone, we obtain from the above and the left relationship in (3.16) that

dist
(
x̄∗+ t

(
∇(∇xG(·)∗µ̂)(z̄)v+w∗x∗

)
;NΓ(pt)(x̄t)

)
= dist

(
x∗t ;NΓ(pt)(x̄t)

)
+o(t) = o(t),

which being combined with the right relationship therein verifies the first inclusion of the theorem with
the tangent derivability. To get finally the refined inclusion (3.9), it remains to apply the first assertion
of the theorem by setting w∗k = w∗ for all k together with the equality NKgphΓ(z̄,z∗)(v) = KgphΓ(z̄,z∗)∗∩
[v]⊥, which is due to the duality in (2.10). �

4 Graphical Derivative of the Normal Cone via Reduction Data
In this section we derive upper estimates and exact expressions for the graphical derivative of the nor-
mal cone mapping (1.3) in terms of the auxiliary data of the parametric reduced system G(z)∈K with
z = (p,x). The Robinson stability (2.3) of the latter systems plays a crucial role in our consideration.

For the subsequent analysis we need the following characteristic subspace of the parameter space
P defined at the reference point z̄ = (p̄, x̄) by

P :=
{

q ∈ P
∣∣ ∇pG(z̄)q ∈ rge∇xG(z̄)+ linK

}
,(4.1)

where rgeA stands for the range of the linear operator. The next lemma on descriptions of tangent
vectors to the graph of (1.3) is basic for further developments. To avoid any confusion, note that the
notation NTgphΓ(z̄)(v) and similar ones in what follows mean that we consider the normal cone at the
point v to the tangent cone to the graph of Γ taken at the point z̄.
Lemma 4.1 (descriptions of graphical tangent directions). Assume that the reduced system G(p,x)∈
K enjoys the Robinson stability property at (p̄, x̄) with modulus κ . Then for every graphical tangent
direction (q,u,u∗) ∈ TgphΨ(p̄, x̄, x̄∗) the following assertions hold:

(i) There exists µ̂ ∈ NK(∇G(z̄)v)∩κ‖x̄∗‖BE∗ with v := (q,u) such that ∇xG(z̄)∗µ̂ = x̄∗ and

(4.2) u∗ ∈ ∇
(
∇xG(·)∗µ̂

)
(z̄)v+KΓ(p̄)(x̄, x̄

∗)∗.
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(ii) If either P = P or the cone K is polyhedral, then there exist z∗ ∈ NTgphΓ(z̄)(v)∩π
−1
X∗ (x̄

∗) with
πX∗ taken from (3.8) and a directional multiplier µ̂ ∈M (z̄,z∗;v)∩κ‖x̄∗‖BE∗ from (3.7) such that

(4.3) u∗ ∈ ∇
(
∇xG(·)∗µ̂

)
(z̄)v+πX∗

(
NKgphΓ(z̄,z∗)(v)

)
.

(iii) If there exist sequences tk ↓ 0, (qk,uk,u∗k)→ (q,u,u∗) with x̄∗+ tku∗k ∈ NΓ(p̄+tkqk)(x̄+ tkuk) and
dist(qk;q+P) = O(tk), then we can find z∗ ∈ NTgphΓ(z̄)(v)∩ π

−1
X∗ (x̄

∗), µ̂ ∈M (z̄,z∗;v)∩ κ‖x̄∗‖BE∗ ,
and w∗x∗ ∈ X∗ for which there is a sequence of w∗k ∈KgphΓ(z̄,z∗)∗ such that

w∗x∗ = lim
k→∞

πX∗(w∗k), lim
k→∞

〈w∗k ,v〉= 0, and u∗ = ∇
(
∇xG(·)∗µ̂

)
(z̄)v+w∗x∗ .

Proof. To verify assertion (i), take tk ↓ 0, (qk,uk,u∗k)→ (q,u,u∗) with x̄∗+ tku∗k ∈ NΓ(p̄+tkqk)(x̄+
tkuk) for all k ∈ N. Robustness of the Robinson stability property ensures that the system 0 ∈
G(p̄+ tkqk, ·)−K fulfills MSCQ with the uniform modulus κ at x̄+ tkuk for all large k. It follows from
Proposition 2.1 that there are µk ∈ NK(G(z̄+ tkvk))∩κ‖x̄∗+ tku∗k‖BE∗ satisfying x̄∗+ tku∗k = ∇xG(z̄+
tkvk)

∗µk with vk := (qk,uk). Since the set {x̄∗+ tku∗k | k ∈ N} is clearly bounded, so is {µk| k ∈ N},
which therefore contains a convergent subsequence µk→ µ̂ to some multiplier µ̂ ∈ κ‖x̄∗‖BE∗ satis-
fying µ̂ ∈ NK(G(z̄)) = K∗ and ∇xG(z̄)∗µ̂ = x̄∗. By taking into account that G(z̄+ tkvk) = tk∇G(z̄)vk +
o(tk)∈K and the conic structure of K, we get ∇G(z̄)vk+o(tk)/tk ∈K and hence ∇G(z̄)v∈K. Further-
more, NK(G(z̄+ tkvk)) = K∗∩ [G(z̄+ tkvk)]

⊥, which yields 〈µk,G(z̄+ tkvk)〉= 0 for all k and therefore

0 = lim
k→∞

〈
µk,G(z̄+ tkvk)

〉
tk

=
〈
µ̂,∇G(z̄)v

〉
.

This gives us µ̂ ∈ [∇G(z̄)v]⊥ verifying µ̂ ∈ K∗∩ [∇G(z̄)v]⊥ = NK(∇G(z̄)v). Observe also that

u∗k =
∇xG(z̄+ tkvk)

∗µk− x̄∗

tk
=

∇xG(z̄+ tkvk)
∗µk−∇xG(z̄)∗µ̂
tk

= ∇
(
∇xG(·)∗µ̂

)
(z̄)v+

o(tk)
tk

+∇xG(z̄)∗
µk− µ̂

tk
,

which justifies the validity of the limiting representation

(4.4) u∗−∇
(
∇xG(·)∗µ̂

)
(z̄)v = lim

k→∞

∇xG(z̄)∗
µk− µ̂

tk
.

Picking now an arbitrary critical direction w ∈KΓ(p̄)(x̄, x̄∗) = TΓ(p̄)(x̄)∩ [x̄∗]⊥, we get ∇xG(z̄)w ∈ K
and 〈x̄∗,w〉= 〈∇xG(z̄)∗µ̂,w〉= 0. Together with µk ∈ K∗ it implies that

0≥ 〈µk,∇xG(z̄)w〉
tk

=
〈∇xG(z̄)∗µk,w〉

tk
=
〈

∇xG(z̄)∗
µk− µ̂

tk
,w
〉

and consequently verifies that ∇xG(z̄)∗ µk−µ̂

tk
∈KΓ(p̄)(x̄, x̄∗)∗. This deduces (4.2) from (4.4) due to the

polar cone closedness thus completing the proof of assertion (i).
For the rest of the proof of this theorem we set z∗ := ∇G(z̄)∗µ̂ ∈ NgphΓ(z̄)∩π

−1
X∗ (x̄

∗). As already
shown, 〈z∗,v〉 = 〈µ̂,∇G(z̄)v〉 = 0 and hence z∗ ∈ NgphΓ(z̄)∩ [v]⊥∩π

−1
X∗ (x̄

∗) = NTgphΓ(z̄)(v)∩π
−1
X∗ (x̄

∗).
We also have v ∈ TgphΓ(z̄)∩ [z∗]⊥ = KgphΓ(z̄,z∗) by definition (2.11).

To proceed next with justifying assertion (ii), let us first verify that the sequence
{

q∗k :=∇pG(z̄)∗ µk−µ̂

tk

}
is bounded. Starting with the case where P = P and arguing by contradiction, suppose that {q∗k} is
unbounded. Then passing to a subsequence if necessary gives us q̃ ∈ P such that〈

q∗k , q̃
〉
=
〈

µk− µ̂

tk
,∇pG(z̄)q̃

〉
→ ∞ as k→ ∞.

12



The assumption of P = P and the construction of P in (4.1) allow us to find ũ ∈ X and µ̃ ∈ linK
with ∇pG(z̄)q̃ = ∇xG(z̄)ũ+ µ̃ . It follows from µk− µ̂ ∈ K∗−K∗ = (linK)⊥ and (4.4) that

∞ = lim
k→∞

〈
µk− µ̂

tk
,∇pG(z̄)q̃

〉
= lim

k→∞

〈
µk− µ̂

tk
,∇xG(z̄)ũ+ µ̃

〉
= lim

k→∞

〈
∇xG(z̄)∗

µk− µ̂

tk
, ũ
〉

=
〈
u∗−∇

(
∇xG(·)∗µ̂

)
(z̄)v, ũ

〉
,

a contradiction that verifies the boundedness of {q∗k} if P = P. It remains to consider the case where
K is polyhedral. Then its polar cone K∗ is polyhedral as well and the normal cones NK(G(z̄+ tkvk)) =
K∗∩ [G(z̄+ tkvk)]

⊥ for each k are faces of K∗. Since a polyhedral cone has only finitely many faces,
by passing to a subsequence we may suppose that all these faces are identical, i.e., there is s ∈ K such
that NK(G(z̄+ tkvk)) = K∗∩ [s]⊥ for all k ∈ N. The classical result by Walkup and Wets [21] tells us
that the set-valued mapping b∗⇒ S (b∗) := {µ ∈ K∗∩ [s]⊥|∇xG(z̄)∗µ = b∗} is Lipschitz continuous
in the Hausdorff metric on its domain. Since µk ∈S (∇xG(z̄)∗µk) and µ̂ ∈S (x̄∗), there is a constant
L > 0 such that for every k ∈ N we can find µ̃k ∈S (∇xG(z̄)∗µk) for which

‖µ̃k− µ̂‖ ≤ L‖∇xG(z̄)∗µk− x̄∗‖= L‖x̄∗+ tku∗k +
(
∇xG(z̄)∗−∇xG(z̄+ tkvk)

∗)
µk− x̄∗‖

= L
(
tk‖u∗k−∇

(
∇xG(·)∗µk

)
(z̄)vk‖+o(tk)

)
,

and so {(µ̃k− µ̂)/tk} is bounded. Defining further ũ∗k := (∇xG(z̄+ tkvk)
∗µ̃k− x̄∗)/tk, we get

x̄∗+ tkũ∗k = ∇xG(z̄+ tkvk)
∗
µ̃k ∈ NΓ(p̄+tkqk)(x̄+ tkuk) and

lim
k→∞

(ũ∗k−u∗k) = lim
k→∞

∇xG(z̄+ tkvk)
∗ µ̃k−µk

tk

= lim
k→∞

∇xG(z̄)∗
µ̃k−µk

tk
+
(

∇
(
∇xG(z̄)∗

)
vk +

o(tk)
tk

)
(µ̃k−µk) = 0.

Hence ũ∗k→ u∗ and we can rename the sequences {ũ∗k} and {µ̃k} by {u∗k} and {µk}, respectively. Then
the boundedness of

{
µ̃k−µ̂

tk

}
yields the one for {q∗k} in the polyhedral case.

The boundedness of the sequences
{

q∗k = ∇pG(z̄)∗ µk−µ̂

tk

}
and

{
∇xG(z̄)∗ µk−µ̂

tk

}
implies this prop-

erty for the sequence
{

∇G(z̄)∗ µk−µ̂

tk

}
, and thus we have ∇G(z̄)∗ µk−µ̂

tk
→ w∗ as k→ ∞ along a subse-

quence. Fix w ∈KgphΓ(z̄,z∗) and get that

0≥
〈
µk,∇G(z̄)w

〉
tk

=
〈

∇G(z̄)∗
µk− µ̂

tk
,w
〉

for any k ∈ N,

which yields 〈w∗,w〉 ≤ 0 and w∗ ∈KgphΓ(z̄,z∗)∗. On the other hand, we have

0 ≤ liminf
k→∞

〈
µk− µ̂,G(z̄+ tkvk)

〉
t2
k

= liminf
k→∞

(〈
µk− µ̂

tk
,∇G(z̄)vk

〉
+

1
2

〈
µk− µ̂,∇2G(z̄)(vk,vk)+

o(t2
k )

t2
k

〉)
= 〈w∗,v〉

verifying that w∗ ∈KgphΓ(z̄,z∗)∗ ∩ [v]⊥ = NKgphΓ(z̄,z∗)(v) by the duality correspondence (2.10). This
shows that condition (4.3) follows from (4.4). To justify (ii), it remains to check the inclusion µ̂ ∈
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M (z̄,z∗;v). Indeed, for every µ ∈M (z̄,z∗) we have ∇G(z̄)∗µ = ∇G(z̄)∗µ̂ and therefore

0 ≤ liminf
k→∞

t−2
k

〈
µk−µ,G(z̄+ tkvk)

〉
= liminf

k→∞

(〈
∇G(z̄)∗

µk−µ

tk
,vk

〉
+

1
2

〈
µk−µ,∇2G(z̄)(vk,vk)+

o(t2
k )

t2
k

〉)
= liminf

k→∞

(〈
∇G(z̄)∗

µk− µ̂

tk
,vk

〉
+

1
2

〈
µk−µ,∇2G(z̄)(vk,vk)+

o(t2
k )

t2
k

〉)
= 〈w∗,v〉+ 1

2
〈
µ̂−µ,∇2G(z̄)(v,v)

〉
=

1
2
〈
µ̂−µ,∇2G(z̄)(v,v)

〉
,

which justifies the inclusion µ̂ ∈M (z̄,z∗;v) and completes the proof of assertion (ii).
Now we turn to the final assertion (iii) of the theorem. Represent P as the direct sum P =P

⊕
P̂

with some subspace P̂ and denote by π
P̂

the corresponding projection of P onto P̂ along P . For
each k ∈ N take q̃k ∈P with ‖q+ q̃k−qk‖= dist(qk;q+P) and get π

P̂
(q−qk) = π

P̂
(q+ q̃k−qk)

by the construction. The continuity of the projection and the distance assumption in (iii) yields the
representation q̂k := π

P̂
(q−qk) = O(tk). We claim that

lim
k→∞

〈
∇pG(z̄)∗

µk− µ̂

tk
,q−qk− q̂k

〉
= 0.(4.5)

Indeed, the failure of (4.5) together with q−qk− q̂k ∈P and q−qk− q̂k→ 0 gives us q̃ ∈P with∣∣∣〈∇pG(z̄)∗
µk− µ̂

tk
, q̃
〉∣∣∣= ∣∣∣〈µk− µ̂

tk
,∇pG(z̄)q̃

〉∣∣∣→ ∞ as k→ ∞.

By q̃ ∈P we find ũ ∈ X and µ̃ ∈ linK satisfying ∇pG(z̄)q̃ = ∇xG(z̄)ũ+ µ̃ and then proceed as the
proof of (ii) to get the contradiction that verifies (4.5).

Next define w∗k := ∇G(z̄)∗ µk−µ̂

tk
for k ∈ N and show that {w∗k} is the sequence whose existence is

claimed in (iii). Observe that 〈w∗k ,w〉= 〈∇G(z̄)∗ µk−µ̂

tk
,w〉= 〈∇G(z̄)∗µk,w〉

tk
≤ 0 for every w∈KgphΓ(z̄,z∗),

and so w∗k ∈KgphΓ(z̄,z∗)∗. It follows from the boundedness of
{

∇xG(z̄)∗ µk−µ̂

tk

}
and

{ q̂k
tk

}
that

0 ≤ liminf
k→∞

t−2
k

〈
µk− µ̂,G(z̄+ tkvk)

〉
= liminf

k→∞

(〈
µk− µ̂

tk
,∇G(z̄)vk

〉
+

1
2

〈
µk− µ̂,∇2G(z̄)(vk,vk)+

o(tk)2

t2
k

〉)
= liminf

k→∞

〈
µk− µ̂

tk
,∇G(z̄)vk

〉
= liminf

k→∞

(〈
∇G(z̄)∗

µk− µ̂

tk
,v
〉
−
〈

∇xG(z̄)∗
µk− µ̂

tk
,u−uk

〉
−
〈

∇pG(z̄)∗
µk− µ̂

tk
,q−qk− q̂k

〉
−
〈

∇pG(z̄)∗(µk− µ̂),
q̂k

tk

〉)
= liminf

k→∞

〈w∗k ,v〉 ≤ limsup
k→∞

〈w∗k ,v〉 ≤ 0,

which implies the limiting condition limk→∞〈w∗k ,v〉= 0 asserted in (iii) and liminfk→∞

〈
µk−µ̂

tk
,∇G(z̄)vk

〉
=
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0. To show that µ̂ ∈M (z̄,z∗;v), take any µ ∈M (z̄,z∗) and use ∇G(z̄)∗µ = ∇G(z̄)∗µ̂ to get

0 ≤ liminf
k→∞

t−2
k

〈
µk−µ,G(z̄+ tkvk)

〉
= liminf

k→∞

(〈
µk−µ

tk
,∇G(z̄)vk

〉
+

1
2

〈
µk−µ,∇2G(z̄)(vk,vk)+

o(tk)2

t2
k

〉)
= liminf

k→∞

(〈
µk− µ̂

tk
,∇G(z̄)vk

〉
+

1
2

〈
µk−µ,∇2G(z̄)(vk,vk)+

o(tk)2

t2
k

〉)
=

1
2
〈
µ̂−µ,∇2G(z̄)(v,v)

〉
,

which yields the desired inclusion µ̂ ∈M (z̄,z∗;v) and thus completes the proof of the lemma. �
Now we present the main result of this section on calculating the graphical derivative of the normal

cone mapping (1.3) via the reduction data that is a direct consequence of those obtained above.

Theorem 4.2 (computing the graphical derivative of the normal cone mapping for PVS via the
reduction data). In addition to the standing assumption, suppose that the reduced system G(p,x)∈K
enjoys RS at (p̄, x̄) with modulus κ and that either P = P or K is polyhedral. Then we have

TgphΨ(p̄, x̄, x̄∗) =
{
(q,u,u∗)

∣∣∣ ∃z∗ ∈ NTgphΓ(z̄)(q,u)∩π
−1
X∗ (x̄

∗), µ̂ ∈M
(
z̄,z∗;(q,u)

)
∩κ‖x̄∗‖BE∗

with u∗ ∈ ∇
(
∇xG(·)∗µ̂

)
(z̄)(q,u)+πX∗

(
NKgphΓ(z̄,z∗)(q,u)

)}
.

Consequently, for all v = (q,u) ∈ Z we have the graphical derivative formula

DΨ(p̄, x̄, x̄∗)(v) =
{

∇
(
∇xG(·)∗µ̂

)
(z̄)v+πX∗

(
NKgphΓ(z̄,z∗)(v)

)∣∣∣
z∗ ∈ NTgphΓ(z̄)(v)∩π

−1
X∗ (x̄

∗), µ̂ ∈M (z̄,z∗;v)∩κ‖x̄∗‖BE∗
}
.

Proof. It follows from inclusion (3.9) in Theorem 3.3 and the results of Lemma 4.1(ii), by taking
into account that RS for the system G(p,x) ∈ K at (p̄, x̄) implies its MSCQ in Theorem 3.3. �

To conclude this section, we derive an upper estimate and a precise formula for computing DΨ

via the reduced data that does not impose any polyhedrality assumption on K while replacing it by
strict complementarity. The next lemma comes first.

Lemma 4.3 (critical cone under strict complementarity). Assume that both MSCQ and strict com-
plementarity conditions are satisfied at x̄ and (x̄, x̄∗), respectively. Then for all v = (q,u) ∈P ×X
and µ̂ ∈ NK(∇G(z̄)v) with ∇xG(z̄)∗µ̂ = x̄∗ we have the inclusion

KΓ(p̄)(x̄, x̄
∗)∗ ⊂ πX∗

(
NKgphΓ(z̄,∇G(z̄)∗ µ̂)(v)

)
.

Proof. Pick wx∗ ∈KΓ(p̄)(x̄, x̄∗)∗ and get by Proposition 2.1 that KΓ(p̄)(x̄, x̄∗)∗ = ∇xG(z̄)∗K∗+[x̄∗].
This gives us µ ∈ K∗ and α ∈R such that w∗x∗ = ∇xG(z̄)∗µ +α x̄∗ = ∇xG(z̄)∗(µ +αµ̂). By q ∈P we
get û ∈ X and θ ∈ linK satisfying ∇pG(z̄)q = ∇xG(z̄)û+θ , which yields

∇G(z̄)v = ∇xG(z̄)u+∇pG(z̄)q = ∇xG(z̄)(u+ û)+θ ∈ K and ∇xG(z̄)(u+ û) ∈ K.

It follows from 〈µ̂,θ〉= 0 and µ̂ ∈ NK(∇G(z̄)v) that

0 =
〈
µ̂,∇G(z̄)v

〉
=
〈
µ̂,∇xG(z̄)(u+ û)+θ

〉
=
〈
∇xG(z̄)∗µ̂,u+ û

〉
= 〈x̄∗,u+ û〉,
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and thus s := u+ û ∈ KΓ(p̄)(x̄, x̄∗). Next we claim that 〈∇xG(z̄)∗µ,s〉 = 0. Indeed, supposing the
contrary implies that 〈∇xG(z̄)∗µ,s〉= 〈µ,∇xG(z̄)s〉< 0. Consider now µ̄ ∈ riK∗ with ∇xG(z̄)∗µ̄ = x̄∗,
we get µ̄− tµ ∈ K∗ for all t > 0 sufficiently small and thus arrive at

0≥
〈
µ̄− tµ,∇xG(z̄)s

〉
=
〈
x̄∗,s

〉
− t
〈
µ,∇xG(z̄)s

〉
=−t

〈
µ,∇xG(z̄)s

〉
,

a contradiction that verifies our claim. It further implies that

0 =
〈
∇xG(z̄)∗µ,u+ û

〉
=
〈
µ,∇xG(z̄)(u+ û)

〉
=
〈
µ,∇xG(z̄)(u+ û)+θ

〉
=
〈
µ,∇G(z̄)v

〉
=
〈
∇G(z̄)∗µ,v

〉
.

Taking finally into account that 〈∇G(z̄)∗µ̂,v〉= 0, we obtain 〈w∗,v〉= 0 with

w∗ := ∇G(z̄)∗(µ +αµ̂) ∈ ∇G(z̄)∗K∗+[∇G(z̄)∗µ̂]⊂KgphΓ

(
z̄,∇G(z̄)∗µ̂

)∗
,

which yields w∗ ∈ NKgphΓ(z̄,∇G(z̄)∗ µ̂)(v) and thus completes the proof due to πX∗(w∗) = w∗x∗ . �

Now we are ready to present the aforementioned result of the graphical derivative evaluation
without any polyhedrality assumption on the reduced system.

Theorem 4.4 (evaluation of the graphical derivative via reduction data under strict complemen-
tarity). In addition to the standing assumptions, suppose that the reduced system G(p,x) ∈ K enjoys
the Robinson stability property at (p̄, x̄) with modulus κ and that the strict complementarity condition
holds for the system G(p̄,x) ∈ K at (x̄, x̄∗). Then for every direction v = (q,u) ∈P×X we have

DΨ(p̄, x̄, x̄∗)(v) ⊂
{

∇
(
∇xG(·)∗µ̂

)
(z̄)v+πX∗

(
NKgphΓ(z̄,z∗)(v)

)∣∣∣
z∗ ∈ NTgphΓ(z̄)(v)∩π

−1
X∗ (x̄

∗), µ̂ ∈M (z̄,z∗)∩κ‖x̄∗‖BE∗
}
.

If furthermore ∇2G(z̄)(v,v) ∈ rge
(
∇G(z̄)

)
+ linK, then this inclusion becomes an equation.

Proof. Note first the assumed RS ensures the validity of MSCQ in Lemma 4.3. Then the claimed
inclusion is an immediate consequence of that lemma together with Lemma 4.1(i). To verify the
equality therein, just note that for all µ1,µ2 ∈M (z̄,z∗) we have

µ1−µ2 ∈ ker∇G(z̄)∗∩ (K∗−K∗) =
(
rge∇G(z̄)+ linK

)⊥ ⊂ [∇2G(z̄)(v,v)]⊥,

which implies that
〈
µ1−µ2,∇

2G(z̄)(v,v)
〉
= 0 and M (z̄,z∗) =M (z̄,z∗;v). Hence the asserted equal-

ity follows from inclusion (3.9) in Theorem 3.3. �

5 Computing the Graphical Derivative of the Normal Cone Mapping
The main intention of this section is to express the computation formulas for our major second-
order object DΨ via the original data of PCS (1.1). To proceed, observe first that the surjectivity
of the derivative ∇h(g(z̄)) in the reduction procedure ensures by the standard chain rule of variational
analysis that NC(g(z̄)) = ∇h(g(z̄))∗K∗ and that the set

(
∇h(g(z̄))∗

)−1
(λ ) is a singleton for every

λ ∈ NC(g(z̄)). Furthermore, we have ∇G(z̄) = ∇h(g(z̄))◦∇g(z̄) and, by using the chain rule,〈
µ,∇2G(z̄)(v,v)

〉
=

〈
µ,∇h

(
g(z̄)

)
∇

2g(z̄)(v,v)+∇
2h
(
g(z̄)

)(
∇g(z̄)v,∇g(z̄)v)

〉
=

〈
∇h
(
g(z̄)

)∗
µ,∇2g(z̄)(v,v)

〉
+∇

2〈
µ,h(·)

〉(
g(z̄)

)(
∇g(z̄)v,∇g(z̄)v

)
(5.1)

∇
(
∇xG(·)∗µ

)
(z̄)v = ∇

(
∇xg(·)∗∇h

(
g(z̄)

)∗
µ
)
v+∇xg(z̄)∗∇

(
∇h(·)∗µ

)(
g(z̄)

)
∇g(z̄)v

= ∇
(
∇xg(·)∗∇h

(
g(z̄)

)∗
µ
)
v+∇xg(z̄)∗∇2〈

µ,h(·)
〉(

g(z̄)
)
∇g(z̄)v(5.2)
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for every µ ∈ E∗ and every v ∈ Z. For each pair z∗ ∈ NgphΓ(z̄) define the multiplier set by

Λ(z̄,z∗) :=
{

λ ∈ NC(g(z̄))
∣∣ ∇g(z̄)∗λ = z∗

}
and, given any critical direction v ∈KgphΓ(z̄,z∗), the directional multiplier set by

Λ(z̄,z∗;v) := argmax
λ∈Λ(z̄,z∗)

(〈
λ ,∇2g(z̄)(v,v)

〉
+∇

2〈(
∇h(g(z̄)

)∗)−1
(λ ),h(·)

〉(
g(z̄)

)(
∇g(z̄)v,∇g(z̄)v

))
.

Then we have Λ(z̄,z∗) = ∇h
(
g(z̄)

)∗
M (z̄,z∗) and Λ(z̄,z∗;v) = ∇h

(
g(z̄)

)∗
M (z̄,z∗;v).

The following lemma gives us an expression of the characteristic parameter subspace P from
(4.1) via the given data of original parametric constraint system (1.1).

Lemma 5.1 (original data description of the characteristic parameter subspace). Under the
standing assumptions made we have the representation

(5.3) P =
{

q ∈ P
∣∣ ∇pg(z̄)q ∈ rge∇xg(z̄)+ linTC

(
g(z̄)

)}
.

Proof. The surjectivity of ∇h(g(z̄)) ensures the equality TC(g(z̄)) = {v |∇h(g(z̄))v ∈ K}. Consid-
ering now q ∈ P̃ := {q |∇pg(z̄)q ∈ rge∇xg(z̄)+ linTC(g(z̄))}, we find u ∈ X and v ∈ linTC(g(z̄)) with
∇pg(z̄)q = ∇xg(z̄)u+ v, which implies the relationships

∇pG(z̄)q = ∇h
(
g(z̄)

)
∇pg(z̄)q = ∇h

(
g(z̄)

)
∇xg(z̄)u+∇h

(
g(z̄)

)
v = ∇xG(z̄)u+∇h

(
g(z̄)

)
v.

By v ∈ linTC(g(z̄)) we have ±v ∈ TC(g(z̄)) and hence ±∇h(g(z̄))v ∈ K, which yields ∇h(g(z̄))v ∈
linK. This gives us q ∈P and verifies the inclusion P̃ ⊂P . To prove the opposite one, pick q ∈P ,
u ∈ X , and w ∈ linK such that ∇pG(z̄)q = ∇xG(z̄)u+w. The surjectivity of ∇h(g(z̄)) allows us to
find v with w = ∇h(g(z̄))v, and so v ∈ linTC(g(z̄)) due to ±w = ∇h(g(z̄))(±v) ∈ K. This tells us that
∇h(g(z̄))(∇pg(z̄)q−∇xg(z̄)u− v) = 0 implying the inclusion

∇pg(z̄)q−∇xg(z̄)u− v ∈ ker∇h
(
g(z̄)

)
⊂ linTC

(
g(z̄)

)
,

which verifies that ∇pg(z̄)q ∈ ∇xg(z̄)u+ v+ linTC(g(z̄)) = ∇xg(z̄)u+ linTC(g(z̄)) and so q ∈ P̃ . It
yields P ⊂ P̃ and thus completes the proof of the lemma. �

The next lemma reveals that both MSCQ and RS are invariant with respect to the above reduction.

Lemma 5.2 (MSCQ and RC conditions under reduction). Let β̄ := 1/ inf{‖∇h(g(z̄))∗µ‖|µ ∈
K∗, ‖µ‖= 1}. Then the following assertions hold:

(i) If MSCQ holds for the original system g(z) ∈C at z̄ with modulus κ , then it also holds for the
reduced system G(z) ∈ K at the same point with modulus κβ for every β > β̄ .

(ii) If RS holds for the original system g(p,x) ∈C at (p̄, x̄) with modulus κ , it also holds for the
reduced system G(p,x) ∈ K at the same point with modulus κβ for every β > β̄ .

Proof. We verify assertions (i) and (ii) in a parallel way. Consider neighborhoods Q of p̄ and
U of x̄ together with κ > 0 such that the estimate dist(z;g−1(C)) ≤ κ dist(g(z),C) holds for all z ∈
Q×U in case (i) and dist(x;Γ(p)) ≤ κ dist(g(p,x),C) holds for all (p,x) ∈ Q×U in case (ii). The
surjectivity of ∇h(ȳ) implies the metric regularity of the mapping h(·)−K around (g(z̄),0) (see, e.g.,
[13, Theorem 4.18]) and thus by [20, Example 9.44] for every β > β̄ we can find ρ > 0 with

dist
(
y;h−1(K)

)
≤ β dist

(
h(y);K

)
for all y ∈Bρ

(
g(z̄)

)
.
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Choose ρ to be so small that C∩Bρ(g(z̄)) = h−1(K)∩Bρ(g(z̄)) and then find r > 0 with Br(z̄) ⊂
g−1(Bρ(g(z̄))). Set ρ̃ := 1

2 min{ r
κ
,ρ} and consider any vector

z = (p,x) ∈ (Q×U)∩g−1(Bρ̃(g(z̄))
)
∩Br/2(z̄)

from the neighborhood of z̄. Since dist
(
g(z);C

)
≤‖g(z)−g(z̄)‖≤ ρ̃ , there is c∈C with dist(g(z);C)=

‖g(z)− c‖ and ‖c−g(z̄)‖ ≤ ‖c−g(z)‖+‖g(z)−g(z̄)‖ ≤ ρ

2 +
ρ

2 = ρ . Thus

dist(g(z);C) = dist
(
g(z);C∩Bρ(g(z̄))

)
= dist

(
g(z);h−1(K)∩Bρ(g(z̄))

)
= dist

(
g(z);h−1(K)

)
.

Dealing now with the MSCQ case (i), we find z̃∈ g−1(C)−z with ‖z̃‖= dist(z;g−1(C))≤ κ dist(g(z);C)≤
κ ρ̃ ≤ r

2 . It shows that ‖z+ z̃− z̄‖ ≤ ‖z− z̄‖+‖z̃‖ ≤ r
2 +

r
2 = r and hence g(z+ z̃) ∈C∩Bρ(g(z̄)) =

h−1(K)∩Bρ(g(z̄)). This implies that G(z+ z̃)) = h(g(z+ z̃)) ∈ K and

dist
(
z;G−1(K)

)
≤ ‖z̃‖ = dist

(
z;g−1(C)

)
≤ κdist

(
g(z);C

)
= κdist

(
g(z);h−1(K)

)
≤ κβdist

(
h(g(z));K

)
,

which verifies the metric subregularity of G(·)−K at (z̄,0) with modulus κβ .
In the RS case (ii) we find x̃ ∈ Γ(p)− x with ‖x̃‖ = dist(x;Γ(p)) ≤ κdist(g(z);C) ≤ κρ̃ ≤ r

2 .
Setting z̃ := (0, x̃) gives us ‖(z+ z̃− z̄‖ ≤ ‖z− z̄‖+‖z̃‖ ≤ r

2 +
r
2 = r, and so g(z+ z̃) ∈C∩Bρ(g(z̄)) =

h−1(K)∩Bρ(g(z̄)). Hence we get G(z+ z̃)) = h(g(z+ z̃)) ∈ K and

dist
(
x;G(·, p)−1(K)

)
≤ ‖x̃‖ = dist

(
x;Γ(p)

)
≤ κdist

(
g(z);C

)
= κdist

(
g(z);h−1(K)

)
≤ κβdist

(
h(g(z));K

)
,

and verifies the Robinson stability of the reduced system G(p,x) ∈ K at (p̄, x̄) with modulus κβ . �

To formulate the first major result of this section on computing the graphical derivative of Ψ in
(1.3), for every λ ∈ NC(g(z̄)) define the linear mapping Hλ : Z→ X∗ by

Hλ v := ∇xg(z̄)∗∇2〈(
∇h(g(z̄))∗

)−1
λ ,h(·)

〉(
g(z̄)

)
∇g(z̄)v.(5.4)

Observe that, although mapping (5.4) (as well as its modifications considered below) is mainly con-
structed via the original data of the constraint system (1.1), it still includes the C2-smooth mapping
h : V → E that reduces the given constraint set C to the cone K in (2.1), which is not in the picture
anymore. However, the mapping h can be directly expressed entirely via the given data of (1.1) in the
most interesting settings. In particular, h is the identity mapping if C is a closed convex cone itself
and g(p̄, x̄) = 0 ∈C. In the case of the ice-cream/Lorentz cone C ⊂ Y = Rl we have that h(y) is the
identity mapping for y = 0 and h(y) = y2

1 + . . .+ y2
l−1− y2

l otherwise, while for the ice-cream cone
products the mapping h(y) at nonzero points is composed by the quadratic forms depending on the
values of the components at the reference points. We refer the reader to [2, Example 3.140] for the
explicit calculation of the reduction mapping h in the important case of the SDP cone. Some other
examples of calculating reduction mappings can also be found in [2].

Note furthermore that geometrically the mapping Hλ in (5.4) describes the curvature of the set
C at the point g(p̄, x̄). In particular, there is no curvature if g(p̄, x̄) = 0 and so any tangent to the
convex cone C at the origin is contained in C. But it is not the case if g(p̄, x̄) 6= 0 and the set C is not
polyhedral. The following theorem reflects all of this in the second-order computation formulas for
which we introduce the new condition number

(5.5) cond
(
∇h(g(x̄))∗;K

)
:=

sup{‖∇h(g(x̄))∗µ‖
∣∣ µ ∈ K∗, ‖µ‖= 1}

inf{‖∇h(g(x̄))∗µ‖
∣∣µ ∈ K∗, ‖µ‖= 1}

.
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Theorem 5.3 (computing the graphical derivative via the given data of PCS). In addition to the
standing assumptions, suppose that the original parametric constraint system g(p,x) ∈C enjoys the
RS property at (p̄, x̄) with modulus κ and that either P = P or the cone K is polyhedral. Then for
every β ′ > cond(∇h(g(x̄))∗;K) we have

TgphΨ(p̄, x̄, x̄∗) =
{
(q,u,u∗)

∣∣∣∃z∗ ∈ NTgphΓ(z̄)(q,u)∩π
−1
X∗ (x̄

∗), λ̂ ∈ Λ
(
z̄,z∗;(q,u)

)
∩κβ

′‖x̄∗‖BY ∗

with u∗ ∈
(

∇
(
∇xg(·)∗λ̂

)
(z̄)+H

λ̂

)
(q,u)+πX∗

(
NKgphΓ(z̄,z∗)(q,u)

)}
.

Consequently, for all v = (q,u) ∈ Z the graphical derivative of Ψ is computed by

DΨ(p̄, x̄, x̄∗)(v) =
{(

∇
(
∇xg(·)∗λ̂

)
(z̄)+H

λ̂

)
v+πX∗

(
NKgphΓ(z̄,z∗)(v)

)∣∣∣
z∗ ∈ NTgphΓ(z̄)(v)∩π

−1
X∗ (x̄

∗), λ̂ ∈ Λ(z̄,z∗;v)∩κβ
′‖x̄∗‖BY ∗

}
.

Proof. We deduce this statement from Theorem 4.2 and Lemma 5.2 by putting ∇h(g(z̄))∗µ̂ = λ̂

and using ‖λ̂‖ ≤ sup{‖∇h(g(x̄))∗µ‖
∣∣ µ ∈ K∗, ‖µ‖= 1}‖µ̂‖ together with (5.1) and (5.2). �

The assumption P = P is obviously fulfilled when ∇pg(p̄, x̄)) = 0 (“weak parameterization”)
that holds, in particular, in the nonparametric setting of g(p, ·) = g(p̄, ·) for all p. This leads us to the
following striking consequence of Theorem 5.3, which significantly extends all the known results in
this direction obtained for particular classes of constraint systems.

Corollary 5.4 (graphical derivative computation for nonparametric constraint systems). Con-
sider the constraint system g(x) ∈C generated by a C2-smooth mapping g : X → Y and a set C ⊂ Y
that is C2-cone reducible at g(x̄) with x̄ ∈ Γ̃ := {x ∈ X |g(x) ∈C}. Take x̄∗ ∈ N

Γ̃
(x̄) and assume that

MSCQ holds for g(x) ∈C at x̄ with modulus κ . Then for every β ′ > cond(∇h(g(x̄))∗;K) we have

TgphN
Γ̃
(x̄, x̄∗) =

{
(u,u∗)

∣∣∣ ∃ λ̂ ∈ Λ(x̄, x̄∗;u)∩κβ
′‖x̄∗‖BY ∗ : u∗ ∈

(
∇

2〈
λ̂ ,g
〉
(x̄)+H̃

λ̂

)
u+NKΓ(x̄,x̄∗)(u)

}
,

where the linear mapping H̃
λ̂

: X → X∗ is defined by

H̃
λ̂

u := ∇g(x̄)∗∇2〈(∇h(g(x̄))∗
)−1

λ̂ ,h(·)
〉(

g(x̄)
)
∇g(x̄)u.

Consequently, for all u ∈ X the graphical derivative of the normal cone mapping is computed by

DN
Γ̃
(x̄, x̄∗)(u) =

{(
∇

2〈
λ̂ ,g
〉
(x̄)+H̃

λ̂

)
u+NK

Γ̃
(x̄,x̄∗)(u)

∣∣∣λ̂ ∈ Λ(x̄, x̄∗;u)∩κβ
′‖x̄∗‖BY ∗

}
.

Proof. This is a clear consequence of Theorem 5.3, where RC reduces to MSCQ and the mapping
Hλ from (5.4) agrees with H̃λ in the nonparametric setting under consideration. �

The results obtained in Corollary 5.4 extend those derived in [3, 8] for polyhedral systems (when
the terms with H̃ disappear in the above formulas) and in [10] for the case of the (single) ice-cream
cone C, where the curvature term H̃ reduces to the one in [10, Theorem 5.1], which was first intro-
duced in [1] for different purposes in second-order cone/ice-cream programming.

The last consequence of Theorem 5.3 in this section concerns the general parametric setting of
(1.1) under the assumptions of the theorem and reveals relationships between the graphical derivatives
of Ψ and of the normal cone mappings for the graph of Γ computed via the data of (1.1).
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Corollary 5.5 (relationships for graphical derivatives of parametric constraint systems with
P = P). In the setting and under the assumptions of Theorem 5.3 we have the formula

TgphΨ(p̄, x̄, x̄∗) =
⋃

z∗∈NgphΓ(z̄)∩π
−1
X∗ (x̄

∗)

{(
v,πX∗(v∗)

)∣∣∣ (v,v∗) ∈ TgphNgphΓ
(z̄,z∗)

}
and correspondingly the graphical derivative relationship valid for every v = (q,u):

DΨ(p̄, x̄, x̄∗)(v) =
⋃

z∗∈NTgphΓ(z̄)
(v)∩π

−1
X∗ (x̄

∗)

πX∗
(
DNgphΓ(z̄,z∗)(v)

)
,

where the tangent cone and the graphical derivative on the right-hand sides above are computed by

TgphNgphΓ
(z̄,z∗) =

{
(v,v∗)

∣∣∣∃λ̂ ∈ Λ(z̄,z∗;v)∩κβ
′‖x̄∗‖BY ∗ : v∗ ∈

(
∇

2〈
λ̂ ,g
〉
(z̄)+H̃

λ̂

)
(v)+NKgphΓ(z̄,z∗)(v)

}
,

DNgphΓ(z̄,z∗)(v) =
{(

∇
2〈

λ̂ ,g
〉
(z̄)+H̃

λ̂

)
(v)+NKgphΓ(z̄,z∗)(v)

∣∣∣ λ̂ ∈ Λ(z̄,z∗;v)∩κβ
′‖x̄∗‖BY ∗

}
with H̃

λ̂
v := ∇g(z̄)∗∇2

〈(
∇h(g(z̄))∗

)−1
λ̂ ,h(·)

〉(
g(z̄)

)
∇g(z̄)v.

Proof. It follows from the definitions and the results of the theorem by applying the corresponding
formulas of Corollary 5.4 to the set Γ̃ = gphΓ therein. �

Note that in the case where g(p,x) strongly depends on the parameter (“strong parameterization”)
meaning that the derivative ∇pg(p̄, x̄) is surjective, the condition P = P amounts to the requirement

rge∇xg(z̄)+ linTC
(
g((z̄)

)
= Y,

which is the well-known nondegeneracy condition for PCS (1.1) at (p̄, x̄); see [2]. The next major
result is a version of the reduction Theorem 4.4 in terms of the original PCS data without imposing
either the assumption on P = P or on the polyhedrality of K while replacing them by strict com-
plementarity. However, the precise graphical derivative computation (versus an upper estimate useful
for its own sake) is obtained under an additional condition, which surely holds for the case of strong
parameterization while being far enough from nondegeneracy even in this case.

Theorem 5.6 (graphical derivative for the original PCS under strict complementarity). Together
with the standing assumptions on the original PCS (1.1) as well as the Robinson stability imposed
on it at (p̄, x̄), suppose that the strict complementarity condition holds for the system g(p̄,x) ∈ C at
(x̄, x̄∗) with modulus κ . Then for every direction v = (q,u) ∈P×X with parameters from (5.3) and
for every β ′ > cond(∇h(g(x̄))∗;K) we have the inclusion

DΨ(p̄, x̄, x̄∗)(v) ⊂
{(

∇
(
∇xg(·)∗λ̂

)
(z̄)+H

λ̂

)
v+πX∗

(
NKgphΓ(z̄,z∗)(v)

)∣∣∣
z∗ ∈ NTgphΓ(z̄)(v)∩π

−1
X∗ (x̄

∗), λ̂ ∈ Λ(z̄,z∗)∩κβ
′‖x̄∗‖BY ∗

}
with Hλ taken from (5.4). This inclusion holds as equality if in addition we assume that

(5.6) ∇h
(
g(z̄)

)
∇

2g(z̄)(v,v)+∇
2h
(
g(z̄)

)(
∇g(z̄)v,∇g(z̄)v) ∈ rge

(
∇h
(
g(z̄)

)
◦∇g(z̄)

)
+ linK,

which is satisfied, in particular, when the derivative ∇g(z̄) is surjective.
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Proof. Under the imposed strict complementarity condition of the theorem we take λ̄ ∈ riNC(g(z̄))
and deduce from basic convex analysis that

µ̄ :=
(
∇h(g(z̄))∗

)−1
λ̄ ∈ ri

((
∇h(g(z̄))∗

)−1NC(g(z̄))
)
= riK∗.

This shows that the strict complementarity condition also holds for the reduced system G(p̄,x) ∈ K at
(x̄, x̄∗). Thus it remains to apply Theorem 4.4 with the usage of the relationships between the original
and reduced constraint systems that are discussed above. �

The concluding result of this section does not impose either P = P, or polyhedrality, or strict
complementarity assumptions on PCS while establishing an upper estimate for a modified graphical
derivative of the normal cone mapping Ψ. It is useful for stability applications in the next section. The
modified graphical derivative D̃Ψ(p̄, x̄, x̄∗) : P×X ⇒ X∗ of the mapping Ψ from (1.3) is defined by

D̃Ψ(p̄, x̄, x̄∗)(q,u) :=
{

u∗
∣∣∣∃ tk ↓ 0, (qk,uk,u∗k)→ (q,u,u∗) with(5.7)

x̄∗+ tku∗k ∈Ψ(p̄+ tkqk, x̄+ tkuk), limsup
k→∞

dist(qk−q;P)

tk
< ∞

}
.

Proposition 5.7 (evaluation of the modified graphical derivative). Add only the validity of RS for
g(p,x)∈C at (p̄, x̄) to our standing assumptions. Then for all v=(q,u)∈P×X we have the inclusions

D̃Ψ(p̄, x̄, x̄∗)(q,u)⊂
{(

∇
(
∇xg(·)∗λ̂

)
(z̄)+H

λ̂

)
v+w∗x∗

∣∣∣ z∗ ∈ NTgphΓ(z̄)(v)∩π
−1
X∗ (x̄

∗), λ̂ ∈ Λ(z̄,z∗;v),

∃w∗k ∈KgphΓ(z̄,z∗)∗ s.t. w∗x∗ = lim
k→∞

πX∗(w∗k), lim
k→∞

〈w∗k ,v〉= 0
}
⊂ DΨ(p̄, x̄, x̄∗)(q,u)

⊂
{(

∇
(
∇xg(·)∗λ̂

)
(z̄)+H

λ̂

)
v+KΓ(p̄)(x̄, x̄

∗)∗
∣∣∣ λ̂ ∈ NTC(g(z̄))

(
∇g(z̄)v

)
,∇xg(z̄)∗λ̂ = x̄∗

}
.

Proof. It follows from Lemma 4.1(iii) and the relationships between the original and reduced
parametric constraint systems revealed above. �

6 Applications to Parametric Variational Systems
In this section we study stability properties of parametric variational systems (PVS) of the type

(6.1) S(p) :=
{

x ∈ X
∣∣ 0 ∈ f (p,x)+NΓ(p)(x)

}
,

which are given as solution maps to the parameter-dependent generalized equations 0 ∈ f (p,x) +
NΓ(p)(x). The set-valued mapping Γ : P ⇒ X in (6.1) is taken from (1.2) under the standing assump-
tions imposed on it in Section 2, while the single-valued mapping f : P×X → X∗ is assumed to be
continuously differentiable around the reference point. We are not going to mention these assumptions
in the rest of the section. Observe that in the case where f (p,x) = ∇xϕ(p,x) for some differentiable
function ϕ : P×X → R, the variational system S(p) in (6.1) describes the collections of points satis-
fying the basic first-order necessary optimality conditions in the parametric optimization problem:

min
x

ϕ(p,x) subject to g(p,x) ∈C.

Let us fix the reference point z̄ = (p̄, x̄) ∈ gphS and we consider the associated set of multipliers

Λ̄ :=
{

λ ∈ NC(g(z̄))
∣∣ f (z̄)+∇xg(z̄)∗λ = 0

}
.(6.2)
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Given λ ∈ NC(g(z̄)), define the linear operator H x
λ

: X → X∗ by

H x
λ

u := ∇xg(z̄)∗∇2〈(
∇h(g(z̄))∗

)−1
λ ,h(·)

〉(
g(z̄)

)
∇xg(z̄)u,(6.3)

which is a partial version of (5.4) satisfying the condition H x
λ

u = Hλ (0,u), and then define yet
another linear operator Fλ : X → X∗ by

Fλ u := ∇x f (p̄, x̄)u+∇
2
x
〈
λ ,g(·)

〉
(z̄)u+H x

λ
u.(6.4)

Our first result here concerns not isolated calmness (which is Lipschitzian in nature; see below)
but its Hölderian version that is of its own interest while being (together with its proof) of a crucial
importance in verifying isolated calmness in what follows.

Theorem 6.1 (Hölderian isolated calmness of PVS). Assume that PCS (1.1) enjoys the Robinson
stability property at (p̄, x̄) and that the following condition is satisfied:

(6.5) For every 0 6= u ∈KΓ(p̄)
(
x̄,− f (z̄)

)
, every λ ∈ Λ̄, and every λ̂ ∈Λ

(
z̄,∇g(z̄)∗λ ;(0,u)

)
we

have either 〈F
λ̂

u,u〉> 0 or 〈F
λ̂

u, ũ〉< 0 with some ũ ∈KΓ(p̄)
(
x̄,− f (z̄)

)
.

Then there are a constant ` > 0 and neighborhoods U of x̄ and Q of p̄ such that

S(p)∩U ⊂
{

x̄
}
+ `
(
‖p− p̄‖+

√
dist(p− p̄;P)

)
BX whenever p ∈ Q.(6.6)

Proof. To verify (6.6), suppose on the contrary that there is a sequence (pk,xk)
gphS−→(p̄, x̄) with

‖xk− x̄‖> k
(
‖pk− p̄‖+

√
dist(pk− p̄;P)

)
for all k ∈ N.

Define tk := ‖xk− x̄‖, qk := (pk− p̄)/tk, and uk := (xk− x̄)/tk and then get ‖qk‖< 1
k with uk→ u 6= 0

along a subsequence. Furthermore, it follows that

dist(qk−0;P) =
dist(pk− p̄;P)

tk
<

(tk/k)2

tk
=

tk
k2 for all k ∈ N,

and hence limk→∞ dist(qk−0;P)/tk = 0. By xk ∈ S(pk) it tells us that

− f (p̄+ tkqk, x̄+ tkuk) =−
(

f (z̄)+ tk∇x f (z̄)uk +o(tk)
)
∈Ψ(p̄+ tkqk, x̄+ tkuk),

which being combined with x̄∗ :=− f (z̄) ∈Ψ(p̄, x̄) brings us to the inclusion

0 ∈ ∇x f (z̄)u+ D̃Ψ
(

p̄, x̄,− f (z̄)
)
(0,u),

where the modified graphical derivative D̃ is taken from (5.7). Applying now Proposition 5.7, we find
z∗ ∈ NTgphΓ(z̄)(0,u)∩ π

−1
X∗ (x̄

∗), λ̂ ∈ Λ(z̄,z∗;(0,u)), and a sequence of w∗k ∈
(
KgphΓ(z̄,z∗)

)∗ such that
limk→∞〈w∗k ,(0,u)〉= limk→∞〈πX∗(w∗k),u〉= 0 and

0 = ∇x f (z̄)u+
(

∇
(
∇xg(·)∗λ̂

)
(z̄)+H

λ̂

)
(0,u)+ lim

k→∞

πX∗(w∗k) = F
λ̂

u+ lim
k→∞

πX∗(w∗k)

with Hλ taken from (5.4) and Fλ defined in (6.4). Thus (0,u) ∈ TgphΓ(z̄), which implies that
∇g(z̄)(0,u) = ∇xg(z̄)u ∈ TC(g(z̄)) and u ∈ TΓ(p̄)(x̄). Since we clearly have z∗ ∈ NTgphΓ(z̄)(0,u) =
NgphΓ(z̄)∩ [(0,u)]⊥, there is λ ∈ NC(g(z̄)) satisfying z∗ = ∇g(z̄)∗λ . Combining it with πX∗(z∗) =
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∇xg(z̄)∗λ = x̄∗ yields λ ∈ Λ̄. It follows further that 〈z∗,(0,u)〉= 〈πX∗(z∗),u〉= 〈x̄∗,u〉= 0, and there-
fore u ∈KΓ(p̄)(x̄, x̄∗). Proposition 2.1 allows us to find λk ∈ NC(g(z̄)) and αk ∈ R such that

‖w∗k− (∇g(z̄)∗λk +αkz∗)‖ ≤ 1
k

for all k ∈ N and

lim
k→∞

πX∗(w∗k) = lim
k→∞

πX∗
(
∇g(z̄)∗λk +αkz∗)

)
= lim

k→∞

(
∇xg(z̄)∗λk +αkx̄∗)

)
.

Using Proposition 2.1 again gives us limk→∞(∇xg(z̄)∗λk +αkx̄∗)) ∈KΓ(p̄)(x̄, x̄∗)∗, which implies to-
gether with the limiting condition limk→∞〈πX∗(w∗k),u〉= 0 that

lim
k→∞

πX∗(w∗k) ∈KΓ(p̄)(x̄, x̄
∗)∗∩ [u]⊥ =

(
KΓ(p̄)(x̄, x̄

∗)+ [u]
)∗
.

Hence −F
λ̂

u ∈
(
KΓ(p̄)(x̄, x̄∗)+ [u]

)∗, which is equivalent to〈
−F

λ̂
u, ũ+αu

〉
≤ 0 for all ũ ∈KΓ(p̄)(x̄, x̄

∗) and α ∈ R.

The latter amounts to saying that 〈F
λ̂

u, ũ〉 ≥ 0 for all ũ ∈KΓ(p̄) and that 〈F
λ̂

u,u〉 = 0. This clearly
contradicts the assumptions in (6.5) and thus completes the proof of the theorem. �

To proceed further, for an arbitrary number γ > 0 we define the subset of parameters

Pγ :=
{

p ∈ P
∣∣ dist(p− p̄;P)≤ γ‖p− p̄‖2}

and deduce from Theorem 6.1 the inclusion

S(p)∩U ⊂
{

x̄
}
+ `(1+

√
γ)‖p− p̄‖BX for all p ∈ Q∩Pγ .(6.7)

Recall that the mapping S is said to be isolatedly calm at (p̄, x̄) if there exist a constant ` > 0 and
neighborhoods Q of p̄ and U of x̄ such that

S(p)∩U ⊂
{

x̄
}
+ `‖p− p̄‖BX for all p ∈ Q.(6.8)

This (Lipschitzian) stability property has been recognized in variational analysis and its applications
while being equivalent to the strong metric subregularity of the inverse S−1; see [5] for more details
and references. The result in (6.7) of Theorem 6.1 tells us therefore that the restriction of the solution
map (6.1) to the parameter subset Pγ enjoys the isolated calmness property at (p̄, x̄).

As an immediate consequence of (6.6), we get the isolated calmness of S at (p̄, x̄) when P = P
under the assumptions of Theorem 6.1. Besides it, the next theorem provides other fairly general
conditions ensuring the validity of isolated calmness for PVS (6.1). Its proof is based on applying
the second-order computations obtained above and the graphical derivative criterion for the isolated
calmness property of any closed-graph mapping S : Rm ⇒ Rn at (p̄, x̄) ∈ gphS that reads as

DS(p̄, x̄)(0) = {0}.(6.9)

This criterion was explicitly established by Levy [12] while its derivation can actually be found in
Rockafellar [19]; see also [5, Theorem 4E.1 and Corollary 4E.2] for more details and discussions.
Theorem 6.2 (sufficient conditions for isolated calmness in PVS). Under the Robinson stability of
g(p,x) ∈C at (p̄, x̄), suppose that the assumptions in one of the following statements are satisfied:

(i) In addition to (6.5), either P = P or K is polyhedral.
(ii) Strict complementarity holds for the system g(p̄,x) ∈C at (x̄,− f (z̄)) and

(6.10)
for all 0 6= u ∈KΓ(p̄)

(
x̄,− f (z̄)

)
and λ ∈ Λ̄ from (6.2) we have either 〈Fλ u,u〉 > 0 or

〈Fλ u, ũ〉< 0 with some ũ ∈KΓ(p̄)
(
x̄,− f (z̄)

)
.

Then PVS (6.1) enjoys the isolated calmness property (6.8) at (p̄, x̄).
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Proof. First we verify the claimed isolated calmness under the assumptions in (i). Arguing by
contradiction and using the graphical derivative criterion (6.9) together with the graphical derivative
construction in (2.12), (2.9) and the form of S in (6.1), we find u 6= 0 such that

0 ∈ ∇x f (z̄)u+DΨ(z̄, x̄∗)(0,u) with x̄∗ :=− f (z̄).(6.11)

Then the graphical derivative computation of Theorem 5.3 gives us vectors z∗ ∈ NTgphΓ(z̄)(0,u) ∩
π
−1
X∗ (x̄

∗), λ̂ ∈ Λ(z̄,z∗;(0,u)), and w∗ ∈ NKgphΓ(z̄,z∗)(0,u) satisfying the equation

0 = ∇x f (z̄)u+
(

∇
(
∇xg(·)∗λ̂

)
(z̄)+H

λ̂

)
(0,u)+πX∗(w∗) = F

λ̂
u+πX∗(w∗)(6.12)

with taking into account the notation in (5.4) and (6.4). Proceeding further as in the proof of Theo-
rem 6.1 with w∗k = w∗, we arrive at a contradiction to (6.5), which thus verifies (6.8) in case (i).

Now we turn to the assumptions in (ii). Again arguing by contradiction as in the proof in case (i)
gives us (6.11) with some u 6= 0. Applying the graphical derivative computation in Theorem 5.6 with
q = 0 ∈P therein, we find z∗ ∈ NTgphΓ(z̄)(0,u)∩ π

−1
X∗ (x̄

∗), λ̂ ∈ Λ(z̄,z∗), and w∗ ∈ NKgphΓ(z̄,z∗)(0,u)
satisfying equation (6.12). Proceeding then as in the proof of Theorem 6.1 with w∗k = w∗ leads
us to 〈F

λ̂
u,u〉 = 0 and to 〈F

λ̂
u, ũ〉 ≥ 0 for all ũ ∈ KΓ(p̄). Taking finally into account that λ̂ ∈

Λ(z̄,∇g(z̄)∗λ ) = Λ(z̄,∇g(z̄)∗λ̂ ) and remembering the construction of Λ̄ in (6.2) bring us to a contra-
diction with (6.10) and thus complete the proof of the theorem. �

The next theorem shows that conditions (6.5) and (6.10) are necessary for isolated calmness of
PVS (6.1) in fairly general settings.

Theorem 6.3 (necessary conditions for isolated calmness in PVS). Let PCS in (1.1) enjoy the
Robinson stability property at (p̄, x̄), and let PVS in (6.1) be isolatedly calm at this point. Impose
further the following additional assumptions: P = P1×P2,

g
(
(p1, p2),x

)
= g
(
(p1, p̄2),x

)
for all

(
(p1, p2),x

)
∈ P×X , and ∇p2 f (p̄, x̄) is surjective.

Then condition (6.5) is fulfilled being thus necessary for isolated calmness. If we have furthermore

∇h
(
g(z̄))∇2

xg(z̄)(u,u)+∇2h
(
g(z̄)

)(
∇xg(z̄)u,∇xg(z̄)u

)
∈ rge

(
∇h(g(z̄))◦∇g(z̄)

)
+ linTC

(
g(z̄)

)
for all u ∈KΓ(p̄)

(
x̄,− f (z̄)

)(6.13)

with z̄ = (p̄, x̄), then condition (6.10) is also satisfied.

Proof. To verify the first assertion, suppose that condition (6.5) fails and thus find 0 6= u ∈
KΓ(p̄)(x̄, x̄∗), λ ∈ Λ̄, and λ̂ ∈ Λ(z̄,∇g(z̄)∗λ ;(0,u)) such that 〈F

λ̂
u,u〉 ≤ 0 and 〈F

λ̂
u, ũ〉 ≥ 0 for all

ũ ∈KΓ(p̄)(x̄,− f (z̄)). Taking ũ = u yields 〈F
λ̂

u,u〉= 0 and therefore〈
−F

λ̂
u, ũ+αu

〉
≤ 0 whenever ũ ∈KΓ(p̄)(x̄, x̄

∗),α ∈ R,

which can be equivalently rewritten as

−F
λ̂

u ∈
(
KΓ(p̄)(x̄, x̄

∗)+ [u]
)∗

= KΓ(p̄)(x̄, x̄
∗)∗∩ [u]⊥.

Thus there is an element wx∗ ∈KΓ(p̄)(x̄, x̄∗)∗∩ [u]⊥ satisfying

0 = F
λ̂

u+wx∗ = ∇x f (z̄)u+
(

∇
(
∇xg(·)∗λ̂

)
(z̄)+H

λ̂

)
(0,u)+wx∗ .
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By Proposition 2.1 we get sequences λk ∈ NC(g(x̄)) and αk ∈ R such that

wx∗ = lim
k→∞

∇xg(z̄)∗λk +αkx̄∗ = lim
k→∞

∇xg(z̄)∗(λk +αkλ̂ ).

Furthermore, defining z∗ := ∇g(z̄)∗λ̂ and w∗k := ∇g(z̄)∗(λk + αkλ̂ ) = ∇g(z̄)∗λk + αkz∗ ensures by
Proposition 2.1 again that w∗k ∈KgphΓ(z̄,z∗) together with

lim
k→∞

πX∗(w∗k) = w∗x , lim
k→∞

〈w∗k ,(0,u)〉= lim
k→∞

〈πX∗(w∗k),u〉= 〈wx∗ ,u〉= 0, and λ̂ ∈ Λ
(
z̄,z∗;(0,u)

)
.

Using now the graphical derivative estimate from Proposition 5.7 with q = 0 tells us that

0 ∈ ∇x f (z̄)u+DΨ(z̄, x̄∗)(0,u) = ∇ f (z̄)(0,u)+DΨ(z̄, x̄∗)(0,u),

and therefore there exist sequences tk ↓ 0, uk→ 0, and qk→ 0 such that

dist
(
− f (p̄+ tkqk, x̄+ tkuk);Ψ(p̄+ tkqk, x̄+ tkuk)

)
= o(tk) as k→ ∞.

It follows from the robustness of the imposed surjectivity/full rank condition on ∇p2 f (z̄) that we can
adjust the approximating sequence {qk} a bit so that

− f (p̄+ tkq̃k, x̄+ tkuk) ∈Ψ(p̄+ tkqk, x̄+ tkuk) = Ψ(p̄+ tkq̃k, x̄+ tkuk)

for q̃k := qk +(0,q2,k) with q2,k
P2→ 0 as k→ ∞. Hence x̄+ tkuk ∈ S(p̄+ tkq̃k) and 0 6= u ∈DS(p̄, x̄)(0),

which tells us that S is not isolatedly calm at (p̄, x̄), and thus the first assertion of the theorem is
justified. To verify the necessary of condition (6.5) for the isolated calmness of S in the second
assertion, observe that the imposed additional requirement (6.13) implies that

λ ∈ Λ(z̄,∇g(z̄)∗λ ;(0,u)) for all u ∈KΓ(p̄)
(
x̄,− f (z̄)

)
and all λ ∈ Λ̄,

as can be checked similarly to the proof of Theorem 4.4. Therefore conditions (6.5) and (6.10) are
equivalent in this case, and the proof of the theorem is complete. �

Finally, we present an example demonstrating that isolated calmness of PVS (6.1) may fail un-
der conditions (6.5) and (6.10), respectively, when neither P = P, nor K is polyhedral, nor strict
complementarity holds in second-order cone programming.
Example 6.4 (failure of isolated calmness of PVS generated by the ice-cream cone in R3). Con-
sider the parametric variational system of type (6.1) given by

0 ∈
(
−
√

2+

√
2

4
(2x1 + p1 + p2)−ξ (p1− p2),1+

√
2

4
x2

)
+ N̂Γ(p1,p2)(x1,x2),

Γ(p1, p2) :=
{
(x1,x2)

∣∣ g(p,x) := (x1 + p1,x1 + p2,x2) ∈Q3
}
,

ξ (t) :=
√

2
((

1+ |t|
2
3
)− 1

2 +
1
2
|t|

2
3

)
,

where Q3 := {y ∈ R3 |y3 ≥
√

y2
1 + y2

2} denotes the ice-cream cone in R3. It is easy to check that the
function ξ is continuously differentiable with ξ ′(0) = 0 and that S(p) consists of the points satisfying
the basic first-order optimality conditions for the parametric quadratic second-order cone program:

min
x1,x2

√
2

4
x2

1 +

√
2

8
x2

2 +
(√2

4
(p1 + p2)−

√
2−ξ (p1− p2)

)
x1 + x2

subject to (x1 + p1,x1 + p2,x2) ∈Q3.
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The cost function of this program is obviously strictly convex for every p, and the classical Slater
constraint qualification holds at every feasible point. Thus for every p ∈ R2 the solution set S(p) is a
singleton. In fact, the function ξ was chosen in such a way that

S(p) =

{(1
2
(
− p1− p2 + |p1− p2|

2
3 ),
|p1− p2|

2
3

√
2

√
1+ |p1− p2|

2
3

)}
.

Considering the reference pair (p̄, x̄) with p̄ = (0,0) and x̄ = (0,0), we see that S is not isolatedly calm
at (p̄, x̄). Observe that the standing assumptions are satisfied with h(y) = y and K = Q3, which is not
polyhedral. By the Slater constraint qualification, the Robinson stability condition is also fulfilled for
the system g(p,x) ∈C at (p̄, x̄). The parameter characteristic subspace here is P = {(α,α) |α ∈ R},
and so P 6= P. Furthermore, the multipliers set (6.2) is Λ̄ =

{
( 1√

2
, 1√

2
,−1)

}
, which shows that the

strict complementarity condition fails at the reference point as well.
On the other hand, we have Fλ u =

(√2
2 u1,

√
2

4 u2
)
, and thus condition (6.5) is satisfied. Applying

Theorem 6.1 gives us the Hölderian isolated calmness

S(p)∩U ⊂
{

x̄
}
+ `
(
‖p− p̄‖+

√
dist(p− p̄;P)

)
BR2 for all p ∈ Q

with some modulus ` > 0 and neighborhoods U of x̄ and Q of p̄. In fact, the distance expression
dist(p− p̄;P) = 1√

2
|p1− p2| brings us to an upper estimate of the entire solution set S(p) given by

S(p)⊂
{

x̄}+ `(‖p− p̄‖+dist(p− p̄;P)
2
3 )BR2 , p ∈ Q.

7 Concluding Remarks
This paper demonstrates that applying advanced tools and techniques of second-order variational anal-
ysis allows us to efficiently compute the graphical derivative of the normal cone mapping generated by
a large class of parametric constraint systems while providing in this way striking new developments
even for nonparametric nonpolyhedral systems without any nondegeneracy and/or metric regularity
assumptions. The established results are applied to deriving necessary and sufficient conditions for
isolated calmness and its Hölderian counterpart in parametric variational systems that arise, in partic-
ular, as first-order optimality conditions in parametric conic programming.

The obtained second-order calculations have strong potentials for further applications to optimiza-
tion and related areas where the usage of graphical derivatives for normal cone mappings is highly
beneficial. To this end, we mention the recent developments in [17] on applying the graphical deriva-
tive computation to the study of critical multipliers in polyhedral variational systems that are largely
responsible for slow convergence of primal-dual algorithms in optimization. It seems that employing
the new results obtained here would lead us to a significant progress in this direction.
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