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Robust Multigrid Preconditioning for Parameter Dependent Problems I: The
Stokes-type Case.

June 1997

97-3 Ferdinand Kickinger, Sergei V. Nepomnyaschikh, Ralf Pfau, Joachim Schöberl
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CONVERGENCE ANALYSIS OF ALL-AT-ONCE MULTIGRID
METHODS FOR ELLIPTIC CONTROL PROBLEMS UNDER

PARTIAL ELLIPTIC REGULARITY∗

STEFAN TAKACS† AND WALTER ZULEHNER‡

Abstract. In this paper we consider the convergence theory for an all-at-once multigrid method
for a distributed optimal control problem. Such an analysis has been recently done, see [11]. Here,
we give a new proof which is based on a more straight-forward approach. The main benefit of this
new approach is the possibility to extend the analysis to domains where full elliptic regularity, i.e.,
H2-regularity for the Poisson problem, cannot be guaranteed.
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AMS subject classifications. 65N55 35Q93 49J20

1. Introduction. The main goal of this paper is the presentation of a systematic
approach for the construction and the analysis of all-at-once multigrid methods for
parameter-dependent saddle point problems. The analysis is similar to [11], where
the following model problem was considered:

Find (y, u) ∈ H1(Ω)× L2(Ω) such that

J(y, u) = ‖y − yD‖2L2(Ω) +
α

2
‖u‖2L2(Ω)

is minimized subject to the state equation

−∆y + y = u in Ω and
∂y

∂n
= 0 on ∂Ω. (1.1)

Here, Ω ⊆ Rd (with d ∈ {2, 3}) is a bounded polygonal or polyhedral domain, L2(Ω)
andH1(Ω) denote the standard Lebesgue and Sobolev spaces with associated standard
norms ‖ · ‖L2(Ω) and ‖ · ‖H1(Ω), respectively. yD ∈ L2(Ω) is a given function (desired
state). The given parameter α > 0 is, depending on the interpretation, a cost param-
eter or a regularization parameter. For simplicity we restrict ourselves to this model
problem. The generalization to other elliptic state equations is straight-forward.

In [11] an all-at-once multigrid method was introduced. It was proven that this
method converges with rates bounded uniformly in the parameter α using the following
regularity assumption on the solution of the state equation.

(R) Full elliptic regularity: There is a constant CR > 0 such that for every u ∈
L2(Ω), the solution y of (1.1) satisfies

y ∈ H2(Ω) and ‖y‖H2(Ω) ≤ CR‖u‖L2(Ω).

Such a regularity assumption can be guaranteed, e.g., for domains with a sufficiently
smooth boundary (see, e.g., [10]) or polygonal or polyhedral domains which are convex
(see, e.g., [5] or [6]). For domains with reentrant corners, condition (R) is typically
not satisfied.

In this paper, we give a convergence proof under the weaker assumption.

∗The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK12.
†Doctoral Program Computational Mathematics, Johannes Kepler University Linz, Austria,

(stefan.takacs@dk-compmath.jku.at)
‡Institute of Computational Mathematics, Johannes Kepler University Linz, Austria,

(zulehner@numa.uni-linz.ac.at)
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2 S. TAKACS AND W. ZULEHNER

(R’) Partial elliptic regularity: For some s ∈ [0, 1), there is a constant CR > 0
such that for every u ∈ (Hs(Ω))∗, the solution y of (1.1) satisfies

y ∈ H2−s(Ω) and ‖y‖H2−s(Ω) ≤ CR‖u‖(Hs(Ω))∗ .

Here, Hs(Ω) is a standard fractional order Sobolev space, cf. [1], and (Hs(Ω))∗ is
its dual space. This regularity assumption is satisfied for polygonal domains with
reentrant corners: If Ω is a non-convex polygonal domain with ω > π being the
largest angle of the boundary polygonal (measured from inside), assumption (R’) is
satisfied for all s with

1− π

ω
< s < 1,

cf. Remark 2.4.6 in [7].
For fixed α, it is straight-forward how to extend the convergence proof to the

case of partial regularity, following the line of arguments in [8]. These bounds are
not robust in the parameter α and deteriorate for α approaching 0. Existing robust
convergence results for all-at-once multigrid methods, like [3, 11], were based on full
elliptic regularity. The authors are not aware of a straight-forward extension of these
results to the case of partial elliptic regularity.

In the present paper, we will give a robust convergence proof under partial reg-
ularity. For the proof we will make use of parameter-dependent norms which will be
constructed using the concept of Hilbert space interpolation, cf. [1, 4].

This paper is organized as follows. In Section 2 we present a standard multigrid
framework. In Section 3, we recall standard smoothers and show that they satisfy the
smoothing property. The convergence analysis for the case of partial elliptic regularity
is carried out in Section 4. The numerical results, we present in Section 5, illustrate
the convergence result. Concluding remarks can be found in Section 6.

2. The general framework. In this section we recall a standard multigrid
framework for solving the model problem. We derive the optimality system and its
discretization in Subsection 2.1. In Subsection 2.2 we introduce all-at-once multigrid
methods.

2.1. Optimality systems. The solution of the model problem is character-
ized by the Karush-Kuhn-Tucker-system (KKT-system). This system depends on the
state y, the control u and the Lagrange multiplier, say p, associated with the con-
straint, here the state equation. This system immediately implies that u = α−1p
holds, which allows to eliminate the control u and leads to the following reduced
KKT-system. Find (y, p) ∈ H1(Ω)×H1(Ω) such that

(y, ỹ)L2(Ω) + (p, ỹ)H1(Ω) = (yD, ỹ)L2(Ω)

(y, p̃)H1(Ω) − α−1(p, p̃)L2(Ω) = 0

holds for all (ỹ, p̃) ∈ H1(Ω)×H1(Ω). For the details, see, e.g., [11].
We obtain a variational problem for x = (y, p) in the product space X = Y × P ,

which can be written as follows. Find x ∈ X such that

B(x, x̃) = F(x̃) for all x̃ ∈ X, (2.1)

where

B((y, p), (ỹ, p̃)) := (y, ỹ)L2(Ω) + (p, ỹ)H1(Ω) + (y, p̃)H1(Ω) − α−1(p, p̃)L2(Ω),

F(ỹ, p̃) := (yD, ỹ)L2(Ω).
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Existence and uniqueness of the solution is guaranteed by the following condition.
(A1) There are constants C > 0 and C such that

C‖x‖X ≤ sup
06=x̃∈X

B(x, x̃)

‖x̃‖X
≤ C‖x‖X

holds for all x ∈ X.
In [11] and [14] it was shown that this condition is satisfied with constants C and C
independent of α for X := H1(Ω) ×H1(Ω) equipped with the parameter-dependent
norm

‖x‖X := (‖y‖2Y + ‖p‖2P )1/2,

where

‖y‖Y := (‖y‖2L2(Ω) + α1/2‖y‖2H1(Ω))
1/2 and

‖p‖P := (α−1‖p‖2L2(Ω) + α−1/2‖p‖2H1(Ω))
1/2.

Notation 2.1. For Hilbert spaces A1 and A2, A1 ∩A2 denotes the Hilbert space
of all elements from the intersection of A1 and A2 with norm

‖ · ‖A1∩A2
:= (‖ · ‖2A1

+ ‖ · ‖2A2
)1/2.

For a scalar γ > 0 and a Hilbert space A, γA denotes the Hilbert space of all elements
from A with norm

‖ · ‖γA := γ‖ · ‖A.

Using this notation, we can rewrite the norms introduced above as follows

‖y‖Y = ‖y‖L2(Ω)∩α1/4H1(Ω) and ‖p‖P = ‖p‖α−1/2L2(Ω)∩α−1/4H1(Ω).

A standard way to discretize (2.1) is the Galerkin principle. Let Xk ⊂ X, k =
0, 1, 2, . . ., be a sequence of finite-dimensional subspaces. For simplicity, we restrict
ourselves to the case of nested spaces, i.e., we assume that Xk ⊆ Xk+1. The Galerkin
approximation of (2.1) is given by: Find xk ∈ Xk such that

B(xk, x̃k) = F(x̃k) for all x̃k ∈ Xk. (2.2)

Here, the spaces Xk are product spaces, too, i.e., Xk = Yk×Pk. For case of the model
problem, Yk = Pk is a reasonable choice. For this case the following condition was
shown in [11].
(A1a) There are constants CD > 0 and CD such that for all grid levels k

CD‖xk‖X ≤ sup
06=x̃k∈Xk

B(xk, x̃k)

‖x̃k‖X
≤ CD‖xk‖X

holds for all xk ∈ Xk.
This guarantees existence and uniqueness of the solution of the discretized problem.
As for condition (A1), the constants CD and CD are independent of α.

The variational problem (2.2) reads in matrix-vector notation as follows

Ak xk = f
k
, where Ak :=

(
Mk Kk

Kk −α−1Mk

)
(2.3)

and Mk and Kk are the standard mass and stiffness matrices, respectively. The
matrix Ak is symmetric and indefinite. Here and in what follows, any underlined
quantity, like xk, denotes the coefficient vector of the corresponding finite element
function, here xk ∈ Xk, with respect to a basis of Xk.



4 S. TAKACS AND W. ZULEHNER

2.2. All-at-once multigrid methods. In this subsection, we introduce a stan-
dard all-at-once multigrid framework for solving the discretized equation (2.3) on
grid level k. Starting from an initial approximation x(0)

k one iterate of the multigrid
method is given by the following two steps:

• Smoothing procedure: Compute

x
(0,m)
k := x

(0,m−1)
k + Â−1

k (f
k
−Ak x(0,m−1)

k ) for m = 1, . . . , ν

with x(0,0)
k = x

(0)
k .

• Coarse-grid correction:
– Compute the defect r(1)

k := (f
k
−Ak x(0,ν)

k ) and restrict it to grid level
k − 1 using an restriction matrix Ik−1

k :

r
(1)
k−1 := Ik−1

k (f
k
−Ak x(0,ν)

k ).

– Solve the coarse-grid problem

Ak−1 p
(1)
k−1

= r
(1)
k−1 (2.4)

approximatively.
– Prolongate p

k−1
to the grid level k using a prolongation matrix Ikk−1 and

add the result to the previous iterate:

x
(1)
k := x

(0,ν)
k + Ikk−1p

(1)
k−1

.

As we have assumed nested spaces, the intergrid-transfer matrices Ikk−1 and Ik−1
k can

be chosen in a canonical way: Ikk−1 is the canonical embedding and the restriction
Ik−1
k is its transpose. The choice of Â−1

k will be discussed in the next subsection.
If the problem on the coarser grid is solved exactly (two-grid method), the coarse-

grid correction is given by

x
(1)
k := x

(0,ν)
k + Ikk−1A−1

k−1I
k−1
k (f

k
−Ak x(0,ν)

k ). (2.5)

In practice the problem (2.4) is approximatively solved by applying one step (V-cycle)
or two steps (W-cycle) of the multigrid method, recursively. On grid level k = 0 the
problem (2.4) is solved exactly.

To show a multigrid convergence result based on Hackbusch’s splitting of the
analysis in smoothing property and approximation property we have to introduce an
appropriate norm.

For each s ∈ [0, 1) we need a linear function space Xs
− ⊇ X equipped with a

family of norms ‖ · ‖Xs−,k , which depend on the grid level k and on the choice of the
parameter α. The choice of the parameter α will always be clear from the context,
so only the dependence on s and k is denoted explicitly. Note that the function
space Xs

−, equipped with any of the norms ‖ · ‖Xs−,k , is a Hilbert space, denoted
by Xs

−,k := (Xs
−, ‖ · ‖Xs−,k).

Due to Hackbusch, the analysis is based on the following properties.
• Smoothing property:

sup
x̃k∈Xk

B(x
(0,ν)
k − xk, x̃k)

‖x̃k‖Xs−,k
≤ η(ν)‖x(0)

k − xk‖Xs−,k (2.6)

holds for some function η(ν) with limν→∞ η(ν) = 0.
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• Approximation property:

‖x(1)
k − xk‖Xs−,k ≤ CA sup

x̃k∈Xk

B(x
(0,ν)
k − xk, x̃k)

‖x̃k‖Xs−,k
(2.7)

holds for some constant CA > 0.
It is easy to see that, if we combine both conditions, we obtain

‖x(1)
k − xk‖Xs−,k ≤ q(ν)‖x(0)

k − xk‖Xs−,k ,

where q(ν) = CAη(ν), i.e., that the two-grid method converges for ν large enough. The
convergence of the W-cycle multigrid method can be shown under mild assumptions,
see e.g. [8].

For full elliptic regularity, which corresponds to s = 0 in our notation, such a
linear space X0

− = X− equipped with (mesh-dependent) norms ‖ · ‖X0
−,k

= ‖ · ‖X−,k

has already been introduced, see [11]. We will recall the choice of the space X− and
the norms ‖ · ‖X−,k , which leads to the Hilbert spaces X−,k := (X−, ‖ · ‖X−,k), in
the next section. Now, for general s ∈ (0, 1), we propose the following choice of the
Hilbert spaces Xs

−,k:

Xs
−,k := [X−,k, X]s,

based on the following notation.
Notation 2.2. For each θ ∈ (0, 1), the interpolant of two Hilbert spaces A1 and

A2, defined using the real K-method, cf. Theorem 15.1 in [9], itself is a Hilbert space,
denoted by

[A1, A2]θ.

This choice corresponds exactly to the strategy in [8] for analyzing the multigrid
method for the Poisson problem, where (in our notation) Xs

− = Hs(Ω) was chosen.
For further reference we recall three results on Hilbert space interpolation, cf. [1,

4].
Applied to standard Sobolev spaces Hm(Ω) and Hn(Ω), we obtain

[Hm(Ω), Hn(Ω)]θ = H(1−θ)m+θn(Ω),

i.e., a standard Sobolev space. For scaled Hilbert spaces, the interpolation is the
(weighted) geometric mean, i.e., for Hilbert spaces A1 and A2 and scalars γ1 > 0 and
γ2 > 0 we obtain

[γ1A1, γ2A2]θ = γ1−θ
1 γθ2 [A1, A1]θ. (2.8)

One main result on interpolation spaces is the interpolation theorem, cf. Theo-
rem 3.2.23 in [4], which reads as follows.

Theorem 2.3 (Interpolation Theorem). Let A1, A2, B1 and B2 be Hilbert spaces
and let T : A1 + A2 := {a1 + a2 : a1 ∈ A1, a2 ∈ A2} → B1 + B2 be an operator
such that there are constants C1 and C2 such that for all a1 ∈ A1 and a2 ∈ A2, the
mapping properties Ta1 ∈ B1 and Ta2 ∈ B2 and the bounds

‖Ta1‖B1
≤ C1‖a1‖A1

and ‖Ta2‖B2
≤ C2‖a2‖A2
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are satisfied.
Then for all a ∈ [A1, A2]θ, we obtain Ta ∈ [B1, B2]θ and

‖Ta‖[B1,B2]θ ≤ C(θ)C1−θ
1 Cθ2‖a‖[A1,A2]θ ,

where C(θ) only depends on θ.

3. Smoothers. The choice of an appropriate smoother is a key issue in con-
structing an all-at-once multigrid method. Here, we recall two classes of smoothers
which are appropriate for the model problem.

The first class are normal equation smoothers, cf. [3], given by

x
(0,m)
k := x

(0,m−1)
k + τ L−1

k AkL
−1
k︸ ︷︷ ︸

Â−1
k :=

(f
k
−Ak x(0,m−1)

k ) for m = 1, . . . , ν.

Here, Lk is the matrix representing the scalar product (·, ·)X−,k , i.e.,

(Lkxk, x̃k)`2 = (xk, x̃k)X−,k for all xk, x̃k ∈ Xk, (3.1)

where (·, ·)`2 is the Euclidean inner product. The damping parameter τ > 0 is chosen
such that τ < 2/ρ(Â−1

k Ak), where ρ(M) denotes the spectral radius of a matrix M .
Note that the definition of the smoother is independent of the regularity parameter s.

For robust convergence, we need to choose τ independent of the grid level k and
the parameter α. This is possible if the norm ‖·‖X−,k is chosen such that the following
condition is satisfied.
(A2) There is a constant CM such that

‖xk‖X ≤ CM‖xk‖X−,k for all xk ∈ Xk

holds on all grid levels k and for all choices of the parameter α.
Certainly, this iterative procedure should be efficient-to-apply. This is satisfied

if ‖ · ‖X−,k is a scaled L2-norm. The norm ‖ · ‖X−,k can be constructed by replacing
each occurrence of ‖ · ‖H1(Ω) in the norm ‖ · ‖X by h−1

k ‖ · ‖L2(Ω). This leads to

‖x‖X−,k := (‖y‖2Y−,k
+ ‖p‖2P−,k

)1/2, (3.2)

where

‖y‖Y−,k := (1 + α1/2h−2
k )1/2‖y‖L2(Ω) and

‖p‖P−,k := α−1/2(1 + α1/2h−2
k )1/2‖p‖L2(Ω).

Using a standard inverse inequality, one can show that condition (A2) is satisfied for
this choice.

For the case s = 0, the smoothing property of the preconditioned normal equation
smoother was shown in [3]. We recall the result:

Lemma 3.1. Assume that (A1a) and (A2) hold. Then τ > 0 can be chosen
independent of grid level k and the choice of the parameter α such that

τ ρ(Â−1
k Ak) ≤ ρmax < 2

holds. For this choice of τ , there is a constant CS > 0 independent of grid level k and
choice of the parameter α such that the smoothing rate satisfies

η(ν) := CSν
−1/2,
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where the constant CS > 0 is independent of grid level k and parameter α.
Remark 3.2. The matrix Lk is a 2-by-2 block-diagonal matrix, where each block

is a scaled mass matrix. Due to the fact that the mass matrix is spectrally equivalent
to its diagonal, also Lk is spectrally equivalent to its diagonal. Therefore, if we replace
the matrix Lk by

L̂k :=

(
diag(Mk + α1/2Kk)

α−1 diag(Mk + α1/2Kk)

)
,

the smoothing property for the corresponding iterative method is still satisfied.
It remains to show the smoothing property in the norm ‖ · ‖Xs−,k , which will be

done below.
The second class of smoothers, that we consider for the model problem, is the

class of collective iteration schemes. Such methods have been proposed, e.g., in [13]
or [2]. One method of this class is the collective Richardson iteration, which is given
by

x
(0,m)
k := x

(0,m−1)
k +τ

(
mkI kkI
kkI −α−1mkI

)
︸ ︷︷ ︸

Âk :=

−1

(f
k
−Ak x(0,m−1)

k ) for m = 1, . . . , ν,

where mk and kk are the largest entries of the diagonals of Mk and Kk, respectively,
and the parameter τ ∈ (0, 1) is chosen independent of grid level k and parameter α.
In [12] the smoothing property was shown. We recall the result:

Lemma 3.3. For τ ∈ (0, 1) chosen independent of grid level k and parameter α,
the collective Richardson iteration satisfies the smoothing property with

η(ν) := CSν
−1/2,

where the constant CS > 0 is independent of grid level k and parameter α.
The proof in [12] fixes the choice of the norm ‖ · ‖X−,k (up to constants) to the

norm specified in (3.2).
We have mentioned above that for both smoothers the smoothing property is

satisfied for the norm ‖ · ‖X−,k , i.e., for s = 0. We can use interpolation theory to
carry over this smoothing result to the case s ∈ (0, 1).

Lemma 3.4. Assume that Ak is symmetric and that the smoother is given by

x
(0,m)
k := x

(0,m−1)
k + Â−1

k (f
k
−Ak x(0,m−1)

k ) for m = 1, . . . , ν,

where Âk is a symmetric matrix. Assume that this smoother satisfies the smoothing
property in the norm ‖ · ‖X−,k , i.e.,

sup
x̃k∈Xk

B(x
(0,ν)
k − xk, x̃k)

‖x̃k‖X−,k

≤ η(ν)‖x(0)
k − xk‖X−,k

holds. Moreover, assume that condition (A1a) holds and the smoother is power-
bounded, i.e., that there is a constant CB such that

‖x(0,m)
k − xk‖X−,k ≤ CB‖x

(0)
k − xk‖X−,k (3.3)

holds for all m ∈ N.
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Then for all s ∈ (0, 1) the smoother satisfies the smoothing property also in the
norm ‖ · ‖Xs−,k , i.e., there is a constant C̃S, depending only on s, CD and CD and
CB, such that

sup
x̃k∈Xk

B(x
(0,ν)
k − xk, x̃k)

‖x̃k‖Xs−,k
≤ C̃Sη(ν)1−s‖x(0)

k − xk‖Xs−,k (3.4)

is satisfied.
Proof. The proof is done using interpolation. By assumption, we know that the

smoothing property

sup
x̃k∈Xk

B(x
(0,ν)
k − xk, x̃k)

‖x̃k‖X−,k

≤ η(ν)‖x(0)
k − xk‖X−,k

is satisfied. We will also show that there is a constant C > 0 such that

sup
x̃k∈Xk

B(x
(0,ν)
k − xk, x̃k)

‖x̃k‖X
≤ C‖x(0)

k − xk‖X (3.5)

holds. Then the interpolation theorem (Theorem 2.3) immediately implies (3.4).
In order to show (3.5), we reformulate the condition in matrix-vector notation:

‖Ak(I − τÂ−1
k Ak)νrk‖Q−1

k
≤ C‖rk‖Qk

has to be shown for all rk := x
(0)
k − xk. Here, the matrix Qk represents the scalar

product (·, ·)X on Xk. In other words, we have to show that the spectral norm of

Pk := Q−1/2
k Ak(I − τÂ−1

k Ak)νQ−1/2
k

is bounded by a constant. This matrix is symmetric, so we have

‖Pk‖`2 = ρ(Pk)

= ρ(L1/2
k Q

−1
k Ak(I − τÂ−1

k Ak)νL−1/2
k )

≤ ‖L1/2
k Q

−1
k AkL

−1/2
k ‖`2‖L

1/2
k (I − τÂ−1

k Ak)νL−1/2
k ‖`2 ,

where ‖ · ‖`2 is the spectral norm and the matrix Lk is as defined in (3.1). Here, the
second factor can be bounded from above by CB using condition (3.3). The first factor
can be bounded from above by two times the numerical radius, where the numerical
radius r(M) of a matrix M is given by

r(M) := sup
0 6=xk∈RNk

|(Mxk, xk)`2 |
|(xk, xk)`2 |

.
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We obtain

‖L1/2
k Q

−1
k AkL

−1/2
k ‖`2 ≤ 2r(L1/2

k Q
−1
k AkL

−1/2
k )

≤ 2 sup
0 6=xk∈RNk

|(L1/2
k Q

−1
k AkL

−1/2
k xk, xk)`2 |

|(xk, xk)`2 |

= 2 sup
0 6=xk∈RNk

|(Q−1/2
k LkQ−1

k AkQ
−1/2
k xk, xk)`2 |

|(Q−1/2
k LkQ−1/2

k xk, xk)`2 |

≤ 2 sup
0 6=xk,yk∈R

Nk

|(Q−1/2
k AkQ−1/2

k xk, yk)`2 |
|(xk, yk)`2 |

≤ 2‖Q−1/2
k AkQ−1/2

k ‖`2

= 2 sup
0 6=xk∈RNk

|(Q−1/2
k AkQ−1/2

k xk, xk)`2 |
(xk, xk)`2

= 2 sup
06=xk∈RNk

|(Akxk, xk)`2 |
(Qkxk, xk)`2

= 2 sup
0 6=xk∈RNk

|B(xk, xk)|
‖xk‖2X

≤ 2CD,

where CD is the constant in (A1a). This shows (3.5) which finishes the proof.
The conditions of Lemma 3.4 are satisfied for both smoothers discussed above:

The symmetry of Âk is in both cases obvious. Power boundedness can be shown for
the preconditioned normal equation smoother with an easy eigenvalue analysis. For
the collective Richardson smoother, power boundedness was shown in [12].

4. Approximation property. The proof of the approximation property fol-
lows classical convergence proofs, cf. [8]. We have already mentioned that Hack-
busch’s proof of the approximation property for the Poisson problem uses the spaces
Xs
− = Hs(Ω) and X = H1(Ω). In his proof a Hs-approximation result is constructed

using an Aubin-Nitsche duality trick. For this purpose, he uses that the regular-
ity assumption (R’) states that the solution of the Poisson problem is a function
in H2−s(Ω).

This motivates to introduce, beside Xs
− and X, also a third space Xs

+ (which
plays the same role as H2−s(Ω) for the Poisson equation) equipped with appropriate
norms ‖ · ‖Xs+,k . In the next theorem we collect all the assumptions we need for a
proof of the approximation property. Then it will become more transparent how to
choose the Hilbert space Xs

+,k := (Xs
+, ‖ · ‖Xs+,k).

We closely follow the line of arguments in [8] for the Poisson equation.
As mentioned above, Hackbusch needs the regularity assumption (R’). For our

proof we need an analogous assumption which reads as follows.
(A3) There is a constant CR > 0 such that for all grid levels k, all F ∈ (Xs

−,k)∗

the solution x ∈ X of the problem, find x ∈ X such that

B(x, x̃) = F(x̃) for all x̃ ∈ X, (4.1)

satisfies x ∈ Xs
+ and the bound

‖x‖Xs+,k ≤ ĈR‖F‖(Xs−,k)∗ .

Besides the regularity assumption, Hackbusch needs in his proof an approximation
error estimate. In our framework, we need the following analogous assumption.
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(A4) There is a constant CI > 0 such that for all grid levels k and all x ∈ X+ the
approximation error result

inf
xk∈Xk

‖x− xk‖X ≤ CI‖x‖Xs+,k

is satisfied.
With these conditions, we have
Theorem 4.1. Let for k = 0, 1, 2, . . . the symmetric matrices Ak be obtained

by discretizing problem (2.1) using a sequence of finite-dimensional nested subspaces
Xk−1 ⊆ Xk ⊂ X. Assume that there are Hilbert spaces Xs

+ ⊆ X ⊆ Xs
− with mesh-

dependent norms ‖ · ‖Xs+,k , ‖ · ‖X and ‖ · ‖Xs−,k such that the conditions (A1), (A1a),
(A3) and (A4) hold.

Then the coarse-grid correction (2.5) satisfies the approximation property (2.7)
with a constant CA, only depending on C, C, CD, CD, CI and ĈR

To some extend this is a known result in literature. For sake of self-containedness
and specially tailored to our notation, we give a proof of this theorem in the Appendix.

4.1. Convergence analysis under full elliptic regularity. Before we start
discussing the convergence analysis under partial elliptic regularity, we have to recall
the results for the case of full regularity.

First note that in Subsection 2.1, we have already seen that conditions (A1)
and (A1a) are satisfied for the model problem.

We choose the norm ‖ · ‖X0
−,k

= ‖ · ‖X−,k as introduced in (3.2), which guarantees
the smoothing property and condition (A2).

Already for s = 0 (full elliptic regularity) the choice of the linear space X0
+ = X+

equipped with norms ‖ · ‖X+,k
is not straight-forward. The basic idea is to choose the

Hilbert space X+,k := (X+, ‖ · ‖X+,k
) such that the Hilbert space X is the interpolant

at θ = 1/2 of the Hilbert spaces X−,k and X+,k, i.e.,

X = [X−,k, X+,k]1/2. (4.2)

This is satisfied for the choice X+ := H2(Ω) × H2(Ω) with associated mesh-
dependent norms

‖x‖X+,k
:= (‖y‖2Y+,k

+ ‖p‖2P+,k
)1/2,

where

‖y‖Y+,k
:= (1 + α1/2h−2

k )−1/2(‖y‖2L2(Ω) + α‖y‖2H2(Ω))
1/2 and

‖p‖P+,k
:= α−1(1 + α1/2h−2

k )−1/2(‖p‖2L2(Ω) + α‖p‖2H2(Ω))
1/2.

The combination of (2.8) and Lemma 6.1, introduced in the Appendix, immediately
implies that this choice of the Hilbert space X+,k = (X+, ‖ · ‖X+,k

) guarantees (4.2).
Remark 4.2. The choice of X+,k in this paper is different to the choice used

in [11]. Note that the choice in the present paper is closer to the classical proofs for
the full elliptic regularity case, cf. [8], where (4.2) is also satisfied.

With this choice of X+,k we now have
Lemma 4.3. Condition (A4) is satisfied for s = 0.
Proof. Note that X+ = Y+ × P+ and X = Y × P . Therefore, we can do the

analysis for y and p separately. As the analysis for p is completely analogous, we
consider y only.
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Using standard finite element theory, we know that there is an interpolation
operator Πk : H1(Ω)→ Yk such that

‖y −Πky‖Hl(Ω) ≤ Ch
(n−m)/2
k ‖y‖Hn(Ω) for all y ∈ Hn(Ω) ∩H1(Ω) (4.3)

for 0 ≤ m ≤ n ≤ 2. Using the fact that

‖ · ‖α1/4H1(Ω) = ‖ · ‖[L2(Ω),α1/2H2(Ω)]1/2
≤ (‖ · ‖2L2(Ω) + α‖ · ‖2H2(Ω))

1/2

holds, we can show – analogously to Lemma 2.3 in [11] – using the definition the
involved norms ‖ · ‖Y and ‖ · ‖Y+,k

that

‖y −Πky‖Y ≤ C‖y‖Y+,k
for all y ∈ Y+ (4.4)

holds.
And, finally, one can show the following result.
Lemma 4.4. In the framework of this section, condition (A3) is satisfied for

s = 0 if condition (R) is satisfied.
The proof is postponed until the next subsection, where the general case s ∈ [0, 1)

is considered.

4.2. Convergence analysis under partial elliptic regularity. The next step
is the construction of the Hilbert space Xs

+,k for s ∈ (0, 1). Here, we use the obser-
vation (4.2) and follow classical results. We have already used Xs

−,k = [X−,k, X]s for
the construction of Xs

−,k. Observe, that in Hackbusch’s proof, Xs
+,k = H2−s(Ω) =

[H2(Ω), H1(Ω)]s = [X+,k, X]s is satisfied, which again is used as construction prin-
ciple. So, for the case of the model problem, we choose the Hilbert space Xs

+,k as
follows:

Xs
+,k := [X+,k, X]s. (4.5)

Note that, analogously to (4.2), the identity

X = [Xs
−,k, X

s
+,k]1/2

is satisfied, cf. the reiteration theorem (Theorem 3.2.20, Corollary 3.2.17 in [4]).
Lemma 4.5. The Hilbert spaces Xs

−,k and Xs
+,k, introduced in (3.2) and (4.5),

are the linear spaces

Xs
− = Hs(Ω)×Hs(Ω) and Xs

+ = H2−s(Ω)×H2−s(Ω).

equipped with norms which are equivalent (with constants independent of k and α) to
the following norms

‖x‖Xs−,k = (‖y‖2Y s−,k + ‖p‖2P s−,k)1/2,

where

‖y‖Y s−,k = (1 + α1/2h−2
k )(1−s)/2(‖y‖2L2(Ω) + αs/2‖y‖2Hs(Ω))

1/2 and

‖p‖P s−,k = α−1(1 + α1/2h−2
k )(1−s)/2(‖p‖2L2(Ω) + αs/2‖p‖2Hs(Ω))

1/2.

and

‖x‖Xs+,k = (‖y‖2Y s+,k + ‖p‖2P s+,k)1/2,
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where

‖y‖Y s+,k = (1 + α1/2h−2
k )−(1−s)/2(‖y‖2L2(Ω) + α(2−s)/2‖y‖2H2−s(Ω))

1/2 and

‖p‖P s+,k = α−1(1 + α1/2h−2
k )−(1−s)/2(‖p‖2L2(Ω) + α(2−s)/2‖p‖2H2−s(Ω))

1/2.

Proof. First note that Xs
−,k and Xs

+,k, defined by (3.2) and (4.5), have product
structure. Therefore, it suffices to discuss the y-part and the p-part separately.

First we consider only the norms in Y s−,k and Y s+,k.
Using the identity (2.8), the reiteration theorem (Theorem 3.2.20, Corollary 3.2.17

in [4]) and Lemma 6.1, we obtain

‖y‖Y s+,k = ‖y‖[Y+,k,Y ]s ∼ ‖y‖[Y+,k,Y−,k]s/2

= (1 + α1/2h−2
k )−(1−s)/2‖y‖[L2(Ω)∩α1/2H2(Ω),L2(Ω)]s/2

∼ (1 + α1/2h−2
k )(s−1)/2(‖y‖2L2(Ω) + α(2−s)/2‖y‖2H2−s(Ω))

1/2,

where ∼ denotes the equivalence of norms, where the constants are independent of hk
and α.

We can show using the same arguments

‖y‖Y s−,k = ‖y‖[(Y−,k),Y ]s = ‖y‖[(1+α1/2h−2
k )1/2L2(Ω),L2(Ω)∩α1/4H1(Ω)]s

∼ (1 + α1/2h−2
k )(1−s)/2(‖y‖2L2(Ω) + αs/2‖y‖Hs(Ω))

1/2.

The same can be done with the norms in P s+,k and P s−,k.
As mentioned, we use Theorem 4.1 to show the approximation property. Already

in Subsection 2.1, we have mentioned that conditions (A1) and (A1a), which are
independent of the choice of s, are satisfied. We still have to show conditions (A4)
and (A3).

Lemma 4.6. Condition (A4) is satisfied for all s ∈ [0, 1].
Proof. This proof is done using interpolation. Condition (A4) was shown for

s = 0 in Lemma 4.3.
For s = 1, we can show using (4.3) that

‖y −Πky‖Y ≤ C‖y‖Y (4.6)

holds for all y ∈ Y .
Using (4.4) and (4.6), the interpolation theorem (Theorem 2.3) implies that

cs ‖y −Πky‖Y = ‖y −Πky‖[Y,Y ]s ≤ C‖y‖[Y+,k,Y ]s = C‖y‖Y s+,k

holds for all y ∈ Y s+ with cs =
√

1/(2s(1− s)), which finishes the proof for s ∈ (0, 1).

Lemma 4.7. Assume that regularity assumption (R’) is satisfied for some s ∈
[0, 1). Then condition (A3) holds with a constant ĈR independent of the grid level k
and the choice of the parameter α.

For the proof of this lemma, we need the following lemma, whose proof can be
found in the Appendix.

Lemma 4.8. Assume that regularity assumption (R’) is satisfied for some s ∈
[0, 1). Let f ∈ (Hs(Ω))∗. Consider the problem: Find yf ∈ H1(Ω) such that

(yf , ỹ)L2(Ω) + α1/2(yf , ỹ)H1(Ω) = 〈f, ỹ〉 (4.7)
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is satisfied for all ỹ ∈ H1(Ω). Then there is a constant C̃R > 0 such that for all α > 0
the solution yf satisfies yf ∈ H2−s(Ω) and

‖yf‖Y s+,k ≤ C̃R‖f‖(Y s−,k)∗

holds.
Proof. (of Lemma 4.7) This proof is organized as follows. In step 1, we show

that for F ∈ (Xs
−)∗ the solution x of (4.1) satisfies x ∈ Xs

+. In step 2, we will see
that the estimate in (A3) can be rewritten as a stability estimate. In step 3, we will
see that (R’) implies a stability estimate for a parameter-dependent elliptic problem.
In step 4, we will show that this stability estimate implies, following the guidelines
of [14] the stability estimate to be shown due to step 3.

Step 1. Considering the two lines of the KKT-system (2.1) separately, and keep-
ing in mind that y ∈ H1(Ω) ⊆ (Hs(Ω))∗ and p ∈ H1(Ω) ⊆ (Hs(Ω))∗, we obtain
using (R’) that y ∈ H2−s(Ω) = Y s+ and p ∈ H2−s(Ω) = P s+ is satisfied.

Step 2. For showing

‖x‖Xs+,k ≤ ĈR‖F‖(Xs−,k)∗ ,

we reformulate this condition as stability estimate (inf-sup condition):

‖x‖Xs+,k ≤ ĈR sup
06=x̃∈X

B(x, x̃)

‖x̃‖Xs−,k
for all x ∈ Xs

+. (4.8)

Using the representation of the norms, as introduced in Lemma 4.5, (4.8) can be
rewritten as follows

(‖y‖2
Ỹ s+

+ ‖p‖2
P̃ s+

)1/2 ≤ ĈR sup
06=(ỹ,p̃)∈X

B((y, p), (ỹ, p̃))

(‖ỹ‖2
Ỹ s−

+ ‖p̃‖2
P̃ s−

)1/2
(4.9)

where

‖ · ‖Ỹ s− := ‖ · ‖L2(Ω)∩αs/4Hs(Ω), ‖ · ‖P̃ s− := ‖ · ‖α−1/2L2(Ω)∩α(s−2)/4Hs(Ω),

‖ · ‖Ỹ s+ := ‖ · ‖L2(Ω)∩α(2−s)/4H2−s(Ω), ‖ · ‖P̃ s+ := ‖ · ‖α−1/2L2(Ω)∩α−s/4H2−s(Ω).

Step 3. Analogously to the case above, also the the regularity statement of
Lemma 4.8 can be rewritten as an inf-sup condition.

‖y‖Ỹ s+ ≤ C̃R sup
06=ỹ∈H1(Ω)

(y, ỹ)L2(Ω) + α1/2(y, ỹ)H1(Ω)

‖ỹ‖Ỹ s−

≤ C̃R

(
sup

0 6=ỹ∈H1(Ω)

(y, ỹ)L2(Ω)

‖ỹ‖Ỹ s−
+ sup

0 6=p̃∈H1(Ω)

(y, p̃)H1(Ω)

‖p̃‖P̃ s−

)
(4.10)

holds for all y ∈ H2−s(Ω). We can show completely analogously that also

‖p‖P̃ s+ ≤ C̃R

(
sup

06=ỹ∈H1(Ω)

(p, ỹ)H1(Ω)

‖ỹ‖Ỹ s−
+ sup

06=p̃∈H1(Ω)

α−1(p, p̃)L2(Ω)

‖p̃‖P̃ s−

)
(4.11)

holds for all p ∈ H2−s(Ω).
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Step 4. Now we show that (4.10) and (4.11) imply (4.9). The proof follows the
lines of the proof of the stability estimate Theorem 2.3 in [14].

Note that ‖ · ‖L2(Ω) ≤ ‖ · ‖Ỹ s− ≤ ‖ · ‖Ỹ s+ and ‖ · ‖L2(Ω) ≤ ‖ · ‖P̃ s− ≤ ‖ · ‖P̃ s+ are
satisfied.

Now

2 sup
06=x̃∈X

B(x, x̃)

(‖ỹ‖2
Ỹ s−

+ ‖p̃‖2
P̃ s−

)1/2

≥ sup
06=ỹ∈Y

(y, ỹ)L2(Ω) + (ỹ, p)H1(Ω)

‖ỹ‖Ỹ s−
+ sup

06=p̃∈P

(y, p̃)H1(Ω) − α−1(p, p̃)L2(Ω)

‖p̃‖P̃ s−

≥

 sup
0 6=ỹ∈Y

(ỹ, p)2
H1(Ω)

‖ỹ‖2
Ỹ s−

+ sup
0 6=p̃∈P

(y, p̃)2
H1(Ω)

‖p̃‖2
P̃ s−

1/2

−

 sup
06=ỹ∈Y

(y, ỹ)2
L2(Ω)

‖ỹ‖2
Ỹ s−

+ sup
06=p̃∈P

α−2(p, p̃)2
L2(Ω)

‖p̃‖2
P̃ s−

1/2

= (ξ − η)(‖y‖2
Ỹ s+

+ ‖p‖2
P̃ s+

)1/2,

where

η :=
1

(‖y‖2
Ỹ s+

+ ‖p‖2
P̃ s+

)1/2

 sup
06=ỹ∈Y

(y, ỹ)2
L2(Ω)

‖ỹ‖2
Ỹ s−

+ sup
0 6=p̃∈P

α−2(p, p̃)2
L2(Ω)

‖p̃‖2
P̃ s−

1/2

,

ξ :=
1

(‖y‖2
Ỹ s+

+ ‖p‖2
P̃ s+

)1/2

 sup
06=ỹ∈Y

(ỹ, p)2
H1(Ω)

‖ỹ‖2
Ỹ s−

+ sup
0 6=p̃∈P

(y, p̃)2
H1(Ω)

‖p̃‖2
P̃ s−

1/2

.

A second bound can be constructed as follows

sup
06=x̃∈X

B(x, x̃)

(‖ỹ‖2
Ỹ s−

+ ‖p̃‖2
P̃ s−

)1/2
≥ B((y, p), (y,−p))

(‖y‖2
Ỹ s−

+ ‖ − p‖2
P̃ s−

)1/2
=

(y, y)L2(Ω) + α−1(p, p)L2(Ω)

(‖y‖2
Ỹ s−

+ ‖p‖2
P̃ s−

)1/2

≥
(y, y)L2(Ω) + α−1(p, p)L2(Ω)

(‖y‖2
Ỹ s+

+ ‖p‖2
P̃ s+

)1/2
=

sup0 6=ỹ∈Y
(y,ỹ)2

L2(Ω)

(ỹ,ỹ)L2(Ω)
+ sup06=p̃∈P

α−2(p,p̃)2
L2(Ω)

α−1(p̃,p̃)L2(Ω)

(‖y‖2
Ỹ s+

+ ‖p‖2
P̃ s+

)1/2

≥
sup06=ỹ∈Y

(y,ỹ)2
L2(Ω)

‖ỹ‖2
Ỹ s−

+ sup06=p̃∈P
α−2(p,p̃)2

L2(Ω)

‖p̃‖2
P̃ s−

(‖y‖2
Ỹ s+

+ ‖p‖2
P̃ s+

)1/2
= η2(‖y‖2

Ỹ s+
+ ‖p‖2

P̃ s+
)1/2.

The inequalities (4.10) and (4.11) imply ξ + η ≥ C̃R > 0. In the same way as in [14],
it follows that there is an upper bound for the constant in (4.9) only depending on
C̃R.

As we have shown (A1), (A1a), (A3) and (A4), we conclude using Theorem 4.1
as follows.

Corollary 4.9. Assume that regularity assumption (R’) is satisfied for some
s ∈ [0, 1). Then the approximation property holds with a constant CA independent of
the grid level k and the choice of the parameter α.



MULTIGRID FOR CONTROL PROBLEMS UNDER PARTIAL REGULARITY 15

As mentioned, the combination of approximation property and smoothing prop-
erty shows the convergence of the two-grid method.

In Subsection 4.2 we have shown the approximation property. In Section 3 we
have shown that the preconditioned normal equation smoother and the collective
Richardson smoother satisfy the smoothing property. This allows to conclude as
follows.

Corollary 4.10. Assume that regularity assumption (R’) is satisfied for some
s ∈ [0, 1). Furthermore, assume that the preconditioned normal equation smoother or
the collective Richardson smoother is applied.

Then the two-grid method converges if sufficiently many smoothing steps are ap-
plied, i.e., we have

‖x(1)
k − xk‖Xs−,k ≤ q(ν)‖x(0)

k − xk‖Xs−,k ,

with q(ν) = CT ν
(1−s)/2, where the constant CT is independent of the grid level k and

of the choice of the parameter α. The constant CT may depend on s.
The convergence of the W-cycle multigrid method follows under weak assump-

tions.

5. Numerical Results. In this section, we present numerical results to illus-
trate the convergence theory presented in this paper. The domain Ω was chosen to
be the L-shaped domain Ω := (0, 2)2\[1, 2)2 and the unit square Ω := (0, 1)2. For the
L-shaped domain assumption (R’) holds for s > 1

3 and for the unit square assump-
tion (R) is satisfied.

On the coarsest grid level k = 0 the discretization of the unit square was done
by decomposing the square into two triangles by connecting the points (0, 0) and
(1, 1). The L-shaped domain was discretized analogously into 6 triangles. The grid
levels k = 1, 2, . . . were in both cases constructed by uniform refinement, i.e., every
triangle was decomposed into four subtriangles.

For the simulation a W-cycle multigrid method with ν pre- and ν post-smoothing
steps was used. The number of iterations and convergence rates were measured as
follows: we start with an random initial error and measure the reduction of the error
in each step using the norm ‖·‖X−,k . The iteration was stopped when the initial error
was reduced by a factor of ε = 10−6. The convergence rates q is the mean convergence
rate in this iteration, i.e.,

q =

(
‖x(n)

k − xk‖X−,k

‖x(0)
k − xk‖X−,k

)1/n

,

where n is the number of iterations needed to reach the stopping criterion. Here, xk
is the exact solution and x(i)

k is the i-th iterate.
In Table 5.1 we compare the convergence rates for the L-shaped domain and for

the unit square. We observe that the convergence rates are comparable, i.e., the
multigrid method does not suffer from the lack of full regularity. The numerical
tests have been done for the preconditioned normal equation smoother (damped with
τ = 7/16), the collective Jacobi iteration (damped with τ = 3/4) and the collective
Gauss Seidel iteration (without damping). Here, the preconditioned normal equation
smoother and the collective Richardson smoother are covered by the convergence
theory. Due to the fact that the grid is uniform, collective Jacobi smoother and
collective Richardson smoother are practically identical. The collective Gauss Seidel
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ν = 1 + 1 ν = 2 + 2 ν = 4 + 4
n q n q n q

Ω is unit square

Preconditioned normal equation 48 0.75 24 0.56 14 0.35
Collective Jacobi smoother 13 0.33 8 0.16 6 0.08
Collective Gauss Seidel smoother 7 0.10 5 0.05 4 0.02

Ω is L-shaped domain

Preconditioned normal equation 49 0.75 25 0.57 14 0.36
Collective Jacobi smoother 14 0.35 8 0.17 6 0.08
Collective Gauss Seidel smoother 7 0.11 5 0.06 4 0.03

Table 5.1
Number of iterations n and convergence rate q on grid level k = 5, α = 1

α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 49 0.75 50 0.76 41 0.71 50 0.76
k = 6 48 0.75 49 0.75 51 0.76 53 0.77
k = 7 49 0.75 49 0.75 55 0.77 56 0.78
k = 8 49 0.75 49 0.75 51 0.76 44 0.73
k = 9 49 0.75 49 0.75 49 0.75 44 0.73

Table 5.2
L-shaped domain: Number of iterations n and convergence rate q for preconditioned normal

equation smoother for τ = 7/16 and ν = νpre + νpost = 1 + 1 smoothing steps

smoother is not covered by the theory but a quite natural alternative to the collective
Jacobi smoother.

In Table 5.1 we observe that the collective point smoothers are faster than the
normal equation smoothers. Moreover, we see that also for the L-shaped domain the
convergence rates decay faster than ν−1/2 for increasing values of ν, although theory
predicts a decay of ν−1/2 only for the full elliptic regularity case.

In Tables 5.2 and 5.3, we see moreover that the convergence rates are robust in
the grid level k and in the choice of the parameter α.

Although not covered by the analysis, numerical experiments show that also the
V-cycle converges with rates comparable with the convergence rates of the W-cycle
method for the model problem.

6. Conclusions. In this paper we gave a convergence proof for an elliptic dis-
tributed control model problem which is slightly different to the proof given in [11].
This proof of the present paper has the advantage that it also holds for to domains
where full elliptic regularity cannot be guaranteed, which includes non-convex polyg-
onal domains. The generalization of the presented work to other elliptic differential
operators is obvious.

Appendix. Proof. (of Theorem 4.1) The details of this proof follow Theorems 2.5
and 3.1 in [11].
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α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 14 0.35 13 0.34 9 0.21 13 0.33
k = 6 13 0.34 13 0.34 12 0.29 13 0.33
k = 7 13 0.34 13 0.34 13 0.33 13 0.33
k = 8 13 0.34 13 0.34 13 0.34 11 0.26
k = 9 13 0.34 13 0.34 13 0.34 11 0.26

Table 5.3
L-shaped domain: Number of iterations n and convergence rate q for collective Jacobi smoother

for τ = 3/4 and ν = νpre + νpost = 1 + 1 smoothing steps

In this proof, for sake of simplicity C is a generic constant that only depends on
C, C, CD, CD, CI and CR.

Let x ∈ X and xk ∈ Xk be such that

B(x, x̃) = F(x̃) for all x̃ ∈ X,
B(xk, x̃k) = F(x̃k) for all x̃k ∈ Xk.

First we show that

‖x− xk‖Xs−,k ≤ C sup
06=x̃∈Xs−,k

F(x̃)

‖x̃‖Xs−,k
(6.1)

holds. The proof of this estimate follows the classical line of arguments: Because
of (A1) and (A1a), we can estimate the discretization error in the X-norm by the
approximation error:

‖x− xk‖X ≤ C inf
x̃k∈Xk

‖x− x̃k‖X .

Using (A4) and (A3) we obtain further

‖x− xk‖X ≤ C‖F‖(Xs−,k)∗ .

For the estimate in the norm ‖ · ‖Xs−,k , we use the Aubin-Nitsche duality trick: For
every (arbitrarily but fixed) F∗ ∈ (Xs

−,k)∗, we consider the following problem: Find
x̂F∗ ∈ X such that

B(x̃, x̂F∗) = F∗(x̃) for all x̃ ∈ X.

Using Galerkin orthogonality, we obtain

F∗(x− xk) = B(x− xk, x̂F∗) = B(x− xk, x̂F∗ − x̂k)

for all x̂k ∈ Xk. Using (A1) and (A1a), we obtain

F∗(x− xk) ≤ C‖x− xk‖X inf
x̂k∈Xk

‖x̂F∗ − x̂k‖X .

As above we obtain

F∗(x− xk) ≤ C‖x− xk‖X‖F∗‖(Xs−,k)∗ ,
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which implies (as we may choose F∗ arbitrarily)

‖x− xk‖Xs−,k = sup
06=F∗∈(Xs−,k)∗

F∗(x− xk)

‖F∗‖(Xs−,k)∗
≤ C‖x− xk‖X ,

which shows (6.1). Now we may show the approximation property

‖x(1)
k − xk‖Xs−,k ≤ CA sup

06=x̃k∈Xk

B(x
(0,m)
k − xk, x̃k)

‖x̃k‖Xs−,k
.

One easily sees that xk − x(1)
k = tk − tk−1, where tk := xk − x(0,m)

k and the function
tk−1 ∈ Xk−1 is given by the formula for the coarse-grid correction step in variational
formulation

B(tk−1, x̃k−1) = F(x̃k−1)− B(x
(0,m)
k , x̃k−1) for all x̃k−1 ∈ Xk−1.

We observe that

B(tk−1, x̃k−1) = F(x̃k−1)− B(x
(0,m)
k , x̃k−1) = B(xk − x(0,m)

k , x̃k−1) = B(tk, x̃k−1)
(6.2)

for all x̃k−1 ∈ Xk−1. For a given F∗ ∈ (Xs
−,k)∗, let x̂ ∈ X, x̂k ∈ Xk and x̂k−1 ∈ Xk−1

satisfy

B(x̃, x̂) = F∗(x̃) for all x̃ ∈ X,
B(x̃k, x̂k) = F∗(x̃k) for all x̃k ∈ Xk,

B(x̃k−1, x̂k−1) = F∗(x̃k−1) for all x̃k−1 ∈ Xk−1.

Then

F∗(tk − tk−1) = B(tk − tk−1, x̂k) = B(tk, x̂k − x̂k−1)

since

B(tk−1, x̂k) = F∗(tk−1) = B(tk−1, x̂k−1) = B(tk, x̂k−1)

using (6.2). Hence

F∗(tk − tk−1) ≤ sup
06=x̃k∈Xk

B(tk, x̃k)

‖x̃k‖Xs−,k
‖F∗‖(Xs−,k)∗ .

Therefore,

‖tk − tk−1‖Xs−,k = sup
06=F∗∈(Xs−,k)∗

F∗(tk − tk−1)

‖F∗‖(Xs−,k)∗
≤ C sup

06=x̃k∈Xk

B(tk, x̃k)

‖x̃k‖Xs−,k
,

which completes the proof.
Lemma 6.1. For all Banach spaces A1 and A2, the Banach spaces A1 ∩ [A2, A1]θ

and [A1 ∩ A2, A1]θ are equal and have equivalent norms. The constants, describing
the equivalence, only depend on the choice of θ.

Proof. In this proof, C > 0 is a generic constant which is independent of k and α
but which may depend on θ.
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First note that

‖u‖[A1∩A2,A1]θ ≥ C‖u‖[A1,A1]θ∩[A2,A1]θ ≥ C‖u‖A1∩[A2,A1]θ

follows directly from the monotonicity of the interpolation.
So it remains to show ‖u‖[A1∩A2,A1]θ ≤ C‖u‖A1∩[A2,A1]θ . Let u ∈ [A1 ∩A2]θ ∩A1.

The definition of the norms on the interpolation spaces (real K-method, cf. [9]) and
elementary relations yield

‖u‖2[A1∩A2,A1]θ
=

∫ ∞
0

t−2θ−1 inf
u1+u2=u

(
‖u1‖2A1

+ ‖u1‖2A2
+ t2‖u2‖2A1

)
dt

=

∫ 1

0

t−2θ−1 inf
u1+u2=u

(
‖u1‖2A1

+ ‖u1‖2A2
+ t2‖u2‖2A1

)
dt

+

∫ ∞
1

t−2θ−1 inf
u1+u2=u

(
‖u1‖2A1

+ ‖u1‖2A2
+ t2‖u2‖2A1

)
dt.

By replacing the infimum by a particular choice, using the triangular inequality and
by computing the integrals, we obtain

‖u‖2[A1∩A2,A1]θ
≤
∫ 1

0

t−2θ−1t2‖u‖2A1
dt

+

∫ ∞
1

t−2θ−1 inf
u1+u2=u

(
(‖u‖A1 + ‖u2‖A1)2 + ‖u1‖2A2

+ t2‖u2‖2A1

)
dt

≤ 1

2− 2θ
‖u‖2A1

+
1

θ
‖u‖2A1

+ 2

∫ ∞
1

t−2θ−1

(
inf

u1+u2=u
‖u1‖2A2

+ (1 + t)2‖u2‖2A1

)
dt.

By a variable transformation and again using the definition of the norms on the
interpolation spaces, we obtain that further

‖u‖2[A1∩A2,A1]θ
≤ 1

(1− θ)θ
‖u‖2A1

+ 2

(
1

2

)−2θ−1 ∫ ∞
1

(1 + t)−2θ−1 inf
u1+u2=u

(
‖u1‖2A2

+ (1 + t)2‖u2‖2A1

)
dt

=
1

(1− θ)θ
‖u‖2A1

+ 22θ+2

∫ ∞
2

t−2θ−1 inf
u1+u2=u

(
‖u1‖2A2

+ t2‖u2‖2A1

)
dt

≤ 1

(1− θ)θ
‖u‖2A1

+ 22θ+2‖u‖2[A2,A1]θ
≤ C(θ)2‖u‖2[A2,A1]θ∩A1

holds, which finishes the proof for C(θ) = max
{

(1− θ)−1/2θ−1/2, 2θ+1
}
.

Proof. (of Lemma 4.8) We have to show that yf ∈ H2−s(Ω) and

‖yf‖L2(Ω)∩α(2−s)/4H2−s(Ω) ≤ C̃R‖f‖(L2(Ω)∩αs/4Hs(Ω))∗ .

As yf ∈ H1(Ω), we have using yf ≡ (yf , ·)L2(Ω) that yf ∈ (Hs(Ω))∗. Therefore,
if we consider the problem, find y ∈ Y such that

(y, ỹ)H1(Ω) = 〈α−1/2(f − yf ), ỹ〉 holds for all ỹ ∈ H1(Ω),

that regularity assumption (R’) states yf ∈ H2−s(Ω) and

‖yf‖H2−s(Ω) ≤ CR(‖f‖(Hs(Ω))∗ + α−1/2‖yf‖(Hs(Ω))∗).
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This can be bounded from above and we obtain

‖yf‖H2−s(Ω) ≤ C(α)‖f‖(Hs(Ω))∗ ,

where C(α) is some constant that may depend on α.
Now, in a second step we construct a result that is robust in α. Let f ∈ L2(Ω)

be arbitrarily but fixed.
We may consider the following formulation of the problem: Find y ∈ H1(Ω) such

that

(y, ỹ)H1(Ω) = (α−1/2(f − yf ), ỹ)L2(Ω) holds for all ỹ ∈ H1(Ω).

Lax-Milgram Theorem (applied directly to the energy norm ‖ ·‖H1(Ω)) shows that the
solution yf ∈ H1(Ω) satisfies

‖yf‖H1(Ω) = α−1/2‖f − yf‖(H1(Ω))∗ (6.3)

and the regularity assumption (R’) shows that yf ∈ H2−s(Ω) and

‖yf‖H2−s(Ω) ≤ CRα−1/2‖f − yf‖(Hs(Ω))∗ . (6.4)

We may also consider the following formulation of the problem: Find y ∈ H1(Ω) such
that

(y, ỹ)L2(Ω) + α1/2(y, ỹ)H1(Ω) = (f, ỹ)L2(Ω) holds for all ỹ ∈ H1(Ω). (6.5)

The Lax-Milgram theorem (applied for the energy norm ‖·‖L2(Ω)∩α1/4H1(Ω)) shows
that the solution yf satisfies

‖yf‖L2(Ω)∩α1/4H1(Ω) = ‖f‖(L2(Ω)∩α1/4H1(Ω))∗ . (6.6)

The combination of (6.3) and (6.6) shows:

‖f − yf‖(α1/4H1(Ω))∗ ≤ C‖f‖(L2(Ω)∩α1/4H1(Ω))∗ . (6.7)

If we choose ỹ = y = yf in (6.5), we obtain using α1/2(yf , ỹ)H1(Ω) ≥ 0 that ‖yf‖2L2(Ω) ≤
‖f‖L2(Ω)‖yf‖L2(Ω) and therefore ‖yf‖L2(Ω) ≤ ‖f‖L2(Ω)and therefore

‖f − yf‖L2(Ω) ≤ C‖f‖L2(Ω). (6.8)

The combination of (6.7), (6.8), the interpolation theorem (Theorem 2.3) and Lemma 6.1
shows:

‖f − yf‖(αs/4Hs(Ω))∗ ≤ C‖f‖(L2(Ω)∩αs/4Hs(Ω))∗ ,

which reads, if combined with (6.4), as follows:

‖yf‖α(2−s)/4H2−s(Ω) ≤ C‖f‖(L2(Ω)∩αs/4Hs(Ω))∗ . (6.9)

The equation (6.6) implies ‖yf‖L2(Ω) ≤ ‖f‖(L2(Ω)∩α1/4H1(Ω))∗ ,which shows using the
fact ‖ · ‖[A,B]s ≤ ‖ · ‖A∩B that ‖yf‖L2(Ω) ≤ ‖f‖(L2(Ω)∩α1/4Hs(Ω))∗ ,which can be com-
bined with (6.9) to the desired result:

‖yf‖L2(Ω)∩α(2−s)/4H2−s(Ω) ≤ C‖f‖(L2(Ω)∩αs/4Hs(Ω))∗
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for all f ∈ L2(Ω).
Due to the fact that L2(Ω) is dense in (Hs(Ω))∗ we have for f0 ∈ (Hs(Ω))∗ and

fε ∈ L2(Ω) with ‖f0 − fε‖(Hs(Ω))∗ ≤ ε that

‖yf0
‖L2(Ω)∩α(2−s)/4H2−s(Ω)

≤ ‖yfε‖L2(Ω)∩α(2−s)/4H2−s(Ω) + ‖yfε − yf0‖L2(Ω)∩α(2−s)/4H2−s(Ω)

≤ C‖fε‖(L2(Ω)∩αs/4Hs(Ω))∗ + C(α)‖fε − f0‖(Hs(Ω))∗

≤ C‖f0‖(L2(Ω)∩αs/4Hs(Ω))∗ + (1 + C(α))‖fε − f0‖(Hs(Ω))∗

≤ C‖f0‖(L2(Ω)∩αs/4Hs(Ω))∗ + (1 + C(α))ε

holds, which shows the desired result for ε → 0. Here, yf0
and yfε are the solutions

of the variational problem (4.7) for right-hand-sides f0 and fε, respectively.
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