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Abstract

When lacquering in the classical way, i. e., by spraying just with compressed air, half of the
material gets lost. Hence new techniques to avoid this exhaustive waste are investigated.
This led to different approaches depending on the special needs. Considering automobile
industry, charged spraying seems to be a promising idea. Here, corona discharge is used
to charge the lacquer droplets in order to govern their motion with the help of an electric
field. The aim of this thesis is to develop a simulation tool for this electrohydrodynamic
(EHD) flow problem.
Apart from the lacquering and painting of parts, similar problems occur for particle
filters such as in chimneys of factories, or in medical laboratory tests, for example to hold
enzymes in a place where they can be observed.

The general three dimensional mathematical model of the EHD flow problem is based on
Maxwell’s equations, especially on Faraday’s and Gauss’ law. They lead to a non-linear
system of partial differential equations for the electric field, the space charge density, and
the current density.
For simplicity the corona discharge is treated as a surface process and included in the
boundary conditions. The exact location is unknown and depends on the electric field
strength what leads to a free boundary problem.

First we consider the diffusion dominated case of the two dimensional EHD problem.
This case is numerically easier to treat, but in practice the convection dominates. The
stationary case of the model is reformulated according to a Fermi-potential approach
which was introduced for semiconductor equations. The obtained free boundary problem is
treated in two different ways. The first (intuitive) approach directly iterates the position of
the boundary. The second idea introduces the unknown position as a non-linear boundary
condition.
A finite element discretization is done and the system of equations is solved with a
combination of a Newton’s method and a fixed point iteration.

Second we discuss the practically relevant convection dominated case. Therefore we fo-
cus on numerical methods for treating convection-diffusion equations. Different methods
and stabilizations in primal and mixed formulation are analyzed and discussed. A careful
comparison of several finite element methods is done. Roughly speaking, the edge-upwind
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stabilization in mixed formulation gives best results as long as the boundary layer is not
resolved by the discretization.
Consequently we apply edge-upwind stabilization in mixed variational formulation to the
full time-dependent two dimensional EHD problem. Semi-discretization with finite ele-
ments is done and the resulting initial value problem for a system of ordinary differential
equations is solved by time discretization with the implicit Euler method.
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Zusammenfassung

Beim Lackieren mit reiner Druckluft, geht rund die Hälfte des Sprühguts verloren. Aus
diesem Grund wird nach neuen Methoden gesucht, um den Verlust zu verringern. Zum
Lackieren von Metallteilen, wie in der Automobilindustrie, bietet sich das elektrostatische
Sprühen an. Dabei werden, durch eine Coronaentladung, die einzelnen Lacktröpfchen elek-
trisch aufgeladen, um ihre Bewegung dann mit Hilfe eines elektrischen Feldes beeinflussen
zu können. Ziel dieser Arbeit ist die Entwicklung einer Software zur Simulation dieses
elektrohydrodynamischen (EHD) Vorgangs.
Diese Methode wird nicht nur beim Lackieren von Werkstücken verwendet. Auch bei
Partikelfiltern wie sie in Industrieschornsteinen verwendet werden, oder in medizinischen
Labors um zum Beispiel Enzyme an einem Ort zur Untersuchung festzuhalten, wird diese
Methode angewandt.

Das allgemeine dreidimensionale mathematische Model des EHD Flusses, wird anhand
der Maxwellgleichungen, im Speziellen den Gesetzen von Faraday und Gauss, entwickelt.
Das führt auf ein nichtlineares System partieller Differentialgleichungen für das elektrische
Feld, die Raumladungsdichte und die Stromdichte.
Die Coronaentladung wird vereinfacht als Oberflächenprozess behandelt und in die
Randbedingungen eingebunden. Die genaue Position des Coronaeffekts ist jedoch unbe-
kannt und hängt von der Stärke des elektrischen Feldes ab. Damit ergibt sich ein freies
Randwertproblem.

Zuerst betrachten wir den diffusionsdominierten Fall des EHD Problems im Zweidimensio-
nalen. Hier ist die numerische Handhabung einfacher, aber im physikalisch korrekten Fall
dominiert die Konvektion. Wir wenden einen Fermi-Potential Ansatz aus dem Forschungs-
gebiet der Halbleiterphysik auf das stationäre Model an. Das freie Randwertproblem wird
auf zwei verschiedene Arten behandelt. Mit einem sehr intuitiven Zugang, bei dem die
Position der Randbedingung iteriert wird, und durch die Einführung einer Randbedingung
in der eine nichtlineare Abhängigkeit enthalten ist.
Das Problem wird mit Finiten Elementen diskretisiert und das Gleichungssystem mit
einer Kombination aus Fixpunkt- und Newtoniteration gelöst.

Dann diskutieren wir den, in der Praxis relevanten, Fall mit dominierender Konvekti-
on. Dazu betrachten wir zuerst numerische Methoden zur Behandlung von Konvektions-
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Diffusionsgleichungen. Es werden verschiedene Methoden in primaler und gemischter For-
mulierung analysiert und diskutiert. Mehrere Finite Elemente Methoden werden miteinan-
der verglichen. Es zeigt sich, dass die Edge-Upwind Stabilizierung in gemischter Formulie-
rung die besten Ergebnisse liefert, solange die Randschicht nicht von der Diskretisierung
aufgelöst wird.
Deshalb wird die Edge-Upwind Stabilisierung in gemischter Variationsformulierung auf
das vollständige, zeitabhängige EHD Problem im Zweidimensionalen angewandt. Die Se-
midiskretisierung mit Finiten Elementen ergibt ein Anfangswertproblem für ein System
gewöhnlicher Differentialgleichungen das wir mit der impliziten Euler Methode lösen.
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Notations

In this thesis vector fields are denoted via bold face symbols.
The subscript h is used to keep a discrete entity apart from their continuous analogon.

Notations related to partial differential equations

Ω open subset of R
n

Γ � BΩ boundary of the domain Ω

∇f � p BfBx1

, . . . , BfBxn
q gradient

div f � °n
i�1

BfiBxi
divergence of vector field

curl f � ∇� f curl of vector field

Notations related to finite elements

L2pΩq space of square integrable functions on Ω
HmpΩq Sobolev space of L2-functions with square integrable derivative up to

order m}.}m Sobolev norm of order m
Ap., .q bilinear form
fp.q linear form
V � dual space of V
Vh, Qh finite element spaces
ϕi basis functions of Vh

Th triangulation of Ω
T closure of element T � Ω

T̊ interior of element T
PppT q set of polynomials of degree ¤ p over element TpT,PT ,ΣT q physical or global finite element

T element domain
PT space of shape functions
ΣT set of nodal variablespT̂ ,PT̂ ,ΣT̂ q reference element

Hpdiv,Ωq :� tq P rL2pΩqsd | div q P L2pΩqu
MppThq :� tv P L2pΩq | v|T P PppT q for all T P Thu.
LppThq :� tv P H1pΩq | v|T P PppT q, T P Thu with p ¥ 1.
RT 0pT q :� ta� bx | a P R

2, b P Ru, local Raviart-Thomas space of order 0
RT 0pThq :� tv P rL2pΩqs2 | v normal continuous , v|T P RT 0pT qu.
ker b :� tu P V | bpu, qq � 0 for all q P Qu, kernel of b

viii



Notations related to EHD problems

B magnetic flux
E electric field
Φ electric potential
D electric displacement
ρ space charge density
ε electrical permittivity
j electric current density
b mobility of the ions
V gas velocity
d ions diffusion coefficient
n outer normal vector
ζ Fermi potential
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Chapter 1

Introduction

This thesis deals with mathematical modeling and numerical simulation of electrohydro-
dynamical (EHD) flow in air produced by electric corona discharge. The EHD problem is
of high interest for many industrial applications. Apart from the lacquering and painting
of parts, similar problems occur for particle filters such as in chimneys of factories, or
in medical laboratory tests, for example to hold enzymes in a place where they can be
observed.

Motivation

A very expensive part of the manufacturing process of cars is the lacquering of the car
body. The lacquer itself is a quite expensive hi-tech product.

Figure 1.1: Robots already in use in the lacquering line. (Picture provided by DAIMLER AG.)

Therefore a lot of effort is put onto the reduction of wasted material. By just spraying
lacquer with compressed air onto the car body about half of it gets lost.
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CHAPTER 1. INTRODUCTION 2

One way of optimizing the recovery of the lacquer is the technique of charged spraying.
The idea is to govern a flow with the help of electric fields. The benefits of charged spraying
are among others more uniform coverage of target surfaces due to the mutual repulsion of
the charged droplets and enhanced adhesion and deposition [26]. Owing to the advantages
of this technology it is of high interest for companies. Some of them implemented it
already in the lacquering line (cf. Figure 1.1). For the purpose of optimizing the efficiency
of charged spraying even more, various settings need to be tested. Therefore simulations,
containing a large number of different physical and chemical models to describe the
complex process, are required.

Experimental setup

Various settings have been tested in experiments to investigate their effects. We consider
the following experiment, which can be used for comparison to simulation results.
In order to minimize undesired effects the experiment takes place in a room where ev-
erything is electrically neutral (Figure 1.2), except the target (car door) and parts of the
headpiece.

Figure 1.2: Experimental setup. (Picture provided by DAIMLER AG.)

Figure 1.3 shows a closer look at the headpiece, a typical vaporizer. The bell in the center
has inlets for the lacquer. Due to the rotation of the bell, the lacquer is evaporated into
droplets. A collection of fine fibers on the rim of the bell allows to influence the size
of the droplets. Air inlets are arranged in a circle around the bell. The air supports the
evaporation by the pneumatic force and the air entrainment transports the lacquer droplets
towards the target [26]. When the airflow is deflected by the target, it drags along the
small lacquer particles, for which the momentum is not enough to reach the surface of the
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target. The efficency of the lacquering process can be increased by adding an additional
force which makes the particles reach the target.

Figure 1.3: Close-up to the Ecobell-vaporizer. (Pictures provided by DAIMLER AG.)

One possibility of handling this problem is the already mentioned charged spraying. If the
particles are ions (charged particles) one can influence their flow with an electric field. The
electric field is built up by six electrodes which are arranged around the bell (cf. Figure
1.3).
Due to the high voltage applied to the electrode and the comparable small radius of the
peak of the needle the air near the peak is ionized since electrons are split off the air
molecules [11]. This effect is called corona discharge. While the positively charged ions
are attracted by the electrodes the free electrons bind to the lacquer particles. Because of
the positive voltage between target and needle, the Coulomb force drags the negatively
charged lacquer particles towards the target.

Summing up, the whole carriage process is composed of

• the airflow,

• the ions carriage with self consistent electric field,

• and the particle movement.

A combination of several mathematical models is needed for the description of this pro-
cess, e. g. the continuity equation as well as Navier-Stokes-equations for the flow and much
more besides. It is computationally not feasible to resolve the very turbulent flow by
Navier-Stokes-equations. Figure 1.4 shows a snapshot of the particle allocation during the
lacquering process. Therefore especially the small vortices are additionally modeled as a
stochastic process.
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Figure 1.4: Ecobell-vaporizer in use; standard adjustment. (Picture provided by DAIMLER AG.)

Electric subproblem

From the whole carriage process described above we single out the electric subproblem
causing the electrohydrodynamic (EHD) flow. Important quantities to describe the electric
subproblem are the electric field, the space charge density and the current density. A
crucial point concerns the boundary conditions for the space charge density on the corona
electrode. Therefore we are especially interested in what happens around the needle.
A simplified model of the corona effect is to treat the corona discharge as a surface process
and therefore incorporate it as a boundary condition. This is done by neglecting the
thickness of the ionization layer and considering only the negative lacquer ions, moving
with a constant mobility [2]. In the following we assume that there are no other forces
on the ions than the electric field. The mass of the lacquer particles and their binding
process with the free electrons are also neglected and only the flow of the charges is taken
into account. So the unknowns of this model are the electric field and the space charge
density.

We will see that even this subproblem is already a rather complex assignment due to
nonlinear equations and boundary conditions.

The task of this thesis is to model and simulate the previously mentioned electric sub-
problem. The goal is to develop an appropriate numerical approach for solving the electric
subproblem.

Organization of this thesis

• Chapter 2: Problem Formulation
The mathematical model is derived from the physical background. The corresponding
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governing equations for a general three dimensional setup are presented. We develop
a simplified two-dimensional mathematical model and by means of a schematic com-
putational domain the according boundary conditions are designed.

• Chapter 3: Basic Concepts
We provide a brief summary of the numerical treatment of elliptic partial differential
equations. In the course of a variational framework for the primal formulation we give
an overview of the basic definitions and numerical realization of the finite element
method (FEM). Furthermore we present a variational framework of mixed (dual)
formulations. In this context we state some basics of the approximation properties
of conforming FEM for mixed formulations to enable a-priori error estimates.

• Chapter 4: The EHD Problem - The Fermi-Potential-Approach
The mathematical model can be transformed and treated in different ways. We
apply an approach of the research field of semiconductor equations. The governing
equations of the problem and the boundary conditions are reformulated according to
the Fermi-potential ansatz. Two different approaches to treat the free boundary are
described. Finally the numerical results are presented.

• Chapter 5: The Convection-Diffusion Problem
In this chapter we concentrate on convection-diffusion problems. We analyze different
methods and stabilizations in primal and mixed formulation and discuss them by
means of a one dimensional example. These computations are done in the software
package MATLAB.

• Chapter 6: The EHD Problem with Edge-Upwind Stabilization
The whole time-dependent electrohydrodynamic system of equations is analyzed. An
upwind scheme in mixed variables is applied. Semidiscretization with finite elements
and time discretization with implizite Euler is done. Finally numerical results are
given.

The implementation of the algorithms and the computations contained in the present work
are done in the software package netgen/ngsolve (see www.hpfem.jku.at).



Chapter 2

Problem Formulation

Starting with the physical model of the electric subproblem, we derive the corresponding
mathematical model. Accordingly we introduce the governing physical laws for a general
three dimensional setup.

2.1 System of governing equations

The calculation of the electric field and the space charge density is the crucial step in the
electrohydrodynamic (EHD) flow simulation.
Due to an electric corona discharge, electrons are injected from the ionization layer and
form the space charge in the air gap between the two electrodes.
The model is based on Maxwell’s equations, especially on Faraday’s and Gauss’ law.

We consider the electro-quasi-static case, where the magnetic flux B does not change with
time. Due to Faraday’s law of induction �BBBt � curl E the curl of the electric field vanishes

curl E � 0.

In this case the electric field E can be characterized as a gradient field and can be described
by the electric potential Φ as

E � �∇Φ. (2.1)

Gauss’ law states that the electric flux through a closed surface is determined by the electric
charge enclosed in this surface. In differential form this reads as

div D � ρ, (2.2)

where ρ denotes the space charge density and D the vector valued electric displacement.

6



CHAPTER 2. PROBLEM FORMULATION 7

The air between the electrodes is assumed to be a linear, homogeneous and isotropic
material. The according constitutive law describes the relation be the electric field E and
its displacement D

D � εE. (2.3)

The electrical permittivity ε is in general a 3� 3 tensor. For isotropic media it simplifies
to a scalar. If the material is furthermore supposed to be linear, the permittivity ε is also
independent of the electric field E.

Therefore Gauss’ law can be reformulated as

div εE � ρ. (2.4)

With the special form of the electric field (2.1), equation (2.4) yields the Poisson equation
for the electric potential Φ, i. e. � div ε∇Φ � ρ. (2.5)

Next we discuss the electric current due to the moving charges.
The charge conservation law states that a change of the charge density in time in a cer-
tain domain has to lead to an in- or outflow of charges, and so implies electric currents.
Therefore the electric current density j and the space charge density ρ are related viaBρBt � div j � 0. (2.6)

The electric current density consists of three main macroscopic contributions.
The first one arises from charged particles, which are accelerated by the Coulomb force and
move towards the target. This causes a drift current expressed by b∇Φ ρ where b denotes
the mobility of the ions.
Of course the movement of the charged particles is also influenced by the movement of the
ambient gas. This transport caused by the flowing gas implies a current V ρ where V is
the gas velocity.
The fact that charged particles tend to achieve a steady state causes a diffusion current
given by �d∇ρ, where d denotes the diffusion coefficient of the ions.
Taking everything into account we get

j � b∇Φ ρloomoon
drift

� V ρloomoon
transport

� d∇ρloomoon
diffusion

. (2.7)

We want to decouple equation (2.7) from the flow calculation. As mentioned in [25] it
can be assumed that the drift velocity of ions in our application is about two orders of
magnitude higher than the typical velocity V of the gas flow.
Therefore we can neglect the second term and equation (2.7) simplifies to

j � b∇Φ ρ� d∇ρ. (2.8)
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Remark 2.1. Equation (2.8) can also be derived from the Boltzmann equation formu-
lated for one type of charge carriers, e. g. electrons. This can be done by moment methods
(cf. [15], Chapter 2.3). The Boltzmann equation describes the evolution of a particle dis-
tribution (dependent on space, velocity, and time) in a fluid. It is used e. g. to study how
a fluid transports physical quantities such as charged particles, and to derive transport
properties.
A feature of the moment methods is the reduction of independent variables from seven
(space, velocity, time) to only four (space, time). This is done by introducing the moments
of the distribution function with respect to the velocity. Equations for the moments can be
derived by multiplying the Boltzmann equation by powers of the velocity and integrating
over the velocity space. The lowest order moments are related to physical quantities in
a simple way and the resulting equations of the moment methods represent conservation
laws. This system can be reduced to a drift diffusion model for the current density. In [15]
this is used to derive a simple drift-diffusion model for semiconductor equations.

Summing up, we obtain the following non-linear system of partial differential equations� div ε∇Φ � ρ (2.9)BρBt � div j � 0 for px, tq P Ω� p0, T q (2.10)

j � b∇Φ ρ� d∇ρ, (2.11)

for the unknowns Φ (electric potential), ρ (space charge density), and j (current density).
Note the non-linear dependency in the drift term in (2.11). Assuming a steady state
equation (2.10) reduces to

div j � 0 for x P Ω. (2.12)

2.2 Boundary conditions

For technical simplification we reduce our mathematical model to two dimensions and
investigate the following problem setting. From now on we consider the schematic com-
putational domain shown in Figure 2.1, which describes the air surrounding the electrode
and the target as our domain of interest. The electrode and the target are resolved by the
boundary. The electrode is modeled in form of a needle. Its boundary is split into two
parts Γco Y Γelzco � Γel. We have to treat the peak of the needle Γco separately, because
in a subarea of this region the corona discharge occurs. The shaft of the needle Γelzco is
insulated. The target is represented by the boundary Γta. We truncate the two dimen-
sional plane by introducing the artificial boundary Γout. Considering the physics behind
the problem we are able to state the appropriate boundary conditions. On each boundary
we need a condition for either the potential Φ or the normal component of the electric
displacement D as well as one for either the space charge density ρ or the normal current
density j.
In the following we refer to the outer normal vector of the boundary by n.
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Γout

Γelzco Γco

Γta

Γout

Γelzco

Γco

Γta

Figure 2.1: Computational domain.

Boundary conditions for the potential

The boundary conditions on the potential are straightforward. If we truncate the compu-
tational domain Ω far enough from the needle and the target, we are allowed to assume
no charges near the boundary. Consequently we impose Neumann boundary conditions on
the outer boundary, i. e.

ε∇Φ � n � 0 on Γout. (2.13)

Furthermore we know the values for the potential at the target and the electrode. The
target is grounded, hence the potential there has to be zero. At the needle a negative
voltage is applied, and we fix the potential to Φe   0 with respect to ground. The
appropriate boundary conditions for this case are Dirichlet conditions on the target and
on the electrode,

Φ � 0 on Γta, (2.14)

Φ � Φe on Γel � Γco Y Γelzco. (2.15)

Boundary conditions for the space charge density

Analog to the Neumann boundary condition for the potential on the outer boundary Γout,
we assume that no electric current flows in normal direction of Γout, i. e.

j � n � 0 on Γout. (2.16)

The remaining boundary conditions for the space charge density are more involved. From
physics we know that the charges of the particles are neutralized at Γta. The space charge
density ρ does not change with respect to the outer normal direction to this boundary, i. e.

∇ρ �n � 0 on Γta. (2.17)
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With these two equations and the relation between current density and space charge density
(2.8), we can reformulate the boundary conditions for the variable of interest. If we multiply
equation (2.8) by the normal vector n we get

j � n � b∇Φ ρ �n� d∇ρ � n.
The diffusion term vanishes on Γta according to equation (2.17). Hence, the boundary
condition for the current density is

j � n � b∇Φ ρ � n on Γta. (2.18)

Setting up the boundary conditions for the space charge density on the electrode is much
more sophisticated and requires a more detailed discussion of the corona discharge, which
will lead to a free-boundary condition.

In the ’active’ region Γco,a � Γco, where the corona effect occurs, the corona onset, the
generated free electrons follow the direction of the electric field and therefore j � n ¡ 0
holds. On the remaining ’inactive’ part of Γco, lets call it Γco,i :� ΓcozΓco,a, j � n � 0 has
to be fulfilled. Because of the insulation this is also fulfilled on Γelzco. Summarizing this,
we get

j � n � 0 on ΓelzΓco,a

j � n ¡ 0 on Γco,a

*ñ j �n ¥ 0 on Γel. (2.19)

From the mathematical point of view a boundary condition for the charge density or the
current density is needed on the injector Γco, but physically the corona discharge depends
on the electric field strength [2]. On the boundary the vector field E can be decomposed
into a normal Enn and a tangential Eτ component

E � Enn�Eτ .

Since E � �∇Φ and Φ is constant on the boundary Γel (2.15), the tangential part Eτ

vanishes, i. e.Eτ � 0. Since in our special problem setting (with Φe   0) En is a positive
scalar and we obtain |E| � En .
In general, the electric field increases proportionally to the voltage. But Kaptzov’s hy-
pothesis [9] states that the electric field preserves its value at the corona onset, after the
corona effect is initiated. Hence there exists a threshold strength of the electric field Eco

for the corona onset, i. e.

En � Eco on Γco,a

En   Eco on ΓelzΓco,a

*ñ En ¤ Eco on Γel, (2.20)

but the corona onset Γco,a is a free boundary. We point out that one of the inequalities
(2.19) and (2.20) is always sharp. Therefore we can writepj �nq pEn � Ecoq � 0 on Γel. (2.21)
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A further discussion of the corona discharge will be done in the context of the two different
approaches for handling this effect and is postponed to Section 4.3.1 on page 31.

Summarizing, we have to face two challenges in our problem. First, the non-linearity of
the system (2.9)-(2.11) of partial differential equations. Secondly, the free boundary value
problem due to the effect of the corona discharge.



Chapter 3

Basic Concepts

This chapter contains a brief summary of the numerical treatment of elliptic partial dif-
ferential equations. Therefore a variational framework of the primal formulation in use is
presented at the beginning. The corresponding existence and uniqueness result and the
needed function spaces L2 and H1 are also outlined.
In the course of the primal formulation we give an overview of the basic analysis, the design,
and the numerical realization of the finite element method (FEM). We dwell on the FEM
and some essential definitions as the Galerkin approximation, the construction of the finite
dimensional space Vh � V , the triangulation Th, and the finite element itself. Furthermore
some basics of the approximation properties of conforming FEM for the primal formulation
are stated.
In the second part of this chapter a variational framework of mixed (dual) formulations is
presented. The corresponding existence and uniqueness results as well as the additionally
needed function space Hpdivq are discussed. The general definitions of the FEM also apply
here. In this context we shortly introduce the lowest-order Raviart-Thomas element which
is Hpdivq-conforming. Some basics of the approximation properties of conforming FEM
for mixed formulations are stated to enable a-priori error estimates.
Finally, we list some fundamental formulas which we make use of in subsequent chapters.

3.1 Variational framework and FEM discretization

for primal formulations

As a simple example we consider the Poisson problem�∆u � f in Ω � R
d (3.1)

with Dirichlet boundary conditions

u � 0 on Γ. (3.2)

12
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Now we derive the variational formulation as follows. We multiply (3.1) by a suitable test
function and integrate over the domain Ω. Integration by parts yields»

Ω

∇u �∇v dx � »
Ω

f v dx. (3.3)

Existence of the integrals is ensured if we require |∇u|2, |∇v|2, |f |2, and |v|2 to be integrable.
This leads us to the natural function spaces of this variational formulation which are subject
of the next definition.

Definition 3.1. Function spaces. We define the Hilbert spaces

L2pΩq :� tv | »
Ω

v2 dx   8u,
H1pΩq :� tv P L2pΩq | ∇v P rL2pΩqsdu,

with their corresponding scalar productspu, vq0 :� »
Ω

uv dx,pu, vq1 :� p∇u,∇vq0 � pu, vq0,
respectively. The corresponding norms are referred to as }.}0 and }.}1. Additionally we
define a function space with essential boundary conditions

H1
0 pΩq :� tv P H1pΩq | v|Γ � 0u.

Motivated by (3.3) we introduce the following abstract form of variational problems.

Find u P V such that

Apu, vq � fpvq for all v P V, (3.4)

where Ap., .q is a bilinear form and fp.q a linear form. In the following we state some
definitions and well known results for further usage. For proofs we refer the reader to [3]
and [4].

3.1.1 Existence and Uniqueness

Definition 3.2. A bilinear form Ap., .q on a normed linear space H is said to be

1. coercive if there exists a constant α1 ¡ 0 such that

Apv, vq ¥ α1}v}2H for all v P H
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2. continuous (bounded) if there exists a constant α2 ¡ 0 such that|Apu, vq| ¤ α2}u}H}v}H for all u, v P H
Theorem 3.3. (Lax-Milgram) Given a real Hilbert space pV, p., .qq, a continuous linear
functional f P V � and a continuous, coercive bilinear form A : V � V Ñ R, there exists a
unique solution u P V such that

Apu, vq � fpvq for all v P V
and u satisfies }u}V ¤ 1

α1

}f}V �.
3.1.2 The Galerkin Approximation

In general, problems of the form (3.4) can not be solved analytically. Instead approx-
imative techniques have to be used. A well known concept for constructing discrete
approximations of the exact solution of variational problem (3.4) is the concept of
conforming discretization methods. There the infinit-dimensional problem is restricted
to a finite-dimensional subspace Vh of V . This leads to a Galerkin approximation where
(3.4) is replaced by the discret variational problem

Find uh P Vh such that

Apuh, vhq � fpvhq for all vh P Vh. (3.5)

Corollary 3.4. Replacing the Hilbert space V by a (closed) finite dimensional subspace
Vh � V does not change the existence and uniqueness results obtained by Lax-Milgram
theorem 3.3.

Let tϕiui�1,...,Nh
be a basis of Vh. Then we can expand any vh P Vh in terms of this basis,

vhpxq � Nḩ

i�1

vi ϕipxq.
Owing to the linearity of Ap., .q and fp.q, it is enough to test the discrete variational
problem (3.5) only with the basis functions. With the definitions

A
h

:� pApϕi, ϕjqq1¤i,j¤Nh
, uh :� puiq1¤i¤Nh

, and f
h

:� pfpϕjqq1¤j¤Nh

the original discrete variational problem (3.5) is equivalent to the Galerkin system

A
h
uh � f

h
. (3.6)
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3.1.3 Basic concepts of the Finite Element Method

For a more detailed but easily accessible discussion of the finite element methods we refer
the reader to [3], [6] and [4].

The finite element method (FEM) is a special Galerkin method that follows certain princi-
ples in the construction of the subspaces Vh. The three major aspects of this construction
are as follows

- A triangulation Th is established, covering the domain Ω � R
d, i. e. Ω is written as a

finite union of sub domains T P Th with the properties stated below.

- The functions in the finite element space Vh are chosen to be piecewise polynomials,
i. e. vh|T P PppT q for p P N, T P Th.

- A basis tϕiu of Vh with local support is used, i. e. each basis function ϕi is non-zero
only on a few elements.

Due to the local support of the basis functions ϕi the matrix A
h

of the Galerkin system
(3.6) is sparse. Hence iterative solvers can be applied for efficiency and fast solving.

The Triangulation

We assume the domain Ω to be an open, bounded domain with a Lipschitz continuous
boundary.

Definition 3.5. Th is called a triangulation of Ω � R
d, if it consists of subsets T which

satisfy the following conditions.

1. The triangulation Th is a covering of Ω:

Ω � ¤
TPTh

T.

2. Each element T is a closed domain with a nonempty connected interior:�T P Th : T � T , T̊ � H and T is connected.

3. Each element T has a Lipschitz-continuous boundary:�T P Th : BT is Lipschitz-continuous.

4. The elements are non-overlapping, i. e.

T̊i X T̊j � H for i � j.
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5. The intersection Ti X Tj of two distinct elements (i � j) is either empty, a vertex,
an edge or a face (if d � 3) of both elements:�Ti, Tj P Th : i � j ñ Tj X Tj � $''&''% H,

vertex,
edge,
face.

Throughout this thesis we consider quasi-uniform triangulations according to the following
definitions (cf. [6]).

Definition 3.6. A family of triangulations Th is called regular if there exists a constant
κ ¡ 0 such that every T P Th contains a ball with radius rT satisfying

hT

rT

¤ κ for all T P¤Th,

where hT denotes half the diameter of T and if the quantity

h � max
TPTh

hT

approaches zero.

Definition 3.7. A family of triangulations Th satisfies an inverse assumption if there exists
a constant ν ¡ 0 such that

h

hT

¤ ν for all T P¤Th.

Definition 3.8. A regular family of triangulations that satisfies an inverse assumption is
called quasi-uniform.

The Finite Element

According to [4] we follow Ciarlet’s specification [6] of a finite element. It contains three
basic definitions for the construction of a finite element.

Definition 3.9. Let

1. the element domain T � R
n be a bounded closed set with nonempty interior and

piecewise smooth boundary,

2. the space of shape functions PT be a finite dimensional space of functions on T , and

3. the set of nodal variables ΣT � tNT
1 , . . . , N

T
k u, also referred to as degrees of freedom,

be a basis for P�
T , where P�

T denotes the dual space of PT .

Then we call the triple pT,PT ,ΣT q a finite element.

Definition 3.10. Let pT,PT ,ΣT q be a finite element. The basis tϕ1, . . . , ϕku of PT is
called the nodal basis of PT , if it is dual to the set of nodal variables ΣT , i. e.Nipϕjq � δij.
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The reference element and its transformation

The finite element pT,PT ,ΣT q is also called physical or global finite element. For practical
implementation and simplification of design and analysis of the FE-method the mapping
idea is used. First one constructs a local basis (shape functions) on the reference elementpT̂ ,PT̂ ,ΣT̂ q. Here T̂ is of simple shape (e. g. the unit triangle in 2D, see Figure 3.1).
Furthermore the functions are mapped onto the physical element T P Th by a conforming
transformation. One of the advantages of this approach is the possibility to perform many
computations (e. g., numerical integration, derivation) a-priori on the reference element.

The transformations of the reference element to physical elements have to be continuously
differentiable bijections. A special case of such transformations are the affine linear maps.
They ensure that polynomials are mapped to polynomials of the same degree. This
simplifies the analysis of the finite element method.

The entirety of the considerations above can be summarized with the following definition
for finite element spaces.

Definition 3.11. A family of finite element spaces Vh on triangulations Th of Ω � R
d

is called an affine family, if there exists an element pT̂ ,PT̂ ,ΣT̂ q with the following properties:

• For all Tj P �Th there exists an affine mapping Fj : T̂ Ñ Tj, such that for every
v P Vh the restriction onto Tj is of the form

vpxq � ppF�1
j xq with p P PT̂ .

The mapping is affine, i. e.,

Fjpx̂q :� bj �Bj x̂ with Bj P R
d
d, bj P R

d.

• Moreover all functionals ℓ P ΣT are of the form ℓpvq � ℓ̂ppq with p � v � F and
ℓ̂ P ΣT̂ .

For more details on such transformations we refer the reader to the standard FEM literature
as mentioned at the beginning of Section 3.1.3. From now on we consider only affine families
of triangular elements.

Conforming finite element space

If Vh � V holds, Vh is a conforming finite element space. We introduce the classical
lowest-order finite element used for H1-conforming methods.

Definition 3.12. (The linear H1-conforming finite element.) The classical lowest-order
H1-conforming finite element for the simplex T P R

d (a segment for d � 1 and a triangle
for d � 2), is defined by
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x̂1

x̂2

T̂

Fj

Tj

x1

x2

1

1

Figure 3.1: The mapping of a reference element T̂ to a physical element Tj in 2D.

• the local space PT � P 1pT q of dimension dimpP 1pT qq � d� 1,

• the pd � 1q vertex-based degrees of freedom (dofs), which corresponds to point-
evaluation at the vertices, i. e.

NV
i : v Ñ vpViq for all Vi P VT ,

where VT denotes the local set of vertices belonging to the element T .

Figure 3.2: The 2-dimensional nodal H1-conforming finite element. The dots illus-
trate the degrees of freedom.

The corresponding global space is continuous and piecewise linear (such that Vh � H1pΩq)
Vh � L1pThq :� tv P L2pΩq | v continuous, v|T P P

1pT q for all T P Thu.
Remark 3.13. Basis functions.
The corresponding nodal basis are the well known hat functions (see Figure 3.3 for 1D)
defined as v|T P P1pT q with vjpViq � δij.

More general we consider V p
h � V continuous and piecewise polynomial of degree p

V
p
h � LppThq :� tv P H1pΩq | v|T P P

ppT q, T P Thu with p ¥ 1.
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......

......

......

......

x0 x1 x2 xi�1 xi xi�1

ϕi

Figure 3.3: Hat functions: Lowest-order basis function in one dimension for H1-
conforming function space.

3.1.4 Approximation properties of conforming FEM

For a coercive problem the Lax-Milgram theorem states the existence of a unique solution
u P V of (3.4). Due to conformity Vh � V it also states existence of a unique discrete
solution uh P Vh of (3.5). Céa’s Lemma states that the energy norm of the discretization
error }u� uh}V is proportional to the approximation error.

Lemma 3.14. (Céa) Suppose that the variational problem (3.4) fulfills the assumptions
of Lax-Milgram (Theorem 3.3). Let u P V denote the exact solution of (3.4).
Let Vh be a subspace of the Hilbert space V and uh P Vh the solution of the discrete problem
(3.5).
Then the discretization error u� uh can be estimated by the approximation error as follows:}u� uh}V ¤ α2

α1

inf
vhPVh

}u� vh}V ,
where α2 is the continuity constant and α1 the coercivity constant of Ap., .q on V .

Up to a constant factor we obtain the best approximation within the function space Vh in
the energy norm. Now the accuracy of the approximation depends on the choice of the
function space and its interpolation properties for the solution u.

According to the embedding theorems HmpΩq � C0pΩq for m ¡ d
2

(see [1]), i. e., every
v P Hm can be identified with a continuous function. Thus the interpolation operator πh

is well defined and vh � πhv P Vh is the continuous and piecewise linear function which
coincides with v at the nodes xi.
The interpolation error }u�πhu}V is obviously an upper bound for the best approximation
error.

Theorem 3.15. (Approximation theorem) Let Th be a quasi-uniform triangulation of
Ω. Corresponding to this triangulation let m ¥ 1 and define the mesh-dependent semi
norm and the mesh-dependent norm|v|m,h :�d

ŢPTh

|v|2m,T , }v}m,h :�d
ŢPTh

}v}2m,T .
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Then we obtain for the interpolation with piecewise polynomials of degree p ¥ 1 with a
constant C � CpΩ, κ, pq}u� πhu}m,h ¤ C hn�m|u|n,h for u P CpΩq, u P HnpT q, T P Th (3.7)

with 0 ¤ m ¤ n ¤ p� 1.

Certainly }v}m,h � }v}m,Ω for v P HmpΩq. Of course the semi norm |.|n,h on the right
hand side of (3.7) can be replaced by the full norm }.}n,h. Therefore the Approximation
Theorem 3.15 can also be written as}u� πhu}m,h ¤ C hn�m}u}n,h for u P CpΩq, u P HnpT q, T P Th

with 0 ¤ m ¤ n ¤ p � 1. Especially, for any u P Hp�1pΩq there exists an interpolant
πhu P Vh such that the interpolation error in L2pΩq and H1pΩq can be estimated as}u� πhu}0 ¤ Chp�1}u}p�1, (3.8)}u� πhu}1 ¤ Chp}u}p�1. (3.9)

3.2 Variational framework and FEM discretization

for mixed formulations

We want to formulate the second order equation forming the Poisson problem (3.1) as a
system of first order equations.

∇u � p, (3.10a)

div p � �f. (3.10b)

This formulation has the advantage that the flux p becomes an explicit side product.
Now we proceed similar as described for (3.1). Multiplying by suitable test functions q and
v, integrating over the domain and integrating by parts in (3.10a) yields the dual mixed
formulation »

Ω

p q dx � »
Ω

div q u dx � 0 for all q,»
Ω

div p v dx � � »
Ω

f v dx for all v.

(3.11)

In order to ensure the existence of all integrals, we have to identify suitable function spaces
for u, v, p and q. All of them have to be square integrable and for p and q also their
divergences have to be in L2pΩq. Therefore p, q P Hpdiv,Ωq with the following definition.
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Definition 3.16. Function space. We define the vector-valued Hilbert space

Hpdiv,Ωq :� tq P rL2pΩqsd | div q P L2pΩqu
with its corresponding scalar productpp, qqdiv :� pdiv p, div qq0 � pp, qq0.
The corresponding norm is referred to as }.}div.

Problems of the form (3.11) are called saddle-point problems and can be specified as a
mixed problem of the following general type.

Find u P V and p P Q such that

apu, vq � bpv, pq � fpvq for all v P V,
bpu, qq � gpqq for all q P Q. (3.12)

As a notation remark we want to state here, that the mixed variational problem (3.12)
can also be formulated with the help of a compound space.

Find pu, pq P V �Q such that

Bpu, p ; v, qq � f̃pv, qq for all pv, qq P V �Q (3.13)

with
Bpu, p ; v, qq :� apu, vq � bpu, qq � bpv, pq,

f̃pv, qq :� fpvq � gpqq. (3.14)

For proofs and further details on the results stated in this section we refer the reader to
[3], [5] and [17].

3.2.1 Existence and Uniqueness

The following result for mixed formulations is the analogon to the result of the Lax-Milgram
Theorem for primal formulations.

Theorem 3.17. (Brezzi) Let V and Q be real Hilbert spaces, f P V �, g P Q� and the
bilinear forms a : V � V Ñ R and b : V �QÑ R fulfill the following properties:

1. The bilinear forms are bounded, i. e. there exist constants α2, β2 ¡ 0 with|apv, wq| ¤ α2}v}V }w}V for all v, w P V,|bpv, qq| ¤ β2}v}V }q}Q for all v P V, for all q P Q.
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2. ap., .q is ker b-coercive, i. e. there exists a constant α1 ¡ 0 with|apv, vq| ¥ α1}v}2V for all v P ker b, (3.15)

where ker b :� tu P V | bpu, qq � 0 for all q P Qu.
3. bp., .q satisfies the inf-sup condition also called Ladyshenskaja-Babuška-Brezzi condition

(LBB-condition), i. e. there exists a constant β1 ¡ 0

inf
qPQ sup

vPV bpv, qq}v}V }q}Q ¥ β1. (3.16)

Then there exists a unique solution pu, pq P V �Q of (3.12) satisfying the a-priori estimates}u}V ¤ 1

α1

}f}V � � 1

β1

�
1� α2

α1


 }g}Q�,}p}Q ¤ 1

β1

�
1� α2

α1


 }f}V � � α2

β2
1

�
1� α2

α1


 }g}Q�.
3.2.2 Conforming finite element spaces

One of the most commonly used finite element for Hpdivq-conforming methods is the
lowest-order Raviart-Thomas element.

Definition 3.18. The lowest order Raviart-Thomas element (of order k � 0) on a triangle
T is defined by

• the local space RT 0pT q :� ta� bx | a P R
2, b P Ru with dimpRT 0pT qq � 3,

• the total flux over each edge Eα P ET , i. e.

Nα : v Ñ »
Eα

v � n dx α � 1, 2, 3,

where ET denotes the local set of edges belonging to the element T .

The global space is defined as

RT 0pThq :� tv P rL2pΩqs2 | v normal continuous , v|T P RT 0pT qu.
The continuity of the normal component at the element boundaries assures conformity
RT 0pThq � Hpdiv,Ωq.
The global basis functions for Hpdiv, T q are constructed by a conforming transformation
of the basis functions on the reference element T̂ . The Piola transformation (also
called contravariant transformation) preserves curl-fields and is a Hpdivq-conforming
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transformation (cf. [5]).

For high-order Raviart-Thomas elements, their form functions and error estimates in a
graspable presentation we refer the reader to [24].

Next, we introduce the classical lowest-order finite element for discretizing L2-functions.

Definition 3.19. The lowest-order L2-conforming finite element on a simplex T is defined
by

• the local space PT � P0pT q of dimension dimpP0pT qq � 1,

• one degree of freedom, which corresponds to the integral over the element, i. e.

N0 : v Ñ »
T

v dx.

The global space is defined as

M0pThq :� tv P L2pΩq | v|T P P
0pT q for all T P Thu.

Figure 3.4: (left hand side) The 2-dimensional lowest order Raviart-Thomas ele-
ment. The arrows refer to the degrees of freedom. (right hand side) The 2-dimensional
L2-conforming lowest-order finite element. The dot illustrates the degree of freedom.

3.2.3 Approximation properties of conforming FEM

Now we apply a conforming Galerkin approximation to the variational problem (3.12).
Therefore we choose finite-dimensional spaces Vh � V and Qh � Q and restrict problem
(3.12) to Vh �Qh. We consider the discrete variational problem

Find puh, phq P Vh �Qh such that

apuh, vhq � bpvh, phq � fpvhq for all vh P Vh,

bpuh, qhq � gpqhq for all qh P Qh.
(3.17)
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Theorem 3.20. Suppose that the variational problem (3.12) fulfills the assumptions of
Brezzi’s Theorem 3.17. Let pu, pq P V �Q denote the exact solution to (3.12).
Let the discrete spaces Vh � V and Qh � Q fulfill the following assumptions.

1. The bilinear form ap., .q is ker bh-coercive with a constant α1 ¡ 0 and α1 � α1phq,
where ker bh :� tvh P Vh | bpvh, qhq � 0 for all qh P Qhu.

2. The bilinear form bp., .q fulfills the inf-sup condition with a constant β 1 ¡ 0 and
β 1 � β 1phq

sup
vhPVh

bpvh, phq}vh}V ¥ β 1}ph}Q for all ph P Qh.

Denote by puh, phq P Vh �Qh the unique solution of the discrete problem (3.17).
Then the discretization errors u � uh and p � ph can be estimated by the sum of the
approximation errors as follows:}u� uh}V � }p� ph}Q ¤ c

�
inf

vhPVh

}u� vh}V � inf
qhPQh

}p� qh}Q� .
In general ker bh � ker b. In the special case where ker bh � ker b enhanced estimate can be
given.

Theorem 3.21. Suppose that the assumptions of Theorem 3.20 are fulfilled. Furthermore
let uh be the solution of (3.17) and let ker bh � ker b, i. e. for all vh P Vh holds

if bpvh, qhq � 0 for all qh P Qh ñ bpvh, qq � 0 for all q P Q.
Then the discretization errors u� uh can be estimated by}u� uh}V ¤ c inf

vhPVh

}u� vh}V
Remark 3.22. The mixed form (3.11) of the Poisson problem with ph P RT 0pThq and
uh P M0pThq fulfills the assumptions of Theorem 3.21. Note that the naming of variables
is opposite to the general theory.

3.3 Formulas of fundamental importance

This section contains a brief collection of some important formulas and definitions used
later on.

Green’s formula: »
Ω

∇v �∇w dx � »
Γ

v
BwBn ds� »

Ω

v∆w dx (3.18)
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ε-inequality: also called Young inequation|ab| ¤ 1

2ε
a2 � ε

2
b2 (3.19)

Inverse estimate for finite element functions vh P Vh � H1}∇vh}20 ¤ C2h�2}vh}20 (3.20)

Also applies elementwise.



Chapter 4

The EHD Problem
with a Fermi-Potential Approach

We introduce a Fermi-potential approach motivated by semiconductor physics. The re-
sulting free boundary problem is treated with two different approaches. The first one is
quite natural while the second one is numerically easier to use. Later on iterative solution
strategies for the non-linear coupled problem are pointed out. A 2D FEM-discretization is
done and the numerical results for the diffusion-dominated problem are presented.

4.1 The Fermi-potential approach

In the following we consider the non-linear system of the stationary governing equations
(2.9), (2.11) and (2.12) derived in Chapter 2. This system is of a similar structure as a sim-
plified form of the drift-diffusion equations describing the charge carriers in semiconductors
(see [16]; Chapter 6.2).

Remark 4.1. The Fermi-potential approach. The Fermi-potential approach is used in
the theory on charge carrier statistics in semiconductors [10]. For electrons, the probability
that a certain state of energy is occupied is described by the Fermi-Dirac distribution. For
non-degenerated semiconductors at room temperature it is justified to replace the Fermi-
Dirac distribution by the Maxwell-Boltzmann distribution. Integration over the states
yields the Fermi-potential approach for the space charge density. For more details within
the context of semiconductors we recommend the reader to [15], [14], [21] and [23].

From the Fermi-potential approach (cf. [12]) we obtain an exponential ansatz for the space
charge density

ρ � �ρ0 e
b
d
pΦ�ζq, (4.1)

where ζ denotes the Fermi-potential. The parameter ρ0 denotes the space charge density
if a voltage corresponding to the Fermi-potential is applied, i. e., Φ � ζ . The constants b

26
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and d are the mobility and the diffusion coefficient introduced in Chapter 2. Using

∇ρ � �ρ0e
b
d
pΦ�ζq b

d
∇pΦ� ζq� ρ

b

d
p∇Φ�∇ζq, (4.2)

equation (2.11) simplifies to

j � b∇Φ ρ� d ρ
b

d
p∇Φ�∇ζq� b ρ∇ζ. (4.3)

The System of governing equations

Consequently, the simplified system reads as� div pε∇Φq � ρ for x P Ω, (4.4)� div pb ρ∇ζq � 0 for x P Ω, (4.5)

with the exponential ansatz for the space charge density

ρ � �ρ0 e
b
d
pΦ�ζq. (4.1)

The non-linearity is now hidden in ρ. For a fixed ρ the system is linear in Φ and ζ .

Next, we have to adapt the boundary conditions to the Fermi-potential approach. We start
from the general description of the imposed boundary conditions formulated in Section 2.2.
The boundary conditions for the electric potential remain unchanged. Boundary conditions
for the Fermi-potential can be imposed by adjusting the boundary conditions for either
the space charge density or the current density.

Boundary conditions on the outer boundary

The Neumann boundary conditions j � n � 0 on the outer boundary can easily be refor-
mulated for the Fermi-potential ζ . Providing equation (4.3) we can write

b ρ∇ζ � n � 0 on Γout. (4.6)

Boundary conditions on the target

Since the space charge density does not change with respect to the outer normal direction
on Γta, i. e.,

∇ρ �n � b

d
ρ p∇Φ�∇ζq � n � 0 on Γta,

we obtain
b ρ∇ζ �n � b ρ∇Φ � n on Γta. (4.7)
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So, both potentials have the same normal flux on the target. A further interpretation is

j �n � �bρE � n.
Thus the current density in normal direction is equal to the negative drift current in normal
direction and no diffusion takes place.

Remark 4.2. The non-linear system (2.9)–(2.11) together with the boundary conditions
on the electrode Γel (especially (2.19) and (2.20)) can be transformed to a variational
inequality. By introducing the Fermi-potential the reformulation as variational inequality
is much more complicated. Therefore we used a different approach.

Summing up, the Fermi-potential approach for the EHD problem leads to the following
classical formulation:

Find Φ and ζ such that � div pε∇Φq � ρ in Ω,� div pb ρ∇ζq � 0 in Ω,

with ρ � �ρ0 e
b
d
pΦ�ζq and the boundary conditions

ε∇Φ � n � 0 on Γout,

Φ � 0 on Γta,

Φ � Φe on Γel,

b ρ∇ζ � n � 0 on Γout,

b ρ∇ζ � n � b ρ∇Φ � n on Γta,

b ρ∇ζ � n � 0 on ΓelzΓco,a,

b ρ∇ζ � n � jcopEq on Γco,a.

The treatment of the free boundary Γco,a and the unknown value jcopEq is postponed to
Section 4.3.

4.2 Variational framework

The analysis of the partial differential equations is commonly done within a variational
framework. In the following we first introduce the appropriate spaces and then derive a
variational (weak) formulation of our system of partial differential equations. The natural
function space V for a variational formulation of Poisson equations is the Sobolev space
H1pΩq (see Definition 3.1).
The essential (Dirichlet) boundary conditions are incorporated in the test and ansatz space:

V0 � H1
0,DpΩq :� tu P H1pΩq | u|ΓelYΓta

� 0u
Vg � H1

g,DpΩq :� tu P H1pΩq | u|Γel
� g ^ u|Γta

� 0u
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We multiply equation (4.4) by a test function w P V0, integrate over Ω, and obtain»
Ω

� divpε ∇Φqw dx � »
Ω

ρ w dx for all w P V0.

Integration by parts on the left hand side leads to»
Ω

ε ∇Φ �∇w dx� »BΩ ε ∇Φ �nw ds � »
Ω

ρ w dx for all w P V0.

Handling equation (4.5) the same way, but with a test function v P V , we obtain the
following system of equations:

Find Φ P Vg and ζ P V such that»
Ω

ε ∇Φ �∇w dx� »BΩ ε ∇Φ � nw ds � »
Ω

ρ w dx for all w P V0, (4.8)»
Ω

bρ∇ζ �∇v dx� »BΩ bρ∇ζ �n v ds � 0 for all v P V , (4.9)

with ρ � �ρ0 e
b
d
pΦ�ζq.

In the next step we incorporate the boundary conditions. The boundary term of the first
equation (4.8) equals to� »BΩ ε ∇Φ � nw ds � � »

ΓelYΓta

ε ∇Φ � n wloomoon�0

ds� »
Γout

ε ∇Φ �nlooomooon�0

w ds � 0.

The boundary term of the second equation (4.9) can be written as� »BΩ bρ∇ζ �n v ds � � »
ΓelYΓta

bρ∇ζ � n v ds� »
Γout

bρ ∇ζ � nloomoon�0

v ds� � »
Γel

bρ∇ ζ � n v ds� »
Γta

bρ∇ Φ � n v ds.

Since bρ∇ζ � n � j � n � 0 on ΓelzΓco,a the term at this boundary vanishes. Only the
boundary condition on Γco,a remains� »BΩ bρ∇ζ � n v ds � � »

Γco,a

bρ∇ζ � n v ds� »
Γta

bρ∇ Φ � n v ds.

By incorporating these boundary terms into the equations (4.8) and (4.9) we obtain our
problem in weak formulation.
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Find Φ P Vg and ζ P V such that»
Ω

pε∇Φ �∇wq dx� »
Ω

ρw dx � 0 for all w P V0, (4.10)»
Ω

bρ∇ζ �∇v dx� »
Γco,a

bρ∇ζ � nlooomooon�jcopEq v ds� »
Γta

bρ∇Φ � n v ds � 0 for all v P V. (4.11)

In this coupled system (coupled via the boundary term) the free boundary Γco,a as well as
the boundary value jcopEq on Γco,a are still unknown.

4.3 Solution strategies

First we present two approaches for locating the free boundary Γco,a. Throughout these
two methods we assume the space charge density ρ to be fixed. The first approach suggests
itself while the second is a bit smarter and easier to handle numerically.
Thereafter some iterative solution strategies for the non-linear coupled EHD problem with
the space charge density ρpΦ, ζq are presented.

4.3.1 The localization of the free boundary

First approach (An iteration for locating Γco,a)

When solving the coupled system (4.10) and (4.11) the main problem is, that the location
of Γco,a is unknown as well as the boundary value jcopEq on Γco,a. In order to motivate an
iterative procedure we recall the physics of the corona effect.

Remark 4.3. (Occurrence on Γco.) If the local electric field exceeds the threshold it causes
ionization. The generated ions induce an electric current which attenuates the local electric
field. Therefore the electric field strength can not increase further.

The following iterative procedure (Algorithm 4.4) is a realization of this process.
We solve the coupled system with an initial setting for the location of Γco,a and the
corresponding boundary conditions. Where the computed electric field exceeds the
threshold Eco we adapt the boundary condition by adding a surface current density to
locally compensate the electric field.
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Algorithm 4.4. Locating Γco,a

Initial settings: iteration index r � 0 and
corona onset Γ0

co,a � H.

while (location of Γr
co,a changes too much)

• Find Φr, ζr by solve non-linear system (4.10), (4.11) with Γr
co,a and

bρ∇ζr � n � jr
co on Γr

co,a

• Update corona onset:

Γr�1
co,a p� part of Γco where |∇Φr �n| � Er

n ¥ Eco

and compute new surface current density:

jr�1
co � jr

co � sprq max ppEr
n � Ecoq, 0q on Γr�1

co,a

• r � r � 1

end

In each step of the iteration we determine the corona onset Γr�1
co,a by means of the strength

of the electric field calculated in the previous interation. The boundary value jr
co denotes

the corresponding normal current throughout the iteration. If the value of the electric field
exceeds the threshold Eco somewhere on Γel during an iteration step, we increase local the
electric surface current density, in order to compensate the surplus of the electric field.
The scaling factor s of the additional current density depends on the iteration step r to be
able to keep changes small late in the iteration.
We point out that following this approach in each step a non-linear system has to be solved.

Second approach (A smart boundary condition on Γco)

In order to simplify the algorithm and to avoid the iteration for the location of Γco,a

(Algorithm 4.4) we reconsider the boundary conditions of the current density on the whole
electrode Γel.
Instead of locating the boundary Γco,a, we state a boundary condition dependent on En.
We approximate j � n on Γel by the piecewise linear function KrpEnq

j � n � KrpEnq � "
αF pEn � Ecoq for En ¥ Eco

0 else
onΓel (4.12)

with an appropriate choice for the slope αF . This function is illustrated in Figure 4.1 (blue
line). Under ideal conditions, meaning enough surrounding atoms which can be ionized
and that the local potential is independent of the ionization process, the current density
would be infinite as pictured in Figure 4.1 (magenta line).
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Eco En

KrpEnqj � n

Figure 4.1: The approximate KrpEnq (blue) models the surface current density j �n
on the electrode. The straight line (magenta) describes the ideal case.

For a slope αF Ñ8 the function KrpEnq approximates the idealized model of the current
density. We incorporate this boundary condition into our variational framework and
exchange (4.10), (4.11) by the following system:

Find Φ P Vg and ζ P V such that »
Ω

pε∇Φ �∇w � ρwq dx � 0 �w P V0, (4.13)»
Ω

bρ∇ζ �∇v dx� »
Γel

Krp�∇Φ � nq v ds� »
Γta

bρ∇Φ � n v ds � 0 � v P V. (4.14)

4.3.2 Iterative solution strategies for the non-linear coupled
EHD problem

In the following we discuss some non-linear solution strategies which will result in a
combination of a Newton’s method [18] and a fixed point iteration [18]. For a better
readability we describe the non-linear problem in the following abstract framework.

Find Φ P Vg and ζ P V such thatxApΦ, ζq, pw, vqy � fpw, vq for allw P V0, v P V (4.15)

with the bilinear formxApΦ, ζq, pw, vqy :� ArΦ, ζspΦ, ζ ;w, vq
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where

ArΦ�, ζ�spΦ, ζ ;w, vq � »
Ω

pε∇Φ �∇w � ρ0e
b
d
pΦ��ζ�qwq dx� »

Ω

ρ0e
b
d
pΦ��ζ�q b∇ζ �∇v dx (4.16)� »

Γel

Krp�∇Φ � nq v ds� »
Γta

ρ0e
b
d
pΦ��ζ�q b∇Φ � n v ds,

and the right hand side
fpw, vq � 0.

For applying Newton’s method we need the Gateaux derivatives of the operator A in the
direction u P V0 [22].

Definition 4.5. The Gateaux derivative F 1pxq of a given operator F pxq in a direction v

is defined as

F 1pxqv :� lim
tÑ0

1

t
rF px� tvq � F pxqs .

Hence, the Gateaux derivatives of the operator A are given byBBABΦpΦ, ζq u, pw, 0qF � lim
tÑ0

1

t
r xApΦ� t u, ζq, pw, 0qy � xApΦ, ζq, pw, 0qy s� »

Ω

ε∇u �∇w � ρ0e
b
d
pΦ�ζq b

d
uw dx

and BBABζ pΦ, ζq u, p0, vqF � lim
tÑ0

1

t
r xApΦ, ζ � t uq, p0, vqy � xApΦ, ζq, p0, vqy s� »

Ω

�ρ0e
b
d
pΦ�ζqb∇u �∇v � ρ0e

b
d
pΦ�ζq b2

d
u∇ζ �∇v dx� »

Γta

ρ0e
b
d
pΦ�ζq b2

d
u∇Φ � n v ds.

Algorithm - Newton’s method for Φ and a fixed point iteration for ζ

First of all, we solve the problem (4.15) using Newton’s method for Φ (cf. [18]). According
to the requirements of this method we need monotony of the operator Ap . , ζq.
Lemma 4.6. The operator Ap . , ζq is monoton.
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Proof. We use zero as a testfunction for ζ . Let x, y P V .xApx, ζq � Apy, ζq, px, 0q � py, 0qy �»
Ω

pε∇x �∇x� ρ0e
b
d
px�ζqxq dx� »

Ω

pε∇y �∇x� ρ0e
b
d
py�ζqxq dx� »

Ω

pε∇x �∇y � ρ0e
b
d
px�ζqyq dx� »

Ω

ε∇y �∇y � ρ0e
b
d
py�ζqyq dx �»

Ω

pεp∇x�∇yq2 dx� »
Ω

px� yqpρ0e
b
d
px�ζq � ρ0e

b
d
py�ζqq ¥ 0

Due to the monotony of the operator Ap . , ζq, a global solution with respect to Φ exists
and Newton’s method converges towards this global solution. But the monotony of
the operator ApΦ, . q can not be shown. Due to that Newton’s method for ζ might
converge towards a local solution. Hence we use a fixed point iteration which guarantees
convergence to solve the equation for ζ (cf. Algorithm 4.8). For Φ we use a modified
Newton method (cf.[19]) with a variable step size τ obtained by linesearch (cf. Algorithm
4.7).

Algorithm 4.7. (Newton’s method for Φ)

for l � 0, . . . , NΦ

find u P V0 such that�BABΦpΦk,l, ζk,0q u, pw, 0qD � fpw, 0q � �ApΦk,l, ζk,0q, pw, 0qD for w P V
for τ obtained by linesearch

Φk,l�1 � Φk,l � τ u

end

Algorithm 4.8. (Fixed point iteration for ζ)

for l � 0, . . . , Nζ,F

find u P V such that (v0 P V0)

ArΦk�1,0, ζk,lspΦk�1,0, u; 0, v0q � fp0, v0q � ArΦk�1,0, ζk,lspΦk�1,0, ζk,l; 0, v0q
ζk,l�1 � ζk,l � τ u

end
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Algorithm 4.9.

for k � 0, . . . ,#(non-linear iterations)

Newton’s method for Φ (Algorithm 4.7)

Φk�1,0 � Φk,NΦ�1

Fixed point iteration for ζ (Algorithm 4.8)

ζk�1,0 � ζk,Nζ�1

end

Modified Algorithm

On account of the well known slow convergence of the fixed point iteration due to
very small damping parameters, we try another method for finding a solution for the
Fermi-potential ζ . We already mentioned that Newton’s method might not find the global
minimum when solving the equation for ζ . But with a reasonable initial guess for ζ , close
enough to the global minimum, Newton’s method results in fast convergence.

Algorithm 4.10.

for k � 0, . . . ,#(non-linear iterations)

Newton’s method for Φ (Algorithm 4.7)

Φk�1,0 � Φk,NΦ�1

get initial guess for Newton’s method from
Fixed point iteration for ζ (Algorithm 4.8 with e. g. Nζ,F � 5)

Newton’s method for ζ (Algorithm 4.11)

ζk�1,0 � ζk,Nζ�1

end
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Algorithm 4.11. (Newton’s method for ζ)

for l � 0, . . . , Nζ,N

find u P H1 such thatABABζ pΦk,0, ζk,lqpuq, p0, vqE � fp0, vq � �ApΦk,0, ζk,lq, p0, vqD
ζk,l�1 � ζk,l � u

end

Therefore we use some steps of the fixed-point-iteration to get a useful initial guess for ζ .
We assume that this is a good enough startin value for Newton’s method.
In numerical experiments we observe better convergence compared to the pure fixed point
iteration.

4.4 Numerical Results

4.4.1 Parameters

Most of the parameters are given physical constants, namely

- the permittivity of the ambient gas ε � 8.85 � 10�11 As{V m p8.85 � 10�12As{Vmq,
- the mobility of ions b � 2.1 � 10�4 m2{V s and

- the ions diffusion coefficient d in m2{s.
The correct value of the diffusion coefficient would be d � 5.4 � 10�6 m2{s which causes
numerical problems. We believe that finite elements with upwind stabilization should be
able to treat also this realistic diffusion parameter. The diffusion coefficient is the one,
which changes in the later given examples. The parameters on the boundary are

- the potential at the electrode Φe � �70 kV and

- the threshold strength of the electric field Eco � 104 V {m.

In this two dimensional model of the tip the singularities of the electric field are much
weaker as in 3D. Therefore we have to lower the threshold Eco in order to be reached.
The physically correct value in three dimensions depends on temperature, pressure and
the composition of the surrounding gas (air). A plausible value is Eco � 1.2 � 106 V {m.
Further parameters needed for the computation are

- the slope of KrpEnq, i. e., αF � 10�15 and finally

- the scaling parameter of the space charge density ρ0 � 10�11.
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4.4.2 Computations

The following details are for a calculation done with an Dual Intel Xeon, 2.8 GHz processor.
The inner iterations were limited to a maximum number of steps. These are 10 steps for
the inner iteration for Φ and 50 steps for the inner iteration for ζ . Most of the time, the
iteration for Φ converged faster (after 1-3 iteration steps). As a stopping criterion for the
outer iteration we use the sum of the relative updates for Φ and ζ , i. e.,}Φk,0 � Φk�1,0}l2}Φk�1,0}l2 � }ζk,0 � ζk�1,0}l2}ζk�1,0}l2   1 � 10�11

and thereby obtain the following results (see Table 4.4.2).

diffusion coefficient d (m2{s) computing time (sec) number of outer loops

2.0 68.2 4
1.5 67.9 4
0.5 68.8 4
0.09 132.0 4

Table 4.1: Computing time and interation numbers for varied diffusion coefficient.

As a first example we discuss the results for the diffusion coefficient d � 0.5 m2{s. The
electric potential Φ for d � 0.5 m2{s can be seen in Figure 4.2. As expected, it shows a
smooth transition from the negative potential at the needle towards the zero potential at
the target.

Figure 4.2: The electric potential Φ for diffusion coefficient d � 0.5.
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The results for the Fermi potential ζ look quite similar to the electric potential Φ. The
difference pΦ � ζq � c1 log ρ � c2 is the crucial factor in the computation of ρ (cf. Figure
4.3), since the remaining parameters are constants.

Figure 4.3: The space charge density ρ for diffusion coefficient d � 0.5.

Due to the corona effect, free electrons are generated next to the peak of the electrode.
These charges move towards the target. The steady state of the space charge density can
be seen in Figure 4.3. The highest concentration occurs in the center, on the shortest
distance between needle and target. The concentration decreases further outside.

Figure 4.4: The electric field E on the whole domain (left) and zoomed
onto the peak of the needle (right) for diffusion coefficient d � 0.5.
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The resulting electric field is shown in Figure 4.4. Only the re-entrant corners of the target,
where the derivative has a singularity, cause slightly higher values.
Finally the according current density j for diffusion coefficient d � 0.5 m2{s calculated by
j � b ρ∇ζ is shown in Figure 4.5.

Figure 4.5: The current density j on the whole domain (left) and zoomed onto the
peak of the needle (right) for diffusion coefficient d � 0.5.

The second example we consider, are the results for the diffusion coefficient d � 0.09 m2{s.

Figure 4.6: The electric potential Φ for diffusion coefficient d � 0.09.

The results for the Fermi potential ζ for d � 0.09 m2{s look again quite similar to the



CHAPTER 4. FERMI-POTENTIAL-APPROACH 40

electric potential Φ (see Figure 4.6).

Figure 4.7: The space charge density ρ for diffusion coefficient d � 0.09.

The steady state of the space charge density ρ can be seen in Figure 4.7. The highest
concentration again occurs in the center, on the shortest distance between needle and
target. Note that obviously less diffusion takes place (compared to Figure 4.3) and thus
the concentration reaches higher values near the peak of the needle.
The resulting electric field is shown in Figure 4.8 and the current density j is pictured in
Figure 4.9.

Figure 4.8: The electric field E on the whole domain (left) and zoomed onto the
peak of the needle (right) for diffusion coefficient d � 0.09.
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Figure 4.9: The current density j on the whole domain (left) and zoomed onto the
peak of the needle (right) for diffusion coefficient d � 0.09.

Numerical tests revealed that d � 0.09 is the smallest working diffusion coefficient. For
every smaller coefficient d the method diverges. This motivates to study methods for the
convection dominated case.



Chapter 5

The Convection-Diffusion Problem

We shall now have another look at the system of equations (2.9)–(2.11) which we want to
analyze: � div ε∇Φ � ρBρBt � div j � 0 for px, tq P Ω� p0, T q

j � b∇Φ ρ� d∇ρ.

In this section we will concentrate on the convection-diffusion part (2nd and 3rd equation)
in our EHD problem. Taking Φ as fixed we define the constant b̂ :� b∇Φ. Substituting
j � b̂ ρ� d∇ρ in BρBt � div j � 0 one obtainsBρBt � divpb̂ ρ� d∇ρq � 0. (5.1)

If b̂ is divergence free and d is constant this simplifies toBρBt � b̂ �∇ρ� d∆ρ � 0. (5.2)

This equation has obviously the form of a convection-diffusion problem as already treated
in [8] for example. In order to analyze some existing methods (cf. outline below) we
consider a simplified version of this convection-diffusion problem. An analysis of the
variational formulation of the problem will be done, to ensure a unique solution. Some
finite element methods will be formulated and a-priori error estimates will be done.

In content and structure the following chapter sticks roughly to the book of Claes

Johnson [8], especially to Chapter 9 about hyperbolic problems.

For a general introduction into this sophisticated issue, we consider convection-diffusion
problems of the formBuBt � divpa∇u� b uq � c u � f for px, tq P Ω� p0, T q, (5.3)

42
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where Ω � R
d is a polygonal bounded domain and u a scalar field representing for example

a concentration. Furthermore a ¥ 0 is a diffusion coefficient, b � pb1, . . . , bdqT a vector
field in R

d with div b � 0 and c P R an absorption coefficient. With small or vanishing
diffusion term these problems have mainly hyperbolic character. The numerical solution
of problems with dominating diffusion by using standard conforming finite element
methods (cf., e. g. [3]) is well understood. Also the treatment of the hyperbolic limit
(a � 0) via discontinuous Galerkin methods (cf. [8]). However, the numerical solution of
problems with dominant convection, but non-negligible diffusion, is difficult. Standard
finite element methods for hyperbolic problems do not work well in cases where the exact
solution is not smooth. For instance a step-like discontinuity in the exact solution causes
in general large spurious oscillations in the finite element solution. These oscillations
emanating of the jump reach far into the domain and therefore the finite element solution
will be fairly different from the exact solution everywhere. On the other hand, classical
artificial diffusion methods [8] excessively smear out a sharp front. Hence, these methods
are lacking in either stability or accuracy. These difficulties are possible to overcome by
modified non-standard finite element methods with satisfactory convergence properties.
Techniques like the streamline diffusion method and the discontinuous Galerkin method
have high order accuracy and good stability properties. Recently, a high interest in this
research field can be observed (cf. [7]).
In the following we compare standard methods and some recently developed techniques
and give a one dimensional example. Therefore we discuss solution methods for scalar
problems of the following form:

Find u P V such thatBuBt � divpa∇u� b uq � c u � f for px, tq P Ω� p0, T q,
upx, 0q � u0pxq for x P Ω,

+ B.C. for px, tq P Γ� p0, T q. (5.4)

For a constant diffusion coefficient a and a divergence free vector field b this can be
formulated as follows (instationary case):

Find u P V such thatBuBt � a∆u� b �∇u� c u � f for px, tq P Ω� p0, T q,
upx, 0q � u0pxq for x P Ω,

+ B.C. for px, tq P Γ� p0, T q. (5.5)

The coefficients a ¥ 0, b � pb1, . . . , bdqT and c depend smoothly on px, tq. Usually one has
to assume that

1

2
div b� c ¥ α P Γ� p0, T q, (5.6)
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where α ¥ 0 in general. This condition ensures the stability of the problem (5.5) for all
a ¥ 0. For a small coefficient a, equation (5.6) can be relaxed (see, e. g. [8]). Since we
have a divergence free vector field b the condition (5.6) reduces to c ¥ 0.

In particular in the stationary case problem (5.5) simplifies to

Find u P V such that�a∆u� b �∇u� c u � f for x P Ω,

+ B.C. for x P Γ.
(5.7)

In this case the coefficients of condition (5.6) depend smoothly on x. The condition ensures
the stability of the problem for all α ¡ 0. Due to the divergence free vector field b the
condition (5.6) reduces to c ¡ 0 for the stationary case.
The stationary model problem is a linear equation of mixed elliptic hyperbolic type. We
assume that a is small, which means that (5.7) has mainly hyperbolic nature.

5.1 Outline

For a small coefficient a the problem (5.7) is mainly governed by the hyperbolic influences.
Therefore we start viewing the purely hyperbolic case. We study the analysis and numerical
treatment.
Back at the convection-diffusion equation we study the resulting boundary layers and
consider a simplified model problem with constant coefficients and Dirichlet boundary
conditions. There exists a straight forward extension to variable coefficients and other
boundary conditions.

We shall consider the following finite element methods:

• Standard Galerkin (cf. Section 5.4)

• Streamline Upwind Petrov Galerkin (SUPG) (cf. Section 5.5)

• Discontinuous Galerkin (DG) (cf. Section 5.6)

• Standard Galerkin for mixed formulation (cf. Section 5.7)

• Streamline edge-upwind for mixed formulation (cf. Section 5.8)

The Standard Galerkin method and the SUPG method apply to stationary equations
of mixed elliptic hyperbolic type of the form (5.7) with small diffusion coefficient. In
contrast, the Discontinuous Galerkin method was originally designed for purely hyperbolic
problems of the form (5.5) and (5.7) with diffusion coefficient a � 0. Nowadays it is also
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established as non-conforming method for a ¡ 0.

In the following we restrict ourselves to the stationary case. For the time dependent
problem (5.5) we refer the reader to the time discontinuous streamline diffusion method
presented in Chapter 9.9 in [8].

Remark 5.1. Consider the time-dependent purely hyperbolic problem:BuBt � bpxq �∇u� c u � 0 for px, tq P Ω� p0, T q. (5.8)

Replacing t by x0 and setting b0 � 1 this can also be written as
ņ

i�0

bi
BuBxi

� c u � 0 (5.9)

and therefore as an equation of the same type as the static version. Hence we can treat
this equation in the same way as the stationary case.

5.2 Preliminaries

In the following the numerical analysis is done for Ω � R
d, d � 1, 2, 3. In the sequel we

compare the different methods by applying them to the following one dimensional example.
The according results are displayed in the figures contained in this chapter.

Example 5.2. Find u P V such that�a u2 � b u1 � 1 for x P p0, 1q,
up0q � 1,

up1q � 0.

(5.10)

The exact solution of the problem is given by

upxq � 1

b
x� p1� bqpe� b

a � e
b
a
px�1qqpb� e� b

a q � 1 (5.11)

and is illustrated in Figure 5.1.

Throughout this chapter we discuss two model problems.

Problem 5.3. Convection-diffusion problem Let Ω be a bounded convex polygonal
domain in R

d, d � 1, 2, 3 with boundary Γ � BΩ. We shall consider the following stationary
boundary value problem with c � 1 and Dirichlet boundary condition:�a∆u� b �∇u� u � f for x P Ω,

u � g for x P Γ,

where a is a small positive constant, and b �∇u denotes the derivative in the b -direction.
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For a � 0.05 and b � 1.0 :
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Figure 5.1: The exact solution for Example 5.2 for different parameters a and b.

Problem 5.4. Hyperbolic problem The corresponding purely hyperbolic problem is ob-
tained by setting a � 0.

b �∇u� u � f for x P Ω,

u � g for x P Γ�,
where Γ� denotes the inflow boundary defined by Γ� :� tx P Γ | npxq � b   0u. In contrast
to the convection-diffusion problem which contains derivatives of second order, it is enough
for the reduced problem to prescribe the boundary values only on Γ�.

For the following discussion we use the notationspv, wq :� »
Ω

vw dx,}v}0 :� }v}L2pΩq, }v}s :� }v}HspΩq,xv, wyb :� »
Γ

vwn � b ds, xv, wyb, || :� »
Γ

vw |n � b| ds,xv, wyb,� :� »
Γ� vwn � b ds, xv, wyb,� :� »

Γ� vwn � b ds,
where Γ� � ΓzΓ� � tx P Γ | npxq � b ¥ 0u. Notice that by Green’s formula it follows thatpb �∇v, wq � xv, wyb � pv, b �∇wq. (5.12)

We assume that tThu is a family of quasi-uniform triangulations Th � tT u of Ω with mesh
size h. An appropriate finite element space is

Vh � LppThq :� tv P H1pΩq | v|T P P
ppT q, T P Thu with p ¥ 1

for a given integer p ¡ 0. Differently speaking Vh is the space of continuous and piecewise
polynomial functions of degree p.
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5.3 Boundary layers

For a better understanding of boundary layers we briefly study the stationary hyperbolicpa � 0q equation (5.7) with homogeneous right hand side pf � 0q
bpxq �∇upxq � c upxq � 0 for x P Ω. (5.13)

The parameterized curves xpsq � px1psq, . . . , xdpsqq represent the streamlines of the ve-
locity field bpxq � pb1pxq, . . . , bdpxqq. Such a curve xpsq is a solution of the system of
ordinary differential equations

dxi

ds
� bipxpsqq i � 1, . . . , d,

and is called characteristic curve (or simply characteristic) of the problem (5.13).

Γ� Γ�
Ω

n

b

xpsq
Figure 5.2: (Originally from johnson [8] Fig.9.1)

If b is Lipschitz-continuous, i. e., there exists a constant C such that|bpxq � bpyq| ¤ C|x� y| for all x,y P Ω,

it can be shown that only one characteristic function xpsq passes through a given point
x̄ P Ω. In other words, there exists a unique function xpsq, such that

dxi

ds
� bipxq i � 1, . . . , d,

xp0q � x̄.
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Using the chain rule, the derivative of upxpsqq with respect to s can be expressed as

d

ds
pupxpsqqq � ḑ

i�1

BuBxi

dxi

ds
� ḑ

i�1

BuBxi

bipxq � bpxq �∇upxq.
Together with the stationary hyperbolic partial differential equation (5.13) we obtain the
ordinary differential equation

d

ds
pupxpsqqq � c upxpsqq � 0. (5.14)

This makes it particularly simple to compute u along a given characteristic. Granted that
u is known at one point of a characteristic, u can be obtained by integrating (5.14) along
xpsq. Considering a concrete example this means: If u is known on the inflow boundary
Γ� (compare figure 5.2), u can be determined in each point x P Ω by starting at the inflow
boundary and integrating along the corresponding characteristic curve.
This explains why effects (e. g. jump discontinuities of u) that appear on the inflow bound-
ary are propagated just along the characteristics.
Hence, if boundary data are discontinuous and have, e. g. a jump, then solution u of Prob-
lem 5.4 is discontinuous with a jump across the characteristic (with starting point at the
jump on the inflow boundary).
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Ω

n

b

Opaq
Opa 1

2 q
Figure 5.3: The characteristics of the reduced problem Problem 5.4 are straight
lines parallel to b. The corresponding layers are schematically pictured. (Originally
from Johnson [8] Fig.9.4)

Adding a diffusion term pa ¡ 0q results in the equation of Problem 5.3. The solution u of
this convection-diffusion equation has to be continuous in Ω. Thus a discontinuity at the
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boundary spreads out in a region of width Opa 1

2 q (see Figure 5.3) around the characteristic.
Such thin regions where u or derivatives of u rapidly change are called layers.
Solving the hyperbolic equation Problem 5.4 gives certain values of u on the outflow bound-
ary Γ� � ΓzΓ�. If they differ from the given boundary values g on Γ� of the convection-
diffusion problem the solution of Problem 5.3 reveals a boundary layer of width Opaq (see
Figure 5.3).

5.4 Standard Galerkin

The variational formulation for Problem 5.3 is given by:

Find u P H1
0 pΩq such that

Apu, vq � fpvq for all v P H1
0 pΩq (5.15)

with bilinear form and linear form defined as

Apw, vq :� pa∇w,∇vq � pb �∇w � w, vq,
fpvq :� pf, vq � pg, vq.

With a conforming finite element space

V0,h � tv P Vh | v|Γ�0u � H1
0 pΩq

the standard Galerkin method for (5.15) leads to the discretized problem

Find uh P V0,h such that

Apuh, vhq � fpvhq for all vh P V0,h. (5.16)

Standard Galerkin for hyperbolic problem (Problem 5.4)

First we analyze the stability of the reduced Problem 5.4. We consider the standard
Galerkin method with weakly imposed boundary conditions:

Find uh P Vh � H1pΩq such that

Bpuh, vhq � f̃pvhq for all vh P Vh, (5.17)

with bilinear form and linear form defined as

Bpw, vq :� pb �∇w � w, vq � xw, vyb,�,
f̃pvq :� pf, vq � xg, vyb,�.

The stability of the discrete variational problem (5.17) is the result of the following property
of the bilinear form Bp., .q:
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Lemma 5.5. For any v P H1pΩq we have

Bpv, vq � }v}20 � 1

2
xv, vyb, ||.

Proof. This can easily be verified (cf. [8], Lemma 9.1, p.179) using Green’s formulapb �∇v, vq � xv, vyb � pv, b �∇vq, (5.12)

which yields pb �∇v, vq � 1

2
xv, vyb � 1

2
xv, vyb,� � 1

2
xv, vyb,�.

Hence,

Bpv, vq � }v}20 � 1

2
xv, vyb,� � 1

2
xv, vyb,� � xv, vyb,�� }v}20 � 1

2
xv, vyb,� � 1

2
xv, vyb,�� }v}20 � 1

2
xv, vyb, ||

where we used that n � b ¥ 0 on Γ� and n � b   0 on Γ�.

The lower bound for Bpv, vq needed for existence and uniqueness of the solution is provided
by Lemma 5.5. Next we are interested in an a-priori error estimate.

Theorem 5.6. If u satisfies Problem 5.4 and uh P Vh is the solution of (5.17), then there
exists a constant C such that}u� uh}0 � xu� uh, u� uhyb ¤ Chp}u}p�1. (5.18)

Proof. Confer [8] (Theorem 9.1, p.180).

The error estimate (5.18) indicates that if the exact solution u of the hyperbolic problem
(Problem 5.4) is smooth enough (i. e., u P Hp�1pΩq) in such a way that }u}p�1 is finite,
then the standard Galerkin method converges at a rate of Ophpq. Since the optimal rate
would be Ophp�1q this performance is quite satisfactory. But in general the solution u

is not smooth enough, e. g. for u discontinuous }u}1 � 8. In this case estimate (5.18) is
obviously useless.
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Standard Galerkin for convection-diffusion problem (Problem 5.3)

In order to show the stability of Problem 5.3 we prove an a-priori error estimate for the
discrete variational problem (5.16). Hence, we first have a look at (5.15) and show in the
following that the bilinear form Ap., .q and the linear form fp.q fulfill the requirements for
Lax Milgram (cf. Theorem 3.3).
The continuity of the bilinear form (with constant γ ¡ 0) and the linear form is easy to
show and therefore left to the reader. It remains to show that the bilinear form Ap., .q is
coercive on V .

Provided that apxq ¥ a � constant ¡ 0, cpxq ¥ c � constant ¡ 0 almost everywhere and}bi}8 ¤ b̃ � constant   8 for all i � 1, . . . , d there holds the following calculation. In
order to keep this proof more general we replace c � 1 again by a general c. The bilinear
form is therefore given as

Apv, vq � »
Ω

a|∇v|2 dx� »
Ω

b �∇v v dx� »
Ω

c v2 dx. (ǫ-inequality).....

Note that the sign of the second term can either be positiv or negativ. We use its negativ
absolute value as a lower estimate.

Apv, vq ¥ »
Ω

a|∇v|2 dx� | »
Ω

b �∇v v dx| � »
Ω

c v2 dx¥ a}∇v}20 � b̃}∇v}0}v}0 � c}v}20 (C.S.)¥ a}∇v}20 � b̃

�
1

2ǫ
}∇v}20 � ǫ

2
}v}20
� c}v}20 p|ab| ¤ 1

2ε
a2 � ε

2
b2q� pa� b̃

2ǫ
q|v|21 � pc� b̃ǫ

2
q}v}20¥ minpa� b̃

2ǫ
, c� b̃ǫ

2
q}v}21.

Summing up, coercivity on V , i. e.,

Apv, vq ¥ α}v}21 for all v P V
is fulfilled with α � minpa� b̃

2ǫ
, c� b̃ǫ

2
q ¡ 0, but only if the bound b̃ fulfills b̃   `

4ac.
The coercivity completes the assumptions of Lax-Milgram theorem 3.3, hence existence
and uniqueness of the exact solution as well as of the Galerkin solution uh are ensured.
Finally the a-priori error estimate is left to be shown.

Theorem 5.7. If uh satisfies (5.16) and u satisfies problem 5.3, then there exists a constantrC such that }u� uh}1 ¤ rChr}u}r�1 (5.19)

with rC � γ

α
C and α � minpa, 1q. Where γ is the continuity constant of the bilinear form

Ap., .q, i. e., |Apv, wq| ¤ γ }v} }w}.
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Proof. We choose the arbitrary function vh in Theorem 3.14 equal to the interpolant πhu

of u. Using the estimate (3.9) leads to the desired statement.

Obviously for a small diffusion coefficient a ! 1 the constant rC becomes arbitrary large.

See example 5.2:
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Figure 5.4: The solution (red) for Example 5.2 using standard Galerkin method
and linear elements with the same discretization for two different diffusion coefficients.
(Versus exact solution (blue).)

It can be observed, that standard finite element methods for convection-diffusion problems
with small diffusion coefficient a do not give reasonable results in cases where the exact
solution is not smooth. If the exact solution has, e. g. a jump discontinuity, the finite
element solution will in general exhibit large incorrect oscillations even far from the jump
and will then be fairly far from the exact solution everywhere.

It is also important how fine the mesh is. For the discretization parameter h ¤ a
b

this
method will perform well. But for h " a

b
there may occur unmeant oscillations, destroying

the solution. We illustrate this effects with Example 5.2. We especially observe what
happens to the results when decreasing h from h ¡ a

b
to h   a

b
(cf. Figure 5.5).

For a small diffusion coefficient a the solution upxq of Example 5.2 is close to a straight
line except in a layer at the boundary (x � 1). This layer where u decays from 1 to 0 is of
width Opaq.
Summing up, the effects that can be observed are either a bad approximation at the
boundary layer (too broad layer) or oscillations at the boundary layer which spread
out. The smaller a, the thinner the boundary layer, which causes numerical problems
(oscillations) for a Ñ 0 (cf. Figure 5.4). Increasing the order gives better results but it
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Figure 5.5: The solution (red) for Example 5.2 using standard Galerkin method
and linear elements decreasing the mesh width h from h ¡ a to h   a. (Versus exact
solution (blue).)

does not change the appearance of the negative effects at the boundary layer (cf. Figure
5.6). It does not even get significant better, since the main part of the model problem can
be perfectly approximated by linear elements.

Applying the standard Galerkin method with piecewise linear functions on a uniform mesh
(mesh width h) to example 5.2, we obtain a system of equations� a

h2
rui�1 � 2ui � ui�1s � b

2h
rui�1 � ui�1s � 0, i � 1, . . . , N � 1

u0 � 1, un � 0

where ui are the values of the finite element approximation uh at the grid points
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Figure 5.6: The solution (red) for Example 5.2 using standard Galerkin method
and elements of first and second order with the same discretization.

xi � ih, i � 0, 1, . . . , N . The diagonal block of the matrix of the diffusion term contains a,
contrary to the matrix of the convection term. Therefore we lose the M-matrix property
of the stiffness matrix.

Remark 5.8. With the help of adaptive error estimators or additional knowledge about
the boundary layer, the boundary layer could be resolved with, e. g. geometric refinement.
In our model case this could be done by bisecting the last element recursively.

5.5 Streamline-Upwind Petrov-Galerkin (SUPG)

We observed that for a coarse discretization the standard Galerkin method has difficulties
to obtain good approximations. These difficulties can be overcome, by solving a modified
problem. This modified problem should be near the original with diffusion term �a∆u.
The main idea is to modify the diffusion term by introducing a certain amount of extra
diffusion acting directly in streamline direction. It turns out that it is sufficient to add
a term �δapb � ∇pb � ∇uqq with δa � h � a. Such a modified artificial diffusion method
results in a discrete variational problem that can be written as:

Find uh P V0,h such thatpa∇uh,∇vhq � δapb �∇uh, b �∇vhq � pb �∇uh � uh, vhq �pf, vhq
for all vh P V0,h.

(5.20)

In this way no crosswind diffusion (perpendicular to the streamlines) is introduced. Unfor-
tunately this corresponds to an Ophq-perturbation of the exact solution of the original prob-
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lem. However, there exists a possibility to introduce the modifying term δapb �∇uh, b �∇vhq
without such a perturbation. In a first approach we apply this technique (SUPG) to Prob-
lem 5.4.

SUPG for the hyperbolic problem (Problem 5.4)

We start from the discrete variational problem (5.17) gained from the standard Galerkin
method with weakly imposed boundary conditions. The test functions are chosen of the
special form vh � h b �∇vh. Thereby we obtain the discrete formulation of the streamline
diffusion method:

Find uh P Vh such thatpb �∇uh � uh, vh � h b �∇vhq � p1� hqxuh, vhyb,� �pf, vh � h b �∇vhq � p1� hqxg, vhyb,� for all vh P Vh.
(5.21)

This formulation is consistent with Problem 5.4 since relation (5.21) is still true when
replacing uh by the exact solution u. But it prevents an Ophq-perturbation as (5.20). For
the analysis we introduce the formulation

Find uh P Vh such that

Bmpuh, vhq � f̃mpvhq for all vh P Vh, (5.22)

with bilinear form and linear form defined as

Bmpw, vq :� pb �∇w � w, v � h b �∇vq � p1� hqxw, vyb,�,
f̃mpvq :� pf, v � h b �∇vq � p1� hqxg, vyb,�.

The proof of an a-priori error estimate will be done in the following norm}v}b :� �
h}b �∇v}20 � }v}20 � 1� h

2
xv, vyb, ||
 1

2

.

This norm is chosen according to the proof of the stability property of the bilinear form
Bmp., .q.
Lemma 5.9. For any v P H1pΩq we have

Bmpv, vq � }v}2b.
The error estimate for the streamline diffusion method can then be formulated as following.
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Theorem 5.10. If uh satisfies (5.21) and u satisfies Problem 5.4, then there exists a
constant C such that }u� uh}b ¤ Chr� 1

2 }u}r�1. (5.23)

Proof. Confer [8] (p.183 f.).

This error estimate (5.23) states that}u� uh}0 ¤ Chr� 1

2 }u}r�1,}pb �∇u� b �∇uhq}0 ¤ Chr}u}r�1.

This means that the L2-error is half a power of h from being optimal, and the L2-error of
the derivative in streamline direction is optimal. This sounds somewhat better than the
estimates (5.18) for the standard Galerkin method in the case of a smooth solution. In this
method effects are propagated approximately as in the continuous problem, i. e.,essentially
along the characteristics. One can prove [8] that the effect of for example a jump in
the exact solution across a characteristic will be limited to a narrow region around the
characteristic.

Remark 5.11. For the continuous problem Problem 5.4 (for simplicity with g � 0) the
following stability estimate can be donebxu, uyb, || � }u}0 � }b �∇u}0 ¤ C}f}0.
First we gain control of the terms

axu, uyb, || and }u}0. Using Bpu, uq � f̃puq with g � 0
and Lemma 5.5 gives us the start.}u}20 � 1

2
xu, uyb, || � pf, uq ¤ }f}0}u}0 ¤ 1

2
p}f}20 � }u}20q,}u}20 � 1

2
xu, uyb, || � 1

2
}u}20 ¤ 1

2
}f}20,}u}20 � xu, uyb, || ¤ }f}20,

which leads to
axu, uyb, || � }u}0 ¤ c }f}0. The control of b �∇u follows by using b �∇u �

f � u, i. e., }b �∇u}0 � }f � u}0 ¤ }f}0 � }u}0¤ }f}0 � }u}0 �bxu, uyb, ||¤ p1� cq }f}0
The corresponding stability estimate for the streamline diffusion method is obtained by using
Lemma 5.9 with v � uh and reads }uh}b ¤ C}f} orbxuh, uhyb, || � }uh}0 �`h}b �∇uh}0 ¤ C}f}0.
In the discrete case the control of }uh}0 does not give any control of the streamline derivative}b � ∇uh}b. Only a partial control is build in through the modified test function. But the
estimate is weaker than the above mentioned estimate for the continuous problem.
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SUPG for the convection-diffusion problem (Problem 5.3)

Multiplying Problem 5.3 with the test function v�δb �∇v where v P H1
0 pΩq and integrating

over the domain, we obtainpa∇u,∇vq � δpa∆u, b �∇vq � pu� b �∇u, v�δb �∇vq �pf, v � δb �∇vq for all v P V, (5.24)

where partial integration was done on the term �ap∆u, vq. The positive parameter δ has
to be specified which will be done below. Formulating the discrete analogue of this relation
the term p∆uh, b �∇vhq is not well defined. In order to give this term a suitable meaning
we define p∆uh, b �∇vhq �

ŢPTh

»
T

∆uhb �∇vhdx, (5.25)

which is well defined since the integrals over the interior of each triangle T is well defined.
Consequently the streamline diffusion method for Problem 5.3 reads as

Find uh P V0,h such thatpa∇uh,∇vhq � δpa∆uh, b �∇vhq � puh � b �∇uh, vh�δb �∇vhq �pf, vh � δb �∇vhq, (5.26)

where δ � C̄h if a   h with C̄ sufficiently small (see Remark 5.12 below), and δ � 0 if
a ¥ h. This formulation is consistent and the error estimate (5.23) and the results from
(5.21) can be extended to this discrete variational formulation (5.26) with a   h.

Remark 5.12. Now we investigate the stability estimate for (5.26) in the case a   h. We
aim to prove that the additional term �δpa∆uh, b �∇vhq does not harm the stability result
obtained by introducing the term δpb �∇uh, b �∇vhq. We have for v P V0,h|δpa∆v, b �∇vq| � |aδ

ŢPTh

»
T

∆v b �∇vdx|� |aδ
ŢPTh

� »
T

∇v∇pb �∇vqdx| part.int., v|Γ � 0¤ aδ
ŢPTh

| »
T

∇v∇pb �∇vqdx|¤ a
ŢPTh

r}∇v}0 δ}∇pb �∇vq}0s C.S.¤ a
ŢPTh

�
1

2
}∇v}20 � 1

2
δ2}∇pb �∇vq}20� ab ¤ 1

2
pa2 � b2q¤ a

ŢPTh

�
1

2
}∇v}20 � 1

2
δ2C2h�2

T }b �∇v}20� inverse estimate¤ 1

2
a}∇v}20 � 1

2
aδC2h�2δ}b �∇v}20.
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Now the bilinear form associated with (5.26) (we refer to it as Amp., .q) can be estimated
by

Ampv, vq ¥ 1

2
a}∇v}20 � }v}20 � p1� 1

2
aδC2h�2qδ}b �∇v}20 for all v P V0,h,

which yields the desired stability result

Ampv, vq ¥ 1

2
pa}∇v}20 � δ}b �∇v}20 � }v}20q for all v P V0,h,

C̄ has to be chosen small enough to fulfill

aδC2h�2 � aC̄hC2h�2 ¤ C2C̄   1. (5.27)

Summing up, the discrete variational formulation (5.26) gained from the idea of the
Streamline-Upwind Petrov-Galerkin method is one possibility of constructing an high-
order accurate method for Problem 5.3 with good stability properties.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
Std. Gal.  error=14.1358

Solved with std. Gal. for a � 0.0005
and b � 1.0 with h � 0.0625 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
SUPG  error=0.13226

Solved with SUPG for a � 0.0005 and
b � 1.0 with h � 0.0625 .

Figure 5.7: The solutions (red) for Example 5.2 using linear elements and the same
discretization for both methods.

The numerical experiments for Example 5.2 as shown in Figure 5.7 confirm that especially
for coarse discretizations no oscillations occur using the SUPG method. The approximate
solution generated by the SUPG method has at least some qualitative commonplaces with
the true solution. It recovers the shape of the exact solution much better even though the
boundary layer is smeared out. For a finer discretization the solution converges towards
the exact solution (cf. Figure 5.8) and from the moment on when the discretization resolves
the boundary layer it is identical to the solution of the standard Galerkin method which
then is as good as possible.
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Figure 5.8: The solutions (red) for Example 5.2 using linear elements converges to
the exact solution.

5.6 Discontinuous Galerkin (DG)

The discontinuous Galerkin method is based on the following finite element space

Vh � tv P L2pΩq | v|T P P
ppT q for all T P Thu,

which contains no continuity requirements across inter element boundaries.

In the sequel we use the following notations to describe the problem. The boundaryBT of the triangle T is split into the inflow boundary BT� :� tx P BT | npxq � b   0u
and an outflow part BT� :� tx P BT | npxq � b ¥ 0u. An edge S is shared by the two
triangles T and T 1. We consider v P Vh which may have a jump discontinuity across S.
The left hand limit is defined as v�pxq :� limsÑ0� vpx � sbq and the right hand limit
as v�pxq :� limsÑ0� vpx � sbq for x P S. Finally the jump vvw across S is defined asvvw :� v� � v�.

Using these definitions we can formulate the discontinuous Galerkin method for the
hyperbolic problem Problem 5.4 as following.

For T P Th, given u�h on BT� find uh P Vh with uh � uh|T P PppT q such thatpb �∇uh � uh, vhqT � »BT� u�h v�h n � b ds �pf, vhqT � »BT�u�h v�h n � b ds for all vh P P
ppT q (5.28)
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u� u�
T 1 bS

Ω

T

Figure 5.9: Flow across edge S � BT� in the direction of b

where pw, vqT � »
T

w v dx, u�h � g on Γ�.
This problem is just formed by a standard Galerkin method with weakly imposed boundary
condition for one element. If uh,� is given on the inflow part of the element boundary it
can be determined on the whole element. This allows the following strategy. Starting with
the elements at the inflow boundary Γ�, the solution can be extended triangle by triangle
until the whole domain is covered.
In a more compact form we can write (5.28) as

BT puh, vhq � pf, vhqT for all vh P P
ppT q,

where

BT pw, vq � pb �∇w � w, vqT � »BT�vwwv�n � b ds.
Now we can formulate the discontinuous Galerkin method in short.

Find uh P Vh such that

BDGpuh, vhq � pf, vhq for all vh P Vh, (5.29)

where
BDGpw, vq �

ŢPTh

BT pw, vq,
and u�h � g on Γ�. Note that for the exact solution vuwn � b � 0 is satisfied.
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5.7 Standard Galerkin for mixed formulation

Now we tackle the convection-diffusion problem (5.4) in a slightly different way. Taking
for simplicity the stationary problem with c � 0 and Dirichlet boundary conditions g on
Γ we obtain � divpa∇u� buq � f for x P Ω. (5.30)

This equation can be reformulated as a mixed problem (see Section 3.2)

a�1 p�∇u� a�1 bu � 0, (5.31)� div p � �f. (5.32)

Multiplying with suitable test functions q and v followed by integration results inpa�1 p, qq � p∇u, qq � pa�1 b u, qq � 0, (5.33)�pdiv p, vq � �pf, vq. (5.34)

Clearly, the integration by parts can be done in the first or in the second equation. Doing
so in equation (5.34) leads to a mixed formulation with u P H1pΩq and p P rL2pΩqsd, i. e.,
we obtain the same, function space as in the primal formulation. Therefore we can not
expect a change in the performance of the standard Galerkin method. Performing the
integration by parts in equation (5.33) yields the mixed problem

Find pp, uq P Hpdiv,Ωq � L2pΩq such thatpa�1 p, qq � pu, div qq � pa�1 bu, qq � �xg, q � nyΓ for all q P Hpdiv,Ωq,�pdiv p, vq � �pf, vq for all v P L2pΩq,
(5.35)

with the boundary term xg, q �nyΓ :� ³
Γ
g q �n ds. Note that essential boundary conditions

g on Γ in the primal formulation become natural boundary conditions in the mixed
formulation (5.35). In the case of homogeneous Dirichlet boundary conditions on Γ the
boundary term vanishes.

We discretize the problem by choosing piecewise constant functions for u, i. e.,
uh, vh PM0pThq � V and piecewise linear functions for p, i. e., ph, qh P RT 0pThq � Q.

The corresponding algebraic Galerkin system of (5.35) is of the general form�
A BT

2

B
1

0

� �
p

h

uh

� � �
g

h

f
h

�
.

(5.36)

Example 5.13. Transforming Example 5.2 into mixed form yields
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Find pp, uq P Q� V such that

1

a
p� u1 � 1

a
b u � 0 for x P p0, 1q,�p1 � �f for x P p0, 1q,

up0q � 1,

up1q � 0.

(5.37)

The variational formulation of Example 5.13 can be written as

Find pp, uq P Q� V such thatp1
a
p, qq � pu, q1q � p1

a
b u, qq � qp0q for all q P Q,�pp1, vq � �pf, vq for all v P V, (5.38)

with V � L2pp0, 1qq and Q � Hpdiv, p0, 1qq � H1pp0, 1qq.
In the case of Example 5.13 we discretize by choosing ph P L1pThq � Q.
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Figure 5.10: The exact (blue) and approximate (red) solutions of p (left) and u

(right) for Example 5.13 applying standard Galerkin method using linear elements
for p and constants for u.

The numerical results are presented in Figure 5.10. One can observe oscillations in a region
of the boundary layer again. Due to the weak incorporation of the boundary conditions
in the mixed problem, the approximate solution does not only show oscillations at the
boundary layer, but also fail in fulfilling the boundary conditions (see Figure 5.10).
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5.8 Streamline Edge-Upwind for mixed formulation

First we motivate the weighted stabilization term. Therefore we examine the system matrix
in (5.36) for the Example 5.13.

�
A BT

2

B
1

0

� �
��������������������

2hk

6a
1hk

6a
0 . . . 0 1� bhk

2a
0 . . . 0

1hk

6a
4hk

6a
1hk

6a

. . .
... �1� bhk

2a
1� bhk

2a

. . .
...

0 1hk

6a

. . .
. . . 0 0 �1� bhk

2a

. . . 0
...

. . .
. . . 4hk

6a
1hk

6a

...
. . .

. . . 1� bhk

2a

0 . . . 0 1hk

6a
2hk

6a
0 . . . 0 �1� bhk

2a

1 �1 0 . . . 0 0 . . . . . . 0

0 1 �1
. . .

...
...

...
...

. . .
. . .

. . . 0
...

...
0 . . . 0 1 �1 0 . . . . . . 0

��������������������
.

In the stiffness matrix of the problem we observe that the off-diagonal term �p 1
a
bu, qq

(contained in BT

2
) causes an essential unbalance for a small diffusion coefficient. Balancing

this maladjustment introduces an upwind stabilization motivated by Discontinuous
Galerkin methods as follows.

DG methods are designed for the convection dominated case. There, the numerical flux is
often defined on the upwind triangle as

a�1p � n � �∇uup � n� a�1 b uup � n.
We take this as a motivation and construct the following upwind stabilization.

Taking equation (5.31) and multiplying it with the normal vector n yields

a�1 p � n�∇u � n� a�1 bu � n � 0. (5.39)

Multiplying this equation with q � n and integrating over the outflow boundary of each
element gives

ŢPTh

Peh h

»
out

pa�1 p�∇u� a�1 b uq � n q �n ds � 0 (5.40)

weighted with the dimensionless mesh Peclet number which is defined as Peh � a�1|b|h.
The second factor h arises due to the different scaling of the volume and the boundary
integrals. In the range Peh � 1, the stabilization term added to the upper left block is
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of the same order as the original term. For large convection, the scheme is more a DG
scheme, while for small convection, it approaches the standard mixed method.
In the following we will refer to this stabilization term by using the scalar product x., .yout

defined on the skeleton BTh of the triangulation Thxv, wyout :�
ŢPTh

Peh h

»BTout

v w ds. (5.41)

Since (5.40) is fulfilled for the exact solutions p and u of the system of equations
(5.31)-(5.32) adding this term to equation (5.31) gives a consistent problem formulation.

Find pp, uq P Hpdiv,Ωq � L2pΩq such thatpa�1 p, qq � pu, div qq � pa�1 bu, qq�xpa�1 p�∇u� a�1 buq �n, q � nyout �� xg, q � nyΓ for all q P Hpdiv,Ωq,� pdiv p, vq � � pf, vq for all v P L2pΩq. (5.42)

Next we incorporate the inflow given by the Dirichlet boundary condition. This is done
by adding the integrals over the inflow boundary of elements T , where this coincides with
the domain boundary, i. e., BTin � BΩ, to the stabilization term (5.40).

We discretize the problem by choosing uh, vh P M0pThq � V and ph, qh P RT 0pThq � Q.
This yields the stabilized algebraic system which reads as�

Ã B̃
T

2

B
1

0

��
p

h

uh

� � �
g̃

f

�
.

(5.43)

with Ã :� A� A
stab

and B̃
T

2
� BT

2
� B

stab
, where the stabilization matrices in the case of

Example 5.13 are defined as

A
stab

:� ���������
|b|h2

k

a2 0 0 . . . 0

0
|b|h2

k

a2 0
. . .

...

0 0
. . .

. . . 0
...

. . .
. . . |b|h2

k

a2 0

0 . . . 0 0
|b|h2

k

a2

��������� , Bstab
:� �������� 0 0 . . . 0� |b|2h2

k

a2 0
. . .

...

0 � |b|2h2

k

a2

. . . 0
...

. . .
. . . 0

0 . . . 0 � |b|2h2

k

a2

�������� .
where the upper left entry

|b|h2

k

a2 of A
stab

is generated by the stabilization at the inflow
boundary. The second part of the stabilization entry at BΩin moves to the right hand side
of the equation, where g̃ then looks like

g̃ � �
1� |b|2h2

k

a2
0 . . . 0

�T
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The numerical results for Example 5.13 can be observed in Figure 5.11. Already for a
quite coarse discretization the approximate solution does not show any oscillations. The
stabilization term at the inflow part of the Dirichlet boundary ensures that the boundary
condition is fulfilled from the start in spite of its weak incorporation. Only on the outflow
part of the Dirichlet boundary the boundary condition is not fulfilled for such a coarse
grid and the boundary layer vanishes. Except for the boundary layer, the approximate
solution matches the exact solution quite good (cf. Figure 5.11). The next step would be
an adaptive refinement at the boundary layer.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2
Mixed Upwind 1.ord.  error=4.3179e−07

p for a � 0.0005 and b � 1.0 with h �
0.0312 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Mixed Upwind 1.ord.  error=0.012868

u for a � 0.0005 and b � 1.0 with h �
0.0312 .

Figure 5.11: The exact (blue) and approximate (red) solutions p (left)
and u (right) for Example 5.13 applying standard Galerkin method with
upwind stabilization using linear elements for p and constants for u.

The results in Figure 5.11 are for the same discretization as in Figure 5.10 to simplify the
comparison. The quality of this method for coarse grids can be seen in Figure 5.12.

Remark 5.14. We gain higher regularity on the flux p, but less for u. Knowing from
(5.31) that p is something similar like the gradient field of u allows a post processing for
the primal variable.

If a�1b is small, the off-diagonal block certainly will not destroy the order of convergence.
But similar to the original problem, the mixed one suffers from large convective terms. We
observe the effects on our example.
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Figure 5.12: The exact (blue) and approximate (red) solutions p (left) and u (right)
for Example 5.13 applying standard Galerkin method with edge-upwind stabilization
using linear elements for p and constants for u.

For the primal formulation of the problem we observe the SUPG method has the best
performance results. In contrast for the mixed formulation the edge-upwind stabilization
yields the best results. We compare the results of the SUPG method and the edge-upwind
stabilization in mixed formulation. For a very coarse grid this is done in Figure 5.13.
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Figure 5.13: The exact (blue) and approximate (red) solutions for u obtained
with SUPG (left) – using linear elements – and edge-upwind stabilization in mixed
formulation (right) – using constants – for Example 5.13.

In Figure 5.14 we compare the L2-errors of the SUPG method in the primal formulation
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with the L2-errors of the streamline edge-upwind stabilization for mixed formulation. Until
h is small enough to resolve the boundary layer, the streamline edge-upwind stabilization
for mixed formulation gives better results, even without post processing.
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Figure 5.14: The L2-errors of the SUPG method in the primal formulation versus
the L2-errors of the streamline edge-upwind stabilization for mixed formulation.



Chapter 6

The EHD Problem
with Edge-Upwind Stabilization

We return to the full EHD problem described by the non-linear system of partial differential
equations � div ε∇Φ � ρ (2.9)

div j � BρBt � 0 for px, tq P Ω� p0, T q (2.10)

j � b∇Φ ρ� d∇ρ, (2.11)

with the boundary conditions

ε∇Φ � n � 0 ^ j �n � 0 on Γout, (2.13), (2.16)

Φ � 0 ^ ρ � 0 on Γta, (2.14)

Φ � Φe ^ j �n � Krp�∇Φ �nq on Γel, (2.15), (4.12)

where

KrpEnq � "
αF pEn � Ecoq for En ¥ Eco

0 else
onΓel,

and the initial conditions

Φpx, 0q � Φ0pxq, ρpx, 0q � ρ0pxq for x P Ω.

Our first strategy, the Fermi-potential approach in Chapter 4, turned out to be appropri-
ate for the diffusion dominated case. But in the practically relevant case the convection
dominates. With the attempt for solving also the physically relevant case, we concentrated
on numerical methods for solving convection-diffusion equations in Chapter 5.
In the present chapter we apply our knowledge on numerical methods gained in Chapter 5
to the EHD problem. In the following section we derive the mixed variational formula-
tion for the problem. Afterwards we consider the mixed formulation with edge-upwind
stabilization analog to the one presented in Section 5.8.
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6.1 The EHD problem in mixed formulation

First we reformulate the problem using the definition of the electric displacement D :�
εE � �ε∇Φ and describe equation (2.9) in mixed formulation. The complete EHD
problem in classical formulation from above can then be written in mixed formulation as
follows. For px, tq P Ω� p0, T q

ε�1D �∇Φ � 0 (6.1)� div D � ρ � 0 (6.2)

div j � BρBt � 0 (6.3)

j � d∇ρ� b ε�1Dloomoon�: b̂pDq ρ � 0, (6.4)

together with the boundary conditions of the previous page and the according initial con-
ditions.
We first introduce the appropriate spaces for the variational framework and then de-
rive a variational mixed formulation of our system. The natural function spaces are
Q � Hpdiv,Ωq (for D and j) and V � L2pΩq (for Φ and ρ) as already discussed in
Chapter 3. The essential boundary conditions are incorporated in the test and ansatz
spaces defined by

Qg,Γ :� tp P Hpdiv,Ωq | pp � nq|Γ � gu.
The required function spaces for the time dependent problem [13] are based on the following
definition. Let T � p0, T q and W be a Banach space,

L2pT ,W q :� tu : T ÑW | }u}L2pT ,W q   8u,
where }u}L2pT ,W q :� �³ T

0
}uptq}2W dt

	 1

2

.

Multiplying equations (6.1)-(6.4) by the appropriate test functions, integrating over the
domain Ω and integrating by parts in the first and last equation yields for these two
equations pε�1D, D̃q � pΦ, div D̃q � xΦ, D̃ � nyΓ � 0 � D̃ P Q0,Γout

,pd�1j, j̃q � pρ, div j̃q � pd�1 b̂pDqρ, j̃q � xρ, j̃ � nyΓ � 0 � j̃ P Q0,ΓoutYΓel
.

The next step is to incorporate the boundary conditions. The boundary term of the first
equation equals toxΦ, D̃ � nyΓ � x Φloomoon�Φe

, D̃ � nyΓel
� x Φloomoon� 0

, D̃ � nyΓta
� xΦ, D̃ � nloomoon� 0

yΓout
,
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where only the term on Γel remains and can be moved to the right hand side (see system
later). The second boundary term can be written asxρ, j̃ � nyΓ � xρ, j̃ � nloomoon� 0

yΓelzco
� xρ, j̃ � nloomoon� 0

yΓco
� x ρloomoon� 0

, j̃ � nyΓta
� xρ, j̃ � nloomoon� 0

yΓout
� 0.

Therefore the complete problem in mixed variational formulation reads as

Find D P L2pT , Q0,Γout
q, Φ P L2pT , V q, j P L2pT , Qg,ΓoutYΓel

q
with g :� "

Krpε�1D �nq on Γel

0 on Γout
, and ρ P L2pT , V q with BρBt P L2pT , V �q such thatpε�1D, D̃q � pΦ, div D̃q � �xΦe, D̃ � nyΓel

� D̃ P Q0,Γout
,�pdiv D, Φ̃q � pρ, Φ̃q � 0 � Φ̃ P V,pd�1j, j̃q � pρ, div j̃q � pd�1 b̂pDqρ, j̃q � 0 � j̃ P Q0,ΓoutYΓel
,�pdiv j, ρ̃q � pBρBt , ρ̃q � 0 � ρ̃ P V, (6.5)

with the initial conditionspρp0q, ρ̃q � pρ0, ρ̃q for all ρ̃ P V.
In the sequel we discretize in space by using the finite element method. This yields the
semi-discrete analogue of (6.5) which is an initial value problem for a system of ordinary
differential equations.

6.2 Semi-discretization: the (vertical) method of lines

We do the spatial discretization first and replace the function spaces by Hpdivq- and
L2-conforming finite dimensional subspaces as described in Chapter 3.

Find Dh P L2pT , Qh,0,Γout
q, Φh P L2pT , Vhq, jh P L2pT , Qh,g,ΓoutYΓel

q, and
ρh P L2pT , Vhq with d

dt
pρhq P L2pT , V �

h q such thatpε�1Dh, D̃hq � pΦh, div D̃hq � �xΦe, D̃h � nyΓel
,�pdiv Dh, Φ̃hq � pρh, Φ̃hq � 0,pd�1jh, j̃hq � pρh, div j̃hq � pd�1 b̂pDhqρh, j̃hq � 0,�pdiv jh, ρ̃hq � d

dt
pρh, ρ̃hq � 0,

(6.6)

for all D̃h P Qh,0,Γout
, Φ̃h P Vh, j̃h P Qh,0,ΓoutYΓel

, and ρ̃h P Vh,
with the initial conditionspρhp0q, ρ̃hq � pρ0, ρ̃hq for all ρ̃h P Vh.
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For the L2 discretization we consider piecewise constant functions, i. e., Vh � M0pThq
and for the Hpdivq discretization we use the Raviart-Thomas space of order 0, i. e., Qh �
RT 0pThq.
In the sequel let the basis functions for this problem be denoted by

function space according basis obtained representation

Vh tϕΦ
i u Φhptqpxq � °NΦ

h

j�0 ΦjptqϕΦ
j pxq

Vh tϕρ
i u ρhptqpxq � °N

ρ
h

j�0 ρjptqϕρ
jpxq

Qh,0,Γout
tψD

i u Dhptqpxq � °ND
h

j�0 DjptqψD
j pxq

Qh,0,ΓoutYΓel
tψj

i u jhptqpxq � °N
j

h

j�0 jjptqψj
j pxq.

Table 6.1: Basis functions and according representations.

Plugging the representations from Table 6.1 into (6.6) yields the algebraic system�
0, 0, 0, pMρ

h
ρ1

h
ptqqT�T �K

h
uhptq � f

h�
0, 0, 0, pMρ

h
ρ

h
p0qqT�T � g

h

(6.7)

with the vectors

uhptq � �
DhptqT ,ΦhptqT , jh

ptqT , ρ
h
ptqT�T

where

Dhptq � pDiptqqi�1..ND
h
, Φhptq � pΦiptqqi�1..NΦ

h
, (6.8)

j
h
ptq � pjiptqqi�1..N

j

h

, ρ
h
ptq � pρiptqqi�1..N

ρ

h
(6.9)

using the coefficients from the table above, and

f
h
� �

fT

h,D
, fT

h,Φ
, fT

h,j
, fT

h,ρ

�T

,

where
f

h,D
� p�xΦe, ψ

D
i �nyΓel

qi�1..ND
h
, f

h,Φ
� f

h,j
� f

h,ρ
� 0.

The involved matrices are the mass matrix Mρ

h
, wherepMρ

h
qij � pϕρ

i , ϕ
ρ
jq i, j � 1..Nρ

h ,

and the stiffness matrix K
h
, which is built up like

K
h
pDhq � ����� MD

h
�BT

1
0 0�B

1
0 0 Mρ,Φ

h

0 0 Mj

h
�BT

2
�Mρ,j

h
pDhq�B

2
0 0 0

����� (6.10)

with the sub matrices
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MD

h
where pMD

h
qij � pε�1ψD

j , ψ
D
i q i, j � 1..ND

h ,

B
1

where pB
1
qij � pdivψD

j , ϕ
Φ
i q i � 1..NΦ

h , j � 1..ND
h ,

Mρ,Φ

h
where pMρ,Φ

h
qij � pϕρ

j , ϕ
Φ
i q i � 1..NΦ

h , j � 1..Nρ
h ,

Mj

h
where pMj

h
qij � pd�1ψ

j
j , ψ

j
i q i, j � 1..Nj

h ,

B
2

where pB
2
qij � pdivψj

j , ϕ
ρ
i q i � 1..Nρ

h , j � 1..Nj

h ,

Mρ,j

h
pDhq where pMρ,j

h
pDhqqij � pd�1 b̂pDhqϕρ

j , ψ
j
i q i � 1..Nj

h , j � 1..Nρ
h .

The initial condition contains the mass matrices and the vector g
h

with

g
h
� �

0, 0, 0, gT

h,ρ

�T

,

where
g

h,ρ
� pρ0, ϕ

ρ
i qi�1..N

ρ

h
.

6.3 Time discretization

From the semi-discretization we obtained the initial value problem�
0, 0, 0, pMρ

h
ρ1

h
ptqqT�T � f

h
�K

h
uhptq,�

0, 0, 0, pMρ

h
ρ

h
p0qqT�T � g

h
,

with uhptq � �
DhptqT ,ΦhptqT , jh

ptqT , ρ
h
ptqT�T

.

We solve this system of ordinary differential equations by using the implicit Euler method
[20] for time discretization, where the time derivative d

dt
pρhptqq is replaced by the forward

difference quotient 1
dt
pρk�1

h � ρk
hq with k being the actual time step and dt � tk�1 � tk.

Within the time iteration the non-linear part of the stiffness matrix Mρ,j

h
pDhq is in thepk � 1qth step replaced by Mρ,j

h
pDk

hq. This linearization of the stiffness matrix K
h
pDhq

leads to

1

dt
diagp0, 0, 0,M

h,ρ
qpuk�1

h � uk
hq � f

h
�Kk

h
uk�1

h (6.11)

with Kk

h
� K

h
pDk

hq.
The solution then is obtained by the iteration rule

uk�1
h � p 1

dt
diagp0, 0, 0,M

h,ρ
q �Kk

h
q�1p 1

dt
diagp0, 0, 0,M

h,ρ
quk

h � f
h
q, (6.12)

with the starting value
u0

h � g
h
.
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6.4 EHD in mixed form with edge-upwind stabiliza-

tion

As observed in Chapter 5 this would not work for the convection dominant case. Therefore
we construct an edge-upwind term as presented in Section 5.8.

Taking equation (6.4) and multiplying it with the normal vector n yieldspd�1j �∇ρ� d�1b̂pDqρq �n � 0.

We plug this equation into the scalar product defined in (5.41) and get the stabilization
term xpd�1j �∇ρ� d�1b̂pDqρq � n, j̃ � nyout.

Semi-discretization with finite elements yieldsxpd�1jh �∇ρh � d�1b̂pDhqρhq � n, j̃h � nyout. (6.13)

Adding the edge-upwind term to (6.6) we obtain

Find Dh P L2pT , Qh,0,Γout
q, Φh P L2pT , Vhq, jh P L2pT , Qh,g,ΓoutYΓel

q, and
ρh P L2pT , Vhq with d

dt
pρhq P L2pT , V �

h q such thatpε�1Dh, D̃hq � pΦh, div D̃hq � �xΦe, D̃h � nyΓel
,�pdiv Dh, Φ̃hq � pρh, Φ̃hq � 0,pd�1jh, j̃hq � pρh, div j̃hq � pd�1 b̂pDhqρh, j̃hq� xpd�1jh �∇ρh � d�1b̂pDhqρhq � n, j̃h � nyout � 0,�pdiv jh, ρ̃hq � d

dt
pρh, ρ̃hq � 0,

(6.14)

for all D̃h P Qh,0,Γout
, Φ̃h P Vh, j̃h P Qh,0,ΓoutYΓel

, and ρ̃h P Vh,
with the initial conditionspΦhp0q, Φ̃hq � pΦ0, Φ̃hq for all Φ̃h P Vh,pρhp0q, ρ̃hq � pρ0, ρ̃hq for all ρ̃h P Vh.

The edge-upwind term (6.13) equals according to definition (5.41)

ŢPTh

Peh h xpd�1jh �∇ρh � d�1b̂pDhqρhq � n, j̃h � nyBTout
, (6.15)

where Peh � d�1}b̂pDhq}0h.
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Using the representations from Table 6.1 yields the following stiffness matrix of the stabi-
lized EHD system

K
h
pDhq � ����� MD

h
�BT

1
0 0�B

1
0 0 Mρ,Φ

h

0 0 M j

h
� A

stab
�BT

2
�Mρ,j

h
pDhq � B

stab�B
2

0 0 0

����� (6.16)

with pA
stab

qij � Peh h xd�1ψ
j
j , ψ

j
i yBTout

,pB
stab

qij � Peh h
�x∇ϕρ

j � n, ψj
i yBTout

� xd�1b̂pDhq � nϕ
ρ
j , ψ

j
i yBTout

	
for h � |BTout|.
6.5 Numerical Results

6.5.1 Parameters

We set the required parameters to the values of a convection dominated case:

- the permittivity of the ambient gas ε � 1 As{Vm,

- the mobility of ions b � 3 � 104 m2{V s and

- the ions diffusion coefficient d � 1 m2{s.
- the potential at the electrode Φe � 1 V and

- the threshold strength of the electric field Eco � 0.3 V {m.

Further parameters needed for the computation are

- the slope of KrpEnq, i. e., αF � 103 and finally

- the initial conditions ρ0 � Φ0 � 0.

The Fermi-potential approach from Chapter 4 turned out to be appropriate for the diffusion
dominant case. We use the ratio of convection b to diffusion d as indicator for the dominance
of the convection. The highest ratio which could be solved by the Fermi-potential approach
was b

d
� 0.002, which means a diffusion dominant case. For the following calculations the

ratio is b
d
� 30000. Also the mesh can be chosen coarser than for the Fermi-potential

approach.

6.5.2 Computations

The following details are for a calculation done with an Dual Intel Xeon, 2.8 GHz processor.
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We solve for the time interval r0, 1s and choose the step width dt � 0.01. The iteration
process in time converges towards a stationary equilibrium. The results for Φ and ρ of the
calculations with the mentioned time interval are presented in Figure 6.1 and Figure 6.2
respectively.

Figure 6.1: The electric potential Φ at time t � 1.

Figure 6.2: The space charge density ρ at time t � 1.
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The evolution of the space charge density ρ in time (t � 0.0001 until t � 0.0012 in steps
of dt � 0.0001) is displayed in Figure 6.3.

Figure 6.3: The evolution of the space charge density ρ from t � 0.0001
to t � 0.0012 with time step dt � 0.0001

Figure 6.4: The electric field E at time t � 1 on the whole domain (left)
and zoomed onto the peak of the needle (right).
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The electric field and the current density for t � 1 are presented in Figure 6.4 and Figure
6.5 accordingly.

Figure 6.5: The current density j at time t � 1 on the whole domain
(left) and zoomed onto the peak of the needle (right).
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