Exercise sheet 3

1. To appear.
2. As shown in Lemma 4.4, the p-Laplace operator A is strictly monotone. Assuming two solutions $u, v \in X:=H_{0}^{1}(\Omega)$, we have by subtracting their weak forms (which are tested by $u-v$)

$$
\langle g(u)-g(v), u-v\rangle_{X}<\langle A u-A v, u-v\rangle_{X}+\langle g(u)-g(v), u-v\rangle_{X}=0
$$

If g is also strictly monotone, then the result follows. This is the case, e.g., for $g(u)=|u|^{p-2} u$ for $p>1$.
3. (a) Let $\left\{\nabla p_{n}\right\}_{n \in \mathbb{N}}$ with $p_{n} \in L^{2}(\Omega)$ be a sequence, which converges in $H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)$. Since Ω is bounded we are able to assume $\int_{\Omega} p(x) d x=0$ without changing ∇p_{n}. By the Nečas-Poincaré inequality, it holds for all $n, m \in \mathbb{N}$

$$
\left\|p_{n}-p_{m}\right\|_{L^{2}(\Omega)} \leq C\left\|\nabla\left(p_{n}-p_{m}\right)\right\|_{H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)} .
$$

Since $\left\{\nabla p_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)$, we can deduce that $\left\{p_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{2}(\Omega)$. Hence, there is a $p \in L^{2}(\Omega)$ such that

$$
\left\|p_{n}-p\right\|_{L^{2}(\Omega)} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Therefore, by the definition of the gradient operator

$$
\begin{aligned}
\left\|\nabla\left(p_{n}-p\right)\right\|_{H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)} & =\sup _{\|v\|_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)} \leq 1}\left|\left\langle\nabla\left(p_{n}-p\right), v\right\rangle_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)}\right| \\
& =\sup _{\|v\|_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)} \leq 1}\left|\left(p_{n}-p, \operatorname{div} v\right)_{L^{2}(\Omega)}\right| \\
& \leq C\left\|p_{n}-p\right\|_{L^{2}(\Omega)} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Further, the norms $\|\nabla u\|_{H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)}+\|u\|_{H^{-1}(\Omega)}$ and $\|u\|_{L^{2}(\Omega)}$ are equivalent. Thus $\operatorname{ker}(\nabla)$ is finite and $\operatorname{im}(\nabla)$ is closed in $H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)$.
(b) The orthogonal spaces of Y and V are given by

$$
\begin{aligned}
& Y^{\perp}=\{u \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right): \overbrace{\langle\nabla p, u\rangle_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)}}^{=-(p, \text { divu })_{L^{2}(\Omega)}}=0 \text { for all } p \in L^{2}(\Omega)\} \subset H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right), \\
& V^{\perp}=\left\{T \in H^{-1}\left(\Omega ; \mathbb{R}^{d}\right):\langle T, v\rangle_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)}=0 \text { for all } v \in V\right\} \subset H^{-1}\left(\Omega ; \mathbb{R}^{d}\right) .
\end{aligned}
$$

We have to prove if $F \in X^{\perp}$, then $F \in Y$. Since Y is closed in the reflexive space $H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)$ by (a), we can conclude $Y^{\perp \perp}=Y$. Thence, it is sufficient to prove $Y^{\perp}=X$ because we can conclude $X^{\perp}=Y^{\perp \perp}=Y$:

The direction $X \subset Y^{\perp}$ follows directly from their definitions. Now let $u \in$ $Y^{\perp} \subset H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)$. Then by definition of the weak gradient operator it holds

$$
0=\langle\nabla q, u\rangle_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)}=-(q, \operatorname{div} u)_{L^{2}(\Omega)} \text { for all } q \in L^{2}(\Omega)
$$

Since $\operatorname{div} u$ is an element in $L^{2}(\Omega)$, we choose $q:=\operatorname{div} u$ as a test function yielding $\operatorname{div} u=0$ in $L^{2}(\Omega)$; hence $u \in X$.
(c) Suppose we have $q_{1}, q_{2} \in L^{2}(\Omega)$ such that $F=\nabla q_{1}=\nabla q_{2}$ in $H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)$. Then by the definition of the gradient operator

$$
\int_{\Omega}\left(q_{1}(x)-q_{2}(x)\right) \operatorname{div} \zeta(x) d x=0 \text { for all } \zeta \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)
$$

and for all $\zeta \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)$

$$
\begin{aligned}
0=\sum_{i=1}^{d} \int_{\Omega}\left(q_{1}(x)-q_{2}(x)\right) \partial_{i} \zeta_{i}(x) d x & =\sum_{i=1}^{d}\left\langle\left(q_{1}-q_{2}\right), \partial_{i} \zeta_{i}\right\rangle_{H_{0}^{1}(\Omega)} \\
& =-\sum_{i=1}^{d}\left\langle\partial_{i}\left(q_{1}-q_{2}\right), \zeta_{i}\right\rangle_{H_{0}^{1}(\Omega)} .
\end{aligned}
$$

By choosing successively test functions $\zeta \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)$ in which two out of three components vanish, we have

$$
\int_{\Omega} p_{i}\left(q_{1}-q_{2}\right)=0 \text { in distributional sense for all } i \in\{1,2, \ldots, d\}
$$

and hence it holds $q_{1}-q_{2}=$ constant almost everywhere in Ω because Ω is connected.
(d) Let us apply deRham's theorem to the Stokes equations. For this we assume $f \in H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)$ and we look for a solution pair $(u, p) \in X \times L^{2}(\Omega)$ that solves

$$
\begin{aligned}
-\Delta u+\nabla p & =f \\
\operatorname{div} u & =0 \\
\operatorname{tr} u & =0
\end{aligned}
$$

Applying divergence-free test functions $v \in X$ on the Stokes equations yields the variational problem

$$
\int_{\Omega} \nabla u(x) \cdot \nabla v(x) d x=\langle f, v\rangle_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)} \text { for all } v \in X
$$

which has a unique solution $u \in X$ by Lax-Milgram's lemma. Hence

$$
\langle\Delta u+f, v\rangle_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)}=0
$$

for all $v \in X$ and by de Rham's theorem there is a $p \in L^{2}(\Omega)$ such that $\nu \Delta u+f=\nabla p$ in $H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)$.
(e) It is essential to assume that f is an element in $H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)$. It would be desirable to take a more general f, for example $f \in X^{\prime}$ and it does not seem at first glance that it would lead to a problem. But X^{\prime} is no distribution space and thus de Rham's theorem is not applicable. If a distributional pressure existed such that the Navier-Stokes equations were fulfilled in distributional sense, then we would have

$$
f=-\Delta u+\nabla p \text { in distributional sense. }
$$

But this would contradict $X^{\prime} \nsubseteq\left(C_{c}^{\infty}\right)^{\prime}\left(\Omega ; \mathbb{R}^{d}\right)$.

