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1. To appear.

2. As shown in Lemma 4.4, the p-Laplace operator A is strictly monotone. Assuming
two solutions u, v ∈ X := H1

0 (Ω), we have by subtracting their weak forms (which
are tested by u− v)

⟨g(u)− g(v), u− v⟩X < ⟨Au− Av, u− v⟩X + ⟨g(u)− g(v), u− v⟩X = 0

If g is also strictly monotone, then the result follows. This is the case, e.g., for
g(u) = |u|p−2u for p > 1.

3. (a) Let {∇pn}n∈N with pn ∈ L2(Ω) be a sequence, which converges in H−1(Ω;Rd).
Since Ω is bounded we are able to assume

∫
Ω
p(x)dx = 0 without changing

∇pn. By the Nečas-Poincaré inequality, it holds for all n,m ∈ N

∥pn − pm∥L2(Ω) ≤ C∥∇(pn − pm)∥H−1(Ω;Rd).

Since {∇pn}n∈N is a Cauchy sequence in H−1(Ω;Rd), we can deduce that
{pn}n∈N is a Cauchy sequence in L2(Ω). Hence, there is a p ∈ L2(Ω) such
that

∥pn − p∥L2(Ω) → 0 as n → ∞.

Therefore, by the definition of the gradient operator

∥∇(pn − p)∥H−1(Ω;Rd) = sup
∥v∥

H1
0(Ω;Rd)≤1

∣∣∣⟨∇(pn − p), v⟩H1
0 (Ω;Rd)

∣∣∣
= sup

∥v∥
H1
0(Ω;Rd)≤1

|(pn − p, divv)L2(Ω)|

≤ C∥pn − p∥L2(Ω) → 0 as n → ∞.

Further, the norms ∥∇u∥H−1(Ω;Rd) + ∥u∥H−1(Ω) and ∥u∥L2(Ω) are equivalent.
Thus ker(∇) is finite and im(∇) is closed in H−1(Ω;Rd).

(b) The orthogonal spaces of Y and V are given by

Y ⊥ = {u ∈ H1
0 (Ω;Rd) :

=−(p,divu)L2(Ω)︷ ︸︸ ︷
⟨∇p, u⟩H1

0 (Ω;Rd) = 0 for all p ∈ L2(Ω)} ⊂ H1
0 (Ω;Rd),

V ⊥ = {T ∈ H−1(Ω;Rd) : ⟨T, v⟩H1
0 (Ω;Rd) = 0 for all v ∈ V } ⊂ H−1(Ω;Rd).

We have to prove if F ∈ X⊥, then F ∈ Y . Since Y is closed in the reflexive
space H−1(Ω;Rd) by (a), we can conclude Y ⊥⊥ = Y . Thence, it is sufficient to
prove Y ⊥ = X because we can conclude X⊥ = Y ⊥⊥ = Y :
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The direction X ⊂ Y ⊥ follows directly from their definitions. Now let u ∈
Y ⊥ ⊂ H1

0 (Ω;Rd). Then by definition of the weak gradient operator it holds

0 = ⟨∇q, u⟩H1
0 (Ω;Rd) = −(q, divu)L2(Ω) for all q ∈ L2(Ω).

Since divu is an element in L2(Ω), we choose q := divu as a test function
yielding divu = 0 in L2(Ω); hence u ∈ X.

(c) Suppose we have q1, q2 ∈ L2(Ω) such that F = ∇q1 = ∇q2 in H−1(Ω;Rd).
Then by the definition of the gradient operator∫

Ω

(q1(x)− q2(x))divζ(x)dx = 0 for all ζ ∈ H1
0 (Ω;Rd)

and for all ζ ∈ H1
0 (Ω;Rd)

0 =
d∑

i=1

∫
Ω

(q1(x)− q2(x))∂iζi(x)dx =
d∑

i=1

⟨(q1 − q2), ∂iζi⟩H1
0 (Ω)

= −
d∑

i=1

⟨∂i(q1 − q2), ζi⟩H1
0 (Ω).

By choosing successively test functions ζ ∈ C∞
c (Ω;Rd) in which two out of

three components vanish, we have∫
Ω

pi(q1 − q2) = 0 in distributional sense for all i ∈ {1, 2, ..., d}

and hence it holds q1 − q2 = constant almost everywhere in Ω because Ω is
connected.

(d) Let us apply deRham’s theorem to the Stokes equations. For this we assume
f ∈ H−1(Ω;Rd) and we look for a solution pair (u, p) ∈ X ×L2(Ω) that solves

−∆u+∇p = f

divu = 0

tru = 0

Applying divergence-free test functions v ∈ X on the Stokes equations yields
the variational problem∫

Ω

∇u(x) · ∇v(x)dx = ⟨f, v⟩H1
0 (Ω;Rd) for all v ∈ X,

which has a unique solution u ∈ X by Lax-Milgram’s lemma. Hence

⟨∆u+ f, v⟩H1
0 (Ω;Rd) = 0

for all v ∈ X and by de Rham’s theorem there is a p ∈ L2(Ω) such that
ν∆u+ f = ∇p in H−1(Ω;Rd).
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(e) It is essential to assume that f is an element in H−1(Ω;Rd). It would be
desirable to take a more general f , for example f ∈ X ′ and it does not seem
at first glance that it would lead to a problem. But X ′ is no distribution space
and thus de Rham’s theorem is not applicable. If a distributional pressure
existed such that the Navier-Stokes equations were fulfilled in distributional
sense, then we would have

f = −∆u+∇p in distributional sense.

But this would contradict X ′ ⊈ (C∞
c )′(Ω;Rd).
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