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1. To appear.

2. As shown in Lemma 4.4, the p-Laplace operator A is strictly monotone. Assuming
two solutions u,v € X := HJ (), we have by subtracting their weak forms (which
are tested by u — v)

3.

(g(u) — g(v),u —v)x < (Au— Av,u —v)x + (g(u) — g(v),u —v)x =0

If g is also strictly monotone, then the result follows. This is the case, e.g., for
g(u) = |ulP~2u for p > 1.

(a)

Let {Vpy }nen with p, € L?(Q) be a sequence, which converges in H~*(Q; R?).
Since  is bounded we are able to assume [, p(z)dr = 0 without changing
Vp,. By the Necas-Poincaré inequality, it holds for all n,m € N

1P — Pmllzz) < ClIV(Pn — )l -1 (sr4)-

Since {Vp,}nen is a Cauchy sequence in H~1(2;R?), we can deduce that
{pn}nen is a Cauchy sequence in L?(Q2). Hence, there is a p € L*() such
that

|Pn — PllL2() = 0 as n — oo.

Therefore, by the definition of the gradient operator

IV (pn — p)HH—l(Q;Rd) = sSup (V(pn —p), U)H&(Q;Rd)
H/UHH(%(Q;]Rd)Sl
= sup  |(pn — p,dive) 2|
HUHH(%(Q;RCI)SI

< Cllpn — pllz2@) — 0 as n — oo.
Further, the norms ||Vullg-1qray + ||ullg-1(@) and [|ul|z2q) are equivalent.
Thus ker(V) is finite and im(V) is closed in H~*(Q; R9).
The orthogonal spaces of Y and V' are given by

:—(p,divu)L2<Q)
—_——
Yt = {ue Hy(RY) : (Vp, u) gy ey = 0 for all p € L*(Q)} € Hy(2;RY),
Vi =A{T € H'(RY) : (T, v) gz (qpay = 0 for all v € V} € H'(Q;RY),
We have to prove if F € X+, then F € Y. Since Y is closed in the reflexive

space H~1(Q;R?) by (a), we can conclude Y+ = Y. Thence, it is sufficient to
prove Y+ = X because we can conclude X+ =Y+t =Y
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The direction X C Y follows directly from their definitions. Now let u €
Y+ C H}(Q;R?). Then by definition of the weak gradient operator it holds

0= (Vq,u) g1 ore) = — (¢, divu)2(q) for all ¢ € L*(Q).
Since divu is an element in L*(Q2), we choose ¢ := divu as a test function
yielding dive = 0 in L?*(2); hence u € X.

Suppose we have qi,q € L?(Q) such that ' = V¢, = Vg in H71(;RY).
Then by the definition of the gradient operator

/Q(ql(x) — qo())div¢(x)dz = 0 for all ¢ € HL(;RY)

and for all ¢ € H}(;RY)

d

0=3 [ @@ - aa)ogi)is - o). 0

- _ Z(ai(QI — q2), Gi) 3 (@)

=1

By choosing successively test functions ¢ € C>(€2;R?) in which two out of
three components vanish, we have

/pl-(ql — ¢2) = 0 in distributional sense for all i € {1,2,...,d}
Q

and hence it holds ¢; — ¢go = constant almost everywhere in 2 because () is
connected.

Let us apply deRham’s theorem to the Stokes equations. For this we assume
f e H1(Q;R%) and we look for a solution pair (u,p) € X x L?(2) that solves

—Au+Vp=f
divu =0
tru =0

Applying divergence-free test functions v € X on the Stokes equations yields
the variational problem

/ Vu(z) - Vo(z)de = (f,v) gi e for all v € X,
Q
which has a unique solution v € X by Lax-Milgram’s lemma. Hence

(Au+ f,v) g1 qrey =0

for all v € X and by de Rham’s theorem there is a p € L?(Q) such that
vAu+ f = Vpin H1(Q;RY).
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(e) It is essential to assume that f is an element in H~*({;R%). It would be
desirable to take a more general f, for example f € X’ and it does not seem
at first glance that it would lead to a problem. But X' is no distribution space
and thus de Rham’s theorem is not applicable. If a distributional pressure
existed such that the Navier-Stokes equations were fulfilled in distributional
sense, then we would have

f = —Au+ Vp in distributional sense.

But this would contradict X’ ¢ (C°)'(£2; R?).



