
 1

Adaptive FEM-BEM Coupling Method for Elasto-Plastic Analysis 

W. Elleithy and U. Langer 

 

Institute of Computational Mathematics, Johannes Kepler University Linz, Austria 

E-mail: wael.elleithy@numa.uni-linz.ac.at 
E-mail: ulanger@numa.uni-linz.ac.at 

 

Keywords: FEM; BEM; Adaptive Coupling; Elasto-Plasticity 

Abstract. In this paper we present an adaptive FEM-BEM coupling method for elasto-
plastic analysis in which the nonlinearity, e.g., plastic material behavior, is treated by 
the FEM while large parts of the finite/infinite linear elastic body are treated using the 
BEM. A procedure that is easily automated is developed to generate and adapt the FEM 
zone of discretization (consequently the BEM sub-domain discretization), according to 
the state of computation. The adaptive FEM-BEM coupling method employs smaller 
FEM zones of discretization (FEM sub-domain).The adaptive coupling method 
eliminates the disadvantages of a prior definition and manual localization of the FEM 
and BEM sub-domains. 

Introduction 

The Finite Element Method (FEM) and the Boundary Element Method (BEM) are 
valuable and frequently used discretization techniques for obtaining approximate 
solutions to the partial differential equations that arise in scientific and engineering 
applications. The FEM, e.g., is especially well suited for the analysis of problems 
involving inhomogeneities or non-linear behavior, while the BEM has some advantages 
if stress singularities or unbounded sub-regions are present. It is conceptually and 
computationally very attractive to decompose the domain of the original problem and 
to use the most appropriate discretization method for the sub-domains under 
consideration. In this way, we are lead to the coupling of FEM and BEM (FEM-BEM 
coupling). 
 
The first FEM-BEM coupling investigations date back to 1977 with the pioneering 
work of Zienkiewicz, Kelly and Bettes [1] based on a standard collocation BEM 
approach. Since then a large number of papers devoted to the topic have appeared. Due 
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to the unsymmetrical nature of the BEM technique used, the usefulness of the FEM-
BEM coupling method has been limited. FEM-BEM coupling approaches based on the 
Symmetric Galerkin BEM (SGBEM) are quite recent; see, e.g., references [2-9]. 
 
The available coupling approaches necessitate a priori defined FEM and BEM zones of 
discretization (set by the user). Furthermore, the FEM and BEM zones remain 
unchanged during the computation. Unfortunately, a predefined FEM zone of 
discretization will probably result in either an under/overestimation of the nonlinear 
region where the FEM is employed. In the former case, inaccurate solutions is obtained 
to the problem at hand while for the later the computational cost may be higher than 
necessary. 
 
This paper presents an adaptive FEM-BEM coupling method that is capabale of 
predicting zones sensible for FEM discretization. An outline of the paper is as follows. 
Section 2 briefly summarizes the basic SGBEM equations in elasticity, FEM equations 
in elasto-plasticity and the conventional (direct) and iterative FEM-BEM coupling 
methods. Then, in Section 3, we present the adaptive FEM-BEM coupling method. A 
numerical example that illustrates the advantages of the adaptive FEM-BEM coupling 
method is given in Section 4. 

FEM-BEM Coupling 

The system of boundary integral equations for a mixed boundary value problem in 
linear elasticity, may be written as follows 
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where V , ,K  and D  are the single layer potential, double layer potential, hypersingular 
integral operators, respectively. In order to find the complete Cauchy data [ ]Γt,u , the 
first integral equation for Dx Γ∈  and the second one for Nx Γ∈  are rewritten as [10,11] 

( )( ) ( ) ( ) ( )xKuxgxVt +=
2
1  for Dx Γ∈               (2) 

( )( ) ( ) ( )( )xuKxhxDu ′−=
2
1  for Nx Γ∈               (3) 

where ( )xg  and ( )xh  are the given Dirichlet and Neumann data. 

A Galerkin discretization is equivalent to the skew symmetric and positive definite 
system of linear equations 
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where the block matrices in eq. (4) are given from discretization of the corresponding 
parts of the boundary. 
 
In typical applications in linear elastostatics the Dirichlet part DΓ , is often small 
compared to the Neumann part NΓ  where the boundary tractions are described. 
Therefore the inverse of the discrete single layer potential hV  may be computed using 

some direct method such as a Cholesky decomposition to obtain 

[ ]⋅+= − h
hh

h uKfVt
1

1                     (5) 

Inserting eq (5) into the second of eq (4) yields the Schur complement system 
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The Schur complement system (6) is symmetric and positive definite and is suitable for 
coupling with FEM. 
 
For a numerical representation of an arbitrary domain, Ω , with known boundary 
conditions specified at the entire boundary, DN Γ∪Γ=Γ , the FEM and BEM are used. 
The domain is decomposed into two sub-domains, namely, ΩF  and ΩB  with the FEM-
BEM coupling interface CΓ . In all following equations subscripts F and B stand for 

Finite Element and Boundary Element sub-domains, respectively. 
System (6) may be rewritten as 
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For the FEM sub-domain, the assembled finite element equations in elasticity in 
partitioned form are 
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where KF  is the complete FEM stiffness matrix. 

 
The stiffness matrix KB  can be interpreted as the element stiffness matrix of a finite 

macro element, computed by the BEM 
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For an elasto-plastic analysis, the incremental form of the FEM equations, in a 
partitioned form are 
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where TK  is the tangent stiffness matrix and ∆ψ  is the residual (or out-of-balance) 

force vector. It should be noted that for each load increment, eq (10) are nonlinear and 
therefore are solved iteratively. Standard solution procedure, at each load increment, 
contains iterations over computations of tangent stiffness (based on current stress, and 
plastic strain, if required), applied loads based on current configuration, internal force 
and force residual. Then, displacement increment is calculated. With updated 
displacements the plastic strain increments at element integration points are obtained. 
Finally, check on convergence is carried out. If the procedure converged, plastic strains 
are updated and next increment proceeds. 
 
Elasto-plastic problems with limited spread of plastic strains lend themselves to a 
coupled approach, where the plastic material behavior, is treated by the FEM while 
large parts of the finite/infinite linear elastic body are treated using the BEM. For each 
load increment, the following global equation systems are solved at each iteration 
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As an alternative to the conventional (direct) FEM-BEM coupling approach, a 
partitioned solution scheme can be used, where the systems of equations of the sub-
domains are solved independently of each other. The interaction effects are taken into 
account as boundary conditions, which are imposed on the coupling interfaces. 
Iterations are performed in order to enforce satisfaction of the coupling conditions. 
Within the iteration procedure, a relaxation operator is applied to the interface 
boundary conditions in order to enable and speed up convergence. In this sense, the 
iterative coupling approaches are called interface relaxation FEM-BEM coupling 
methods. Interface relaxation FEM-BEM coupling methods in elasto-plasticity are 
discussed in details in reference [12]. 
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Adaptive FEM-BEM Coupling Method 

As mentioned earlier, it is not useful to predefine the FEM and BEM zones of 
discretization in an elasto-plastic FEM-BEM coupling analysis. The predefinition of the 
zones of discretization, will probably result in either an under/overestimation of the 
nonlinear region where the FEM is employed. More effective is a mechanism that 
allows an automated generation and adaption of the FEM zone of discretization. In 
order to avoid inaccurate or costly computations we propose in this section an adaptive 
FEM-BEM coupling method that automatically generate and progressively adapt the 
finite and boundary element zones of discretization. The adaptive FEM-BEM coupling 
method in elasto-plasticity follows the five basic steps: 
1. Load increment and BEM elastic analysis with an initial BEM discretization. 
  An hypothetical elastic stress state is determined 
2. Detection of zones sensible for FEM discretization 

The hypothetical stress values computed at predefined points inside the BEM 
domain are checked against yielding (elastic prediction). Violation to the yield 
condition provides an initial estimate of the zones sensible for discretization by FEM 
(Fig. 1). For a final estimate of the FEM zones of discretization we propose to use 
simple fast post-calculations based on energetic methods, e.g., Neuber’s and strain 
energy density methods [13]. This will account for relaxation and redistribution of 
stresses that occur due to plastic deformation. 

3. Automatic generation of FEM zone of discretization (consequently the BEM sub 
domain discretization) for the current state of computation 
Particular regions that fulfil the proposed criterion are discretized by the FEM. In 
order to ensure the compatible coupling between the remaining BEM zone and the 
FEM zone, the interface is constructed reflecting the current situation. It is useful to 
reuse the BEM internal points as finite element nodes for the FEM discretization, as 
they are conveniently distributed in the particular area of interest. This will result in 
a reduction of the complexity of data management and ease of the automatic 
generation and adaption of the FEM zone of discretization.  

4. Coupled FEM-BEM stress analysis involving elasto-plastic deformations is then 
conducted 

5. Next load increment requires a repetition of steps 1-4. 
In our adaptive method, the user needs not to predefine the zones of discretization.  

 
In the remainder of this section we will briefly elaborate on the post-calculations for the 
final estimate of the FEM zone of discretization. Let us consider materials of von-
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Mises type obeying a multilinear strain hardening rule. Neuber’s and strain energy 
density methods (Fig. 2) are energy equivalence between the hypothetical elastic and 
the elasto-plastic calculations of the same geometry submitted to the same loading [13]. 
For uni-dimensional states of stress, the product stress x strain in elasticity is assumed 
to be locally identical to the same product calculated by means of an elasto-plastic 
analysis. For tri-dimensional states of stress, the fundamental hypothesis may be 
written as 

( )
elasijijijij εσεσ =                    (12) 

where ( )elas.  corresponds to values determined from hypothetical elastic computations. 

The energy density balance, eq (12), is obtained by using the defined quantities 
appropriately for the actual elasto-plastic stress-strain state and the hypothetical elastic 
stress-strain state. However, a local method leads to a violation of equilibrium. Thus a 
proportionality factor is to be introduced in order to account for the stress relaxation 
and redistribution due to plastic deformations. From a virtual work principle we may 
utilize a global formulation 

⋅≈ ∫∫
Ω

−
Ω ncomputatio

elastic
*
ijij

ncomputatio
plasticelastic

*
ijij dVdV )()( εσεσ              (13) 

 
Based on the global formulation, eq (13), we propose a simple, yet effective, method 
for a final estimation of the FEM zones of discretization. The basic steps of post-
calculations are summarized as 
1. For regions that is initially predicted to yield (elastic prediction), compute the net 

values of the strain energy densities. This is achieved by subtracting the strain 
energy density that corresponds to the elastic limit from the hypothetical densities 
based on elastic BEM analysis 

2. With the net values of strain energy densities of step 1, compute the net value of the 
strain energy (integrated over the initially estimated FEM discretization regions) 

3. With the net strain energy that is vulnerable for redistribution computed in step 2 
and the total hypothetical elastic strain energy of the whole domain, a pseudo value 
of the yielding strength is determined while assuming an equivalence of the actual 
tri-dimensional stress-strain state and a uni-dimensional state (Fig. 2) 

4. For the whole domain, a final estimate of the FEM zone of discretization is achieved 
utilizing the strain energy yielding theory with a pseudo value of the material yield 
strength computed in step 3. 
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Fig. 1: Generation of FEM and BEM zones 
 
The procedure outlined with its inherent assumptions, provide a simple, fast and 
effective method for a final estimation of the FEM and BEM zones of discretization. A 
usual FEM-BEM coupling analysis is then conducted while utilizing the finally 
estimated zones of discretization. 

Numerical Example 

In this section we present a numerical example, which serves as a benchmark problem 
in computational plasticity [14]. The benchmark problem is a stretched plate 
(width=height=200 mm) with a circular central hole (radius r=10 mm) under plane 
strain condition. A surface load P  is applied on the plate’s upper and lower edges. The 
applied tractions 2N/mm 100P =  are scaled with the load factor λ  which is assumed to 
be as high as 4.5. Material properties of the plate are described by Young’s modulus 

GPa9206.E = , Poisson's ratio 290.=ν . Material of Von Mises type is considered 
( MPa  450=yσ ), with no hardening effect ( .H 0= ), as a yield function and plane strain 

loading conditions. Due to symmetry, only one quarter of the domain is discretized. 
The problem is solved by means of the adaptive algorithm presented in Section 3. The 
loads are applied incrementally. Fig. 3 shows the initial (elastic prediction) and final 
(energetic methods) estimates of the zones sensible for discretization by the FEM 
( 53.=λ ). Fig. 3 further shows the coupled FEM-BEM computed results (2000 
quadrilateral finite elements and 357 boundary elements). The results compare well 
with those obtained by conventional FEM solutions (10,000 quadrilateral finite 
elements). The results clearly show the advantages of the adaptive coupled FEM-BEM 
models in terms of efficiency. 
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Fig. 2: Neuber’s method, strain energy density method and a pseudo value of the 
yield strength based on hypothetical elastic computations 

 

Conclusions 

This paper deals with FEM-BEM coupling. The paper proposes the use of simple fast 
post-calculations, based on energetic methods and follows a simple hypothetical elastic 
boundary element computation, in order to give fast and helpful estimation of the FEM 
and BEM zones of discretization. The zones of discretization are progressively adapted 
according to the state of computation. The present adaptive coupling method eliminates 
the disadvantages of a prior definition and manual localization of the FEM and BEM 
sub-domains. It substantially decreases the size of FEM meshes, which plainly leads to 
reduction of required system resources and gain in efficiency. 
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Fig. 3: Intial and final estimation of the FEM discretization zones and computed 

results via an adaptive FEM-BEM coupling method, 53.=λ  
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