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Abstract

Shape optimization problems have many areas of application such as aerospace, struc-

tural and automotive engineering for instance. The task is to determine the optimal

shape of a body insofar as it minimizes a certain cost functional subject to given con-

straints. The underlying work discusses the optimization of the power output of a

rotating electric machine by finding the optimal motor geometry referring to the shape

of the cogs in the stator.

The simulation of the motor generates a nonlinear magnetic field problem described by

the Maxwell’s equations. This system of partial differential equations is reduced to a

2D scalar partial differential equation, also referred to as magnetostatic vector potential

formulation. The obtained nonlinear elliptic partial differential equation stated on the

motor is the optimization constraint. Physical laws provide the boundary and interface

conditions for a complete boundary value problem, which is rewritten in the variational

formulation.

With differentiation formulas derived for domain and boundary integrals, the cost

functional as well as both sides of the variational problem is differentiated with respect

to the geometry of the motor. Now, the resulting shape gradient of the cost functional

does not just depend on the geometry and the solution of the original boundary value

problem, like the cost functional itself. It is furthermore a function of the so-called

shape derivative which solves the differentiated linear boundary value problem.

The considered shape changes of the motor are caused by variation of defined design

parameters. The new, differentiated boundary value problem includes a geometric

quantity related to the modification of the motor design, which is derived for each

design parameter in this work.
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Both boundary value problems are solved by a simulation program that uses finite

element discretization, developed by Dr. Clemens Pechstein. Numerical tests show that

the derived approach could be a valuable method to compute gradient information.
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Kurzfassung

Formoptimierungsprobleme werden in vielen Gebieten eingesetzt, wie zum Beispiel in

der Luftfahrt, der Bautechnik und im Automobilbau. Die Aufgabe besteht darin, die

optimale Form eines Körpers insofern zu bestimmen, als dass ein bestimmtes Zielfunk-

tional unter gegebenen Nebenbedingungen minimal wird. Die vorliegende Diplomarbeit

behandelt die Optimierung der Motorleistung einer rotierenden elektrischen Maschine

durch Ermittlung des optimalen Motordesigns in Bezug auf die Zähne im Stator.

Die Simulation elektrischer Motoren erzeugt ein nichtlineares Magnetfeldproblem, das

durch die Maxwell-Gleichungen beschrieben wird. Dieses System partieller Differen-

tialgleichungen kann zu einer skalaren partiellen Differentialgleichung in 2D verein-

facht werden, welche auch als magnetostatische Vektorpotential-Formulierung bezeich-

net wird. Die resultierende nichtlineare elliptische partielle Differentialgleichung bildet

die Nebenbedingung der Optimierung. Physikalische Gesetze liefern die Rand- und In-

terfacebedingungen für ein Randwertproblem, welches in die Variationsformulierung

gebracht wird.

Mithilfe der hergeleiteten Ableitungsformeln für Volumen- und Randintegrale werden

sowohl das Zielfunktional, als auch beide Seiten des Variationsproblems, bezüglich

der Motorgeometrie differenziert. Der resultierende Formgradient des Zielfunktionals

hängt, im Gegensatz zum Zielfunktional selbst, nicht nur von der Geometrie und der

Lösung des ursprünglichen Randwertproblems ab, sondern auch von der sogenannten

Formableitung. Diese ist als Lösung des differenzierten, linearen Randwertproblems

gegeben.

Die betrachteten Formveränderungen des Motors werden durch Variation festgelegter

Designparameter verursacht. Das neue, differenzierte Randwertproblem enthält eine

geometrische Größe, die mit der Modifikation des Motordesigns zusammenhängt. Diese

wird in der Arbeit für alle betrachteten Designparameter hergeleitet.
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Beide Randwertprobleme werden mit einem von Dr. Clemens Pechstein entwickelten Si-

mulationsprogramm mit Finite-Elemente Diskretisierung gelöst. Numerische Tests be-

stätigen, dass die vorgestellte Methode für die Gradientenberechnung durchaus wertvoll

sein könnte.
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Chapter 1

Introduction

This thesis deals with the shape optimization of an electric motor. The topic was mo-

tivated by a cooperation with the ACCM (Austrian Center of Competence in Mecha-

tronics) and is based on results obtained in the project seminar in computational math-

ematics held in the summer semester 2008 at JKU Linz.

Shape optimization problems are concerned with finding the optimal design with re-

spect to a given cost functional, usually subject to an underlying partial differential

equation. The numerical solution of such problems requires information about the

gradient of the cost functional, which can be approximated by difference quotients.

However, this method has some drawbacks like the accuracy of the approximation,

computational costs and the problem of determining an appropriate stepsize.

The underlying thesis presents an approach of computing the exact gradient of the cost

functional with respect to the geometry. The involved tasks are worked out for the case

of a rotating electric machine.

The machine considered for the optimization more precisely represents a PMSM (Per-

manent Magnet Synchronous Motor). The rotor of this motor type is permanently

magnetized, coils conducted with current are situated in the stator. In contrast to

other machines, the magnetic field in the stator is not generated electrically but by the

permanent magnets in the rotor.

Thus, the excitation does not require electric power which increases the degree of effi-

ciency of the machine. Moreover, a PMSM is brushless without a commutator making

the machine low-maintenance, resistant and causing less wear.

Permanent magnetic motors have gained in importance in many fields of application.
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CHAPTER 1. INTRODUCTION 2

For instance, they are used in machine tools, different industrial robots, production

machines, air conditioners, pipe systems and several home appliances.

This thesis aims to present the treatment of a shape optimization problem from the

very first step. Particular attention is paid to the meaning of the design of a physical

domain as an optimization variable and the differentiation of functionals with respect

to that domain. The latter is a challenging task because the optimization constraint is

a partial differential equation (PDE) which is defined on the considered domain.

The derivation of the differentiation formulas is mainly based on [15]. The presentation

in this work will be formal, i.e. it is correct provided that all needed data are sufficiently

smooth. Regularity assumptions and functional analytic aspects are discussed in [15]

and [4].

Moreover we omit a detailed description of all physical laws and relations. This part

of the thesis is limited to a short introduction of the main statements needed to derive

the mathematical model.

The thesis is organized as follows:

In chapter 2 we first introduce the initial design of the given permanently magnetized

motor and formulate the shape optimization problem. The PDE constraint is derived

from the Maxwell’s equations that are used to describe electromagnetic field problems.

Appropriate boundary and interface conditions lead to a nonlinear boundary value

problem on the motor.

Chapter 3 identifies design parameters and visualizes the shape changes resulting from

their variation. Furthermore the normal velocity component, which appears in the

differentiation formulas of chapter 4, is calculated for each design parameter.

The shape differentiation of functionals consisting of domain or boundary integrals

is explained in chapter 4. Important types of derivatives, such as the material or the

shape derivative, are defined and used to derive general expressions for derivatives with

respect to a geometric domain.

In chapter 5 we apply the differentiation theory worked out earlier to the main problem.

The formulas yield the shape gradient of the cost functional needed for the optimization

and we obtain a second boundary value problem by differentiating both sides of the
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original one, which was derived in chapter 2. The solutions of both problems are

required to evaluate the gradient of the cost functional.

Finally, chapter 6 provides the numerical results computed with a simulation program

developed by Dr. Clemens Pechstein. On the basis of a simplified test problem with a

known exact solution, the programming code is verified. For the original model problem

a comparison of the difference quotient and the computed shape gradient shows that

the presented method is reasonable.

In chapter 7 we evaluate the differentiation method using shape derivatives in com-

parison to approximations by difference quotients, regarding computational costs and

accuracy.



Chapter 2

Problem Formulation

This chapter presents the PDE constrained shape optimization problem and derives a

mathematical problem formulation. It is structured in the following way:

In section 2.1, we illustrate the initial geometry of the motor to be optimized. A formal

specification of the optimization problem is provided in section 2.2. In section 2.3 we

briefly present the underlying physical engineering problem on the basis of fundamental

relations in electromagnetics and derive the magnetostatic vector potential formulation,

which is simplified under consideration of relevant problem properties and admissible

assumptions in section 2.4.

2.1 Motor design

The considered synchronous motor is part of a - initially given in 3D - rotating electric

machine. For symmetry reasons, the x3-direction can be neglected leading to a 2D

model.

Figure 2.1 sketches the reduced motor in the x1x2-plane. The innermost circle defines

the motor center which is orbited by the rotor, i.e. the rotation axis goes through the

midpoint. The surrounding circular ring represents the rotor, whereas its enclosing

narrow layer identifies the airgap inbetween the rotor and the fixed stator. The next

two rings, describing the coil area and an iron layer, belong to the stator. The outermost

district forms a virtual layer of air that will be needed for the mathematical problem

description.

4



CHAPTER 2. PROBLEM FORMULATION 5

Figure 2.1: Motor layout in 2D

Both the rotor and the stator are separately viewed in figure 2.2 The left picture shows

the detailed structure of the rotor, the stator is displayed on the right side. Note that

in this graphic, the two motor parts are not proportional in size to one another, the

rotor actually fits inside the stator.

The inner disk of the rotor consists of iron, the outer circular ring constitutes four

permanent magnets. The arrows stand for the magnetization direction and show that

we are dealing with parallel magnetization. In each quadrant, the magnetization points

in the direction of the bisecting line, with alternating sign.

The stator is composed of coils and an enclosing iron ring. The coil layer is divided

into the six segments A1 to A6 which identify the part of the rotor that is conducted

by current. The outer ring is made of iron like the inner part of the rotor.

With geometric variables like various diameters, the geometry of the motor can be

parameterized. Detailed information on the motor dimensions that are used for the

numerical tests is given on page 65. This part of the geometry is fixed for the opti-

mization.

Each of the coil districts A1 to A6 actually represents a cog lying in the middle of
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Figure 2.2: Detailed structure of rotor (left) and stator (right)

a coil area. Coils of wire are wound around the cogs which are connected with the

surrounding iron ring. In chapter 3, we will split the coil segments to obtain a stator

consisting of an iron ring with six cogs. The goal is to find the best shape of the cogs

which leads to the underlying shape optimization problem.

2.2 The Optimization Problem

The goal is to find the optimal design of the motor in such a way that the machine

power is maximized. Mathematically, the problem writes as follows:

min
d∈Rn
J (d, u(d))

s.t.: u(d) solves nonlinear elliptic PDE

di ≤ di ≤ di ∀i ∈ {1, 2, . . . n}
(2.1)

with
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J cost functional

u(d) state variable

d vector of design parameters

n number of design parameters

The cost functional J is the power output of the motor and depends on the motor

geometry, as well as on the state variable u.

In general, u satisfies a nonlinear elliptic PDE that will be derived from the Maxwell’s

equations in sections 2.3 and 2.4. It describes the state of the electromagnetic behavior

of the system and will be the third component of a vector potential (see section 2.4).

The PDE with solution u is stated on the domain representing the motor, i.e. the state

variable u itself also depends on the motor geometry.

The geometry of the motor is described by n so-called design parameters, collected in

a vector d. Changes in the geometry of the motor are caused by variation of one or

more design parameters.

For the optimization problem treated in this work, the design parameters correspond

to the six cogs in the stator. More details will be provided in chapter 3.

The prescribed lower and upper bounds (box constraints) define the feasible region for

all parameters to avoid useless shapes like cogs that do not touch the iron ring, for

instance.

2.3 Physical background

The state variable u, which is required to evaluate the cost functional J , underlies the

Maxwell’s equations, given by

curl H = J +
∂D

∂t
(2.2)

curl E = −∂B

∂t
(2.3)

div B = 0 (2.4)

div D = ρ (2.5)

with the involved electromagnetic quantities
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H magnetic field strength

E electric field strength

B magnetic flux density or magnetic induction

D electric flux density or electric induction

J electric current density

ρ electric charge density

The boldface notation indicates vector fields in 3D. All introduced quantities depend

on the position x = (x1, x2, x3) and time t. This famous system of PDEs is stated

in most books concerning electromagnetics. For details and explanations we refer to

[7, 8, 11].

Relations between the fields are expressed via the following constitutive laws:

B = µ · (H + M) (2.6)

D = εE (2.7)

J = σE (2.8)

with

M field of permanent magnetization

µ magnetic permeability

ε electric permittivity

σ electric conductivity.

The magnetic field M is given by

M = µBr (2.9)

where Br denotes the magnetic remanence. The material quantities µ, ε and σ generally

are nonlinear tensors that depend on time and space. However, we concentrate on the

isotropic case and therefore they are numbers.

In the following, we further investigate the magnetic permeability.

Since we neglect the effects of hysteresis, the permeability can be seen as a function of

the magnitude of the magnetic field strength |H|, leading to

B = µ(|H|) · (H + M).
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Note that M only appears in materials that are permanently magnetized.

The permeability is furthermore defined as

µ = µ0µr (2.10)

with the constant permeability of vacuum µ0 = 4π10−7 and the relative permeability

µr.

We distinguish linear and nonlinear materials. The best known linear material is vac-

uum, where the relative permeability equals 1, i.e. µ = µ0. Permanent magnetic

materials have the same permeability µ = µ0.

In nonlinear materials, µ depends on the strength of the magnetic field. It is deter-

mined by the B-H-curve, which represents a relation of the magnetic field intensity

H = |H| and the magnitude of the magnetic induction B = |B|. A famous nonlinear

material is iron.

In the underlying motor, the iron ring and the six cogs, as well as the rotor without

the permanent magnets, are made of iron.

Now we introduce another coefficient, namely the magnetic reluctivity ν, satisfying

H = ν(|B|)B−M.

Obviously, the reluctivity is the reciprocal of the magnetic permeability.

According to [11], electromagnetic phenomena in rotating electric machines can be

described by quasi-stationary magnetic fields, meaning that D does not influence H

in (2.2) and ρ = 0. The corresponding simplified Maxwell’s equations are presented

in [11]. Moreover, the magnetic fields H,B and the current density J do not depend

on time, which refers to the magnetostatic case. The earlier introduced Maxwell’s

equations (2.2) - (2.5) and constitutive laws (2.6) - (2.8) reduce to

curl H = J (2.11)

div B = 0 (2.12)

H = ν(|B|)B−M. (2.13)
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Because of (2.12), the magnetic flux density can be expressed by the curl of a vector

potential A:

B = curl A. (2.14)

Inserting (2.14) into (2.13), applying the curl operator to both sides of the equation

and using (2.11) yields

curl [ν(| curl A|) curl A] = J + curl M, (2.15)

which is known as the magnetostatic vector potential formulation.

2.4 Mathematical Model

Reduction to 2D:

Since the given motor is modelled as circular disk lying in the x1x2-plane, the magnetic

fields H, B and M reduce to

H =

H1(x1, x2)

H2(x1, x2)

0

 , B =

B1(x1, x2)

B2(x1, x2)

0

 , M =

M1(x1, x2)

M2(x1, x2)

0

 .

For the curl of the permanent magnetization appearing in (2.15) we obtain

curl M =


0

0

−∂M1

∂x2

+
∂M2

∂x1

 . (2.16)

With B3 = 0 we get from (2.14) the following relation:

∂A1

∂x2

− ∂A2

∂x1

= 0. (2.17)
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We conclude A = (0, 0, A3(x1, x2))T and substitute from now on u := A3, leading to

B = curl A =


∂u

∂x2

− ∂u

∂x1

0

 and |B| = |∇u|. (2.18)

The current density J occurs in the coil areas on both sides of each cog. Since the coils

of wire are wound around the cogs in x3-direction, J is perpendicular to the magnetic

fields and therefore defines a vector where only the third component is nonzero:

J =

 0

0

J3(x1, x2)

 .

Now, by using (2.16) and (2.18), the third line of the magnetic vector potential formu-

lation (2.15) writes as

− div
(
ν(|∇u|)∇u

)
= J3 − ∂M1

∂x2

+
∂M2

∂x1

(2.19)

where all appearing quantities depend on the position x = (x1, x2) in the two-

dimensional space .

Continuity conditions:

In the following, we derive a boundary value problem (BVP) for u to complete the math-

ematical problem formulation. Let the bounded domain Ω ⊂ R3 with boundary Γ = ∂Ω

denote the given permanently magnetized motor. Since the motor consists of various

parts of different material properties (see figure 2.1), Ω is a heterogeneous domain,

i.e. Ω̄ =
⋃N
i=1 Ω̄(i) with nonoverlapping subdomains. To ensure physically reasonable

continuity conditions between two neighboring materials, we prescribe, analogously to

[2], the following interface conditions:

~n · (B(j) −B(i)
)

= 0 on Γ(i,j) (2.20)

~n× (H(j) −H(i)
)

= 0 on Γ(i,j) (2.21)
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with the unit normal vector ~n , the interface Γ(i,j) = ∂Ω(i) ∩ ∂Ω(j) between two subdo-

mains Ω(i) and Ω(j), the restrictions B(i) of B and ui of u to Ω(i), and so forth.

In the 2D case, the above conditions can be reduced to

ui = uj on Γ(i,j)

−νi(|∇ui|) ∇ui · ~n+ νj(|∇uj|) ∇uj · ~n = ~n ·M (i)
⊥ − ~n ·M (j)

⊥ on Γ(i,j)

with

M⊥ =

(
−M2

M1

)
, (2.22)

by use of (2.13) and (2.18).

On the outer boundary Γ we postulate homogeneous Dirichlet boundary conditions,

which can be seen as a magnetic isolation between the virtual layer of air representing

the outermost part of the motor (cf. 2.1) and the surroundings.

Classical Formulation:

Finally, the classical formulation of the BVP for u can be stated:

Find u : Ω̄ → R such that

− div
(

(νi(|∇ui|)∇ui)−M (i)
⊥

)
= J

(i)
3 in Ω(i) (2.23)[

u
]

Γ(i,j) = 0 on Γ(i,j) (2.24)[
ν(|∇u|) ∇u · ~n]

Γ(i,j) =
[
M⊥ · ~n

]
Γ(i,j) on Γ(i,j) (2.25)

u = 0 on Γ (2.26)

with the usual jump notation

[
u
]

Γ(i,j) := u|Ω(i)(x)− u|Ω(j)(x) = ui(x)− uj(x) ∀x ∈ Γ(i,j)[
q · ~n]

Γ(i,j) := qi(x) · ~n(i)(x) + qj(x) · ~n(j)(x) ∀x ∈ Γ(i,j)

and ~n(i), ~n(j) denoting the outer unit normal vectors to Ω(i) and Ω(j), respectively.
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Variational Formulation:

For the variational formulation we consider the Sobolev spaces

V = H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ L2(Ω)}, V0 = {v ∈ V : v = 0 on Γ}. (2.27)

The variational formulation is obtained by multiplying both sides in (2.23) with an

arbitrary testfunction v ∈ V0 and integrating over Ω. Integration by parts for the

principal part and incorporating the boundary and interface conditions (2.24)-(2.26)

leads to the following variational formulation:

Find u ∈ V0, such that

a(u, v) = 〈f, v〉 ∀v ∈ V0 (2.28)

where

a(u, v) =

∫
Ω

q(∇u) · ∇v dΩ and (2.29)

〈f, v〉 =

∫
Ω

(
J3v +M⊥ · ∇v

)
dΩ (2.30)

with

q(∇u) = ν(|∇u|)∇u. (2.31)



Chapter 3

Geometry

Contrary to ordinary optimization problems, where the arguments of the cost functional

are real scalars or vectors, the cost functional J of the minimization problem (2.1) has

the physical domain Ω as a variable. Accordingly, the optimization variable is the

geometry of a domain. In order to compute the gradient of our cost functional we have

to differentiate J with respect to Ω.

This chapter represents the geometry part of the thesis. It provides the entire geometric

information required to solve the optimization problem (2.1).

The first section introduces basic principles to describe changes in the geometry of a

domain. In section 3.2, we parameterize the cogs of the given electric motor, i.e. we

choose design parameters to specify the curve defining the shape of the cogs. Finally,

a velocity field of Ω associated with the change of design parameters is computed in

section 3.3.

3.1 Shape Variation

As starting point for shape variations we consider a bounded domain Ω ⊂ Rm, m ∈ N
with Lipschitz boundary Γ = ∂Ω, consisting of material particles. This initial config-

uration Ω is changed into a new geometry Ωt by mapping each material particle from

its position X ∈ Ω to its new position x = Tt(X) ∈ Ωt, as illustrated in figure 3.1.

14
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Figure 3.1: Domain transformation by map Tt

This process is realized by a one parametric family of bijective transformations

Tt : Rm → Rm

X → x = Tt(X) = x(t,X)

with

Tt(Ω) = Ωt, Tt(∂Ω) = ∂Ωt.

X ∈ Ω are called the Lagrangean coordinates of a particle whereas x = Tt(X) ∈ Ωt are

the Eulerian coordinates. Apparently, Ωt is the image of the reference configuration

with respect to the function Tt which maps from Lagrangean to Eulerian coordinates.

The scalar parameter t ≥ 0 describes the amount of change of the geometry. Hence,

for t = 0 the transformation Tt equals the identity operator and thus the initial shape

remains unchanged:

T0 = id, T0(Ω) = Ω, T0(X) = X ∀X ∈ Ω.

The design parameters needed in our given problem will be defined in section 3.2. Usu-

ally the parameter t is thought of as time, but here it stands for geometric quantities.

Another important term to describe the transformation of a domain is the (design)

velocity:
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Definition 3.1 (Eulerian velocity field). The Eulerian velocity field V (t, x) is given by

V (t, x) =
∂x

∂t

(
t, T−1

t (x)
)
.

We assume V is sufficiently smooth (details can be found in [4] on page 338). The

Eulerian velocity field expresses the direction as well as the magnitude of the motion

of a material particle occupying the position x at “time” t.

The mapping Tt and the velocity are connected via an initial value problem as stated

in [10], page 34:

d

dt
x(t,X) = V (t, x(t,X))

x(0, X) = X.
(3.1)

This relation signifies the dependence of the transformation on the velocity field, i.e.

x(t,X) = Tt(V )(X), in which we will drop the V in the following. For given velocity,

the above problem determines x(t,X) and thus the family of transformations Tt, and

vice versa.

3.2 Design Parameters

The motor sketched in chapter 2 can be parameterized by geometric variables such

as the radius of the rotor, the width of the airgap, etc. As mentioned earlier, the

parametrization of the motor is not complete yet. The sectors A1 − A6 in figure 2.2

have to be further subdivided. More precisely, we have to determine a parametrization

of the curve cutting each sector into three parts: the cog lying in the middle of the

segment and the areas on either side of the cog, which are filled with coils of wire that

are wound around the cog.

Variables appearing in the geometric description of the given machine are called design

parameters, if they are varied to find the optimum shape of the motor, whereas all

other variables are fixed. In the following, the parameters characterizing the cog curve

will be referred to as design parameters or design variables.
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Remark 3.2. In the simplified test problem worked out in section 6.1, we will consider

the radius of the rotor as design parameter.

Of course, there are different ways to set up a curve defining the cogs of the motor.

For example, one could prescribe a finite set of points within each sector and draw a

piecewise linear function through these points. Bezier curves or other splines passing

given control points represent further options.

We choose a curve which is obtained by two tangent circles as shown in figures 3.2 and

3.3. For the sake of clarity, only the cog lying in the first sector of the motor is plotted

in figure 3.2. Obviously, the cogs in the other sectors are obtained by rotation.

Figure 3.2: Motor design with cog formed by circles

Below, the design parameters corresponding to the red curves in figure 3.2 are intro-

duced. Generally, a circle in 2D can be identified by 3 parameters (coordinates of

the midpoint and the radius). Since the two circles are tangent, one parameter can

be eliminated which leads to a total of 5 design parameters to consider the geometric

change of the motor:
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• ratio of the radii: ρ = r1/r2

• center of circle 1: (xM,1, yM,1)

• center of circle 2: (xM,2, yM,2).

Circle 1 will always refer to the outward one, i.e. the circle farther from the rotor and

closer to the iron ring.

Figure 3.3 provides a detailed perspective of the first motor segment. It shows the cog

resulting from connected circles and points out the symmetry of a cog with respect to

the midline of its sector. Thus, it is sufficient to specify two tangent circles determining

the half of one cog. Reflecting and rotating them yields all curves needed to define

every cog in the motor. Figure 3.4 visualizes the design of one sector obtained by the

parametrization described above. This part of the motor is considered to replace the

segments A1 − A6 in figure 2.2.

Figure 3.3: Zoomed view of first coil sector

To ensure a reasonable motor design and satisfy physical and technical requirements,

the parameters have to fulfill certain restrictions. For instance, circle 1 must not
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Figure 3.4: Coil sector with gray shaded cog

cut the sector-midline. This would result in a negative width of the cog. Similarly,

if circle 2 exceeds its dedicated sector, i.e. cuts the sector bounds, the cogs would

overlap. Moreover, both circle 1 and circle 2 have to cut their neighboring material

layers. Otherwise the cogs would not be connected with the iron ring or the air gap,

respectively. The set of design variables satisfying the constraints is called feasible

design.

3.3 Normal Velocity Component

This section deals with the variation of each individual design parameter and the re-

sulting change in the motor geometry. This means we will state for every t a one-to-one

function Tt transforming the initial design Ω to Ωt.

The map inducing the domain change is not unique. We will present one valid trans-

formation per design parameter which we further use to compute the Eulerian velocity

field and the quantity we are actually interested in: the normal component vn of the

velocity, which is given by

vn(x) = V (0, x) · n (3.2)

with n denoting the unit outer normal vector to Ω, where we neglect the dependence

of n on x. Chapters 4 and 5 will show that vn appears in the differentiation formu-
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las for domain and boundary integrals and thus in the differentiated boundary value

problem.

Throughout this chapter, Γ0 and Γt denote the boundaries of the initial domain Ω and

the transformed domain Ωt, respectively. For the computation of vn, we only define

the mapping of particles that are situated on the boundary Γ0. We assume that a

transformation Tt : Γ0 → Γt can be extended consistently to the entire domain. An

arbitrary extension does not influence vn and therefore it is sufficient to define Tt on

the boundary Γ0 of Ω.

3.3.1 Variation of the ratio ρ

We start considering the ratio ρ of the two circles’ radii as design parameter. Let r0,1

and r0,2 be the radii of the two initial circles and let ρ0 denote their ratio, i.e. ρ0 =

r0,1/r0,2. Furthermore, ρt = ρ0 + t, t ∈ R measures the proportion of the two radii rt,1

and rt,2 in the transformed motor. Similarly, x(0) describes particles on Γ0 whereas

x(t) stands for the corresponding transformed particles on Γt.

For positive values of t, circle 1 enlarges while the second circle reduces its size in equal

measure. The amount of increase or reduction is denoted by s.

Figure 3.5 shows the movement of the cog curve for the case t < 0. Then, circle 1 gets

smaller whereas circle 2 enlarges. The solid circles represent the initial geometry, the

dashed ones resulted from changing the ratio ρ. To provide a better imagination, the

parts of the circles defining the contour of the cog are colored red. The solid red curve

denotes the initial interface Γ0 between the cog and the coils of wire, the dashed red

line denotes Γt, the cog curve obtained by variation of ρ. Figure 3.5 also visualizes our

chosen transformation Tt, which equals the radial displacement of material particles of

length s. Particles x(0) situated on the initial curve Γ0 are shifted in direction of either

the outer normal of a circle or its negative counterpart pointing to the circle center.

To determine the mapping Tt we choose the following ansatz describing the relation

between the initial radii, the parameter t and the distance s(t) between initial and

transformed particles:
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Figure 3.5: Transformation at variation of ratio

Ansatz:

ρt = ρ0 + t =
r0,1 + s

r0,2 − s (3.3)

Solving for s leads to

s(t) =
t r0,2

ρ0 + t+ 1
.

Then, the transformation of particles on Γ0 to their new position on Γt is defined by:

Tt : Γ0 → Γt

x(0) → x(t) =

x(0) + s(t)
r0,1

−−−−→
M1x(0), if x(0) ∈ circle 1

x(0)− s(t)
r0,2

−−−−→
M2x(0), if x(0) ∈ circle 2

Differentiating with respect to t and setting t equal to zero yields the velocity field:

ẋ(t)
∣∣
t=0

= V (0, x) =

 1
ρ0(ρ0+1)

(x(0)−M1) , if x(0) ∈ circle 1

− 1
ρ0+1

(x(0)−M2) , if x(0) ∈ circle 2
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With n denoting the unit outer normal vector of circle 1 and simultaneously the negative

unit outer normal of circle 2, i.e.

n =

 1
r0,1

(x(0)−M1) , if x(0) ∈ circle 1

− 1
r0,2

(x(0)−M2) , if x(0) ∈ circle 2
(3.4)

we obtain

vn(x) =
r0,1

ρ0(ρ0 + 1)
=

r0,2

ρ0 + 1

for the normal component of the Eulerian velocity field. Note that vn is independent

on the position on the curve.

3.3.2 Variation of the x-coordinate of M1

The second design parameter we consider is the x-coordinate of the center of circle 1.

Changes in the geometry obtained by its variation are shown in figure 3.6.

Like in figure 3.5, the solid circles denote the initial ones whereas the dashed circles

refer to the transformed geometry. Again, the red circular arcs specify the cog curve.

Obviously, M0,1 denotes the initial midpoint of circle 1 and Mt,1 = M0,1 +
(
t
0

)
the

transformed center after varying the design parameter. Accordingly, for t > 0 the

center of circle 1 drifts to the right and for t < 0 to the left.

As pointed out in figure 3.6, a modification of xM,1 leads to a translated midpoint and

an alteration in the size of circle 1. Circle 2 also changes its size while the position of

M2 is fixed. Thus, we do not need to introduce further indices for M2. Both circles

either expand or shrink but never change in the opposite direction.

Although in figure 3.6 the two circles are getting bigger for a positive real number t, t>0

does not automatically imply increasing circles. Growth or reduction is determined by

the sign of t as well as the position of the initial circles to each other.

Figure 3.7 demonstrates how particles x(0) on the original, solid curve are mapped

to their corresponding position x(t). The initial and transformed radii of the two

circles are denoted like in subsection 3.3.1, the midpoints are named in accordance

with figure 3.6.

B0 and Bt specify the contact points of the circles in the initial and transformed
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Figure 3.6: Geometrical change at variation of xM,1

geometry, repectively. Observe that the line connecting them is parallel to the center-

movement, which can be deduced from the Theorem on intersecting lines, since the

ratio of the radii is constant.

The solid grey circle with the initial midpoint but changed radius of circle 1 is used to

describe the mapping Tt. The dotted lines represent artificial lines to visualize how a

particle x(0) is transformed, which will be further discussed below.

In the following, a mathematical expression for mapping particles from their original

position to the transformed curve is derived.

Preliminary work:

Before we are able to define the map Tt, we have to work out the required preliminaries.

First, we will compute the radii rt,1 and rt,2 of the transformed circles. Then, both the

initial and shifted contact points B0 and Bt of the two circles will be given. The last

preparation step that needs to be accomplished is the computation of the sine and

cosine of the angle α between
−−−→
M2B0 and

−−−→
M2Bt.
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Figure 3.7: Particle displacement at variation of xM,1

In order to get a representation of the radii in the transformed geometry in terms of t,

the initial ratio ρ0 and the coordinates of the circle centers, we will state two equations

for rt,1 and rt,2.

On the one hand, the ratio of the two radii is constant which leads to a relation between

the two unknowns and the initial ratio. On the other hand, the transformed circles are

still tangent. Hence, we claim the distance of their midpoints to equal the sum of the

circles’ radii, which yields:

(I) ρ0 = ρt =
rt,1
rt,2

(II) rt,1 + rt,2 = ‖−−−−→Mt,1M2‖.
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Solving the above system of equations results in

rt,1 =
ρ0

ρ0 + 1

√
(x2 − (x1 + t))2 + (y2 − y1)2 = ρ0 rt,2 (3.5)

rt,2 =

√
(x2 − (x1 + t))2 + (y2 − y1)2

ρ0 + 1
(3.6)

where

M0,1 = (x1, y1), M2 = (x2, y2).

The contact points B0 and Bt are obtained by simple geometric considerations:

B0 = M0,1 +
ρ0

ρ0 + 1
(M2 −M0,1)

Bt = Mt,1 +
ρ0

ρ0 + 1
(M2 −Mt,1).

Since α describes the angle between
−−−→
M2B0 and

−−−→
M2Bt, the well-known formula

cosα =

−−−→
M2B0 · −−−→M2Bt

r0,2 rt,2

with the scalar product · holds. Inserting the known quantities gives

cosα =
1

r0,1 + r0,2

(x2 − x1)2 − t(x2 − x1) + (y2 − y1)2√
(x2 − x1 − t)2 + (y2 − y1)2

. (3.7)

For the computation of sinα the Law of Sines is applied which leads to the following

relation:

sinα =
t sin γ

rt,1 + rt,2
(3.8)

where γ denotes the angle between
−−−−−→
M0,1M2 and the positive x-axis. The sine of γ is

given by

sin γ =
√

1− (cos γ)2 (3.9)

and

cos γ =

−−−−−→
M0,1M2 ·

(
1
0

)
r0,1 + r0,2

=
x2 − x1

r0,1 + r0,2

.
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Note that sin γ could actually have a negative sign. Since this would imply an angle

greater than 180 degrees, which is impossible for our geometrical change, we only

consider the positive expression.

Inserting (3.5), (3.6) and (3.9) into (3.8) finally leads to

sinα =
1

r0,1 + r0,2

t(y2 − y1)√
(x2 − x1 − t)2 + (y2 − y1)2

. (3.10)

Definition of the transformation:

The mapping of particles is dependent on their position on the original curve. More

precisely, we distinguish points located on circle 1 and those situated on circle 2.

When the center of circle 1 moves, circle 2 increases or diminishes radially as shown in

figure 3.6. Thus, particles on circle 2 are transformed similarly to the case of a varying

ratio described in subsection 3.3.1. The difference is that the vector
−−−−→
M2x(0) has to be

rotated by α before its length is adjusted to rt,2 which ensures that the corresponding

particle lies on the transformed curve at the end.

Points belonging to circle 1 are also mapped in a similar way which can be observed

in figure 3.6. But now, after rotation of the vector
−−−−→
M1x(0) and adapting its length,

the resulting particle additionally needs to be shifted in accordance with the center of

circle 1, i.e. it is translated by
(
t
0

)
.

Formally, the transformation of particles of the initial curve writes as:

Tt : Γ0 → Γt (3.11)

x(0) → x(t) =


rt,1
r0,1
R
−−−−−→
M0,1x(0) +M1 +

(
t
0

)
, if x(0) ∈ circle 1

rt,2
r0,2
R
−−−−→
M2x(0) +M2, if x(0) ∈ circle 2

(3.12)

with the rotation matrix

R =

(
cosα − sinα

sinα cosα

)
(3.13)
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Computation of vn:

The Eulerian velocity V (0, x) equates the first derivative of (3.12) with respect to t,

evaluated at t = 0. Using (3.5), (3.6), (3.13), (3.10) and (3.7) yields

V (0, x) =



1
(r0,1+r0,2)2

−(x2 − x1)(x0 − x1)− (y2 − y1)(y0 − y1)

(y2 − y1)(x0 − x1)− (x2 − x1)(y0 − y1)

+

1

0

 , on circle 1

1
(r0,1+r0,2)2

−(x2 − x1)(x0 − x2)− (y2 − y1)(y0 − y2)

(y2 − y1)(x0 − x2)− (x2 − x1)(y0 − y2)

 , on circle 2

where x0, y0 denominate the coordinates of the initial particle x(0).

Let again n denote the unit outer normal vector of circle 1 and the negative unit outer

normal of circle 2 as defined in (3.4). The scalar product of V (0, x) and n provides the

velocity of the particles on the initial curve in normal direction:

vn(x) =


−(x2−x1) r0,1

(r0,1+r0,2)2
+ x0−x1

r0,1
, if x(0) ∈ circle 1

−(x2−x1) r0,2

(r0,1+r0,2)2
, if x(0) ∈ circle 2

(3.14)

Remark 3.3. Applying the matrix (3.13) rotates a vector counterclockwise by an angle

α which suffices the case illustrated in figure 3.7. However, the relative position of the

three plotted midpoints to each other could as well require a clockwise rotation.

For example, consider the location of M0,1 and M2 as in figure 3.7 but the case t < 0

and call the evolving angle α2. Then, α2 is greater than 180 degrees, i.e. α2 = 360−α.

Rotating counterclockwise by that angle is equivalent to rotate by α in clockwise direc-

tion, which corresponds to applying RT (α) instead of R(α).

The situation described above would lead to some changed signs in both the transfor-

mation (3.12) and the velocity but it would result in the same normal component vn.

3.3.3 Summary

For variation of the y-coordinate of M1 and both coordinates of M2, the normal compo-

nents of the velocity fields can be derived analogously to subsection 3.3.2. The results
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for vn are summarized in the following table, where n always denotes the unit outer

normal for particles on circle 1 and the unit vector pointing to M2, if x(0) is located

on circle 2:

x(0) ∈ circle 1 x(0) ∈ circle 2

ρ r0,2/(ρ0 + 1) r0,2/(ρ0 + 1)

xM,1 −z(x2 − x1)r0,1 + (x0 − x1)/r0,1 z(x2 − x1)r0,2

yM,1 −z(y2 − y1)r0,1 + (y0 − y1)/r0,1 z(y2 − y1)r0,2

xM,2 z(x2 − x1)r0,1 −z(x2 − x1)r0,2 − (x0 − x2)/r0,2

yM,2 z(y2 − y1)r0,1 −z(y2 − y1)r0,2 − (y0 − y2)/r0,2

with z = 1/(r0,1 + r0,2)2, the coordinates (x0, y0) of the initial position of a parti-

cle, and (x1, y1) and (x2, y2) the coordinates of the circle midpoints M0,1 and M0,2,

respectively.



Chapter 4

Introduction to Shape Derivatives

Solving the minimization problem (2.1) requires the computation of the gradient of

the cost functional with respect to shape variations of Ω. In chapter 5 we will see that

this shape gradient depends on u, the solution of the boundary value problem (2.28),

as well as on u′, the so-called shape derivative of u.

As mentioned before, the latter solves another variational problem on Ω, which can

be derived by differentiating the original one for u. Consequently, beside the shape

gradient of the cost functional, we are interested in the Eulerian derivatives of both

sides of (2.28).

In this chapter we accomplish the preliminary work to compute the Eulerian derivatives

needed in chapter 5. In other words, we prepare general differentiation formulas for

shape functionals that consist of domain or boundary integrals.

Definition 4.1 (Eulerian derivative). Let Ω ⊂ Rm, J : Ω→ J(Ω) a functional and let

Ωt = Tt(V )(Ω) denote a family of deformations of Ω. The Eulerian derivative of J at

Ω in the direction of a vector field V is defined by the limit

dJ(Ω;V ) = lim
t↓0

J(Ωt)− J(Ω)

t
. (4.1)

The Eulerian derivative of the functional J is a directional derivative. It characterizes

the behavior of J when Ω moves in the direction of V .

The definition above is given in many books treating shape optimization problems of

any kind. For details about the existence of the Eulerian derivative of a functional,

shape differentiabilty and needed assumptions on the vector field V , we refer to [15].

29
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The chapter is organized as follows:

The differentiation of domain integrals like those appearing in the boundary value

problem for u is covered in section 4.1. Section 4.2 deals with the (more difficult)

computation of the Eulerian derivative of boundary integrals. Important differential

operators and necessary tools such as the tangential Stokes formula are introduced.

Then, we derive a differentiation formula for the type of boundary integral that occurs

in the cost functional.

4.1 Domain Integrals

In this section we derive a general formula for the Eulerian derivative of a functional J

consisting of an integral over the domain Ω. The integrand F is a function of x ∈ R2,

a function y of Ω and the gradient of y, i.e.

J(Ω) =

∫
Ω

F
(
x, y(Ω)(x),∇y(Ω)(x)

)
dΩ. (4.2)

Remark 4.2. Note that y is not just a function defined on a part of Ω but depends on

the shape of the domain. For instance, y could be the solution of a variational problem

on Ω. Consequently, both the integrand and the domain of integration depend on Ω.

On the transformed domain Ωt we consider the corresponding functional

J(Ωt) =

∫
Ωt

F
(
x, y(Ωt)(x),∇y(Ωt)(x)

)
dΩt. (4.3)

Substitution rule and chain rule yield

J(Ωt) =

∫
Ω

F
(
Tt(x), (y(Ωt) ◦ Tt) (x), (∇y(Ωt) ◦ Tt) (x)

)
γ(t)(x) dΩ

=

∫
Ω

F
(
Tt(x), (y(Ωt) ◦ Tt) (x), DT−Tt (x)∇ (y(Ωt) ◦ Tt) (x)

)
γ(t)(x) dΩ
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with the transformation Tt : Ω→ Ωt as in Chapter 3, its JacobeanDTt =

(
∂Tt,i
∂xj

)
i,j=1,2

and γ(t) = detDTt. Inserting into (4.1) gives

dJ(Ω;V ) =
d

dt
J(Ωt)

∣∣∣
t=0

=
d

dt

[∫
Ω

F
(
Tt(x), (y(Ωt) ◦ Tt) (x), DT−Tt (x)∇ (y(Ωt) ◦ Tt) (x)

)
γ(t)(x) dΩ

] ∣∣∣∣
t=0

.

Since the domain of integration is independent of t, the differential operator d
dt

and the

integral can be exchanged under the assumption that everything is smooth enough (for

details see [15]). Applying product rule and chain rule leads to

dJ(Ω;V ) =

∫
Ω

F
(
x, y(Ω)(x), p(Ω)(x)

) d

dt
γ(t)(x)

∣∣∣
t=0

dΩ

+

∫
Ω

[
DxF

(
x, y(Ω)(x), p(Ω)(x)

) d

dt
Tt(x)

∣∣∣
t=0

+DyF
(
x, y(Ω)(x), p(Ω)(x)

) d

dt

(
y(Ωt) ◦ Tt

)
(x)
∣∣∣
t=0

+DpF
(
x, y(Ω)(x), p(Ω)(x)

) d

dt

(
DT−Tt (x)∇(y(Ωt) ◦ Tt)(x)

)∣∣∣
t=0

]
γ(0)(x) dΩ

with the abbreviation p = ∇y. Next we need the following theorem:

Theorem 4.3.

(i) detDT0 = 1 (4.4)

(ii)
d

dt
DTt

∣∣∣
t=0

= DV (0) (4.5)

(iii)
d

dt
DT Tt

∣∣∣
t=0

= DV T (0) (4.6)

(iv)
d

dt
DT−1

t

∣∣∣
t=0

= −DV (0) (4.7)

(v)
d

dt
DT−Tt

∣∣∣
t=0

= −DV T (0) (4.8)

(vi)
d

dt

(
detDTt

)∣∣∣
t=0

= div V (0) (4.9)

(vii)
d

dt

(
‖DT−Tt n‖l2

)∣∣∣
t=0

= −DV (0)n · n (4.10)

where ‖.‖l2 is the Euclidean norm.
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Proof. (i) T0 = id ⇒ DT0 = I ⇒ detDT0 = 1

(ii) Exchanging the derivatives with respect to x and t (under the assumption that the

transformation is smooth enough) and using (3.1) yields

d

dt
DTt

∣∣∣
t=0

= D
( d
dt
Tt

∣∣∣
t=0

)
= DV (0).

(iii) analogous to ii)

(iv) Product rule and ii) lead to

d

dt

(
DT−1

t DTt

)∣∣∣
t=0

=
d

dt
I
∣∣∣
t=0

⇔ d

dt
DT−1

t

∣∣∣
t=0

DT0︸︷︷︸
=I

+DT−1
0︸ ︷︷ ︸

=I

d

dt
DTt

∣∣∣
t=0

= 0

⇔ d

dt
DT−1

t

∣∣∣
t=0

= −DV (0).

(v) analogous to iv)

(vi) The first step of the proof requires Jacobi’s formula for the derivative of a deter-

minant:
d

dt

(
detDTt

)∣∣∣
t=0

= tr
[
adj(DT0︸︷︷︸

=I

)
d

dt
DTt

∣∣∣
t=0

]
where tr(A) denotes the trace and adj(A) refers to the adjugate of a matrix A.

Because of adj(I) = I and ii) we have

d

dt

(
detDTt

)∣∣∣
t=0

= trDV (0)

= div V (0).

(vii) With

g(t) := DT−Tt n

we get

d

dt
‖g(t)‖l2

∣∣∣
t=0

=
d

dt

(∑
i

gi(t)
2
) 1

2
∣∣∣
t=0

=
1

‖g(0)‖l2
(
g(0)T

d

dt
g(t)

∣∣∣
t=0

)
.
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Using g(0) = n it follows ‖g(0)‖l2 = 1 and

d

dt
g(t)

∣∣∣
t=0

=
d

dt

(
DT−Tt

)∣∣∣
t=0
n

(v)
= −DV T (0)n,

and, therefore,

d

dt

(
‖DT−Tt n‖l2

)∣∣∣
t=0

= −nTDV T (0)n

= −DV (0)n · n.

Furthermore, we introduce the material derivative of y as defined in [1] on page 56:

Definition 4.4 (material derivative).

ẏ(Ω;V ) =
d

dt

[
y(Ωt) ◦ Tt

]∣∣∣
t=0

(4.11)

The material derivative “characterizes the behavior of y at x ∈ Ω in the velocity

direction V ”. (Haslinger/Mäkingen 2003: 111)

Therefore we get, combined with the initial value problem (3.1) and theorem 4.3,

dJ(Ω;V ) =

∫
Ω

F
(
x, y(Ω)(x), p(Ω)(x)

)
div V (0)(x) dΩ

+

∫
Ω

DxF
(
x, y(Ω)(x), p(Ω)(x)

)
V (0)(x) dΩ

+

∫
Ω

DyF
(
x, y(Ω)(x), p(Ω)(x)

)
ẏ(Ω;V )(x) dΩ

+

∫
Ω

DpF
(
x, y(Ω)(x), p(Ω)(x)

) ( ˙(∇y)(Ω;V )(x)−DV T (0)(x)∇y(Ω)(x)
)
dΩ.

From now on we shortly write V for V (0)(x) in this chapter. Assuming that everything

is smooth enough, the derivatives with respect to x and t in the material derivative of

∇y can be exchanged, i.e. ˙(∇y) = ∇ẏ. Next we define the so-called shape derivative

of y in the direction of V by means of the material derivative:
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Definition 4.5 (shape derivative).

y′(Ω;V ) = ẏ(Ω;V )− V · ∇y(Ω) (4.12)

Further details concerning the relation between material derivative and shape derivative

can be found in [6] on page 111-112. Then we have

∇ẏ(Ω;V ) = ∇
(
y′(Ω;V ) + V · ∇y(Ω)

)
= ∇y′(Ω;V ) +DV T∇y(Ω) + (V · ∇)∇y(Ω).

Replacing the material derivatives of y by shape derivatives gives

dJ(Ω;V ) =

∫
Ω

F
(
x, y(Ω)(x), p(Ω)(x)

)
div V dΩ

+

∫
Ω

DxF
(
x, y(Ω)(x), p(Ω)(x)

)
V dΩ

+

∫
Ω

DyF
(
x, y(Ω)(x), p(Ω)(x)

) (
y′(Ω;V )(x) + (V · ∇)y(Ω)(x)

)
dΩ

+

∫
Ω

DpF
(
x, y(Ω)(x), p(Ω)(x)

) (∇y′(Ω;V )(x) + (V · ∇)∇y(Ω)(x)
)
dΩ.

Using the product rule for divergence and applying chain rule we can show the following

identity:

div
[
F
(
x, y(x), p(x)

)
V (x)

]
= F

(
x, y(x), p(x)

)
div V (x) +∇

[
F
(
x, y(x), p(x)

)] · V (x)

= F
(
x, y(x), p(x)

)
div V (x) +DxF

(
x, y(x), p(x)

)
V (x)

+DyF
(
x, y(x), p(x)

)
Dxy(x)V (x) +DpF

(
x, y(x), p(x)

)
Dxp(x)V (x)

= F
(
x, y(x), p(x)

)
div V (x) +DxF

(
x, y(x), p(x)

)
V (x)

+DyF
(
x, y(x), p(x)

)(
V (x) · ∇)y(x) +DpF

(
x, y(x), p(x)

)(
V (x) · ∇)p(x)
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which leads to

dJ(Ω;V ) =

∫
Ω

DyF
(
x, y(Ω)(x), p(Ω)(x)

)
y′(Ω;V )(x) dΩ

+

∫
Ω

DpF
(
x, y(Ω)(x), p(Ω)(x)

)∇y′(Ω;V )(x) dΩ

+

∫
Ω

div
[
F
(
x, y(Ω)(x), p(Ω)(x)

)
V
]
dΩ

or, by using Gauss’ theorem,

dJ(Ω;V ) =

∫
Ω

DyF
(
x, y(Ω)(x), p(Ω)(x)

)
y′(Ω;V )(x) dΩ

+

∫
Ω

DpF
(
x, y(Ω)(x), p(Ω)(x)

)∇y′(Ω;V )(x) dΩ

+

∫
Γ

F
(
x, y(Ω)(x), p(Ω)(x)

)
V · n dΓ.

(4.13)

4.2 Boundary Integrals

4.2.1 Tangential Operators and Formulas

A formal definition of the tangential gradient and tangential divergence can be found

in [13], page 13. In our case it is sufficient to introduce the operators on the boundary

Γ of Ω by their relation to the corresponding operators in Ω:

Definition 4.6 (Tangential gradient, tangential divergence). Let Γ be the smooth

boundary of a domain Ω ⊂ Rm and let the scalar h and the vector V be functions

defined on Γ. For given arbitrary extensions h̃ of h and Ṽ of V in a neighborhood of

Γ, the tangential gradient of h is given by

∇Γh = ∇h̃− ∂h̃

∂n
n, (4.14)
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the tangential divergence of V is defined by

divΓ V = div Ṽ −DṼ n · n, (4.15)

where n denotes the surface normal.

The tangential gradient and tangential divergence are independent of the choice of the

extensions.

Lemma 4.7. Tangential gradient and tangential divergence satisfy the counterpart of

the product rule for the ordinary divergence:

divΓ(hV ) = ∇Γh · V + h divΓ V. (4.16)

Proof. Using the definition of the tangential divergence (4.15) and the common product

rule for differentiation yields

divΓ(hV ) = div(h̃Ṽ )−D(h̃Ṽ )n · n
= h̃ div Ṽ +∇h̃ · Ṽ −

[
h̃DṼ + Ṽ Dh̃

]
n · n

= h̃
[
div Ṽ −DṼ n · n

]
+

[
∇h̃− ∂h̃

∂n
n

]
· Ṽ .

Inserting (4.14) and (4.15) proves the lemma.

To perform integration by parts on surfaces, we need the following identity:

Theorem 4.8 (Tangential Stokes Formula). For a differentiable vector valued function

w we have ∫
Γ

divΓw dΓ =

∫
Γ

H w · n dΓ (4.17)

with H = divΓ n, the mean curvature of Γ.
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4.2.2 Differentiation Formula

Now, a differentiation formula for general boundary integrals, where the integrand

F depends on x ∈ R2, a function y of the domain Ω enclosed by that boundary,

i.e. Γ = ∂Ω, and the gradient of y, is provided. We consider

J(Γ) =

∫
Γ

F
(
x, y(Ω)(x),∇y(Ω)(x)

)
dΓ (4.18)

and the corresponding functional

J(Γt) =

∫
Γt

F
(
x, y(Ωt)(x),∇y(Ωt)(x)

)
dΓt (4.19)

on the boundary of the transformed domain Ωt.

After using substitution rule for boundary integrals and applying chain rule to the third

argument of F (similarly to section 4.1), we have

J(Γt) =

∫
Γ

F
(
Tt(x), (y(Ωt) ◦ Tt)(x), DT−Tt (x)∇(y(Ωt) ◦ Tt)(x)

)
ω(t)(x) dΓ (4.20)

with

ω(t) = detDTt ‖DT−Tt n‖l2 = γ(t)‖DT−Tt n‖l2 . (4.21)

From theorem 4.3 directly follows that ω(0) = 1 and

d

dt
ω(t)|t=0 = div V (0)−DV (0)n · n = divΓ V (0).

Then, certain smoothness assumptions (for details see [15]) and product rule lead to

the following expression for the Eulerian derivative (4.1) of J :
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dJ(Γ;V ) =
d

dt
J(Γt)

∣∣∣
t=0

=

∫
Γ

d

dt

[
F
(
Tt(x), (y(Ωt) ◦ Tt)(x), DT−Tt (x)∇(y(Ωt) ◦ Tt)(x)

)
ω(t)(x)

] ∣∣∣
t=0

dΓ

=

∫
Γ

F
(
x, y(Ω)(x),∇y(Ω)(x)

) d
dt
ω(t)(x)

∣∣∣
t=0

dΓ

+

∫
Γ

d

dt
F
(
Tt(x), (y(Ωt) ◦ Tt)(x), DT−Tt (x)∇(y(Ωt) ◦ Tt)(x)

)∣∣∣
t=0

ω(0)(x) dΓ

=

∫
Γ

F
(
x, y(Ω)(x),∇y(Ω)(x)

)
divΓ V dΓ

+

∫
Γ

d

dt
F
(
Tt(x), (y(Ωt) ◦ Tt)(x), DT−Tt (x)∇(y(Ωt) ◦ Tt)(x)

)∣∣∣
t=0

dΓ.

Following the exact same steps as in section 4.1 (chain rule, product rule, theorem 4.3,

inserting material derivatives) yields

dJ(Γ;V ) =

∫
Γ

F
(
x, y(Ω)(x), p(Ω)(x)

)
divΓ V dΓ

+

∫
Γ

DxF
(
x, y(Ω)(x), p(Ω)(x)

)
V dΓ

+

∫
Γ

DyF
(
x, y(Ω)(x), p(Ω)(x)

)
ẏ(Ω;V )(x) dΓ

+

∫
Γ

DpF
(
x, y(Ω)(x), p(Ω)(x)

) (∇ẏ(Ω;V )(x)−DV T∇y(Ω)(x)
)
dΓ

with p = ∇y. For the shape derivative, given by (4.12), we obtain

dJ(Γ;V ) =

∫
Γ

F
(
x, y(Ω)(x), p(Ω)(x)

)
divΓ V dΓ

+

∫
Γ

∇F(x, y(Ω)(x), p(Ω)(x)
) · V dΓ

+

∫
Γ

DyF
(
x, y(Ω)(x), p(Ω)(x)

) (
y′(Ω;V )(x) + (V · ∇)y(Ω)(x)

)
dΓ

+

∫
Γ

DpF
(
x, y(Ω)(x), p(Ω)(x)

) (∇y′(Ω;V )(x) + (V · ∇)∇y(Ω)(x)
)
dΓ

where we used that DxF V equals ∇F · V .
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Now we use relation (4.14) to replace all gradients by tangential gradients:

dJ(Γ;V ) =

∫
Γ

F
(
x, y(Ω)(x), p(Ω)(x)

)
divΓ V dΓ

+

∫
Γ

∇ΓF
(
x, y(Ω)(x), p(Ω)(x)

) · V +
∂F

∂n

(
x, y(Ω)(x), p(Ω)(x)

)
n · V dΓ

+

∫
Γ

DyF
(
x, y(Ω)(x), p(Ω)(x)

) (
y′(Ω;V )(x) + V · ∂y

∂n
(Ω)(x) n

)
dΓ

+

∫
Γ

DyF
(
x, y(Ω)(x), p(Ω)(x)

)
V · ∇Γy(Ω)(x) dΓ

+

∫
Γ

DpF
(
x, y(Ω)(x), p(Ω)(x)

) (∇y′(Ω;V )(x) +
∂

∂n

(∇y(Ω)(x)
)
nT V

)
dΓ

+

∫
Γ

DpF
(
x, y(Ω)(x), p(Ω)(x)

) ∇Γ

(∇y(Ω)(x)
)
V dΓ.

Since

divΓ

[
F
(
x, y(x), p(x)

)
V (x)

]
= F

(
x, y(x), p(x)

)
divΓ V (x) +∇Γ

[
F
(
x, y(x), p(x)

)] · V (x)

= F
(
x, y(x), p(x)

)
divΓ V (x) +∇ΓF

(
x, y(x), p(x)

) · V (x)

+DyF
(
x, y(x), p(x)

)∇Γy(x) · V (x) +DpF
(
x, y(x), p(x)

)∇Γp(x)V (x)

the Eulerian derivative equals (with
∂F

∂n
= ∇F · n)

dJ(Γ;V ) =

∫
Γ

∇F(x, y(Ω)(x), p(Ω)(x)
) · n V · n dΓ

+

∫
Γ

DyF
(
x, y(Ω)(x), p(Ω)(x)

) (
y′(Ω;V )(x) +

∂y

∂n
(Ω)(x) V · n

)
dΓ

+

∫
Γ

DpF
(
x, y(Ω)(x), p(Ω)(x)

) (∇y′(Ω;V )(x) +
∂

∂n

(∇y(Ω)(x)
)
V · n

)
dΓ

+

∫
Γ

divΓ

[
F
(
x, y(Ω)(x), p(Ω)(x)

)
V
]
dΓ

which is, by theorem 4.8, the same as
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dJ(Γ;V ) =

∫
Γ

∇F(x, y(Ω)(x), p(Ω)(x)
) · n V · n dΓ

+

∫
Γ

DyF
(
x, y(Ω)(x), p(Ω)(x)

) (
y′(Ω;V )(x) +

∂y

∂n
(Ω)(x) V · n

)
dΓ

+

∫
Γ

DpF
(
x, y(Ω)(x), p(Ω)(x)

) (∇y′(Ω;V )(x) +
∂

∂n

(∇y(Ω)(x)
)
V · n

)
dΓ

+

∫
Γ

HF
(
x, y(Ω)(x), p(Ω)(x)

)
V · n dΓ.

(4.22)

with

H = divΓ n.



Chapter 5

The Main Problem

This chapter deals with the main problem of the thesis. The knowledge gained in the

previous chapters is applied to the optimization problem (2.1) given by the ACCM.

The first section introduces the cost functional J and derives a mathematical expression

for the function to be minimized. The differentiation formula of subsection 4.2.2 yields

the shape gradient of the cost functional.

In section 5.2, the formula for domain integrals and the geometric information worked

out in chapter 3 lead to a variational problem for the shape derivative u′.

5.1 The Cost Functional and its Gradient

5.1.1 Specification of the functional

The cost functional originally stated by the ACCM expresses the power of the electric

machine in relation to copper losses due to coil resistances, i.e.

J =
3I2R

2ωT
(5.1)

with

I electric current

R resistance of coils

ω rotational frequency of rotor (const.)

T torque.

41
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In this chapter, T stands for torque and is not to be mistaken for the transformation

Tt of chapter 3. Note that T refers to the torque computed at a fixed rotor position

and not to the average over the torque at different rotor angles.

The main difficulties in (5.1) are associated with the torque since T depends on the

geometry of the motor as well as on the state variable u, which again is a function

of the domain Ω. The resistance R only has Ω as argument, whereas the remaining

variables in (5.1) are constant with respect to both the motor geometry and u. In our

model problem we concentrate on T and assume that R is a constant, leading to the

following reduced cost functional:

J =
1

T
(5.2)

which still demonstrates the principle idea. This simplified functional describes the

power output of the engine ignoring the influence of the occuring copper losses.

5.1.2 Formulation of the cost functional

The torque is given by
~T = ~r × ~F (5.3)

with the force ~F and the lever arm vector ~r.

To describe the force affecting a body in a magnetic field and thus the resulting torque,

we introduce the Maxwell stress tensor as defined in [11], page 14:

~~σ = µ

H
2
1 − 1

2
H2 H1H2 H1H3

H2H1 H2
2 − 1

2
H2 H2H3

H3H1 H3H2 H2
3 − 1

2
H2

 (5.4)

with the magnetic field strength H, its magnitude H and the magnetic permeability

µ. Using (5.4) and Gauss Theorem, the force acting on a body B writes as

~F =

∫
B

div ~~σ d~x

=

∫
∂B

~~σ · n ds, (5.5)
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where n denotes the unit outer normal on the surface of B. Hence, the magnetic field

at the surface of B yields the force acting on the body.

In the given problem, we are interested in the effect of the force acting on the rotor.

Therefore, we consider the intersection of B in the x1x2-plane, which describes a circular

disk with the center positioned in the origin. Its boundary is denoted by Γ0. For

numerical reasons, the integration curve in (5.5) is extended from the rotor boundary

Γ0 to a circle defining the outer boundary of the air gap, which can be done without

any problems. In the following, Γ0 denotes the extended integration curve.

Since the x3-axis describes the rotation axis, the torque vector ~T points in the direction

of the x3-axis and the magnitude equals the third component T3. From now on, T3 is

referred to as torque and shortly denoted by T .

From (5.3), (5.5), the definition of the symmetric stress tensor (5.4), the constitutive

law (2.6), the relation (2.18) and n = 1√
x2
1+x2

2

(
x1

x2

)
we obtain the following expression

for the torque:

T =
1

µ0

∫
Γ0

1√
x2

1 + x2
2

[((
∂u

∂x1

)2

−
(
∂u

∂x2

)2)
x1x2 − ∂u

∂x1

∂u

∂x2

(
x2

1 − x2
2

)]
dΓ0

=
1

µ0

∫
Γ0

∇u(Ω)(x)TQ(x)∇u(Ω)(x) dΓ0 (5.6)

with the symmetric matrix

Q(x) =
1√

x2
1 + x2

2

(
x1x2

x2
2−x2

1

2
x2
2−x2

1

2
−x1x2

)
, (5.7)

the curve Γ0 describing the outer boundary of the air gap and the domain Ω denoting

the motor.

Inserting T into (5.2) yields the final expression of the cost functional J .

5.1.3 Computation of the gradient

This subsection deals with the differentiation of the cost functional (5.2) with T given

in (5.6) with respect to the geometry of the motor. Obviously, the computation of

dT (Γ0;V ) is sufficient to determine the shape gradient of J , by quotient rule.
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Because T represents a functional consisting of a boundary integral, the type of

formulas derived in section 4.2 are applicable.

Remark 5.1. So far, we have discussed Eulerian derivatives of functionals J , denoted

by dJ(Ω;V ) (or dJ(Γ;V )). This quantity describes the derivative of J at the move-

ment of Ω (or Γ) in direction of the velocity field V , which evolves from variation of one

design parameter t. Hence, dJ is the partial derivative of J with respect to a certain

design parameter.

The shape gradient of the cost functional defines a vector collecting the Eulerian deriva-

tives for each considered design parameter. It will be denominated by DJ throughout

the thesis.

Let F be the integrand of T , i.e.

F (x, u, p) = pTQ(x)p.

Then, for the torque we obtain

T (Γ0) =
1

µ0

∫
Γ0

F (x, u(Ω)(x),∇u(Ω)(x)) dΓ0. (5.8)

Applying the differentiation formula (4.22) from subsection 4.2.2 yields

dT (Γ0;V ) =
1

µ0

[ ∫
Γ0

∇F(x, u(Ω)(x),∇u(Ω)(x)
) · n vn dΓ0

+

∫
Γ0

DuF
(
x, u(Ω)(x),∇u(Ω)(x)

) (
u′(Ω;V )(x) +

∂u

∂n
(Ω)(x) vn

)
dΓ0

+

∫
Γ0

DpF
(
x, u(Ω)(x),∇u(Ω)(x)

) (∇u′(Ω;V )(x) +
∂

∂n

(∇u(Ω)(x)
)
vn

)
dΓ0

+

∫
Γ0

HF
(
x, u(Ω)(x),∇u(Ω)(x)

)
vn dΓ0

]
with H denoting the mean curvature of Γ0 and vn = V · n referring to the normal

component of the velocity V discussed in chapter 3.

Since we determine the optimal shape of the cogs whereas all other parts of the motor

remain unchanged, the integration curve Γ0 is constant with respect to t. Hence vn,
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describing the velocity of particles on Γ0 in normal direction due to variation of design

parameters, equals zero.

With DuF = 0 and DpF = 2Qp, we can finally state the derivative of T with respect

to the geometry:

dT (Γ0;V ) =
2

µ0

∫
Γ0

Q(x)∇u(Ω)(x) · ∇u′(Ω;V )(x) dΓ0. (5.9)

5.2 Differentiation of the Variational Problem

Equation (5.9) points out the dependence of the gradient of the cost functional on the

state variable u and its shape derivative u′. As mentioned earlier, u(Ω) is given as the

solution of the boundary value problem (2.28), whereas u′(Ω;V ) solves the variational

problem obtained by differentiating the existing one. In this section we compute the

derivatives of both sides of (2.28) using the technique explained in the previous chapter.

First, we concentrate on the case of only one material, i.e. one domain Ω with boundary

Γ = ∂Ω.

We start considering the corresponding variational problem on the transformed domain

Ωt = Tt(Ω) with solution ut = u(Ωt):

at(ut, vt) = 〈ft, vt〉 ∀vt = v(Ωt) ∈ V (Ωt) = {v ◦ T−1
t : v ∈ V (Ω) = H1

0 (Ω)} (5.10)

with

at(ut, vt) =

∫
Ωt

q(∇u(Ωt))(x) · ∇v(Ωt)(x) dΩt and (5.11)

〈ft, vt〉 =

∫
Ωt

(
J3(Ωt)(x)v(Ωt)(x) +M⊥(Ωt)(x) · ∇v(Ωt)(x)

)
dΩt. (5.12)

Below we concentrate on the differentiation of the left-hand side a(u, v). For the sake

of clarity we quit writing the dependence of all quantities on x. We define

F (x, y, p) = q(p1) · p2. (5.13)
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Then, the left-hand sides of (2.28) and the transformed problem (5.10) have the fol-

lowing form:

a(u, v) =

∫
Ω

F (x, y(Ω), p(Ω)) dΩ (5.14)

at(ut, vt) =

∫
Ωt

F (x, y(Ωt), p(Ωt)) dΩt (5.15)

with

y =

[
u

v

]
and p =

[
∇u
∇v

]
. (5.16)

Applying (4.13), the differentiation formula for functionals consisting of domain inte-

grals, gives

da(u, v) =

∫
Ω

(
Dy1F (x, y(Ω), p(Ω)) u′(Ω;V ) +Dy2F (x, y(Ω), p(Ω)) v′(Ω;V )

)
dΩ

+

∫
Ω

(
Dp1F (x, y(Ω), p(Ω)) ∇u′(Ω;V ) +Dp2F (x, y(Ω), p(Ω)) ∇v′(Ω;V )

)
dΩ

+

∫
Γ

F (x, y(Ω), p(Ω)) vn dΓ.

Because of vt = v ◦ T−1
t , it directly follows from the definition of material derivatives,

definition 4.4, that

v̇(Ω;V ) = 0

which leads, with relation (4.12) between shape and material derivatives, to

v′(Ω;V ) = −V · ∇v(Ω). (5.17)
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Then, inserting Dy1F = Dy2F = 0, Dp1F = Dq(p1)p2 and Dp2F = q(p2) and applying

integration by parts yields

da(u, v) =

∫
Ω

(
Dq(∇u(Ω))∇u′(Ω;V ) · ∇v(Ω) + q(∇u(Ω)) · ∇v′(Ω;V )

)
dΩ

+

∫
Γ

q(∇u(Ω)) · ∇v(Ω) vn dΓ

=

∫
Ω

(
Dq(∇u(Ω))∇u′(Ω;V ) · ∇v(Ω)− q(∇u(Ω)) · ∇ (V · ∇v(Ω))

)
dΩ

+

∫
Γ

q(∇u(Ω)) · ∇v(Ω) vn dΓ

=

∫
Ω

(
Dq(∇u(Ω))∇u′(Ω;V ) · ∇v(Ω) + div q(∇u(Ω))V · ∇v(Ω)

)
dΩ

+

∫
Γ

(
q(∇u(Ω)) · ∇v(Ω) vn − V · ∇v(Ω) q(∇u(Ω)) · n

)
dΓ

with

Dq(p) =

ν(|p|) I +ν′(|p|)
|p| pp

T , if p 6= 0

ν(|p|) I, if p = 0
(5.18)

and the identity matrix I.

Next, we pay attention to the right-hand side of the variational problem (2.28) and

define

F (x, y, p) = y1y2 + y3 · p2. (5.19)

Using

Dy1F = y2 Dy2F = y1 Dy3F = pT2

Dp1F = 0 Dp2F = yT3 Dp3F = 0

with

y =

 J3

v

M⊥

 , p =

 ∇J3

∇v
∇M⊥

 (5.20)
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and applying the same steps as before yields

d〈f, v〉 =

∫
Ω

(
J ′3(Ω;V )v(Ω) + J3(Ω)v′(Ω;V ) +M ′

⊥(Ω;V ) · ∇v(Ω)
)
dΩ

+

∫
Ω

M⊥(Ω) · ∇v′(Ω;V ) dΩ +

∫
Γ

(
J3(Ω)v(Ω) +M⊥(Ω) · ∇v(Ω)

)
vn dΓ

=

∫
Ω

(
J ′3(Ω;V )v(Ω)− J3(Ω)V · ∇v(Ω) +M ′

⊥(Ω;V ) · ∇v(Ω)
)
dΩ

−
∫

Ω

M⊥(Ω) · ∇ (V · ∇v(Ω)) dΩ +

∫
Γ

(
J3(Ω)v(Ω) +M⊥(Ω) · ∇v(Ω)

)
vn dΓ

=

∫
Ω

(
J ′3(Ω;V )v(Ω)− J3(Ω)V · ∇v(Ω) +M ′

⊥(Ω;V ) · ∇v(Ω)
)
dΩ

+

∫
Ω

divM⊥(Ω)V · ∇v(Ω) dΩ−
∫

Γ

V · ∇v(Ω) M⊥(Ω) · n dΓ

+

∫
Γ

(
J3(Ω)v(Ω) +M⊥(Ω) · ∇v(Ω)

)
vn dΓ.

Putting both sides together and taking the classical formulation of the boundary value

problem for u:

− div q(∇u(Ω)) = J3(Ω)− divM⊥(Ω) in Ω

into account gives the following expression:∫
Ω

(
Dq(∇u(Ω))∇u′(Ω;V ) · ∇v(Ω)

)
dΩ =

∫
Ω

(
J ′3(Ω;V )v(Ω) +M ′

⊥(Ω;V ) · ∇v(Ω)
)
dΩ

+

∫
Γ

J3(Ω)v(Ω) vn dΓ +

∫
Γ

(
M⊥(Ω)− q(∇u(Ω))

)
· ∇v(Ω) vn dΓ

+

∫
Γ

(
q(∇u(Ω))−M⊥(Ω)

)
· n V · ∇v(Ω) dΓ.

(5.21)

The integrals over Γ in (5.21) vanish because of vn = 0 and the following identities

obtained by (4.14), theorem 4.8 and considering boundary condition (2.26):∫
Γ

(
q(∇u(Ω))−M⊥(Ω)

)
· n V · ∇v(Ω) dΓ

=

∫
Γ

(
q(∇u(Ω))−M⊥(Ω)

)
· n V ·

(
∇Γv(Ω) + n

∂v

∂n
(Ω)
)
dΓ

= −
∫

Γ

divΓ

(
[q(∇u(Ω))−M⊥(Ω)] · n V

)
v(Ω) dΓ +

∫
Γ

Hv(Ω)V · n dΓ

= 0.
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Thus, for the case of one domain Ω and Dirichlet boundary conditions we get the

following boundary value problem for the shape derivative u′:∫
Ω

(
Dq(∇u(Ω))∇u′(Ω;V ) · ∇v(Ω)

)
dΩ =

∫
Ω

(
J ′3(Ω;V )v(Ω) +M ′

⊥(Ω;V ) · ∇v(Ω)
)
dΩ

with Dq defined in (5.18). From now on, we neglect the dependency of the quantities

on Ω and V .

In the following, let Ω be a domain that consists of several subdomains Ω(i) with

boundaries ∂Ω(i), as defined in section 2.4. Then, (5.21) writes as

∑
i

∫
Ω(i)

(
Dqi(∇ui)∇u′i · ∇v

)
dx =

∑
i

∫
Ω(i)

(
J

(i)
3
′v +M

(i)
⊥
′ · ∇v

)
dx

+
∑
i

∫
∂Ω(i)

J
(i)
3 v v(i)

n ds+
∑
i

∫
∂Ω(i)

(
M

(i)
⊥ − qi(∇ui)

)
· ∇v v(i)

n ds

+
∑
i

∫
∂Ω(i)

(
qi(∇ui)−M (i)

⊥

)
· n(i) V · ∇v ds

with v
(i)
n = V ·n(i), where n(i) denotes the unit outer normal to Ω(i) and with ui and J

(i)
3

denoting the restrictions of u and J3 to Ω(i). By use of the jump notation introduced

on page 12, we obtain

∑
i

∫
Ω(i)

(
Dqi(∇ui)∇u′i · ∇v

)
dx =

∑
i

∫
Ω(i)

(
J

(i)
3
′v +M

(i)
⊥
′ · ∇v

)
dx

+
∑

i,j
i<j

∫
Γ(i,j)

[
J3v vn

]
ds+

∑
i,j
i<j

∫
Γ(i,j)

[(
M⊥ − q(∇u)

)
vn

]
· ∇v ds

+
∑

i,j
i<j

∫
Γ(i,j)

[(
q(∇u)−M⊥

)
· n
]
V · ∇v ds.

(5.22)

Note that all integrals over the outer boundary Γ vanish analogously to the case of one

domain Ω. From the interface condition (2.25) we immediately get:∫
Γ(i,j)

[(
q(∇u)−M⊥

)
· n
]
V · ∇v ds = 0
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for all interfaces Γ(i,j).

Moreover, the current density J3 is a constant in each subdomain of the given motor

and hence ∇J3 = 0. For the material derivative (4.11) we get

J̇3(Ω;V ) = lim
t↓0

1

t

(
J3(Ωt) ◦ Tt − J3(Ω)

)
= lim

t↓0

1

t

(
J3 − J3

)
= 0 in Ω

which implies

J ′3(Ω;V ) = 0 in Ω.

The permanent magnetization M⊥ occurs only in the rotor. When considering geomet-

rical changes regarding the shape of the cogs which does not affect the design of the

rotor, the derivative of M⊥ with respect to the geometry, M ′
⊥, equals zero everywhere

in Ω.

With these simplifications, (5.22) can be reduced to

∑
i

∫
Ω(i)

(
Dqi(∇ui)∇u′i · ∇v

)
dx =

∑
i,j
i<j

∫
Γ(i,j)

[
J3v vn

]
ds+

∑
i,j
i<j

∫
Γ(i,j)

[(
M⊥ − q(∇u)

)
vn

]
· ∇v ds. (5.23)

Observe that, contrary to the original problem for u, the derived boundary value prob-

lem for u′ is linear.

Actually we could stop at this point and use the above formulation of the variational

problem for u′ for a finite element discretization. However, the functional expressing

the right-hand side of (5.23) is not well-defined in H1(Ω) because of the occurence of

q(∇u) ·∇v on the interfaces. Hence, the existence of a unique solution cannot be guar-

anteed by the Lax-Milgram Theorem and furthermore, Cea’s Theorem is not applicable

for estimating the discretization error. If we still discretize equation (5.23) and then

compute a solution, we obtain wrong approximate values for the shape derivative u′,

as we will see for a simple test example in section 6.1.
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In the following we will show that in our model problem, the term that causes the

numerical problems: ∫
Γ(i,j)

(
M

(i)
⊥ − qi(∇ui)

)
· ∇v v(i)

n ds (5.24)

can be eliminated, but therefore we have to go back to (5.22) and consider the term∫
Γ(i,j)

([
Φ(∇u) · n

]
V · ∇v −

[
Φ(∇u) vn

]
· ∇v

)
ds (5.25)

with

Φ(∇u) = q(∇u)−M⊥.

The inner product of ∇v and a vector whose normal component vanishes is equal to

the scalar product of the tangential gradient ∇Γv and this vector, i.e. z ·∇v= z ·∇Γv,

if z ·n=0. By rewriting (5.25) as∫
Γ(i,j)

([
Φ(∇u) · n

]
V −

[
vn Φ(∇u)

])
· ∇v ds,

it is easy to see that the first term of the inner product has no normal component

leading to ∫
Γ(i,j)

([
Φ(∇u) · n

]
V −

[
vn Φ(∇u)

])
· ∇Γv ds,

which, by interface condition and (2.25) and the same argument as before, can be

further transformed to

−
∫

Γ(i,j)

[
vn Φ(∇u)

]
· ∇Γv ds

= −
∫

Γ(i,j)

[
vn

(
ν(|∇u|)∇u−M⊥

)]
· ∇Γv ds

= −
∫

Γ(i,j)

[
vn

(
ν(|∇u|)∇Γu−M⊥

)]
· ∇Γv ds. (5.26)

Contrary to ∇u and ∇v on Γ(i,j) in (5.23), the tangential gradients of u and v are well-

defined in H1(Ω). In our model problem we only consider linear materials, i.e. piecewise

constant ν, and assume that ν and M⊥ do not have a jump at the interfaces that are

moved to find the optimal geometry of the motor. Then, the jump term in (5.26) equals
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zero.

Note that on fixed interfaces (5.26) and also the troublesome term (5.24) vanish im-

mediately because of vn = 0, which leads to the final boundary value problem for the

shape derivative u′:

∑
i

∫
Ω(i)

(
Dqi(∇ui)∇u′i · ∇v

)
dx =

∑
i,j
i<j

∫
Γ(i,j)

[
J3v vn

]
ds. (5.27)

Now we have everything needed to solve the given optimization problem:

A mathematical expression of the cost functional J characterizing the torque of an

electric machine was derived in section 5.1. The state variable u appearing in that

functional is given as the solution of the boundary value problem (2.28) derived in

chapter 2.

The shape gradient of the cost functional was computed in subsection 5.1.3. Moreover

the shape derivative u′, occuring in dJ besides u, is available by solving the linear

variational problem derived above.

The quantity vn denotes the normal component of the Eulerian velocity. In chapter 3 we

computed for variation of each design parameter the corresponding vn. Thus, we have

five boundary value problems leading to five distinct shape derivatives u′. Inserting

each individual u′ into dJ represents the partial derivatives of J and therefore yields

the shape gradient DJ of the cost functional.



Chapter 6

Numerical Results

For all numerical computations in this chapter we use the simulation program ParNFB,

a parallel solver for nonlinear coupled FEM/BEM (boundary element method) systems,

developed by Dr. Clemens Pechstein at the Institute of Computational Mathematics

at JKU Linz.

The user identifies the design parameter to be considered and inputs its value. Then,

ParNFB generates for this geometry a finite element mesh of the motor and solves

both the nonlinear BVP for u and the linear problem for the shape derivative u′, i.e. it

computes the values of the two quantities in all mesh nodes.

Moreover, it returns the function values of the cost functional J and its Eulerian deriva-

tive dJ with respect to shape changes due to the chosen design parameter. Collecting

the simulations for all parameters yields the shape gradient DJ of the cost functional.

Since we consider in both the test and the original problem only one design parameter,

the program output for the derivative already equals the shape gradient.

6.1 Simplified Test Problem

Before we discuss the numerical results of the given problem, we introduce a simple test

problem with a known analytic solution. For this example, we will compute the exact

solution u, the shape derivative u′ and the exact values of a cost functional and its

shape gradient. Then we compare these calculations with the numerical computations

to verify the programming code.

53
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6.1.1 Problem Description

We consider a rotationally symmetric domain Ω consisting of two subdomains Ω(1) and

Ω(2) as visualized in figure 6.1. The material data is simplified in such a way that the

resulting problem is linear. The magnetic permeability µ is constantly set to 1 on the

whole domain and we neglect the permanent magnetization M⊥ in Ω(1). Moreover, the

current density J3 vanishes in Ω(1), whereas we define J3 = 1 in Ω(2), i.e. we specify a

jump of the current density on the interface Γ(1,2).

We treat geometric changes of Ω obtained by varying the radius R of the inner circle,

which means that Γ(1,2) expands or shrinks radially.

Figure 6.1: Domain for the test problem

6.1.2 Boundary value problem for u

Classical Formulation:

With the setting above we obtain from the classical formulation (2.23)-(2.26) the fol-

lowing boundary value problem for u: Find u : Ω̄ → R such that
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−∆u = k, k =

0, in Ω(1)

1, in Ω(2)
(6.1)

u1 = u2 on Γ(1,2) (6.2)[
∂u

∂n

]
= 0 on Γ(1,2) (6.3)

u = 0 on Γ (6.4)

which can be transformed into a BVP of a second order ordinary differential equation:

− ∂2u

∂r2
(r)− 1

r

∂u

∂r
(r) = k, k =

0, 0 ≤ r < R

1, R < r < 1
(6.5)

u1(R) = u2(R) (6.6)[
∂u

∂n
(R)

]
= 0 (6.7)

u(1) = 0 (6.8)

with r =
√
x2

1 + x2
2.

Exact solution ue:

The theory of ordinary differential equations (reduction to first order, separation of

variables to solve the homogeneous equation, deducing the inhomogeneous solution by

variation of the constant) and prescribing the given interface and boundary conditions

(6.6)-(6.8) yields the exact solution

ue(r) =

1
4
(1−R2) + R2

2
lnR, 0 ≤ r ≤ R

1
4
(1− r2) + R2

2
ln r, R < r < 1

(6.9)

Note that ue is constant in Ω(1).

In the following we apply the insights gained in the previous chapters to the simplified

problem. First we need the weak formulation of the boundary value problem for u

in order to apply the differentiation formula (4.13) for domain integrals to both sides

of the problem. Then we trace the differentiated weak problem back to its classical
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formulation. Solving the resulting ordinary differential equation yields the analytic

expression of the shape derivative u′.

Weak Formulation:

The variational formulation of (6.1)-(6.4) writes as: Find u ∈ V0 = H1
0 (Ω) such that

a(u, v) = 〈f, v〉 ∀v ∈ V0 (6.10)

with

a(u, v) =

∫
Ω

∇u · ∇v dx (6.11)

〈f, v〉 =

∫
Ω

kv dx (6.12)

with
∫

Ω
=
∫

Ω(1) +
∫

Ω(2) , where we already incorporated the interface and boundary

conditions (6.2) - (6.4).

6.1.3 Boundary value problem for the shape derivative

Shape differentiation:

In the following, the notation of one domain Ω is used. For the differentiation of the

left-hand side (6.11) with respect to the geometry, we define

F (x, y, p) = p1 · p2. (6.13)

With

Dy1F = Dy2F = 0 Dp1F = pT2 Dp2F = pT1

and

y =

[
u

v

]
and p =

[
∇u
∇v

]
(6.14)

formula (4.13) gives

da(u, v) =

∫
Ω

∇u′ · ∇v dx+

∫
Ω

∇u · ∇v′ dx+

∫
Γ

∇u · ∇v vn ds, (6.15)
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whereas the derivative of (6.12) has the form

d〈f, v〉 =

∫
Ω

kv′ dx+

∫
Γ

kv vn ds. (6.16)

Relation (4.12) with v̇ = 0, integration by parts in (6.15) and equation (6.1) lead to

the problem:∫
Ω

∇u′ · ∇v dx =

∫
Γ

[
kv vn

]
ds+

∫
Γ

[
∇u · nV · ∇v −∇u · ∇v vn

]
ds, (6.17)

which reduces to (see section 5.2)∫
Ω

∇u′ · ∇v dx =

∫
Γ

[
kv vn

]
ds (6.18)

with the jump notation introduced on page 12 and Γ denoting the interface between

the subdomains Ω(1) and Ω(2).

Classical Formulation:

By back-integration by parts we obtain the classical formulation:

−∆u′ = 0 in Ω (6.19)

u′1 = u′2 on Γ(1,2) (6.20)[
∂u′

∂n

]
= [k vn] on Γ(1,2) (6.21)

u′ = 0 on Γ (6.22)

which also writes as

− ∂2u′

∂r2
(r)− 1

r

∂u′

∂r
(r) = 0, r ∈ [0, 1) (6.23)

u′1(R) = u′2(R) (6.24)[
∂u′

∂n
(R)

]
= [k vn] (6.25)

u′(1) = 0 (6.26)

with r =
√
x2

1 + x2
2.
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This ordinary differential equation has a known exact solution which can be calculated

by hand. Before, we determine the normal component of the velocity vn.

Normal velocity component:

Figure 6.2: Transformation at variation of the radius R

Obviously, if the design parameter R is increased by t > 0, the inner circle Ω(1) grows

whereas the outer circle ring Ω(2) gets thinner in equal measure. The length of the

displacement of a particle at position x(0) on the initial interface Γ(1,2) to its new

position x(t) equals the increase of R, i.e. s = t. Therefore we have

x(t) = x(0) + t n

which yields V (0) = n and thus

vn = 1,

where n represents the unit outer normal of Ω(1).

Exact solution u′e:

The exact shape derivative can be expressed as
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u′e(r) =

R lnR, 0 ≤ r ≤ R

R ln r, R < r < 1
(6.27)

Note that the shape derivative u′e, obtained by applying the theory worked out before,

equals the derivative of ue with respect to R, which is reasonable since R identifies the

considered design parameter.

6.1.4 The cost functional and its gradient

In this example we do not consider (5.2) but the machine torque (5.6) as cost functional.

The exact functional and its derivative with respect to the geometry are given by the

exact gradients of u and u′, which are obtained from (6.9) and (6.27) by chain rule:

∇ue(r) =


∂ue
∂r

∂r

∂x1
∂ue
∂r

∂r

∂x2

 =

0, 0 ≤ r ≤ R(
−1

2
+ R2

2r2

)
(x1, x2)T , R < r < 1

∇u′e(r) =

0, 0 ≤ r ≤ R

R
r2

(x1, x2)T , R < r < 1.

Inserting into (5.6) yields the following expression for the exact torque:

Te =
1

µ0

∫
Γ0

∇ue(r)TQ(x)∇ue(r) ds

=
1

µ0

∫
Γ0

[
Q(x)

(
−1

2
+
R2

2r2

) (
x1

x2

)]
·
(
−1

2
+
R2

2r2

) (
x1

x2

)
ds

with x = (x1, x2) and Γ0 denoting the boundary of a circle with fixed radius R0 = R+δ,

δ ∈ R, enclosing Ω(1). However, with the symmetric matrix Q defined in (5.7), the

integrand vanishes which leads to

Te = DTe = 0.
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Although the numerical computations yield compatible values for T and DT very close

to zero, these results are not very significant and do not verify the program. To check

the computations anyway, we consider the slightly modified cost functional

T̃ =
1

µ0

∫
Γ0

∇uT I∇u ds

=
1

µ0

∫
Γ0

|∇u|2 ds, (6.28)

which is a functional of the same type as (5.6) (quadratic expression of ∇u). Then,

the gradient (5.9) of T changes to

DT̃ =
2

µ0

∫
Γ0

∇u · ∇u′ ds. (6.29)

For the exact functional and its gradient we obtain (w.l.o.g. we take µ0 = 1)

T̃e =

∫
Γ0

|∇ue(r)|2 ds

=

∫
Γ0

(
−1

2
+
R2

2r2

)2

(x2
1 + x2

2) ds

=

∫
Γ0

(
−r

2
+
R2

2r

)2

ds

= 2R0π

(
−R0

2
+

R2

2R0

)2

and

DT̃e = 2

∫
Γ0

∇ue(r) · ∇u′e(r) ds

= 2

∫
Γ0

R

r2

(
−1

2
+
R2

2r2

)
(x2

1 + x2
2) ds

=

∫
Γ0

(
−R +

R3

r2

)
ds

= 2R0π

(
−R +

R3

R2
0

)
.

Again, DT̃e equals the derivative of T̃e with respect to the design parameter R.
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6.1.5 Results

Finally, we compare the numerical computations of the state variable u, its shape

derivative u′, the (modified) cost functional T̃ defined in (6.28) and its shape gradient

DT̃ given by (6.29) with their analytic counterparts calculated above.

From now on, the reduced cost functional T̃ is referred to as cost functional and denoted

by T .

Figure 6.3 plots the absolute error between the exact solution ue, given by (6.9), and

the solution u of the variational problem (6.10) in Ω, for R = 0.2 and an integration

curve defining a circle with radius R0 = 0.3. The difference in Ω between the exact

shape derivative u′e and u′ obtained by solving (6.18) is visualized in figure 6.4.

Figure 6.3: Error in the state variable u

The absolute errors plotted in the two figures 6.3 and 6.4 are of order 10−6, where the

magnitude of both the state variable u and its shape derivative u′ is approximately

10−1, which proves that the computations of u and u′ are quite accurate.
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Figure 6.4: Error in the shape derivative u′

Figure 6.5: Error in the shape derivative u′ when the variational problem is not well-
defined in H1(Ω)
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Figure 6.5 shows that the error in the shape derivative is large (absolute error and u′ are

both of order 10−1) , when u′ is computed as the solution of the variational problem

∫
Ω

∇u′ · ∇v dx =

∫
Γ

[
kv vn

]
ds−

∫
Γ

[
∇u · ∇v vn

]
ds,

which is obtained by simplifying (6.17) as we at first simplified the variational problem

(5.22) in section 5.2. Analogously to (5.23) in section 5.2, the right-hand side of the

equation above is not well-defined in H1(Ω) and hence, the accuracy of the computed

shape derivative cannot be guaranteed. The underlying test example shows that this

actually leads to wrong results and points out the importance of the considerations on

page 51 to eliminate the troublesome term (5.24) in the variational problem for u′.

Figure 6.6 shows the exact cost functional Te in comparison with the program output

for T for different values of the design parameter R. The integration curve is constantly

chosen as circle of radius R0 = 0.4. The red line plots the behavior of the exact torque

Te, the blue dashed line refers to the computed cost functional T .

Figure 6.6: Comparison of computed and exact cost functional

Analogously, the difference between the analytic shape gradient DTe (red line) and

the computed one (blue dashed line) is visualized in figure 6.7, which also plots the

difference quotient of T by comparison (green dash-dotted line). The error between the
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exact and calculated values is very small which suggests the accuracy of the computer

program.

Figure 6.7: Comparison of computed and exact gradient of the cost functional

6.2 Original Problem

Now we concentrate on the original problem, where the curve defining the shape of

the cogs is moved as worked out in chapter 3. We restrict the numerical tests to

variation of one design parameter, the ratio ρ of the radii of the two tangent circles

identifying the cog curve. In other words, the position of the midpoints is constant but

the size of the circles changes. The geometric meaning of the resulting shape change

was discussed in subsection 3.3.1.

6.2.1 Problem Description

Figure 6.8 shows the division of the motor into several parts in the program of

Dr. Clemens Pechstein. It points out the cogs lying in the middle of their coil seg-

ments, plotted for the ratio ρ = 1. Although each subdomain is dyed in a different
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color, this does not mean that all subdomains are made of different materials. The

graphic rather illustrates the modelling for the simulation. For instance, the six parts

of the outermost circle ring all identify air surrounding the motor.

Figure 6.8: Motor subdomains for simulation

The following motor dimensions were chosen (constantly) for the computations:

- rotor radius: 0.012 m

- width of airgap: 0.001 m

- width of coils: 0.015 m

- width of iron ring: 0.007 m

- width of air: 0.02 m

Again, we assume linearity and further simplify the problem by setting µ = 1 every-

where and neglecting the permanent magnetization occuring in the rotor. The current

density J3 is piecewise constant and occurs only in the coil areas A, where the value of

J3 is derived from the given intensity of current I by

J3 =
I

A
.
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A is the complementary area to a cog in a coil segment, i.e. the white area in figure 3.4,

and is approximated by

A =
π

12

(
R2
out −R2

in

)
, (6.30)

where Rout and Rin denote the outer and inner radii of the circle ring containing the

cogs, respectively. Hence, the moving cog curve is the interface between two subdo-

mains of different current density. Figure 6.9 visualizes the current density in the motor

that is used for the computations.

Figure 6.9: Current density in the motor

Since coils of wire are wound around the cogs, the current flows in positive and negative

x3-direction. This leads to different signs of I on either side of a cog. In two neighboring

coil areas A among two cogs, the current flow always has the same direction. The

magnitude varies between 150 and 300 ampere.
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Like in the test problem, we consider the modified torque T̃ as defined in (6.28) as

cost functional, which we simply call T . As integration curve in T we fix the outer

boundary of the air gap.

6.2.2 Results

The two figures 6.10 and 6.11 plot the solution u of the boundary value problem (2.28)

and the shape derivative u′, obtained by solving (5.27) with vn for the parameter ρ, as

derived in subsection 3.3.1. The size of the two quantities as well as their occurence in

the motor (for J3 given in figure 6.9) are visualized by different colors.

Figure 6.10: State variable u at ratio 1

Figure 6.12 illustrates the behavior of T in the feasible interval of the design parameter

ρ. Transparently, the cost functional is monotonically increasing. Thus, for a fixed

position of the two tangent circles defining the cog curve, T increases if the outer circle
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Figure 6.11: Shape derivative u′ at ratio 1

(which cuts the iron ring) gets bigger whereas the other circle (which is closer to the

rotor) gets smaller. Note that we are interested in the maximum of the functional since

we consider T as cost functional instead of J .

In order to produce noticeable modifications in the motor geometry, a rather large

stepsize h = 0.1 was chosen for the calculations of T . For these steps of ρ in the plotted

interval, the relative change in T ranges from 5.8 to 34% and averages 14.2%.

Figure 6.13 compares two different methods to differentiate T with respect to the

geometry for values of ρ in the interval [0.6, 1.5] with stepsize h = 0.1. The blue

dashed line connects the approximations of the derivative of T in the grid points by

the forward difference quotient. The corresponding values resulting from the shape

derivative approach are plotted by the red line. The plot makes clear that the two

curves develop very similarly which confirms that DT makes sense.
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Figure 6.12: Development of the cost functional

Figure 6.13: Comparison of differentiation methods



Chapter 7

Conclusion and Future Work

The electromagnetic phenomena arising at the simulation of the permanently magne-

tized synchronous motor led, starting from the Maxwell’s equations, to a nonlinear

elliptic scalar PDE in 2D: the PDE constraint of the shape optimization problem. The

solution u of the resulting nonlinear BVP was required for the evaluation of the cost

functional describing the machine’s power output.

Gradient information was not attained by difference quotients, but the cost functional

was differentiated with respect to the geometry of the motor, by means of shape deriva-

tives. The meaning of differentiation with respect to the geometry of a body was dis-

cussed in detail, the considered changes of the motor domain Ω were visualized. General

formulas were derived for the computation of shape gradients of functionals, that con-

sist of domain or boundary integrals, where both the integration area (or curve) and

the integrand were dependent on the differentiation variable Ω.

We noticed that the obtained exact shape gradient DJ of the cost functional defined,

like J itself, a function of Ω and u, but additionally depended on u′, the shape derivative

of u. u′ identified the solution of another BVP related to the original one for u.

Applying the derived differentiation formulas to all terms of the existing problem for

u led to a variational problem with solution u′. The new problem for u′ turned out to

be linear, in contrast to the BVP that has u as solution.

The numerical tests with ParNFB showed for the constructed test problem with known

solution, that the calculations of u and its shape derivative u′ were of high accuracy.

The computations of the cost functional T and its gradient DT were very close to the

exact values Te and DTe for all considered values of the design parameter R. The values

70
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obtained by a forward difference quotient of T were similar to the computed gradient

DT .

For the original problem where the shape of the cogs is changed, we observed as well

that the derivatives obtained by difference quotients and shape derivatives behave sim-

ilarly.

So far, the computational costs have been equal for both methods because the setting

of the considered test problem, as well as the original problem, led to linear problems.

But in general, every function evaluation of T is equivalent to solving a nonlinear prob-

lem. Computing the difference quotient needs additional function values of T , whereas

the calculation of DT only requires the additional solution of one linear problem for

each design parameter. Therefore, using the shape derivative approach to determine

the gradient of T requires less effort than the computation of difference quotients.

Another advantage of the presented method is that there is no need to choose appro-

priate stepsizes.

Moreover, the difference quotient approximates the shape gradient of the cost func-

tional, whereas DT represents the exact gradient.

Altogether, the presented method of computing the shape gradient of the cost func-

tional with shape derivatives seems to be a valuable method and shows great promise

for shape optimization problems with underlying PDE constraints.

Future work:

This work can be continued in the following directions:

1. Permanent magnetization and nonlinearity.

The results in chapter 6 are obtained for a motor model where the whole rotor

consists of linear material and where the permanent magnetization is disregarded.

Actually, the rotor is made of nonlinear material, enclosed by a circular ring of

permanent magnets as visualized in figure 2.2.

2. Cost functional.

The original cost functional J given in (5.1) also regards copper losses besides

the machine torque T .
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Furthermore, computing the torque at different rotor positions (angles) and con-

sidering the mean torque, would lead to a more appropriate cost functional.

3. Variation of other design parameters.

The present simulations are all concerned with changes of the ratio ρ. Similar tests

could be accomplished for the remaining design parameters, i.e. the coordinates of

the circle midpoints. With the Eulerian derivatives for the remaining parameters,

the shape gradient would be obtained.

4. Optimization.

The shape gradient DJ derived by the shape derivative approach could finally

be used to solve the optimization problem (2.1).

5. Parameterization

The design parameters introduced in chapter 3 describe the cog shape by two

tangent circles. One could just as well define parameters that have nothing to do

with circles, leading to a completely different cog form.
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