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0 Introduction
In this chapter we want to generalize the following elementary result:

The function F : R → R fulfills the following conditions:
(a) F is monotonically increasing,
(b) F is continuous,
(c) F is coercive, i.e. F (u) → ±∞ if u → ±∞.
Then the equation F (u) = b has a solution u ∈ R for all b ∈ R. If F is strictly monotone,
the solution u is uniquely determined.

This classical existence theorem follows from the intermediate value theorem for continu-
ous functions. The theory of monotone operators, which applies this result to equations
of the form

Au = b

in a reflexive Banach space X is based on some basic principles and tricks that we will
briefly illustrate. Since it is easy to get lost in technical details, we will not go into them
for now.

Theorem 0.1. Let X be a separable, reflexive Banach space, and the operator A : X →
X∗

(a) is monotone, i.e. for all u, v ∈ X holds:

⟨Au− Av, u− v⟩X ≥ 0

(b) hemicontinuous, i.e. the mapping

t → ⟨A(u+ tv), w⟩X
is continuous in the interval [0, 1], for all u, v, w ∈ X,
(c) coercive, i.e.

lim
∥u∥X→∞

⟨Au, u⟩X
∥u∥X

= ∞

Then the main theorem about monotone operators states that A is surjective, i.e.
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∀b ∈ X∗ ∃u ∈ X : Au = b.

Proof. The proof of this result essentially consists of the following steps:

(i) Galerkin approximation: Since X is separable, there is a basis (wi)i∈N of X, i.e. for
Xn := span (w1, . . . , wn) holds:

X =
∞⋃
n=1

Xn

We approximate Au = b by problems in the finite-dimensional spaces Xn to which
Brouwer’s fixed point theorem applies, which ensures the existence of a solution un

for each of these problems.

(ii) Apriori estimation: We then show that the sequence of solutions (un) is bounded.
This is based on the following argument: If A : X → X∗ is coercive, then there
exists an R0 > 0, so that for all u with ∥u∥X > R0 holds:

⟨Au, u⟩X ≥ (1 + ∥b∥X∗) ∥u∥X

From this follows

⟨Au, u⟩X − ⟨b, u⟩X ≥ (1 + ∥b∥X∗) ∥u∥X − ∥b∥X∗∥u∥X
≥ ∥u∥X > R0

If u ∈ X, with ∥u∥X > R0, were a solution of Au = b, then 0 ≥ R0 > 0 would apply
based on this calculation. However, this is a contradiction. Therefore, we obtain
that every solution u ∈ X of Au = b corresponds to the a priori estimate

∥u∥X ≤ R0

is sufficient.

(iii) Weak convergence: Since X is a reflexive Banach space, it follows from Eberlein-
Šmuljan’s theorem that a weakly convergent subsequence (un) can be selected from
the bounded sequence (unk

), i.e.

unk
⇀ u in X (k → ∞)

(iv) Existence of a solution: The limit u found in this way is a solution of the equation
Au = b. We prove this statement using the Minty trick.

Lemma 0.2 (Minty’s trick). Let X be a Banach space and let A : X → X∗ be a hemi-
continuous, monotone operator. Then the following holds:
(i) The operator A is maximally monotone, i.e. if for given u ∈ X, b ∈ X∗ the inequality

⟨b− Av, u− v⟩X ≥ 0

2
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holds for all v ∈ X, then Au = b.
(ii) A is of type M, i.e. from

un ⇀ u in X (n → ∞)

Aun ⇀ b in X∗ (n → ∞)

lim sup
n→∞

⟨Aun, un⟩X ≤ ⟨b, u⟩X ,

follows Au = b.
(iii) From

un ⇀ u in X, Aun → b in X∗ (n → ∞)

or alternatively

un → u in X, Aun ⇀ b in X∗ (n → ∞)

follows Au = b.

Proof. ad (i): Let u ∈ X and b ∈ X∗ be given so that the above assumption is satisfied.
For any w ∈ X we set v := u − tw, t > 0, and obtain the following implication based on
the assumption:

⟨b− Av, u− v⟩X ≥ 0 → ⟨b− A(u+ t(−w)), w⟩X ≥ 0

Since A is hemicontinuous, it follows from the limit transition t ↘ 0+ that for all w ∈ X:

⟨b− Au,w⟩X ≥ 0

We replace w with −w and obtain the inverse inequality. Overall, ⟨b − Au,w⟩X = 0
applies to all w ∈ X, i.e. b = Au.

ad (ii): Since A is monotone, it follows for all v ∈ X,n ∈ N

0 ≤ ⟨Aun − Av, un − v⟩X = ⟨Aun, un⟩X − ⟨Av, un⟩X − ⟨Aun − Av, v⟩X .

After applying the superior limit, we obtain the following for all v ∈ X due to the
preconditions

0 ≤ ⟨b, u⟩X − ⟨Av, u⟩X − ⟨b− Av, v⟩X = ⟨b− Av, u− v⟩X
Thus Au = b follows from (i).

ad (iii): The assertion is a consequence of (ii) if we know that from

xn ⇀ x in X, fn → f in X∗ (n → ∞)

resp.

xn → x in X, fn ⇀ f in X∗ (n → ∞)

it follows that

⟨fn, xn⟩X → ⟨f, x⟩X (n → ∞).

In our situation, it follows that ⟨Aun, un⟩X → ⟨b, u⟩X(n → ∞). However, assertions (ii)
and (iii) of the following lemma provide these statements.

3
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Lemma 0.3 (Principles of convergence). Let X be a Banach space. Then holds:
(i) If xn ⇀ x in X as n → ∞, then there is a constant c such that ∥xn∥X ≤ c for all
n ∈ N.
(ii) If

xn ⇀ x in X (n → ∞),
fn → f in X∗ (n → ∞),

then follows

⟨fn, xn⟩X → ⟨f, x⟩X (n → ∞)

(iii) If

xn → x in X (n → ∞),
fn ⇀ f in X∗ (n → ∞),

then follows

⟨fn, xn⟩X → ⟨f, x⟩X (n → ∞).

(iv) Let X be additionally reflexive. Let the sequence (xn) be bounded. If all weakly
convergent subsequences of (xn) converge to the same limit x, then the entire sequence
(xn) converges weakly to x.

Proof. Exercises.

1 Monotone operators
Definition 1.1. Let X be a Banach space and A : X → X∗ an operator. Then A is called
(i) is monotone if and only if the following holds for all u, v ∈ X:

⟨Au− Av, u− v⟩X ≥ 0.

(ii) strictly monotone if for all u, v ∈ X, u ̸= v holds:

⟨Au− Av, u− v⟩X > 0.

(iii) strongly monotone if and only if there is a c > 0 such that for all u, v ∈ X:

⟨Au− Av, u− v⟩X ≥ c∥u− v∥2X
(iv) coercive exactly when

lim
∥u∥X→∞

⟨Au, u⟩X
∥u∥X

= ∞

Remark 1.2. (i) Obviously, the following implications apply:
A is strongly monotone ⇒ A is strictly monotone ⇒ A is monotone.
(ii) If A is strongly monotone, then A is also coercive. In fact, the following holds:

⟨Au, u⟩X = ⟨Au− A(0), u⟩X + ⟨A(0), u⟩X
≥ c∥u∥2X − ∥A(0)∥X∗∥u∥X

4
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therefore follows

⟨Au, u⟩X
∥u∥X

≥ c∥u∥X − ∥A(0)∥X∗ → ∞ for ∥u∥X → ∞.

Example 1.3. 1. Given a function f : R → R. We consider the function f as an operator
from X to X∗ with X = R = X∗. In R the duality product is just the multiplication, i.e.

⟨f(u)− f(v), u− v⟩X = (f(u)− f(v))(u− v).

Thus the following statements apply:
(i) f : X → X∗ (strictly) monotone ⇔ f : R → R (strictly) monotonically increasing.
(ii) f coercive ⇔ limu→±∞ f(u) = ±∞.
2. For the function g : R → R

g(u) =

{
|u|p−2u for u ̸= 0,

0 for u = 0,

it can be shown that holds:
(i) For p > 1 g is strictly monotone.
(ii) For p ≥ 2 holds:

⟨g(u)− g(v), u− v⟩X ≥ c|u− v|p.

(iii) For p = 2 g is strongly monotone.

Definition 1.4. Let X, Y be Banach spaces and let A : X → Y be an operator. Then A
is called
(i) is said to be completely continuous (weak-strong continuous) if and only if

un ⇀ u in X (n → ∞) =⇒ Aun → Au in Y (n → ∞)

(ii) demicontinuous (strong-weak continuous) when

un → u in X (n → ∞) =⇒ Aun ⇀ Au in Y (n → ∞)

(iii) hemicontinuous exactly if Y = X∗ and for all u, v, w ∈ X the function

t 7→ ⟨A(u+ tv), w⟩X
is continuous in the interval [0, 1].
(iv) bounded if and only if A maps bounded sets in X into bounded sets in Y .
(v) locally bounded if and only if for all u ∈ X there exists a ε(u) > 0 and a constant
K(u) such that for all v ∈ X with ∥u− v∥X ≤ ε holds ∥Av∥Y ≤ K.

Remark 1.5. Obviously, the following implications hold:
A is completely continuous ⇒ A is continuous ⇒ A is demicontinuous ⇒ A is hemicon-
tinuous.

A is bounded ⇒ A is locally bounded.

We now want to prove simple consequences of the above definitions.

5
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Lemma 1.6. Let X be a reflexive Banach space and A : X → X∗ an operator. Then the
following holds:
(i) If A is completely continuous, then A is compact.
(ii) If A is demicontinuous, then A is locally bounded.
(iii) If A is monotone, then A is locally bounded.
(iv) If A is monotone and hemicontinuous, then A is demicontinuous.

Proof. ad (i): We want to show that for all bounded subsets M ⊆ X the image set
A(M) is relatively sequence-compact. Let (Aun) be any sequence from A(M). Since M
is bounded, (un) is also bounded. Due to the reflexivity of the space X, there is a weakly
convergent subsequence (unk

), i.e. unk
⇀ u in X(k → ∞). From this follows Aunk

→ Au
in X∗(k → ∞), since A is completely continuous. Thus A(M) is relatively compact in
sequence, which is equivalent to the relative compactness of the set A(M) in Banach
spaces.
ad (ii): Proof by contradiction: Let A not be locally bounded, i.e. there is a u ∈ X and a
sequence (un) ⊆ X with un → u in X(n → ∞) such that ∥Aun∥X∗ → ∞(n → ∞). Since
A is demicontinuous, it follows that Aun → Au in X∗(n → ∞). Due to Lemma 0.3 (i),
(Aun) is bounded. But this is a contradiction. So A is locally bounded.
ad (iii): Proof by contradiction: If A is not locally bounded, then there is an u ∈ X and
a sequence (un) ⊆ X with un → u in X(n → ∞) such that ∥Aun∥X∗ → ∞(n → ∞). We
set

an := (1 + ∥Aun∥X∗ ∥un − u∥X)
−1 .

The monotonicity of A provides that for all v ∈ X:

0 ≤ ⟨Aun − Av, un − v⟩X
= ⟨Aun − Av, (un − u) + (u− v)⟩X

With the above designation, this is equivalent to

an ⟨Aun, v − u⟩X ≤ an (⟨Aun, un − u⟩X − ⟨Av, un − v⟩X)
≤ an (∥Aun∥X∗ ∥un − u∥X + ∥Av∥X∗ (∥un∥X + ∥v∥X))
≤ 1 + c(v, u)

where we use an ≤ 1 and the boundedness of the sequence (un). If we replace v with
2u− v in this calculation, we also get

−an ⟨Aun, v − u⟩X ≤ 1 + c(v, u)

Since v ∈ X is arbitrary, w := v − u is also an arbitrary point of X and we get for all
w ∈ X

sup
n

|⟨anAun, w⟩X | ≤ c̃(w, u) < ∞.

The continuous, linear mappings anAun : X → R are pointwise bounded according to the
above calculation. The principle of uniform boundedness thus yields

sup
n

∥anAun∥X∗ ≤ c(u).

From this and from the definition of an we get

6
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∥Aun∥X∗ ≤
c(u)

an
= c(u) (1 + ∥Aun∥X∗ ∥un − u∥X) .

Wegen ∥un − u∥X → 0(n → ∞) there is a n0 ∈ N such that for all n ≥ n0 c(u) ∥un − u∥X <
1
2

holds and we obtain

∥Aun∥X∗ ≤ 2c(u).

Thus, the sequence (∥Aun∥X∗) is bounded, which is a contradiction to the assumption
∥Aun∥X∗ → ∞(n → ∞) is. So the assertion is valid.
ad (iv): Let (un) ⊆ X be a sequence with un → u in X(n → ∞). Since A is monotone, (iii)
implies that A is locally bounded and thus (Aun) is bounded. Due to the reflexivity of X,
there is a subsequence (unk

) and an element b ∈ X∗ such that Aunk
⇀ b in X∗(k → ∞).

By Lemma 0.2 (iii), we thus obtain Au = b, i.e. Aunk
→ Au in X∗(k → ∞). But all

weakly convergent subsequences of (Aun) converge weakly to Au, because otherwise there
would be a subsequence with Aunl

→ c ̸= b, (l → ∞) in X∗. Lemma 0.2 (iii) again implies
Au = c, which is a contradiction to Au = b. Thus, Lemma 0.3 (iv) provides that the
entire sequence (Aun) converges weakly to b = Au, i.e. A is demicontinuous.

2 The theorem of Browder and Minty
We have now provided all the tools to prove the main theorem of the theory of monotone
operators.

Theorem 2.1 (Browder–Minty). Let X be a separable, reflexive Banach space. Further-
more, let A : X → X∗ be a monotone, coercive, hemicontinuous operator. Then for all
b ∈ X∗ there exists a solution u ∈ X of

Au = b.

The solution set is closed, bounded and convex. If A is strictly monotone, the solution is
unique.

Proof. Due to the separability of X, there is a basis (wi)i∈N of X. We prove the theorem
using the Galerkin method: To do this, we set

Xn := span (w1, . . . , wn)

and look for approximate solutions un ∈ Xn of the form

un =
n∑

k=1

cknwk

which is the Galerkin system

⟨Aun − b, wk⟩X = 0, k = 1, . . . , n

solve.

(i) Solvability of discretized problem: We can solve elements un ∈ Xn with vectors
cn := (c1n, . . . , c

n
n)

⊤ ∈ Rn can be identified. In particular, for c := (c1, . . . , cn)
⊤

7
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an equivalent norm is given by |c| :=
∥∥∑n

k=1 c
kwk

∥∥
X

on Rn, which we will use in
the following. Thus, the discretized problem can be viewed as a nonlinear system
of equations for the vectors cn ∈ Rn. We can do this using the mapping gn :=
(g1n, . . . , g

n
n)

⊤
: Rn → Rn given by

gkn : Rn → R : c 7→ gkn(c) :=

〈
A

(
n∑

j=1

cjwj

)
− b, wk

〉
X

, k = 1, . . . , n

rewrite into

gn (cn) = 0

According to Lemma 1.6 (iv), A is demicontinuous, since A is monotone and hemi-
continuous. Therefore, the mapping gn : Rn → Rn is continuous, since from
cl → c(l → ∞) with respect to | · | in Rn it follows that

∑n
j=1 c

j
lwj converges

to
∑n

j=1 c
jwj in X. It immediately follows that gn (cl) converges against gn(c) in

the Euclidean norm and thus also with respect to the | · | norm.

Furthermore, for c = (c1, . . . , cn)
⊤ and v :=

∑n
j=1 c

jwj

n∑
k=1

gkn(c)c
k = ⟨Av, v⟩X − ⟨b, v⟩X

Since A is coercive, i.e. ⟨Aw,w⟩X
∥w∥X

→ ∞ (∥w∥X → ∞), there is an R0 > 0 such that for
all ∥w∥X ≥ R0 holds ⟨Aw,w⟩X ≥ ∥b∥X∗∥w∥X . In particular, the following applies
to c with |c| = ∥v∥X = R0

⟨Av, v⟩X ≥ ∥b∥X∗∥v∥X

and thus follows

n∑
k=1

gkn(c)c
k ≥ ∥b∥X∗∥v∥X − ∥b∥X∗∥v∥X = 0

According to Brouwer’s fixed point theorem, there is therefore a solution un of the
Galerkin system with

∥un∥X ≤ R0

In particular, the constant R0 is independent of n, i.e. it is an a priori estimate.

(ii) Boundedness of (Aun) : Since A is monotone, it follows from Lemma 1.6 (iii) that
A is locally bounded. In particular, there are constants r,M > 0, so that the
implication

∥w∥X ≤ r ⇒ ∥Aw∥X∗ ≤ M

8
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is valid. Since un is a solution of the system, i.e. in particular ⟨Aun, un⟩X = ⟨b, un⟩X ,
we obtain for all n ∈ N

|⟨Aun, un⟩X | ≤ ∥b∥X∗ ∥un∥X ≤ ∥b∥X∗R0.

Due to the monotonicity of A, for all w ∈ X :

⟨Aun − Aw, un − w⟩X ≥ 0

A scaled variant of the definition of the norm in X∗ yields

∥Aun∥X∗ = sup
∥w∥X≤r

1

r
⟨Aun, w⟩X

≤ sup
∥w∥X≤r

1

r
(⟨Aw,w⟩X + ⟨Aun, un⟩X − ⟨Aw, un⟩X)

≤ 1

r
(Mr + ∥b∥X∗R0 +MR0) < ∞

So the sequence (Aun) ⊆ X∗ is bounded.

(iii) Convergence of the Galerkin method: Since X and X∗ are reflexive and the se-
quences (un) and (Aun) are bounded, there is a subsequence (unk

) with

unk
→ u in X

Aunk
→ c in X∗ (k → ∞).

On the other hand, for all w ∈
⋃∞

l=1Xl there is a n0 ∈ N with w ∈ Xn0 . Since un is
a solution of the Galerkin system, we obtain for all n ≥ n0

⟨Aun, w⟩X = ⟨b, w⟩X

from which follows

lim
n→∞

⟨Aun, w⟩X = ⟨b, w⟩X ∀w ∈
∞⋃
l=1

Xl

It follows that ⟨c − b, w⟩X = 0 for all w ∈
⋃∞

l=1Xl. Since
⋃∞

l=1Xl is dense in X, it
yields b = c and thus

Aunk
→ b in X∗ (n → ∞).

For the solution unk
of the Galerkin system, in particular ⟨Aunk

, unk
⟩X = ⟨b, unk

⟩X ,
from which follows:

lim
k→∞

⟨Aunk
, unk

⟩X = lim
k→∞

⟨b, unk
⟩X = ⟨b, u⟩X .

The conditions of the Minty trick, Lemma 0.2 (ii), are therefore fulfilled and we
obtain Au = b, i.e. u is a solution of the original operator equation Au = b.

9
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(iv) Properties of the solution set: For a given b ∈ X∗ we set S := {u ∈ X | Au = b}.
Then S has the following properties:

(a) S ̸= ∅ : This has just been proved.

(b) S is convex: Let u1, u2 ∈ S, i.e. Aui = b for i = 1, 2. For the convex
combination w = tu1 + (1− t)u2, t ∈ [0, 1], and any v ∈ X holds:

⟨b− Av,w − v⟩X = ⟨b− Av, tu1 + (1− t)u2 − (t+ 1− t)v⟩X
= ⟨b− Av, t (u1 − v)⟩X + ⟨b− Av, (1− t) (u2 − v)⟩X
= t ⟨Au1 − Av, u1 − v⟩X + (1− t) ⟨Au2 − Av, u2 − v⟩X
≥ 0

due to the monotonicity of A. An application of the Minty trick (cf. Lemma
0.2 (i)) yields Aw = b, i.e. w ∈ S. Thus S is convex.

(c) S is bounded: This follows from the coercivity of A. If S were not bounded,
there would be an u ∈ S for all R > 0 with ∥u∥X ≥ R > 0. But analogous to
the argumentation in step 1, we have

0 = ⟨Au, u⟩X − ⟨b, u⟩X ≥ ∥u∥X > 0

However, this is a contradiction and therefore there is an R0 > 0, so that for
all u ∈ S ∥u∥X ≤ R0.

(d) S is closed: For a sequence (un) ⊆ S, i.e. Aun = b, with un → u in X(n → ∞),
and for all v ∈ X we have:

⟨b− Av, u− v⟩X = lim
n→∞

⟨b− Av, un − v⟩X
= lim

n→∞
⟨Aun − Av, un − v⟩X ≥ 0,

due to the monotonicity of A. Using the Minty trick (cf. Lemma 0.2 (i)),
Au = b follows, i.e. u ∈ S.

(v) Uniqueness: Let A be strictly monotone. If there are two solutions u ̸= v of the
operator equation, then on the one hand we have Au = b = Av and on the other
hand from the strict monotonicity of A follows

0 < ⟨Au− Av, u− v⟩X = ⟨b− b, u− v⟩X = 0.

This is a contradiction. So the equation can have at most one solution.

Corollary 2.1.1. Let X be a separable, reflexive Banach space and let A : X → X∗ be
a strictly monotone, coercive, hemicontinuous operator. Then there exists the operator
A−1 : X∗ → X exists and is strictly monotone and demicontinuous.

Proof. Exercises.

10



Monotone operators in nonlinear PDEs Johannes Kepler University WS23/24

3 The Nemyckii operator
In order to apply Browder and Minty’s Theorem 2.1 to differential equations, we need the
so-called Nemyckii operator

(Fu)(x) := f(x,u(x))

where u = (u1, . . . , un)
⊤
,u : G ⊆ RN → Rn, with a domain G ⊆ RN .

With respect to the function f : G× Rn → R we make the following assumptions:
(i) Carathéodory condition:

f(·,η) : x 7→ f(x,η) is measurable on G for all η ∈ Rn,
f(x, ·) : η 7→ f(x,η) is continuous on Rn for almost all x ∈ G.

(ii) Growth condition:

|f(x,η)| ≤ |a(x)|+ b

n∑
i=1

∣∣ηi∣∣pi/q
where b > 0 is a constant, a ∈ Lq(G), 1 ≤ q < ∞ and pi ∈ [1,∞), i = 1, . . . , n.

Lemma 3.1. Under the above assumptions on the function f and the set G, the Nemyckii
operator

F :
n∏

i=1

Lpi(G) → Lq(G)

is continuous and bounded. The following applies for all u ∈
∏n

i=1 L
pi(G) the estimate

applies:

∥Fu∥q ≤ c

(
∥a∥q +

n∑
i=1

∥∥ui
∥∥pi/q
pi

)
Proof. We only consider the case n = 1, u = u1, p = p1. The general case follows analo-
gously.

(i) Measurability of Fu : Since u ∈ Lp(G), the function x 7→ u(x) is Lebesgue-
measurable on G. So there is a sequence (un) of staircase functions with

un → u almost everywhere in G (n → ∞)

Therefore, for almost all x ∈ G :

(Fu)(x) = f(x, u(x)) = lim
n→∞

f (x, un(x))

since f is continuous in the second variable due to the Carathéodory condition (i).
Since (un) are staircase functions, we have

f (x, un(x)) = f

x,

M(n)∑
j=0

cnj χGn
j
(x)

 =

M(n)∑
j=0

f
(
x, cnj

)
χGn

j
(x)

11
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with cn0 = 0 and Gn
0 = G\

⋃M(n)
i=1 Gn

i . Thus, f (x, un(x)) is measurable, since both
the functions f

(
x, cnj

)
and the characteristic functions χGn

j
are measurable. Fur-

thermore, the limit value of measurable functions is measurable and therefore also
Fu.

(ii) Boundedness of F : It applies to all u ∈ Lp(G) :

∥Fu∥qq =
∫
G

|f(x, u(x))|qdx ≤
∫
G

(
|a(x)|+ b|u(x)|p/q

)q
dx

≤ C

∫
G

|a(x)|q + bq|u(x)|pdx ≤ C
(
∥a∥qq + ∥u∥pp

)
where the growth condition (ii) and the following ¨equivalence in RM

c

(
M∑
i=1

|ξi|r
) 1

r

≤
M∑
i=1

|ξi| ≤ C

(
M∑
i=1

|ξi|r
) 1

r

which is valid for r > 0, were used. So F is limited and fulfills the estimate from
before.

(iii) Continuity of F : Lp(G) → Lq(G) : Let (un) be a sequence with un → u in
Lp(G)(n → ∞). If F were not continuous, there would be a ε > 0 and a subsequence
(unk

), so that for all k ∈ N applies

∥Funk
− Fu∥q ≥ ε.

From unk
→ u in Lp(G)(k → ∞) follows the existence of another subsequence(

unkℓ

)
with unkℓ

→ u almost everywhere in G(ℓ → ∞) and it holds:∣∣∣f (x, unkℓ
(x)
)
− f(x, u(x))

∣∣∣q ≤ C
(∣∣∣f (x, unkℓ

(x)
)∣∣∣q + |f(x, u(x))|q

)
≤ C

(
|a(x)|q + bq

∣∣∣unkℓ
(x)
∣∣∣p + |f(x, u(x))|q

)
=: hnkℓ

(x)

where the growth condition (ii) was used. For the integrands
(
hnkℓ

)
⊆ L1(G) on

the right-hand side, h(x) := C (|a(x)|q + bq|u(x)|p+ |f(x, u(x))|q) :

hnkℓ
(x) → h(x) almost everywhere in G (ℓ → ∞),∫

G
hnkℓ

(x)dx →
∫
G
h(x)dx (ℓ → ∞),

since un → u in Lp(G)(n → ∞), thus ∥un∥p → ∥u∥p(n → ∞). Furthermore,∣∣∣f (x, unkℓ
(x)
)
− f(x, u(x))

∣∣∣q → 0 for almost all x ∈ G(ℓ → ∞), since f is con-
tinuous in the second variable due to the Carathéodory condition (i). Thus, the
generalized theorem of dominated convergence together with the definition of F
yields

12
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∥∥∥Funkℓ
− Fu

∥∥∥q
q
→ 0 (ℓ → ∞)

This is a contradiction and therefore F : Lp(G) → Lq(G) is continuous.

4 Quasilinear elliptic equations
As an application of Browder and Minty’s Theorem 2.1 and the Nemyckii operator, we
consider the following boundary value problem for a quasilinear elliptic equation:

− div
(
|∇u|p−2∇u

)
+ su = f in Ω,

u = 0 on ∂Ω.

Let 1 < p < ∞,Ω be a bounded domain in Rd with ∂Ω ∈ C0,1 and s ≥ 0. If we formally
multiply the PDE by u, integrate over Ω and partially integrate, we obtain the following
a priori estimate ∫

Ω

|∇u|p + s|u|2dx ≤ c(f)

From this we see that for all s ≥ 0 the canonical Sobolev space for the analysis is W 1,p
0 (Ω).

Note, however, that for s > 0 the space W 1,p
0 (Ω) ∩ L2(Ω) is also a natural choice.

The weak formulation of problem is: For a given f ∈ Lp(Ω)∗ we look for u ∈ X := W 1,p
0 (Ω)

such that for all φ ∈ X ∫
Ω

|∇u|p−2∇u · ∇φ+ suφdx =

∫
Ω

fφdx

Therefore, we define an operator A by

⟨Au, φ⟩X :=

∫
Ω

|∇u|p−2∇u · ∇φ+ suφdx

and a functional b by

⟨b, φ⟩X :=

∫
Ω

fφdx, ∀φ ∈ X

Remark 4.1. For p ∈ (1, 2) one have to be careful with the integrals, because at points
x ∈ Ω with ∇u(x) = 0 the expression |∇u(x)|p−2 is not defined. Therefore, |∇u|p−2∇u as
a unit, since for all p ∈ (1,∞) the function

g =
(
g1, . . . , gd

)⊤
: Rd\{0} → Rd : ζ 7→ |ζ|p−2ζ

can be continued continuously on the entire Rd by g(0) := 0. We use this convention as
well as in the further presentation.

Lemma 4.2. Let Ω be a bounded domain of Rd with Lipschitz continuous boundary ∂Ω.
Furthermore, let f ∈ Lp′(Ω), p′ = p

p−1
, p ∈ (1,∞) and s ≥ 0. For p ≥ 2d

d+2
the operator A

maps the space X = W 1,p
0 (Ω) into its dual space, i.e. A: X → X∗, and is bounded. The

13
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functional b is an element of X∗. Furthermore, the weak formulation is equivalent to the
operator equation in X∗

Au = b.

Proof. We set X := W 1,p
0 (Ω) and ∥u∥X := ∥∇u∥p. Due to the "zero boundary conditions",

this norm is equivalent to the usual W 1,p
0 (Ω) norm ∥u∥W 1,p

0
=
(∫

Ω
|u|p + |∇u|pdx

) 1
p .

(i) A : X → X∗ : It applies to u, φ ∈ X :

|⟨Au, φ⟩X | ≤
∫
Ω

|∇u|p−1|∇φ|dx+ s

∫
Ω

|uφ|dx

≤
(∫

Ω

|∇u|(p−1)p′dx

) 1
p′
(∫

Ω

|∇φ|pdx
) 1

p

+ s

(∫
Ω

|u|2dx
) 1

2
(∫

Ω

|φ|2dx
) 1

2

=∥∇u∥p−1
p ∥∇φ∥p + s∥u∥2∥φ∥2,

where we have used the Hölder inequality and p′ = p
p−1

. For 1 ≤ p < d the
Sobolev embedding X = W 1,p

0 (Ω) ↪→ Lq(Ω) applies with q ≤ dp
d−p

. In particular,
X ↪→ L2(Ω) applies if 2 ≤ dp

d−p
↔ p ≥ 2d

d+2
. If p ≥ d, we use the Sobolev embeddings

X ↪→ W 1,d(Ω) ↪→ Lq(Ω), which are valid for all q < ∞. So we get that for p ≥ 2d
d+2

and all φ ∈ X holds:

∥φ∥2 ≤ c1∥φ∥X = c1∥∇φ∥p

Overall, this results in

|⟨Au, φ⟩X | ≤ ∥∇u∥p−1
p ∥∇φ∥p + s∥u∥2∥φ∥2

≤ c
(
∥∇u∥p−1

p + s∥∇u∥p
)
∥∇φ∥p

Based on the definition of the norm of Au in X∗ we have

∥Au∥X∗ = sup
∥φ∥X≤1

|⟨Au, φ⟩X | ≤ c
(
∥∇u∥p−1

p + s∥∇u∥p
)
,

and thus Au ∈ X∗ and A : X → X∗, provided that p ≥ 2d
d+2

. We immediately see
that the operator A is bounded.

(ii) Using the Hölder inequality and the definition of the dual norm, we obtain

∥b∥X∗ = sup
∥φ∥X≤1

|⟨b, φ⟩X | ≤ sup
∥φ∥X≤1

∥f∥p′∥φ∥p

≤ c∥f∥p′

for p ≥ 1, since X = W 1,p
0 (Ω) ↪→ Lp(Ω), i.e. ∥φ∥p ≤ c∥φ∥X .

14
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(iii) From steps 1 and 2, as well as the definitions of A and b, it follows that the weak
formulation is just

⟨Au, φ⟩X = ⟨b, φ⟩X ∀φ ∈ X

is. But this is the operator equation Au = b in X∗.

Remark 4.3. For s = 0 the restriction p ≥ 2d
d+2

is not necessary in the previous lemma.
If one works for s > 0 with X = W 1,p

0 (Ω) ∩ L2(Ω) provided with the norm ∥u∥X :=
∥∇u∥p + ∥u∥2, the restriction p ≥ 2d

d+2
is also omitted.

Lemma 4.4. Under the conditions of Lemma 4.2, the operator A : X → X∗ is strictly
monotone, coercive and continuous.

Proof. (i) A is strictly monotone: The operator A can be understood using the function
g defined as before. For i, j = 1, . . . , d and ζ ̸= 0 we have

∂jg
i(ζ) = |ζ|p−2δij + (p− 2)|ζ|p−4ζ iζj

and thus for all ζ ∈ Rd\{0},η ∈ Rd, 1 < p < ∞,

d∑
i,j=1

∂jg
i(ζ)ηiηj = |ζ|p−2

(
|η|2 + (p− 2)

(ζ · η)2

|ζ|2

)
≥ min(1, p− 1)|ζ|p−2|η|2

To prove the strict monotonicity of A we want to use the main theorem of differential
and integral calculus. Since g only belongs to the space C0

(
Rd
)
∩ C1

(
Rd\{0}

)
, we

approximate g by gε(ζ) := (ε2 + |ζ|2)
p−2
2 ζ, ζ ∈ Rd, ε > 0. Obviously, gε ∈ C1

(
Rd
)
,

as well as gε(ζ) → g(ζ) for all ζ ∈ Rd, ∇gε(ζ) → ∇g(ζ) for all ζ ∈ Rd\{0}
and |∇gε(ζ)| ≤ c(p, d)|ζ|p−2 for all ζ ∈ Rd. It can be shown (exercise) that there
are constants that depend only on p, so that for all |ζ| + |η| > 0, p ∈ (1,∞), the
following applies

c(|ζ|+ |η|)p−2 ≤
∫ 1

0

|ζ + τ(η − ζ)|p−2dτ ≤ C(|ζ|+ |η|)p−2

The main theorem now returns for all ζ ̸= η

gε(ζ)− gε(η) =

∫ 1

0

d

dτ
gε(η + τ(ζ − η))dτ

=

∫ 1

0

∇gε(η + τ(ζ − η)) · (ζ − η)dτ

The above properties of g and gε, as well as the theorem on dominated convergence
provide for ε → 0

15
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g(ζ)− g(η) =

∫ 1

0

∇g(η + τ(ζ − η)) · (ζ − η)dτ

For any u ̸= v ∈ X we get with s ≥ 0

⟨Au− Av, u− v⟩X

=

∫
Ω

d∑
i=1

(
gi(∇u)− gi(∇v)

)
(∂iu− ∂iv) dx+ s

∫
Ω

|u− v|2dx

≥
∫
Ω

∫ 1

0

d∑
i,j=1

∂jg
i(∇v + τ(∇u−∇v)) (∂ju− ∂jv) (∂iu− ∂iv) dτdx

≥ c

∫
Ω

|∇u−∇v|2
∫ 1

0

|∇v + τ(∇u−∇v)|p−2dτdx

≥ c

∫
Ω

|∇u−∇v|2(|∇u|+ |∇v|)p−2dx > 0,

i.e. A is strictly monotone.

(ii) A is coercive: We have for u ∈ X

⟨Au, u⟩X =

∫
Ω

|∇u|p + s|u|2dx = ∥∇u∥pp + s∥u∥22 ≥ ∥∇u∥pp

therefore follows

⟨Au, u⟩X
∥u∥X

≥ ∥∇u∥p−1
p → ∞ (∥u∥X → ∞)

if p > 1.

(iii) A is continuous: Let (un) ⊆ X be a sequence with un → u in X(n → ∞), i.e. in
particular ∇un → ∇u in Lp

(
Ω;Rd

)
(n → ∞). We set

F(∇u)(x) := g(∇u(x)).

Since g componentizes the estimate

∣∣gi(ζ)∣∣ ≤ |ζ|p−1 = |ζ|
p
q , i = 1, . . . , d

is satisfied with q = p
p−1

, F is a vector-valued Nemyckii operator. It therefore
follows from Lemma 3.1 that F : Lp

(
Ω;Rd

)
→ Lp′

(
Ω;Rd

)
is continuous, i.e. for

our sequence (un) holds:

F (∇un) → F(∇u) in Lp′
(
Ω;Rd

)
(n → ∞)

Thus we get

16
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⟨Aun − Au, φ⟩X =

∫
Ω

(F (∇un)− F(∇u)) · ∇φdx+ s

∫
Ω

(un − u)φdx

≤ ∥F (∇un)− F(∇u)∥p′ ∥∇φ∥p + s ∥un − u∥2 ∥φ∥2

≤ c
(
∥F (∇un)− F(∇u)∥p′ + ∥un − u∥X

)
∥φ∥X ,

since X = W 1,p
0 (Ω) ↪→ L2(Ω) for p ≥ 2d

d+2
. Based on the definition of the norm in

dual space, it follows that

∥Aun − Au∥X∗ ≤ c
(
∥F (∇un)− F(∇u)∥p′ + ∥un − u∥X

)
.

For n → ∞ the right-hand side converges to 0, since un → u in X(n → ∞) and
F (∇un) → F(∇u) in Lp′

(
Ω;Rd

)
(n → ∞), i.e. the operator A is continuous.

Theorem 4.5. Let Ω be a bounded domain of Rd with Lipschitz continuous boundary ∂Ω
and let s ≥ 0. For p ≥ 2d

d+2
, p ∈ (1,∞) and all f ∈ Lp′(Ω), p′ = p

p−1
, there exists exactly

one weak solution u of the boundary value problem.

Proof. The space X = W 1,p
0 (Ω) is a separable and reflexive Banach space. Thus it fol-

lows from Lemmas 4.2 and 4.4 that we can apply Browder–Minty’s Theorem 2.1, which
immediately yields the assertion.

Remark 4.6. (i) The restriction p ≥ 2d
d+2

is not necessary. For s = 0 it does not occur
(cf. Remark 4.3) and for s > 0 one works with the space X = W 1,p

0 (Ω) ∩ L2(Ω).
One can show that both X and the operator A : X → X∗ fulfill the conditions of
BrowderMinty’s Theorem 2.1.

(ii) Theorem 4.5 can also be applied to the equation

− div(A(x,∇u)) = f in Ω

u = 0 on ∂Ω

if A : Ω× Rd → Rd fulfills the following conditions:

(a) A is a Carathéodory function,

(b) |A(x,η)| ≤ C (g(x) + |η|p−1) , g ∈ Lp′(Ω) (growth condition),

(c) (A(x,η)−A(x, ζ)) · (η − ζ)) > 0, for almost all x (strict monotonicity),

(d) A(x,η) · η ≥ c|η|p − h(x), h ∈ L1(Ω) (coercivity).

(iii) Theorem 4.55 also holds for any f ∈
(
W 1,p

0 (Ω)
)∗

. It can be shown that such f is a
representation of the form

f =
d∑

i=1

∂ifi + f0

with fi ∈ Lp′(Ω), i = 0, . . . , d.
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5 Pseudomonotone operators
The aim of this section is to develop a theory that makes it possible to solve quasilinear
elliptic equations that contain a term of lower order that is not monotone. For example,
the equation

− div
(
|∇u|p−2∇u

)
+ su = f inΩ,

u = 0 on ∂Ω,

cannot be solved using the theory of monotone operators if s < 0. However, an in-
spection of the proof of Browder-Minty’s Theorem 2.1 shows that the arguments can be
adapted to more general operators, namely pseudomonotone operators. Typical examples
of pseudomonotone operators are operators of the form

A = A1 + A2,

where A1 : X → X∗ is a monotone, hemicontinuous operator and A2 : X → X∗ is a fully
continuous, i.e. compact, operator (cf. Lemma 1.6 (i)), i.e. the theory of pseudomonotone
operators combines monotonicity and compactness. In the following, we will first develop
a general theory and then apply it to differential equations.

Definition 5.1. Let X be a Banach space and A : X → X∗ an operator. We say that A
is of type M if from

un → u in X (n → ∞)

Aun → b in X∗ (n → ∞)

lim sup
n→∞

⟨Aun, un⟩X ≤ ⟨b, u⟩X

it follows that Au = b applies.

This condition is important because it is invariant under continuous perturbations. More-
over, monotone operators fulfill this condition.

Lemma 5.2. Let X be a reflexive Banach space and let A : X → X∗, B : X → X∗ be
operators. Then the following holds:
(i) If A is monotone and hemicontinuous, then A is of type M .
(ii) If A is of type M and B is continuous, then A+B is of type M.

Proof. ad (i): This is exactly the statement of Lemma 0.2 (ii).
ad (ii): Given a sequence (un) ⊆ X with

un → u in X (n → ∞),

Aun +Bun → b in X∗ (n → ∞),

lim sup
n→∞

⟨Aun +Bun, un⟩X ≤ ⟨b, u⟩X .

Since B is continuous, Bun → Bu in X∗(n → ∞) and thus

Aun → b−Bu in X∗ (n → ∞).

lim sup
n→∞

⟨Aun, un⟩X ≤ ⟨b−Bu, u⟩X

Since A is of type M, Au = b−Bu, i.e. Au+Bu = b.

18
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For operators A : X → X∗, B : X → X∗ that are of type M, A + B is not necessarily of
type M. Therefore, we introduce the more stable notion of pseudomonotone operator.

Definition 5.3. Let A : X → X∗ be an operator on a Banach space X. Then A is called
pseudomonotone if from

un → u in X (n → ∞),

lim sup
n→∞

⟨Aun, un − u⟩X ≤ 0

it follows that for all w ∈ X applies:

⟨Au, u− w⟩X ≤ lim inf
n→∞

⟨Aun, un − w⟩X

The following lemma gives typical examples of pseudomonotone operators and important
properties.

Lemma 5.4. Let X be a reflexive Banach space, and let A,B : X → X∗ be operators.
Then holds:
(i) If A is monotone and hemicontinuous, then A is pseudomonotone.
(ii) If A is continuous, then A is pseudomonotone.
(iii) If A and B are pseudomonotone, then A+B is pseudomonotone.
(iv) If A is pseudomonotone, then A is of type M.
(v) If A is pseudomonotone and locally bounded, then A is demicontinuous.

Proof. ad (i): Given a sequence (un) ⊆ X with un → u in X(n → ∞) and

lim sup
n→∞

⟨Aun, un − u⟩X ≤ 0

Since A is monotone, the following applies:

⟨Aun − Au, un − u⟩X ≥ 0

from which follows

lim inf
n→∞

⟨Aun, un − u⟩X ≥ lim inf
n→∞

⟨Au, un − u⟩X = 0.

So together we get

lim
n→∞

⟨Aun, un − u⟩X = 0

For any w ∈ X and t > 0 we set zt := (1− t)u+ tw. The monotonicity of A implies

⟨Aun − Azt, un − zt⟩X ≥ 0

which, due to the choice of zt, is equivalent to

t ⟨Aun, un − w⟩X ≥ −(1− t) ⟨Aun, un − u⟩X + (1− t) ⟨Azt, un − u⟩X
+ t ⟨Azt, un − w⟩X

is. Thus, for all w ∈ X and t > 0 we get :

lim inf
n→∞

⟨Aun, un − w⟩X ≥ ⟨Azt, u− w⟩X

19



Monotone operators in nonlinear PDEs Johannes Kepler University WS23/24

where we used un → u in X(n → ∞), and t > 0. Since we can also write zt as zt =
u+ t(w − u) and the operator A is hemicontinuous, we get Azt → Au for t ↘ 0+. Thus,
for all w ∈ X :

lim inf
n→∞

⟨Aun, un − w⟩X ≥ ⟨Au, u− w⟩X

i.e. A is pseudomonotone.

ad (ii): Let (un) ⊆ X be a sequence with un → u in X(n → ∞). Then Aun → Au in
X∗(n → ∞), due to the continuity of A. Using Lemma 0.3 (ii), we thus obtain for all
w ∈ X

⟨Au, u− w⟩X = lim
n→∞

⟨Aun, un − w⟩X

i.e. A is pseudomonotone.

ad (iii): We choose a sequence (un) ⊆ X with un → u in X(n → ∞) and

lim sup
n→∞

⟨Aun +Bun, un − u⟩X ≤ 0

From this follows

lim sup
n→∞

⟨Aun, un − u⟩X ≤ 0, lim sup
n→∞

⟨Bun, un − u⟩X ≤ 0

which we prove by contradiction. So apply

lim sup
n→∞

⟨Aun, un − u⟩X = a > 0

In particular, there is a subsequence (unk
) with

lim
k→∞

⟨Aunk
, unk

− u⟩X = a

and thus we obtain

lim sup
k→∞

⟨Bunk
, unk

− u⟩X

= lim sup
k→∞

⟨(A+B)unk
− Aunk

, unk
− u⟩X

≤ lim sup
k→∞

⟨(A+B)unk
, unk

− u⟩X + lim sup
k→∞

⟨−Aunk
, unk

− u⟩X

= lim sup
k→∞

⟨(A+B)unk
, unk

− u⟩X − lim
k→∞

⟨Aunk
, unk

− u⟩X

≤ −a.

Since B is pseudomonotone, the following applies for all w ∈ X :

⟨Bu, u− w⟩X ≤ lim inf
k→∞

⟨Bunk
, unk

− w⟩X

For w = u we therefore obtain

0 ≤ lim inf
k→∞

⟨Bunk
, unk

− u⟩X ≤ lim sup
k→∞

⟨Bunk
, unk

− u⟩X ≤ −a < 0

which is a contradiction. Thus, with the pseudomonotoneity of A and B, it yields
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⟨Au, u− w⟩X ≤ lim inf
n→∞

⟨Aun, un − w⟩X ,

⟨Bu, u− w⟩X ≤ lim inf
n→∞

⟨Bun, un − w⟩X .

If we add both inequalities, the result for all w ∈ X is

⟨Au+Bu, u− w⟩X ≤ lim inf
n→∞

⟨Aun +Bun, un − w⟩X

i.e. A+B is pseudomonotone.

ad (iv): Given a sequence (un) ⊆ X that satisfies the pseduomonotone conditions. This
implies in particular

lim sup
n→∞

⟨Aun, un − u⟩X ≤ 0

Due to the pseudomonotoneity of A, we thus obtain for all w ∈ X

⟨Au, u− w⟩X ≤ lim inf
n→∞

⟨Aun, un − w⟩X
≤ ⟨b, u⟩X − ⟨b, w⟩X = ⟨b, u− w⟩X

If we replace w with 2u− w, the result for all w ∈ X is :

⟨Au, u− w⟩X = ⟨b, u− w⟩X
i.e. Au = b.

ad (v): Let (un) ⊆ X be a sequence with un → u in X(n → ∞). Since A is locally
bounded, the sequence (Aun) is also bounded. The space X is reflexive and there-
fore there is a subsequence (Aunk

) with Aunk
→ b in X∗(k → ∞), so that we get

limk→∞ ⟨Aunk
, unk

− u⟩X = 0. The pseudomonotoneity of A together with the above
convergences implies for all w ∈ X :

⟨Au, u− w⟩X ≤ lim inf
k→∞

⟨Aunk
, unk

− w⟩X
= ⟨b, u− w⟩X

Thus, as in (iv), Au = b, i.e. Aunk
→ Au in X∗(k → ∞). The convergence principle

Lemma 0.3 (iv) provides, since the above argument applies to any convergent subse-
quences,

Aun → b = Au in X∗ (n → ∞),

i.e. A is demicontinuous.

Theorem 5.5 (Brezis). Let A : X → X∗ be a pseudomonotone, bounded, coercive oper-
ator, where X is a separable, reflexive Banach space. Then for all b ∈ X∗ there exists a
solution u ∈ X of

Au = b.

Proof. Due to Lemma 5.4 (v), A is demicontinuous, since A is pseudomonotone and
bounded. According to Lemma 5.4 (iv), A also is of type M, since A is pseudomonotone.
We now proceed analogously to the proof of Browder-Minty’s Theorem 2.1. To do this,
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we choose a basis (wi)i∈N of X. Using the Galerkin method, we look for approximate
solutions

un =
n∑

k=1

cknwk

which represent the Galerkin system (cf. proof of Browder-Minty’s Theorem 2.1)

gkn (cn) = gkn (un) := ⟨Aun − b, wk⟩X = 0, k = 1, . . . , n

can be solved. The solvability of this system of equations follows as in the proof of
Browder-Minty’s Theorem 2.1, since A is demicontinuous and coercive. The demicontinu-
ousness of A implies that the functions gkn, k = 1, . . . , n, are continuous, and the coercivity
of A, that there is an R0 > 0 such that for all ∥un∥X = R0

∑n
k=1 g

k
n (cn) c

k
n > 0. Thus,

a corollary of Brouwer’s Theorem provides the existence of a solution un of the Galerkin
system, as well as the a priori estimate.

∥un∥X ≤ R0 ∀n ∈ N

So there is a convergent subsequence (unk
) with unk

→ u in X(k → ∞). We now want to
show that u solves Au = b. From the Galerkin system it follows that

lim
k→∞

⟨Aunk
, v⟩X = ⟨b, v⟩X ∀v ∈

⋃
n∈N

span (w1, . . . , wn)

The boundedness of the operator A provides that the sequence (Aunk
) is bounded, since

the weakly convergent sequence (unk
) is bounded. Due to the reflexivity of X∗, a subse-

quence of (Aunk
), which we again denote by (Aunk

), has a weak limit, i.e.

Aunk
→ c in X∗ (k → ∞).

However, c = b applies with the same arguments as in proof part 3 of Browder-Minty’s
Theorem 2.1. From the Galerkin system and the weak convergence of (unk

) we obtain

⟨Aunk
, unk

⟩X = ⟨b, unk
⟩X → ⟨b, u⟩X (k → ∞).

Therefore, the sequence (unk
) fulfills the requirements of the type M and it follows

Au = b,

i.e. u is the required solution.

6 Quasilinear elliptic equations II
We now consider the problem

− div
(
|∇u|p−2∇u

)
+ g(u) = f in Ω,

u = 0 on ∂Ω,

where Ω ⊆ Rd is a bounded domain with Lipschitz continuous boundary ∂Ω, f : Ω → R
and g : R → R are given functions and u : Ω → R is the function we are looking for. We
restrict ourselves to the case p < d in the following. However, all results also apply to the
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case p ≥ d. We want to use the theory of pseudomonotone operators. To do this, we set
X = W 1,p

0 (Ω) and define the following mappings:

⟨A1u, φ⟩X :=

∫
Ω

|∇u|p−2∇u · ∇φdx

⟨A2u, φ⟩X :=

∫
Ω

g(u)φdx,

⟨b, φ⟩X :=

∫
Ω

fφdx.

We proceed analogously to Section 4. The operator A1 and the functional b have already
been dealt with there. For the operator A2 we apply:

Lemma 6.1. Let Ω be a bounded domain of Rd with Lipschitz continuous boundary ∂Ω.
The continuous function g : R → R we impose the following growth condition:

|g(t)| ≤ c
(
1 + |t|r−1

)
where 1 ≤ r < ∞. For 1 ≤ p < d and r ≤ dp

d−p
= : q the operator A2 forms the space

X = W 1,p
0 (Ω) into its dual space X∗ab and is bounded. For r < dp

d−p
= q A2 is continuous.

Proof. (i) From the definition of A2 we obtain for u, φ ∈ X

|⟨A2u, φ⟩X | ≤
∫
Ω

c
(
1 + |u|r−1

)
|φ|dx

≤ c

∫
Ω

|φ|dx+ c

(∫
Ω

|u|(r−1)q′dx

) 1
q′
(∫

Ω

|φ|qdx
) 1

q

.

If we use the Sobolev embedding X = W 1,p
0 (Ω) ↪→ Lα(Ω), α ≤ q and (r − 1)q′ ≤ q,

which is equivalent to r ≤ dp
d−p

due to the definition of q, we obtain

∥A2u∥X∗ = sup
∥φ∥X≤1

|⟨A2u, φ⟩X |

≤ sup
∥φ∥X≤1

c
(
1 + ∥u∥r−1

X

)
∥φ∥X ≤ c

(
1 + ∥u∥r−1

X

)
.

Consequently, A2u ∈ X∗, i.e. A2 : X → X∗. It also follows from this estimate that
A2 is bounded.

(ii) Let (un) ⊆ X be a weakly convergent sequence. Due to the compact embedding
X = W 1,p

0 (Ω) ↪→↪→ Lr(Ω), for r < dp
d−p

, the following holds

un → u in Lr(Ω) (n → ∞).

We set

(Fv)(x) := g(v(x))

and using the growth condition and the continuity of g we obtain that the Nemyckii
operator F fulfills the conditions of Lemma 3.1. With r−1 = r

r′
, F : Lr(Ω) → Lr′(Ω)

is therefore continuous; particularly:
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∥F (un)− F (u)∥r′ → 0 (n → ∞)

From this we get

sup
∥φ∥X≤1

|⟨A2un − A2u, φ⟩X | ≤ sup
∥φ∥X≤1

∫
Ω

|g (un)− g(u)∥φ| dx

≤ sup
∥φ∥X≤1

∥F (un)− F (u)∥r′ ∥φ∥r

≤ c ∥F (un)− F (u)∥r′

due to the embedding X ↪→ Lr(Ω). Further, we have A2un → A2u in X∗(n → ∞),
i.e. A2 is continuous.

In order to apply Brezis’ theorem, we need the following lemma.

Lemma 6.2. In addition to the conditions of Lemma 6.1, let g fulfill the coercivity con-
dition

inf
t∈R

g(t)t > −∞

and let p > 1. Then the operator A1 + A2 : X → X∗ is coercive.

Proof. Before, it was shown that

⟨A1u, u⟩X = ∥∇u∥pp
applies. Further, there exists a constant c0 > 0 such that

⟨A2u, u⟩X =

∫
Ω

g(u)udx > −c0.

Thus we obtain for p > 1

⟨A1u+ A2u, u⟩X
∥u∥X

>
⟨A1u, u⟩X
∥∇u∥p

− c0
∥∇u∥p

= ∥∇u∥p−1
p − c0

∥∇u∥p
→ ∞

if ∥∇u∥p → ∞. So the operator A1 + A2 is coercive.

Theorem 6.3. Let Ω ⊆ Rd be a bounded domain with boundary ∂Ω ∈ C0,1. Let 1 < p < d
and the continuous function g : R → R fulfills the conditions of Lemma 6.2 with 1 ≤ r <
dp
d−p

. Then for all f ∈ Lp′(Ω) there exists a weak solution i.e. there is a u ∈ X = W 1,p
0 (Ω)

such that
(A1 + A2)u = b

Proof. Let us apply Brezis’ theorem. The space X = W 1,p
0 (Ω) is a reflexive separable

Banach space. We know that A1 : X → X∗ is a strictly monotone, continuous, bounded
operator. Thus A1 is pseudomonotone. Moreover, A2 is a fully continuous, bounded
operator. Therefore A2 is pseudomonotone. Overall, A1 +A2 is a pseudomonotone oper-
ator, which is also coercive. The assertion now follows immediately from the theorem of
Brezis.
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Remark 6.4. (i) The case p ≥ d can be treated analogously. In this case, the upper bound
for r is omitted, i.e. all r ∈ [1,∞) are admissible. However, case distinctions must be
made in the embedding sets, which would have further complicated the above calculations.
(ii) The function g(t) = −αt, α > 0, is not covered by the previous theorem, since g does
not fulfill the coercivity condition. For p ≥ 2d

d+2
the embedding W 1,p

0 (Ω) ↪→ L2(Ω) holds
and thus the coercivity of A1 + A2 can be proved as follows:

⟨A1u+ A2u, u⟩X
∥u∥X

= ∥∇u∥p−1
p − α

∥u∥22
∥∇u∥p

≥ ∥∇u∥p−1
p − αc0∥∇u∥p

where c0 is the embedding constant of W 1,p
0 (Ω) ↪→ L2(Ω). The right-hand side tends to

infinity if either p > 2 or p = 2 and αc0 < 1. Thus A1 + A2 is coercive and one can
proceed as before, which provides the existence of generalized solutions for p ≥ 2.

7 The stationary Navier-Stokes equations
The stationary Navier-Stokes equations are

−∆u+ [∇u]u+∇p = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω

We use the notation [∇u]u :=
(∑3

j=1 u
j (∂ju

i)
)
i=1,2,3

where Ω ⊆ R3 is a bounded domain

with Lipschitz continuous boundary ∂Ω. These equations describe the steady flow of a
viscous, incompressible fluid. It is u = (u1, u2, u3)

⊤
: Ω → R3 the velocity, p : Ω → R

the pressure and f : Ω → R3 an external force. The term [∇u]u is often called the
vortex term. The pressure can only be determined from equations up to a constant. It is
therefore possible to impose a further condition on p, whereby we opt for

∫
Ω
pdx = 0 for

the sake of simplicity. We set

X :=
{
φ ∈ W 1,2

0

(
Ω;R3

)
| divφ = 0

}
This is a linear subspace of W 1,2

0 (Ω;R3), which we can describe with the norm

∥u∥X := ∥∇u∥L2(Ω;R3×3)

provided. We define for all u, φ ∈ X and p ∈ L2(Ω) with
∫
Ω
pdx = 0

⟨A1u,φ⟩X :=

∫
Ω

∇u · ∇φdx

⟨A2u,φ⟩X :=

∫
Ω

[∇u]u ·φdx

⟨P,φ⟩X := ⟨∇p,φ⟩X := −
∫
Ω

p divφdx = 0,

⟨b,φ⟩X :=

∫
Ω

f ·φdx.

Obviously, the operator equation A1u + A2u = b is equivalent to the weak formulation,
i.e. for all φ ∈ X the following applies
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∫
Ω

∇u · ∇φdx+

∫
Ω

[∇u]u ·φdx =

∫
Ω

f · φdx

We now check that the operators A1, A2 and the functional b are well-defined and that
the operator A1 + A2 satisfies the conditions of Brezis’ theorem.

Lemma 7.1. Under the above conditions on Ω, the space X is a reflexive separable Banach
space.

Proof. First we show that X is a closed subspace of W 1,2
0 (Ω;R3). Let (un) ⊆ X be a

sequence with un → u in W 1,2
0 (Ω;R3) (n → ∞). It follows in particular that ∇un → ∇u

in L2 (Ω;R3×3) (n → ∞). Therefore, there is a subsequence with ∇unk
→ ∇u almost

everywhere (k → ∞). So we get for almost all x ∈ Ω

divu(x) = tr∇u(x) = lim
k→∞

tr∇unk
(x) = 0,

i.e. u ∈ X. Since a closed subspace of a Banach space is again a Banach space, we have
proved that X is a Banach space. Moreover, a closed subspace of a reflexive Banach space
is again reflexive. Since W 1,2

0 (Ω;R3) is separable, the subspace X ⊆ W 1,2
0 (Ω;R3) is also

separable.

Lemma 7.2. Under the above conditions on Ω and X, the operator A1 : X → X∗ is
linear, continuous, coercive, strictly monotone and bounded.

Proof. Obviously A1 is linear. The operator A1 : X → X∗ is a vector-valued variant
of the operator A : W 1,2

0 (Ω) →
(
W 1,2

0 (Ω)
)∗

of the p-Laplace operator from before with
p = 2 and s = 0. We can now adapt the proofs to our situation and obtain the missing
assertions.

Lemma 7.3. The operator A2 is a completely continuous and bounded operator from X
to X∗.

Proof. Firstly, for all u, φ ∈ X it holds:

|⟨A2u,φ⟩X | ≤
∫
Ω

|u||∇u∥φ|dx

≤
(∫

Ω

|u|4dx
) 1

4
(∫

Ω

|φ|4dx
) 1

4
(∫

Ω

|∇u|2dx
) 1

2

≤ c∥∇u∥22∥φ∥X ,
because X ↪→ L4 (Ω;R3). From the estimation follows both A2u ∈ X∗ and thus A2 : X →
X∗, as well as the boundedness of A2.
Next, we prove that A2 is completely continuous: Let (un) ⊆ X be a sequence with
un → u in X(n → ∞). From the compact embedding X ↪→↪→ L4 (Ω;R3) follows un → u
in L4 (Ω;R3) (n → ∞). For all φ ∈ X applies:

|⟨A2un − A2u,φ⟩X | =
∣∣∣∣∫

Ω

[∇un]un ·φ− [∇u]u ·φdx
∣∣∣∣

=

∣∣∣∣∫
Ω

[∇un] (un − u) ·φ+ [∇ (un − u)]u ·φdx
∣∣∣∣

=

∣∣∣∣∫
Ω

[∇un] (un − u) ·φ+ [∇φ]u · (un − u) dx

∣∣∣∣
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where we have partially integrated in the last step and utilized div u = 0. Thus, using
the Hölder inequality, we obtain

∥A2un − A2u∥X∗ = sup
∥φ∥X≤1

|⟨A2un − A2u,φ⟩X |

≤ sup
∥φ∥X≤1

∥un − u∥4 ∥∇un∥2 ∥φ∥4 + ∥u∥4 ∥un − u∥4 ∥∇φ∥2

≤ c ∥un − u∥4 ∥∇un∥2 + ∥u∥4 ∥un − u∥4 → 0 (n → ∞),

where we used the embedding X ↪→ L4 (Ω;R3), as well as the boundedness of the sequence
(∥∇un∥2 ) (cf. Lemma 0.3 (i)) and the convergence un → u in L4 (Ω;R3) (n → ∞). Thus
A2 is completely continuous on X.

Theorem 7.4. Let Ω ⊆ R3 be a bounded domain with Lipschitz continuous boundary
∂Ω. Then for every f ∈ L2 (Ω;R3) there is a u ∈ X so that u solves the Navier-Stokes
equations in the weak sense.

Proof. The space X is a separable and reflexive Banach space. Moreover, the operator
A1 +A2 : X → X∗ is bounded and pseudomonotone. It remains to show that A1 +A2 is
also coercive. For all u ∈ X we have:

⟨A2u,u⟩X =

∫
Ω

3∑
i,j=1

uj
(
∂ju

i
)
uidx =

1

2

∫
ω

3∑
j=1

uj∂j|u|2dx

= −1

2

∫
Ω

divu|u|2dx = 0

since for u ∈ X holds divu = 0. Since A1 is coercive, A1 + A2 is coercive on X3. Brezis’
theorem provides the assertion of the theorem.

We note that coercivity is the only property that only applies to X and not to W 1,2
0 (Ω;R3).

To prove the other properties, we do not need the condition div u = 0.
So far, we have shown the existence of a velocity u that satisfies the weak form for any
φ ∈ X. To also find a pressure p such that for all φ ∈ W 1,2

0 (Ω;R3)∫
Ω

∇u · ∇φdx+

∫
Ω

[∇u]u · φdx+

∫
Ω

p divφdx =

∫
Ω

f · φdx

applies, one must apply De Rham’s theorem to
(
F ∈ W 1,2

0 (Ω;R3)
)∗

, defined by

⟨F,φ⟩W 1,2
0 (Ω;R3) :=

∫
Ω

∇u · ∇φdx+

∫
Ω

[∇u]u ·φdx−
∫
Ω

f ·φdx

Theorem 7.5 (De Rham). . Let F ∈
(
W 1,2

0 (Ω;R3)
)∗

a functional. If the following
applies for all φ ∈ X:

⟨F,φ⟩W 1,2
0 (Ω;R3) = 0

then there exists a function p ∈ L2(Ω) with
∫
Ω
pdx = 0, so that for all φ ∈ W 1,2

0 (Ω;R3)
holds:

⟨F,φ⟩W 1,2
0 (Ω;R3) =

∫
Ω

p divφdx

Proof. See exercises.
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8 Evolution problems
Before we deal with the nonstationary versions of the p-Laplace problem, let us consider
some special features of the treatment of time-dependent problems. The first peculiarity is
that in the study of parabolic differential equations and evolution equations, the location
and time variables are treated differently. What does this mean? In equations of this type,
the unknown is a function u that lies in a function space X whose elements are defined
on the space-time cylinder I × Ω, where Ω is a bounded domain in Rd and I = (0, T ) is
a given time interval. Now each u : I × Ω → R can be given by the rule

[ũ(t)](x) := u(t, x)

a mapping ũ : I → Y , where Y is a function space whose elements are only defined on Ω.
Thus, for all t ∈ I we can assign the function ũ(t) : Ω → R : x 7→ u(t, x) as an element of
this function space. This gives us two views of u : On the one hand, u can be viewed as a
function in time and space and, on the other hand, as a function in time with values in a
location-dependent function space. In the following we will use the second view. Another
special feature of the treatment of parabolic differential equations is that several function
spaces occur naturally. We will illustrate this using the example of the heat conduction
equation

∂tu−∆u = f in I × Ω,

u = 0 on I × ∂Ω,

u(0) = u0 in Ω,

to illustrate. Let u be a smooth solution, which of course also satisfies the weak formula-
tion, i.e. for all φ ∈ L2

(
I;W 1,2

0 (Ω)
)
:∫

I

∫
Ω

∂tuφdxdt+

∫
I

∫
Ω

∇u · ∇φdxdt =

∫
I

∫
Ω

fφdxdt

If we now choose φ = u, we obtain the a priori estimate using partial integration and
Oneng’s inequality

∥u∥2L∞(I;L2(Ω)) + ∥u∥2
L2(I;W 1,2

0 (Ω)) ≤ c
(
∥u0∥2L2(Ω) + ∥f∥2L2(I;L2(Ω))

)
.

Using this estimate, we obtain the estimate

∥∂tu∥2L2(I;(W 1,2
0 (Ω))

∗
) ≤ c

(
∥u0∥2L2(Ω) , ∥f∥

2
L2(I;L2(Ω))

)
So, to treat the heat conduction equation in a natural way, we need the spaces W 1,2

0 (Ω),
L2(Ω) and W−1,2(Ω) :=

(
W 1,2

0 (Ω)
)∗

. We have seen that the time derivative ∂tu lies in
the space L2 (I;W−1,2(Ω)). Therefore, we want to take a closer look at how the time
derivative is to be understood and develop a special case of the theory of generalized time
derivatives.
Let V be a Banach space that embeds continuously in a Hilbert space H, i.e. there exists
a linear, continuous and injective operator j : V → H. We further assume that the
embedding V

j
↪→ H is dense, i.e. j(V ) ⊆ H is dense in H. Under these conditions, we call

(V,H, j) a Gelfand triple. A typical example is
(
W 1,2

0 (Ω), L2(Ω), idW 1,2
0 (Ω)

)
, i.e. exactly

the spaces that occur naturally in the treatment of the heat conduction equation. The
adjoint operator j∗ ∈ L (H∗, V ∗), defined by
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⟨j∗f, v⟩V := ⟨f, jv⟩H f ∈ H∗, v ∈ V,

i.e. the restriction of a continuous, linear functional f ∈ H∗ to the image domain j(V ), is
again an embedding, because j∗ is injective. In fact, from j∗f = 0 follows 0 = ⟨j∗f, v⟩V =
⟨f, jv⟩H for all v ∈ V and thus f = 0 in H∗, since j(V ) is dense in H. If V is also reflexive,
it can be shown that j∗ (H∗) is dense in V ∗ (exercise).
Due to Riesz’s representation theorem, we can identify H with H∗ using the Riesz operator
R : H → H∗, defined by

⟨Ry, x⟩H := (y, x)H

can be identified. From the properties of the operators j, j∗ and R it follows that e :=
j∗ ◦R ◦ j : V → V ∗, i.e.

V
j
↪→ H

R∼= H∗ j∗

↪→ V ∗,

is continuous, linear and injective, i.e. an embedding from V to V ∗. We call this canonical
embedding of the Gelfand triple (V,H, j). With the help of the mapping e can be used
to identify elements of the space V with elements of the dual space V ∗. In the literature,
the explicit mention of the embedding e is usually omitted. The same applies to the
identifications using the mappings j and j∗. For all v, w ∈ V the following applies

⟨ev, w⟩V = ⟨j∗ ◦R ◦ jv, w⟩V = ⟨Rjv, jw⟩H = (jv, jw)H ,

which together with the symmetry of the scalar product in H,

⟨ev, w⟩V = (jv, jw)H = (jw, jv)H = ⟨ew, v⟩V
provides. Now we have all the tools together to define how we want to understand time
derivatives.

Definition 8.1. Let (V,H, j) be a Gelfand triple and let 1 < p < ∞. Then a function
u ∈ Lp(I;V ) has a generalized time derivative with respect to of the canonical embedding
e, if there exists an element w of the space Lp′ (I;V ∗) , 1

p′
+ 1

p
= 1, so that for all v ∈ V

and all φ ∈ C∞
0 (I;R) ∫

I

⟨w(t), v⟩V φ(t)dt = −
∫
I

(ju(t), jv)Hφ
′(t)dt

applies. If u ∈ Lp(I;V ) has a generalized time derivative, this is unique and we set
∂t(eu) := w.

Remark 8.2. (i) The definition is closely related to the theory of distributions with values
in Banach spaces. Let X be a Banach space and q ∈ (1,∞). Each element f ∈ Lq(I;X)
is defined by

Tf (φ) :=

∫
I

f(t)φ(t)dt, φ ∈ C∞
0 (I)

an element Tf of the space D′(I;X), the space of distributions with values in X. The
derivative of the distribution Tf is the distribution (Tf )

′ ∈ D′(I;X) for which

(Tf )
′ (φ) = −Tf (φ

′)
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applies to all φ ∈ C∞
0 (I). If (Tf )

′ can be represented by a function g ∈ Lq(I;X), i.e.
(Tf )

′ = Tg, we set f ′ := g. The Bochner–Sobolev space W 1,q(I;X) consists of exactly
such functions, i.e.

W 1,q(I;X) := {f ∈ Lq(I;X) | f ′ ∈ Lq(I;X)} .

Analogous to the proof of the embedding W 1,p(I) ↪→ C(Ī), one can show that every function
f ∈ W 1,q(I;X) has a representative fc ∈ C(Ī;X) and that the main theorem of differential
and integral calculus
integral calculus applies, i.e. for all f ∈ W 1,q(I;X) and all s, t ∈ Ī in X :

fc(t) = fc(s) +

∫ t

s

f ′(τ)dτ

(ii) Let (V,H, j) be a Gelfand triple. The embeddings j : V → H and e : V → V ∗

define induced embeddings on Bochner spaces j : Lp(I;V ) → Lp(I;H) : u 7→ ju and
e : Lp(I;V ) → Lp (I;V ∗) : u 7→ eu, where the induced functions ju and eu are defined by

(ju)(t) := j(u(t)), (eu)(t) := e(u(t)), for almost all t ∈ I,

are defined. One can show that the functions ju and eu are Bochner-measurable and
that the operators j and e are continuous and linear. The injectivity of j and e follows
immediately from the injectivity of j and e. Using (2.38), we see that the generalized
time derivative ∂t(eu) of a function u ∈ Lp(I;V ) is nothing other than the derivative of
the distribution Teu given by the function ∂t(eu) ∈ Lp′ (I;V ∗), i.e. (Teu)

′ = T∂t(eu) in
D′ (I;V ∗).
(iii) In general, the generalized time derivative ∂t(eu) is not identical to the weak time
derivative ∂tu. A function u ∈ L1(I × Ω) has a weak time derivative ∂tu ∈ L1(I × Ω) if∫

I

∫
Ω

∂tuφdxdt = −
∫
I

∫
Ω

u∂tφdxdt ∀φ ∈ C∞
0 (I × Ω).

Both derivation concepts are therefore only comparable if C∞
0 (Ω) is dense in V .

In the following we denote for a Gelfand triple (V,H, j), p ∈ (1,∞) and I = (0, T )

W 1,p,p′ (I;V, V ∗) = W :=
{
u ∈ Lp(I;V ) | ∂t(eu) ∈ Lp′ (I;V ∗)

}
,

∥u∥W := ∥u∥Lp(I;V ) + ∥∂t(eu)∥Lp′(I;V ∗) ,

where 1
p
+ 1

p′
= 1. The space (W, ∥ · ∥W ) is a Banach space. It is reflexive if 1 < p < ∞

and V is reflexive.

Lemma 8.3. Let V be a reflexive separable Banach space, (V,H, j) a Gelfand triple.
(i) For each function u ∈ W , the function ju ∈ Lp(I;H) has a unique representative
v ∈ C(Ī;H). The resulting operator j : W → C(Ī;H) : u 7→ v is an embedding.
(ii) For all u, v ∈ W and all s, t ∈ Ī holds:∫ t

s

⟨∂t(eu)(τ), v(τ)⟩V +

〈
dev

dt
(τ), u(τ)

〉
V

dτ

= (ju(t), jv(t))H − (ju(s), jv(s))H .

Proof. Exercises.
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Remark 8.4. (i) The formula is the analog of the following partial integration formula
for real-valued functions u, v : I → R :∫ t

s

u′(τ)v(τ) + u(τ)v′(τ)dτ = u(t)v(t)− u(s)v(s)

(ii) In the special case u = v ∈ W we get∫ t

s

⟨∂t(eu)(τ), u(τ)⟩V dτ =
1

2
∥ju(t)∥2H − 1

2
∥ju(s)∥2H

We now consider the initial value problem

∂t(eu) + Au = b,

u(0) = u0

This is the transient variant of the operator equation Au = b. We are looking for solutions
in a suitable Bochner space, and consequently the operator A is to be interpreted in a
suitable way as an operator on such spaces. In the following, we restrict ourselves to the
case where an operator A : V → V ∗ is given on a reflexive separable Banach space V
which contains an induced operator A by the rule

⟨Au, φ⟩Lp(I;V ) :=

∫
I

⟨A(u(t)), φ(t)⟩V dt u, φ ∈ Lp(I;V )

is defined. Under certain conditions on A and p, many properties of the operator A are
inherited by the induced operator A.
The following theorem is a transient variant of Brezis’ theorem.

Theorem 8.5. Let V be a separable, reflexive Banach space and (V,H, j) a Gelfand triple,
p ∈ (1,∞) and I = (0, T ) with 0 < T < ∞. Let A : V → V ∗ be an operator such that
the induced operator A : Lp(I;V ) → (Lp(I;V ))∗ is pseudomonotone and bounded, and the
coercivity condition

⟨Au, u⟩Lp(I;V ) ≥ c0∥u∥pLp(I;V ), u ∈ Lp(I;V ), c0 > 0

is sufficient. Then for all u0 ∈ H and all b ∈ Lp′ (I;V ∗) there exists a solution u ∈ W ,
i.e. u ∈ W satisfies ju(0) = u0 in H and for all φ ∈ Lp(I;V ) holds∫

I

⟨∂t(eu)(t) + A(u(t)), φ(t)⟩V dt =

∫
I

⟨b(t), φ(t)⟩V dt

Proof. It is essentially the same as the proof of the more general result in Theorem ...
below.

In order to apply this theorem, we need a condition that ensures that the induced operator
A of an operator A : V → V ∗ maps the space Lp(I;V ) into the dual space (Lp(I;V ))∗.

Lemma 8.6. Let V be a separable reflexive Banach space and A : V → V ∗ an operator.
(i) If A is demicontinuous, the function defined for u ∈ M(I;V ) by t 7→ A(u(t)), for
almost all t ∈ I, belongs to the space M (I;V ∗).
(ii) If A is demistiguous and the growth condition

∥Au∥V ∗ ≤ c
(
∥u∥p−1

V + 1
)
, u ∈ V, c > 0
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suffices for a p > 1, the induced operator A maps the space Lp(I;V ) into the dual space
(Lp(I;V ))∗ and is bounded.

Proof. This lemma is a special case of the more general result in ... below.

Before, we have treated the equation (A1 + A2)u = b using Brezis’ theorem on pseu-
domonotone operators, since it contains a monotone term and a compact term. Therefore,
it makes sense to apply the theorem above to the transient version of this equation

∂tu− div
(
|∇u|p−2∇u

)
+ g(u) = f in I × Ω,

u = 0 on I × ∂Ω,

u(0) = u0 in Ω,

to be applied. Let p ∈ (1,∞),Ω be a bounded domain in Rd with ∂Ω ∈ C0,1 and I = (0, T )
a finite time interval. The right-hand side f and the initial value u0 are given. We set
V := W 1,p

0 (Ω) and H := L2(Ω), where we provide V with the equivalent norm ∥∇·∥p. For
p ≥ 2d

d+2
(V,H, idV ) is a Gelfand triple. We use the same operators as in the treatment of

the quasilinear elliptic equation, i.e. we define

⟨A1u, v⟩V :=

∫
Ω

|∇u|p−2∇u · ∇vdx

⟨A2u, v⟩V :=

∫
Ω

g(u)vdx

We discussed these operators before. In particular, we have shown that the operator
A1 : V → V ∗ for p ≥ 2d

d+2
is bounded, coercive, continuous and strictly monotone. These

properties carry over to the induced operator A1 : L
p(I;V ) → (Lp(I;V ))∗.

Lemma 8.7. Let p ≥ 2d
d+2

and let A1 : V → V ∗ defined as before. Then the induced oper-
ator A1 forms the space Lp(I;V ) into its dual space (Lp(I;V ))∗ is bounded, continuous,
strictly monotone and satisfies the coercivity condition

⟨A1u, u⟩Lp(I;V ) ≥ c0∥u∥pLp(I;V ), u ∈ Lp(I;V ), c0 > 0

In particular, A1 is pseudomonotone.

Proof. The operator A1 is nothing else than the operator A from before for s = 0. We have
shown that the operator A1 : V → V ∗ satisfies the growth condition and we proved that
A1 : V → V ∗ is continuous. Thus, it follows that the induced operator A1 : Lp(I;V ) →
(Lp(I;V ))∗ is bounded. Just as before, we show that u ∈ Lp(I;V ) holds if and only if
u,∇u ∈ Lp(I × Ω). Thus, one can show that A1 is continuous, strictly monotone and
coercive, but instead of Ω one has to work with I×Ω. In particular, A1 is pseudomonotone.

The operator A2 was treated before. There it was shown that A2 : V → V ∗ is bounded and
continuous if r < dp

d−p
. The question now is whether these properties are also transferred

to the induced operator A2, i.e. whether the operator A2 maps the space Lp(I;V ) into
its dual space (Lp(I;V ))∗ and is bounded and continuous there. We have shown that

∥A2u∥V ∗ ≤ c
(
1 + ∥u∥r−1

V

)
applies if g : R → R is a continuous function with r − 1 growth. One can show that the
induced
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operator A2 thus maps the space Lp(I;V ) into
(
L(

p
r−1)

′

(I;V )
)∗

and is bounded. Thus,
if the rather restrictive condition r ≤ p is satisfied, A2 maps the space Lp(I;V ) into its
dual space (Lp(I;V ))∗.
The compact embedding V = W 1,p

0 (Ω) ↪→↪→ Lq(Ω), q < dp
d−p

, was used to prove the full
continuity of A2. In general, however, the embedding

Lp(I;V ) ↪→ Lp (I;Lq(Ω)) ,

with q < dp
d−p

, is not compact. One can see this immediately if one takes a sequence
fn : I → R which converges weakly in Lp(I) against an f ∈ Lp(I), but for which not
fn → f strongly holds in Lp(I)(n → ∞). For an arbitrary, but fixed, v ∈ V , the sequence

un(t, x) = fn(t)v(x) ∈ Lp(I;V )

does not converge strongly to Lp (I;Lq(Ω)). In fact, the following applies

∥un − u∥pLp(I;Lq(Ω)) =

∫
I

(∫
Ω

|fn(t)− f(t)|q |v(x)|qdx
) p

q

dt

= ∥v∥pLq(Ω) ∥fn − f∥pLp(I)

and thus un → u in Lp (I;Lq(Ω)) (n → ∞) converges if and only if fn → f in Lp(I)(n →
∞). Thus, even for r ≤ p, we do not know whether A2 : Lp(I;V ) → (Lp(I;V ))∗ is
continuous.
Thus, the transient existence theorem cannot be applied to the transient equation, since
we do not know whether A2 : L

p(I;V ) → (Lp(I;V ))∗ is continuous and therefore we do not
know whether A1 +A2 : Lp(I;V ) → (Lp(I;V ))∗ is pseudomonotone. One can construct
simple examples that show that the operator A1+A2 is not pseudomonotone. The above
counterexample is based on the fact that no information about the time derivative was
used, but only the information about the place derivative. In the existence theorem, we
have seen that the solution u of the evolution problem lies in the space W and thus we
have control over ∂t(eu) in Lp′ (I;V ∗). It can be shown that the restriction of the operator
A2 to the space W , i.e. we consider A2 as an operator from W to W ∗, is fully continuous.
This means that A1 + A2 : W → W ∗ is pseudomonotone. However, even with this new
information, we cannot apply the existence theorem, since we would have to work in the
subspace W of Lp(I;V ) with a different topology and this situation is not dealt with in
the theorem. In particular, we have no coercivity of the operator with respect to the space
W .
In fact, the situation just discussed is prototypical in the application of the existence the-
orem. However, one can adapt the proof ideas in many concrete applications if one takes
advantage of the fact that one also has control over the time derivative. This approach
goes back to J.L. Lions and provides the existence of a solution to the problem. However,
it introduces new technical complications, so that one has to consider a somewhat more
general situation than the space W . Let us now briefly state the core result.
Let B,B0, B1 be Banach spaces, where B0 and B1 are reflexive and the following embed-
dings hold:

B0
b0
↪→ B

b1
↪→ B1

i.e. in particular the embedding b := b1 ◦ b0 : B0 → B1 is compact. We set
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W0 := {u ∈ Lp0 (I;B0) | ∂t(bu) ∈ Lp1 (I;B1)}
where 1 < p0, p1 < ∞, and provide W0 with the norm

∥u∥W0 := ∥u∥Lp0(I;B0) + ∥∂t(bu)∥Lp1(I;B1) .

The embedding b : B0 → B1 induces for each function u ∈ Lp0 (I;B0) a function bu : I →
B1. The generalized time derivative ∂t(bu) ∈ Lp1 (I;B1) of a function u ∈ Lp0 (I;B0) is
to be understood in the sense that for all φ ∈ C∞

0 (I) applies in B1 :∫
I

bu(t)φ′(t)dt = −
∫
I

dbu(t)

dt
φ(t)dt

Obviously, W0 is a reflexive Banach space and it holds:

W0
b0
↪→ Lp0(I;B).

However, one can prove the following stronger embedding:

Theorem 8.8 (Aubin-Lions). Under the conditions above and 1 < p0, p1 < ∞ the follow-
ing embedding is compact:

W0
b0
↪→ Lp0(I;B).

The proof of this theorem is based on the following result.

Lemma 8.9 (Ehrling). Under the conditions above there is a constant d(η) for all η > 0,
so that for all v ∈ B0 holds:

∥b0v∥B ≤ η∥v∥B0 + d(η)∥bv∥B1 .

Proof. Assume that the inequality does not hold, then there is a η > 0 and sequences
(vn) ⊆ B0 and (dn) ⊆ R with 0 ≤ dn → ∞(n → ∞), so that

∥b0vn∥B > η ∥vn∥B0
+ dn ∥bvn∥B1

.

We set wn := vn/ ∥vn∥B0
∈ B0 and get

∥b0wn∥B > η + dn ∥bwn∥B1

By the definition of wn applies:

∥b0wn∥B ≤ c ∥wn∥B0
= c

and thus it follows dn → ∞(n → ∞), it follows that

∥bwn∥B1
→ 0 (n → ∞)

By construction, ∥wn∥B0
= 1 and thus the compact embedding implies B0

b0
↪→↪→ B, that

for a subsequence, which we again denote by (wn), holds

b0wn → b0w in B (n → ∞)

With the help of the embedding B
b1
↪→ B1 this results in
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bwn = b1 (b0wn) → b1 (b0w) = bw in B1 (n → ∞),

which together yields bw = 0 in B1. The injectivity of the embedding b yields w = 0 in
B0, from which b0w = 0 in B. Overall, we therefore have

∥b0wn∥B → 0 (n → ∞)

which is a contradiction since η > 0.

Proof (Aubin-Lions). Let (vn) be a bounded sequence in W0. Since W0 is reflexive, there
is a subsequence (vnk

) for which holds:

vnk
→ v in W0 (k → ∞)

If we move on to the sequence uk := vnk
− v, we thus obtain

un → 0 in W0 (n → ∞),

∥un∥W0
≤ c for all n ∈ N.

By the Ehrling lemma, for all η > 0 there is a d(η) with

∥b0un∥Lp0 (I;B) ≤ η ∥un∥Lp0(I;B0) + d(η) ∥bun∥Lp0(I;B1) ,

where we use the definition of induced embeddings of Bochner spaces b0 : Lp0 (I;B0) →
Lp0(I;B), b : Lp0 (I;B0) → Lp0 (I;B1). Now let ε > 0 be arbitrary. Taking η = ε

2c
, we

obtain

∥b0un∥Lp0 (I;B) ≤
ε

2
+ d(ε) ∥bun∥Lp0(I;B1) .

To prove the theorem, it is sufficient to show that

bun → 0 in Lp0 (I;B1) (n → ∞)

We set p := min (p0, p1). It follows that for all u ∈ W0 ∂t(bu) = (bu)′. Thus b : W0 →
W 1,p (I;B1) is an embedding. Then bu has a representative bcu ∈ C

(
Ī;B1

)
. Thus, for

all t ∈ Ī holds

∥bcun(t)∥B1
≤ c.

For any, but fixed, λ ∈ (0, 1) we define functions wn : I → B0, n ∈ N, by

wn(t) := un(λt), for almost all t ∈ I,

and we obtain

bcwn(0) = bcun(0)

∥wn∥Lp0(I;B0) =
1

λ
1
p0

∥un∥Lp0(0,λT ;B0) ≤ cλ
− 1

p0

∥∥(bwn)
′∥∥

Lp1(I;B1)
=

λ

λ
1
p1

∥∥(bun)
′∥∥

Lp1(0,λT ;B1)
≤ cλ

1− 1
p1 .

For φ ∈ C1(I) with φ(T ) = 0, φ(0) = −1 applies:
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bcwn(0) =

∫
I

(bwn(t)φ(t))
′ dt =

∫
I

φ(t) (bwn(t))
′ dt+

∫
I

φ′(t)bwn(t)dt

This yields

∥bcwn(0)∥B1
≤ c(φ)

∥∥(bwn)
′∥∥

Lp1(I;B1)
+

∥∥∥∥∫
I

φ′(t)bwn(t)dt

∥∥∥∥
B1

≤ cλ
1− 1

p1 +

∥∥∥∥∫
I

φ′(t)bwn(t)dt

∥∥∥∥
B1

.

Since p1 > 1, we can choose λ ∈ (0, 1) such that

cλ
1− 1

p1 ≤ ε/2

is valid. We have (wn) ⊆ Lp0 (I;B0) ↪→ L1 (I;B0) and thus obtain for all g ∈ B∗
0 :〈

g,

∫
I

wn(t)φ
′(t)dt

〉
B0

=

∫
I

⟨g, wn(t)⟩B0
φ′(t)dt

=

∫ λT

0

〈
gφ′
( s
λ

)
, un(s)

〉
B0

ds → 0 (n → ∞),

since φ′(·)g ∈ Lp′0 (0, λT ;B∗
0) and un → 0 in Lp0 (0, λT ;B0) (n → ∞), due to (2.63). So

we have shown that ∫
I

wn(t)φ
′(t)dt → 0 in B0 (n → ∞)

which due to the compact embedding B0
b0
↪→ B implies∫

I

b0wn(t)φ
′(t)dt → 0 in B (n → ∞)

With B
b1
↪→ B1, since ε was arbitrary, it yields

bcun(0) = bcwn(0) → 0 in B1 (n → ∞)

Now let s ∈ I be arbitrary. A completely analogous procedure with wn replaced by

w̃n(t) = un(s+ λt),

immediately returns for all s ∈ I

bcun(s) → 0 in B1 (n → ∞)

The majorized convergence theorem applied to the real function sequence
(
∥bcun(·)∥p0B1

)
,

yields the desired result, since bcun(t) = bun(t) for almost all t ∈ I. This proves the
theorem.

If we apply the Aubin-Lions theorem to the situation of unsteady p-Laplace problem, we
obtain the following result:
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Corollary 8.9.1. Let p > 2d
d+2

, let Ω ⊆ Rd, d ≥ 2, be a bounded domain with boundary

∂Ω ∈ C0,1 and let B1 be a reflexive Banach space with L2(Ω)
b1
↪→ B1. Then the space

embeds

W0 :=
{
u ∈ Lp

(
I;W 1,p

0 (Ω)
)
| ∂t(b1u) ∈ Lp1 (I;B1)

}
with 1 < p1 < ∞, compact to Lp (I;Lq(Ω)) if

1 ≤ q <
pd

d− p

i.e.

W0 ↪→↪→ Lp (I;Lq(Ω))

Proof. The embedding W 1,p
0 (Ω) ↪→↪→ Lq(Ω) is compact for 1 ≤ q < pd

d−p
. In particular,

q ≥ 2 can be chosen, since p > 2d
d+2

. Thus, the assertion follows immediately from
the Aubin-Lions theorem if q ≥ 2. For q ∈ [1, 2) we additionally use the embedding
L2(Ω) ↪→ Lq(Ω).

Based on this conclusion, we can prove the existence of a solution to the time-dependent
quasilinear PDE. However, further technical complications arise and this procedure has to
be repeated for each new problem. Therefore, we proceed differently and develop a general
theory without these problems in the next section, which provides an easily applicable
abstract existence theorem.

9 Evolution problems with Bochner pseudomonotone
operators

We now look again at the initial value problem

∂t(eu) + Au = b

u(0) = u0

We now adapt the notion of pseudomonotoneity to evolution problems. The weak solution
to the heat equation lies both in the space L2

(
I;W 1,2

0 (Ω)
)

and in the space L∞ (I;L2(Ω)).
In the case of general Gelfand triples (V,H, j) we define for p ∈ (1,∞) and I = (0, T ), T <
∞,

Lp(I;V ) ∩j L
∞(I;H) := {u ∈ Lp(I;V ) | ju ∈ L∞(I;H)}

where j is the induced embedding between Bochner spaces. If we assign the sum norm
to Lp(I;V ) ∩j L

∞(I;H), i.e. ∥ · ∥Lp(I;V )∩jL∞(I;H) := ∥ · ∥Lp(I;V ) + ∥j · ∥L∞(I;H), then
Lp(I;V ) ∩j L

∞(I;H) is a Banach space.

Definition 9.1. Let (V,H, j) be a Gelfand triple with a reflexive separable Banach space
V , and let p ∈ (1,∞). We call an operator A : Lp(I;V ) ∩j L

∞(I;H) → (Lp(I;V ))∗

Bochner pseudomonotone, if from

un → u in Lp(I;V ) (n → ∞),

jun
∗→ ju in L∞(I;H) (n → ∞),

jun(t) → ju(t) in H for f.a. t ∈ I, (n → ∞),
lim supn→∞ ⟨Aun, un − u⟩Lp(I;V ) ≤ 0,

(1)
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it follows that for all w ∈ Lp(I;V ) applies:

⟨Au, u− w⟩Lp(I;V ) ≤ lim inf
n→∞

⟨Aun, un − w⟩Lp(I;V )

The concept of Bochner pseudomonotoneity differs from the pseudomonotoneity by addi-
tional requirements on the sequence to be considered. Therefore, every pseudomonotone
operator is also Bochner pseudomonotone. On the other hand, there exist Bochner pseu-
domonotone operators that are not pseudomonotone. The new conditions consider the
additional information that can be derived from the time derivation. If the sequence (un)
comes from a Galerkin system, then the new condition is motivated by the part of the a
priori estimate coming from the time derivative. The other condition is motivated by the
fact that it can be derived using the partial integration formula for the time derivative
and the Galerkin system.
Many properties of Bochner pseudomonotone operators are analogous to the correspond-
ing properties of pseudomonotone operators. Here we only prove the continuity properties
that are important for us. Furthermore, analogous to before, we can show that the sum
of two Bochner pseudomonotone operators is Bochner pseudomonotone again.

Lemma 9.2. Let (V,H, j) be a Gelfand triple with a reflexive separable Banach space
V, p ∈ (1,∞) and A : Lp(I;V ) ∩j L

∞(I;H) → (Lp(I;V ))∗ a Bochner pseudomonotone
operator. Then holds:

(i) Let (un) ⊆ Lp(I;V )∩jL
∞(I;H) satisfy (1), and let (Aun) be bounded in (Lp(I;V ))∗.

Then the following applies: Aun → Au in (Lp(I;V ))∗ (n → ∞).

(ii) If A is additionally locally bounded, then A is demicontinuous.

Proof. (i) Given a sequence (un) ⊆ Lp(I;V ) ∩j L
∞(I;H) satisfying (1) and for which

(Aun) is bounded in (Lp(I;V ))∗. Since (Lp(I;V ))∗ is reflexive, there is a b ∈ (Lp(I;V ))∗

such that for a subsequence: Aunk
→ b in (Lp(I;V ))∗ (k → ∞). This and the Bochner

pseudomonotoneity of A imply for all w ∈ Lp(I;V )

⟨Au, u− w⟩Lp(I;V ) ≤ lim inf
k→∞

⟨Aunk
, unk

− w⟩Lp(I;V )

≤ lim sup
k→∞

⟨Aunk
, unk

− u⟩Lp(I;V )

+ lim sup
k→∞

⟨Aunk
, u− w⟩Lp(I;V )

≤⟨b, u− w⟩Lp(I;V ).

If we replace w by 2u− w, we get for all w ∈ Lp(I;V )

⟨Au, u− w⟩Lp(I;V ) = ⟨b, u− w⟩Lp(I;V ),

i.e. Au = b in (Lp(I;V ))∗. Since this argument applies to all subsequences of (Aun), the
convergence principles, see Lemma 0.3 (iv), provides the assertion.
(ii): Let (un) ⊆ Lp(I;V ) ∩j L

∞(I;H) be a sequence such that un → u in Lp(I;V ) ∩j

L∞(I;H)(n → ∞). Since A is locally bounded, the sequence (Aun) is also bounded in
(Lp(I;V ))∗. The space (Lp(I;V ))∗ is reflexive and therefore there is a b ∈ (Lp(I;V ))∗

and a subsequence (Aunk
) with Aunk

→ b in (Lp(I;V ))∗ (k → ∞). From this follows
limk→∞ ⟨Aunk

, unk
− u⟩Lp(I;V ) = 0. Further follows from unk

→ u in Lp(I;V )(k → ∞),
it follows that for another subsequence (unkℓ

) and almost all t ∈ I, unkℓ
(t) → u(t) in
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V (ℓ → ∞) holds. This implies junkℓ
(t) → ju(t) in H(ℓ → ∞) for almost all t ∈ I. The

Bochner pseudomonotoneity of A together with the above convergences implies for all
w ∈ Lp(I;V ) :

⟨Au, u− w⟩Lp(I;V ) ≤ lim inf
ℓ→∞

〈
Aunkℓ

, unkℓ
− w

〉
Lp(I;V )

= ⟨b, u− w⟩Lp(I;V ).

Thus, as in (i), Au = b follows, i.e. Aunk
→ Au in (Lp(I;V ))∗ (k → ∞). The conver-

gence principle Lemma 0.3 (iv) provides, since the above argument applies to arbitrary
convergent subsequences,

Aun → Au in (Lp(I;V ))∗ (n → ∞),

i.e. A is demicontinuous.

We also want to adapt the notion of coercivity to evolution problems and thereby take
into account the information coming from the time derivative. This is motivated by the
derivation of the a priori estimate.

Definition 9.3. Let (V,H, j) be a Gelfand triple with a reflexive, separable Banach space
V , and let p ∈ (1,∞). An operator A : Lp(I;V )∩j L∞(I;H) → (Lp(I;V ))∗ is called

(i) Bochner-coercive with respect to b ∈ Lp′ (I;V ∗) and u0 ∈ H, if a locally constrained
function MA : R≥ ×R≥ → R≥ exists, so that for all u ∈ Lp(I;V ) ∩j L

∞(I;H) from

1

2
∥ju(t)∥2H +

〈
Au−Rb, uχ[0,t]

〉
Lp(I;V )

≤ 1

2
∥u0∥2H for f.a. t ∈ I

follows ∥u∥Lp(I;V )∩jL∞(I;H) ≤ MA (∥b∥Lp′(I;V ∗) , ∥u0∥H) .

(ii) Bochner coercive if A for all b ∈ Lp′ (I;V ∗) and u0 ∈ H is Bochner coercive with
respect to b ∈ Lp′ (I;V ∗) and u0 ∈ H is.

Now we are able to prove an abstract existence theorem with the new terms.

Theorem 9.4. Let V be a separable reflexive Banach space and (V,H, j) a Gelfand triple,
p ∈ (1,∞) and I = (0, T ) with 0 < T < ∞. Let A : V → V ∗ be an operator such that the
induced operator A : Lp(I;V ) ∩j L

∞(I;H) → (Lp(I;V ))∗ is Bochner-pseudomonotone,
Bochner-coercive and bounded. Then for all u0 ∈ H and all b ∈ Lp′ (I;V ∗) there exists a
solution u ∈ W i.e. u ∈ W satisfies ju(0) = u0 in H and for all φ ∈ Lp(I;V ) holds∫

I

⟨∂t(eu)(t) + A(u(t)), φ(t)⟩V dt =

∫
I

⟨b(t), φ(t)⟩V dt

Due to the embedding W
j
↪→ C(Ī;H) from before, the solution u ∈ W has a unique

continuous representative in C(Ī;H) and thus the initial condition ju(0) = u0 makes
sense.

Proof. We prove the theorem using the Galerkin method. Since V is separable, it is easy
to consider that there is a sequence (w̃i)i∈N ⊆ V such that for all n ∈ N the elements
{w̃i}i=1...n are linearly independent and

⋃∞
k=1 span (w̃1, . . . , w̃k) is dense in V . Due to the

tightness of j(V ) in H, the Gram-Schmidt orthonormalization method can be used to
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construct a sequence (wi)i∈N ⊆ V such that (jwi)i∈N forms an orthonormal system in H,
and

⋃∞
k=1 span (jw1, . . . , jwk) is dense in H and

⋃∞
k=1 span (w1, . . . , wk) is dense in V . We

set Vn := span (w1, . . . , wn) and look for approximate solutions un ∈ C1
(
Ī;Vn

)
of the

form

un(t) =
n∑

i=1

cin(t)wi

which for all t ∈ I the Galerkin system

d

dt
(j (un(t)) , jwk)H + ⟨A (un(t)) , wk⟩V = ⟨bn(t), wk⟩V , k = 1, . . . , n,

j (un(0)) = un
0

can be solved. Here, un
0 :=

∑n
i=1 (u0, jwi)H jwi =:

∑n
i=1 c

0i
n jwi ∈ j (Vn) converges strongly

in H against u0 ∈ H and (bn) ⊆ C
(
Ī;V ∗) is a sequence that converges strongly in

Lp′ (I;V ∗) to b ∈ Lp′ (I;V ∗).

(i) Solvability: The Galerkin system is nothing else than the following system of ordi-
nary differential equations for the functions t 7→ cn(t) = (c1n(t), . . . , c

n
n(t))

⊤ ∈ Rn

dcn(t)

dt
= fn (t, cn(t))

cn(0) = c0n

where fk
n(t, c) := ⟨bn(t), wk⟩V − ⟨A (

∑n
i=1 c

iwi) , wk⟩V , k = 1, . . . , n, and c0n =

(c01n , . . . , c0nn )
⊤. Here we have used the fact that (jwi)i∈N is an orthonormal system

in H and therefore d
dt
(jun(t), jwk)H = dckn(t)

dt
applies. The operator A : Lp(I;V ) ∩j

L∞(I;H) → (Lp(I;V ))∗ is demicontinuous, since A is Bochner pseudomonotone
and bounded. It follows that the operator A : V → V ∗ is also demicontinuous. This
and bn ∈ C

(
Ī;V ∗) implies that fn : Ī × Rn → Rn is continuous. It follows from

Peano’s theorem that the system of ordinary differential equations on an interval
[0, τ ∗] has a continuously differentiable solution cn. The standard theory, based on
the theorem of Peano, also provides that this solution can be continued, a maximum
existence interval I∗ := [0, T ∗), T ∗ ≤ T , exists and the continued solution cn lies in
the space C1 (I∗;Rn).

(ii) A priori estimate: To show the global solvability of the Galerkin system, we need a
priori estimates. To derive these, we use the Bochner coercivity of A : Lp(I;V ) ∩j

L∞(I;H) → (Lp(I;V ))∗. To do this, we form the scalar product of the system with
cn(t), use

(
dcn(t)

dt
, cn(t)

)
Rn

= 1
2

d
dt
|cn(t)|2, integrate over (0, t), use the definitions of

un and fn and note |cn(t)|2 = ∥jun(t)∥2H and |cn(0)|2 = |c0n|
2
= ∥un

0∥
2
H , in order for

t ∈ (0, T ∗)

1

2
∥jun(t)∥2H +

∫ t

0

⟨A (un(s))− bn(s), un(s)⟩V ds =
1

2
∥un

0∥
2
H ≤ 1

2
∥u0∥2H

can be obtained. With the term ûn := χ[0,T ∗)un, the definition of the induced
operator, and the Riesz operator R : Lp′ (I;V ∗) → (Lp(I;V ))∗, we can express the
last inequality for all t ∈ I as

1

2
∥jûn(t)∥2H +

〈
Aûn −Rbn, ûnχ[0,t]

〉
Lp(I;V )

≤ 1

2
∥u0∥2H
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write. The Bochner coercivity thus provides

∥ûn∥Lp(I;V )∩jL∞(I;H) ≤ MA (∥bn∥Lp′(I;V ∗) , ∥u0∥H) .

Since MA is locally bounded and bn → b holds in Lp′ (I;V ∗), we obtain that there
is a constant M0 independent of n such that

sup
t∈[0,T ∗)

∥jun(t)∥2H +

∫ T ∗

0

∥un(s)∥pV ds ≤ M0

From |cn(t)|2 = ∥jun(t)∥2H follows supt∈[0,T ∗) |cn(t)|
2 ≤ M0. Consequently, the limit

exists
lim
t↗T ∗

cn(t) =: cn (T
∗)

and therefore cn ∈ C ([0, T ∗] ;Rn) ∩ C1 ([0, T ∗) ;Rn). If T ∗ < T we can therefore
continue the solution cn using Peano’s theorem, which is a contradiction to the
maximality of the existence interval. Therefore, T ∗ = T must apply. This yields
cn ∈ C ([0, T ];Rn), which un ∈ C ([0, T ];Vn) implies. We have thus proven the
global solvability of the Galerkin system on the one hand and the a priori estimate
on the other hand

∥jun∥2C(Ī;H) + ∥un∥pLp(I;V ) ≤ M0

with a constant M0 independent of n, is proven. Since the operator A : Lp(I;V )∩j

L∞(I;H) → (Lp(I;V ))∗ is bounded, the second a priori estimate follows from this

∥Aun∥(Lp(I;V ))∗ ≤ c (M0)

with a constant c (M0) independent of n.

(iii) Convergence of the Galerkin method: Due to the theorems of Riesz, every function
v ∈ L∞(I;H) is defined by

⟨RRHv, φ⟩L1(I;H) :=

∫
I

(v(t), φ(t))Hdt =

∫
I

⟨RH(v(t)), φ(t)⟩H dt

an element RRHv ∈ (L1(I;H))
∗, where RH : L∞(I;H) → L∞ (I;H∗) is the element

represented by RH : H → H∗ is the Riesz isomorphism induced by RH : H → H∗.
It follows that the sequence (RRHjun) is restricted in (L1(I;H))

∗. Thus, there
thus exists a subsequence, which we again denote by (RRHjun), which converges
*-weakly to a U ∈ (L1(I;H))

∗. Since R and RH are isomorphisms, there exists
a function û ∈ L∞(I;H) with RRH û = U . It is common instead of RRHjun

∗→
RRH û in (L1(I;H))

∗ to simply write jun
∗→ û in L∞(I;H). We will also use this

somewhat imprecise expression. It follows that there is a subsequence of (un), which
we again denote by (un), as well as elements u ∈ Lp(I;V ) and ξ ∈ Lp′ (I;V ∗), so
that

un → u in Lp(I;V ) (n → ∞),

jun
∗→ ju in L∞(I;H) (n → ∞),

Aun → Rξ in (Lp(I;V ))∗ (n → ∞)
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Here we have used that due to the weak continuity of the induced embedding j holds:
jun → ju in Lp(I;H)(n → ∞) and thus the sequence (jun) ⊆ L∞(I;H) must have
the limit value ju. We have also used the fact that the limit of the sequence (Aun)
can be determined using the Riesz operator R : Lp′ (I;V ∗) → (Lp(I;V ))∗ from
Riesz’s representation theorem can be represented by an element ξ ∈ Lp′ (I;V ∗).

(iv) Next, we want to show further properties of the solution. For all w ∈
⋃∞

k=1 Vk there
is a n0 with w ∈ Vn0 . Since un is a solution to the Galerkin system, we obtain for
all n ≥ n0 and all s ∈ I

d

ds
(jun(s), jw)H + ⟨A (un(s)) , w⟩V = ⟨bn(s), w⟩V

where we have used jun(s) = j (un(s)). We now multiply equation the variational
form of the Galerkin system by a function φ ∈ C1(Ī), integrate with respect to time
over (0, t) with an arbitrary, but fixed, t ∈ (0, T ] and, using partial integration in
time, the definition of the induced operator A and the initial condition, obtain

−
∫ t

0

(jun(s), jw)H φ′(s)ds+
〈
Aun, φ(·)χ[0,t](·)w

〉
Lp(I;V )

=

∫ t

0

⟨bn(s), w⟩V φ(s)ds− (j (un(t)) , jw)H φ(t) + (un
0 , jw)H φ(0).

For the limit transition we use the fact that from the a priori estimate it follows
that for all t ∈ (0, T ] there is a subsequence (junk

(t))k∈N that depends on t and a
vt ∈ H so that

junk
(t) → vt in H (k → ∞).

Further we use that φ(·)w ∈ Lp(I;V ), φ′(·)jw ∈ L1(I;H), jw ∈ H, as well as bn → b
in Lp′ (I;V ∗) (n → ∞) and un

0 → u0 in H(n → ∞). Thus it follows for n = nk ≥ n0

the limit transition (k → ∞) for any, but fixed, t ∈ (0, T ]

−
∫ t

0

(ju(s), jw)Hφ
′(s)ds+

∫ t

0

⟨ξ(s), w⟩V φ(s)ds

=

∫ t

0

⟨b(s), w⟩V φ(s)ds− (vt, jw)H φ(t) + (u0, jw)H φ(0).

Since
⋃∞

k=1 Vk is dense in V , this equation applies to all w ∈ V and all φ ∈ C1(Ī).
If we now choose t = T and φ ∈ C∞

0 (I), we obtain that

∂t(eu) = b− ξ ∈ Lp′ (I;V ∗)

We have thus proven u ∈ W . Setting v(s) := φ(s)w, where φ ∈ C1(Ī) and w ∈ V
and the definition of the generalized time derivative, it follows for any t ∈ (0, T ]∫ t

0

(ju(s), jw)Hφ
′(s) + ⟨b(s)− ξ(s), w⟩V φ(s)ds

= (ju(t), jw)H φ(t)− (ju(0), jw)H φ(0),

which yields

(ju(t), jw)H φ(t)− (ju(0), jw)H φ(0) = (vt, jw)H φ(t) + (u0, jw)H φ(0).
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If we now choose the function φ for any, but fixed, t ∈ (0, T ] such that φ(t) = 0 and
φ(0) = 1 or φ(t) = 1 and φ(0) = 0, and exploit the fact that j(V ) is dense in H, we
obtain

ju(0) = u0, ju(t) = vt, t ∈ (0, T ].

We have thus identified the initial condition in particular. It follows junk
(t) → ju(t)

in H(k → ∞). Since this argument applies to all weakly convergent subsequences
of (jun(t)), the convergence principle Lemma 0.3 (iv) yields

jun(t) → ju(t) in H (n → ∞)

for any t ∈ (0, T ]. Since ju(t) = ju(t) applies to almost all t ∈ I, we have for almost
all t ∈ I

jun(t) → ju(t) in H (n → ∞)

i.e. the crucial new condition in the definition of Bochner pseudomonotoneity is
satsifed.

(v) We still have to show A(u(·)) = ξ(·), where we want to exploit the Bochner pseu-
domonotonicity of A. We have already shown that the sequence (un) all besides one
condition for the desired property. For this we use un ∈ C1

(
Ī;Vn

)
to justify the

limit transition t ↗ T and obtain∫
I

⟨A (un(t)) , un(t)⟩V dt =

∫
I

⟨bn(t), un(t)⟩V dt− 1

2
∥j (un(T ))∥2H +

1

2
∥un

0∥
2
H .

From this we deduce with the help of bn → b in Lp′ (I;V ∗) , un
0 → u0 in H(n → ∞),

the subcontinuity of the norm, as well as the properties of the limit superior that

lim sup
n→∞

∫
I

⟨A (un(t)) , un(t)⟩V dt

≤
∫
I

⟨b(t), u(t)⟩V dt−
1

2
∥ju(T )∥2H +

1

2
∥ju(0)∥2H

is valid. On the other hand, it follows

−1

2
∥ju(T )∥2H +

1

2
∥ju(0)∥2H = −

∫
I

⟨∂t(eu)(t), u(t)⟩V dt

=

∫
I

⟨ξ(t)− b(t), u(t)⟩V dt

which yields

lim sup
n→∞

∫
I

⟨A (un(t)) , un(t)⟩V dt ≤
∫
I

⟨ξ(t), u(t)⟩V dt.

If we use the definition of the induced operator A and the Riesz operator R in this
inequality, we obtain

lim sup
n→∞

⟨Aun, un − u⟩Lp(I;V ) ≤ 0

i.e. the sequence (un) satisfies the desired property in the definition of Bochner
pseudomonotonicity. Since the operator A is Bochner pseudomonotone and the
sequence (un) satisfies all the conditions, it yields that Aun → Au converges to
(Lp(I;V ))∗ (n → ∞). We get sichAu = Rξ in (Lp(I;V ))∗, which is equivalent to
A(u(·)) = ξ(·) in Lp′ (I;V ∗). This implies that u ∈ W is a solution i.e. the weak
formulation in the theorem is fulfilled. Thus, the theorem is completely proven.
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